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We find a parametrically light dilaton in special confining theories in three dimensions. Their
duals form what we call a scion of solutions to the supergravity associated with the large-N limit
of the Coulomb branch of the N = 4 Super-Yang-Mills (SYM) theory. The supergravity description
contains one scalar with bulk mass that saturates the Breitenlohner-Freedman unitarity bound. The
new solutions are defined within supergravity, they break supersymmetry and scale invariance, and
one dimension is compactified on a shrinking circle, yet they are completely regular. An approximate
dilaton appears in the spectrum of background fluctuations (or composite states in the confining
theory), and becomes parametrically light along a metastable portion of the scion of new supergravity
solutions, in close proximity of a tachyonic instability. A first-order phase transition separates stable
backgrounds, for which the approximate dilaton is not parametrically light, from metastable and
unstable backgrounds, for which the dilaton becomes parametrically light, and eventually tachyonic.
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I. INTRODUCTION

In Refs. [1] and [2], we proposed a mechanism giving
rise to an approximate dilaton in the spectrum of com-
posite states of special classes of confining theories, in
four dimensions, that admit a higher-dimensional grav-
ity dual. We provided two explicit, calculable realisations
of this mechanism, which generalises the ideas proposed
in Ref. [3] (and further critically discussed in Refs. [4–6]).

We considered non-AdS gravity backgrounds in proxim-
ity of classical instabilities—generalising the proximity
to the Breitenlohner-Freedman (BF) unitarity bound [7]
in AdS space. An approximate dilaton (a scalar parti-
cle coupling to the trace of the energy-momentum ten-
sor) emerges along special branches of supergravity so-
lutions. Portions of the branches yield stable solutions,
while complementary ones describe metastable or even
unstable solutions. Moving in parameter space along the
branch of solutions, the dilaton has finite mass for stable
solutions, becomes parametrically light for metastable
ones, and tachyonic for the unstable ones.

The analysis follows the prescriptions of gauge-gravity
dualities [8–11], in the calculation of the free energy, via
holographic renormalisation [12–14], and of the spectrum
of the bound states, via a convenient gauge-invariant for-
malism [15–19]. We adopt the holographic description of
confinement, the calculation of Wilson loops [20–26], and
the interpretation of singularities [27]. We restrict atten-
tion to well established supergravity theories (top-down
holography). Ref. [1] studies the half-maximal supergrav-
ity in D = 6 dimensions, due to Romans [28–31] (see
also Refs. [32–49]), compactified on a circle [50–53], while
Ref. [2] considers the maximal supergravity in D = 7 di-
mensions [54–58], compactified on a 2-torus [59, 60]. In
Refs. [1, 2], we explored regions of the admissible param-
eter space overlooked in the earlier literature.

The significance of Refs. [1, 2] extends beyond produc-
ing calculable examples of the ideas exposed in Refs. [3–
6]. Recent years saw a resurgence of interest in the liter-
ature on the dilaton EFT description of near-conformal,
strongly coupled systems in four dimensions (see for in-
stance Refs. [61–73]). The literature on the subject has a
long history [74], including early attempts to explain the
long distance behaviour of Yang-Mills [75] and walking
technicolor [76–78] theories. One motivation for the re-
vival is the uncovering of a light scalar particle, possibly
a dilaton, in special SU(3) lattice gauge theories cou-
pled to matter [79–90]. Previously, the study of simple
bottom-up holographic models showed the emergence of
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a dilaton in special cases of theoretical relevance [91–105].
Even top-down holography provided supporting evidence
for the existence of a light scalar in special confining theo-
ries [106–110] related to the conifold [111–117]. Further-
more, the distinctive features of the dilaton EFT have
been applied to phenomenological extensions of the stan-
dard model [118–129], including their use in the context
of composite Nambu-Goldstone-Higgs models [130].

The gravity duals of the confining theories studied in
Refs. [1, 2] exhibit large departures from AdS geome-
try. What renders one of the scalar fluctuations para-
metrically light along the metastable branch is the inter-
play between the presence of a vacuum expectation value
(VEV) breaking spontaneously scale invariance, the ex-
plicit breaking due to relevant deformations, and the ef-
fects of the nearby instability. The resulting scalar is an
approximate dilaton, in the sense that it couples as ex-
pected to the trace of the energy-momentum tensor of
the dual field theory; this is demonstrated by the failure
of the probe approximation (which ignores the fluctua-
tions of the trace of metric [131]) to reproduce correctly
the mass spectrum. We refer the reader to the original
publications for the details, and we defer commenting on
potential phenomenological applications to extensions of
the standard model and to Higgs physics [132, 133].

The purpose of this paper is to exhibit a third exam-
ple of this mechanism, but realised in a lower dimensional
theory, in backgrounds that in the far UV approach an
AdS geometry, with bulk scalar mass close to the BF
bound. This hence highlights di↵erences and similari-
ties with other proposals for the origin of the dilaton.
We study a particular truncation of the N = 8 maxi-
mal supergravity theory in D = 5 dimensions, which is
(loosely) associated with the Coulomb branch of N = 4
super-Yang-Mills (SYM) theories. By introducing a rele-
vant deformation, and compactifying one dimension on a
circle, we build a scion1 of gravity backgrounds yielding
a light dilaton and admitting an interpretation in terms
of a field theory in three dimensions that confines. The
scion provides a one-parameter family generalisation of
the gravity background occasionally denoted in the litera-
ture as QCD3, and for which the spectrum of fluctuations
is known [60].

The paper is organised as follows. We summarise in
Sect. II the main features of the Coulomb branch, as
well as the consistent truncation of maximal supergrav-
ity in D = 5 dimensions, its reduction to D = 4 di-
mensions, the lift to D = 10 type IIB supergravity, and

1 The dual of the Coulomb branch is sourced by a discrete distri-
bution of displaced D3 branes; conversely the pure supergravity
action and lift we borrow from the literature [134] leads to sin-
gular supersymmetric solutions. In view of this loose relation
between supergravity theory and Coulomb branch, we refer to
our new solutions, obtained by elaborating on the gravity theory,
as forming a scion, rather than a branch, as a way to emphasize
their hybrid nature.

the prescription for Wilson loops. Sect. III summarises
the classes of solutions we investigate in this paper: we
present the UV and IR expansions, then compute curva-
ture invariants and Wilson loops to characterise the solu-
tions. We compute the spectrum of fluctuations for the
solutions in Sect. IV, in the appropriate number of dimen-
sions. In Sect. V we compare the free energies, to discuss
the stability of the solutions. After the conclusions in
Sect. VI, we supplement the material with Appendix A,
summarising known results for the supersymmetric solu-
tions, and Appendix B, exhibiting asymptotic expansions
of the fluctuations used in computing the spectra.

II. THE MODEL

The N = 8 maximal supergravity in D = 5 dimen-
sions [135–137] has played a central role in the history
of gauge-gravity dualities. It descends from dimensional
reduction of type IIB supergravity in D = 10 dimensions
on the 5-sphere S

5 [138, 139]. It has recently been es-
tablished that this is a consistent truncation [140, 141],
and the full uplift back to type IIB is known [141–143]
(see also Refs. [134, 144, 145]). The gauge symmetry is
SO(6) ⇠ SU(4)—capturing the isometries of S

5, and the
R-symmetry of the dual field theory, respectively. The
field content includes 42 real scalars that match N = 4
field-theory operators on the basis of their transforma-
tion properties under SU(4): the complex singlet 1C cor-
responds to the holomorphic gauge coupling, the sym-
metric 10C to the fermion masses, and the real 200 to
the matrix of squared masses for the scalars Xi, with
i = 1 , · · · , 6 (see e.g. Sect. 2.2.5 of Ref. [11], or the
introduction of Ref. [146]).

One of the background solutions of D = 5 maximal su-
pergravity lifts in type IIB to the AdS5 ⇥S

5 background
geometry providing the weakly-coupled dual description
of N = 4 SYM with SU(N) gauge group, in the (decou-
pling) limit of large N and large ’t Hooft coupling [8].
The supergravity solution is also the appropriate decou-
pling limit of the configuration sourced by a stack of
N coincident D3 branes. Following Ref. [147] (see also
Refs. [23, 148, 149]), we call Coulomb branch the space of
inequivalent vacua of the N = 4 theory that preserve 16
supercharges. The space is so called because away from
its SO(6)-invariant configuration the gauge group of the
field theory is partially higgsed, and the massless gauge
bosons mediate Coulomb interactions.

In the language of extended objects in D = 10 dimen-
sions, the literature identified multi-centred D3-brane so-
lutions [23, 147] with the moduli space of N = 4 SYM,
in the sense that points of the Coulomb branch are asso-
ciated with distributions of the N D3 branes over R6

(conveniently parametrised as a cone over the sphere
S

5), accompanied by the higgsing of SU(N). By tak-
ing N ! 1, while introducing a continuous distribution
of D3 branes, one might hope to recover a supergravity
description of the Coulomb branch still within maximal
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N = 8 supergravity in D = 5 dimensions. In fact, the
resulting metrics satisfy the supergravity equations [147],
but are singular (see for example the discussion after
Eq. (3.12) of Ref. [150]). These solutions are captured
by a consistent truncation [134, 144, 145] that retains
only the 200 scalars, dual to the symmetric and traceless
operator

200
⇠

✓
�

k
i �

`
j �

1

6
�ij�

kl

◆
Tr XkX` . (1)

There are five subclasses of solutions that preserve
SO(n) ⇥ SO(6 � n) subgroups of SO(6), with n =
1, · · · , 5 [147]. With abuse of language, the supersym-
metric backgrounds of this type are referred to as the
Coulomb branch, though such solutions are singular, and
hence incomplete as gravity duals.

We further restrict our attention to the n = 2 and the
n = 4 cases [23]. The spectrum of the n = 2 case is
quite peculiar: both the spin-0 and spin-2 spectra have a
gap and a cut opening above a finite value [12, 147, 151–
154] (see also Refs. [154, 155] for the spectra of vectors).
The choices n = 2, 4 are convenient also because they are
both captured by one of the subtruncations of the theory
in Ref. [156]—which retains only two scalars, one in the
200 and the 10C, respectively (see also the discussions in
Refs. [157, 158]). Setting to zero the latter of the two
scalars reduces the field content to just one scalar (�
in our notation), and the lift to D = 10 dimensions is
comparatively simple.

The gravity descriptions for n = 2, 4 are di↵erent; n is
associated with the ball B

n inside the internal space (in-
cluding the radial direction) over which one distributes
the N D3 branes, and is then reflected in the Ramond
fluxes in supergravity. We will identify two distinct
classes of solutions to the supergravity equations, distin-
guished by the negative or positive sign of � at the end of
space, which we associate with n = 2, 4, respectively (see
also the discussion at the end of Section 2 in Ref. [134]).
We display the supersymmetric solutions and summarise
their known properties in Appendix A.

We reconsider the system consisting of the scalar � cou-
pled to gravity in D = 5 dimensions, and describe more
general classes of solutions with respect to the literature.
These more general deformations break explicit super-
symmetry and scale invariance, hence lifting the space of
vacua, and modifying the spectrum of the theory. We
focus on solutions that involve either of two possibilities.

• In Sects. III B and III C, we display singular do-
main wall solutions that generalise the supersym-
metric ones while preserving Poincaré invariance
in four dimensions. The dual field theory is de-
formed by mass terms, breaking supersymmetry,
R-symmetry, and scale invariance. We compute the
spectrum of fluctuations—which barring the singu-
larity would be interpreted as bound states of the
dual field theory in four dimensions—and the be-
haviour of the quark-antiquark potential between

static sources, generalising the results of Ref. [23].
We discover one new special subclass of mildly sin-
gular solutions, that yield a long-distance potential
EW / 1/L

2 persisting up to infinite separation L.

• In Sect. IIID, we identify background solutions for
which one of the dimensions of the external space-
time is compactified on a circle, which shrinks
smoothly to zero size at some finite value of the ra-
dial (holographic) direction. These are regular so-
lutions, and the dual field theory yields linear con-
finement in three dimensions, as explicitly shown
by the Wilson loops. We compute the spectrum
of fluctuations, generalising the results of Ref. [60],
and discover new features, such as the emergence
of an approximate dilaton.

A. Sigma-model in D = 5 dimensions

We denote with hatted symbols quantities character-
ising the theory in D = 5 dimensions. The action of the
canonically normalised scalar � coupled to gravity is the
following (in the notation of Ref. [131]):

S5 =

Z
d5

x

p
�ĝ5

 
R̂5

4
�

1

2
ĝ

M̂N̂
@M̂�@N̂� � V5

!
. (2)

Here ĝ5 is the determinant of the metric, ĝ
M̂N̂ its inverse,

and R̂5 the Ricci scalar, while V5 is the potential.
The Domain Wall (DW) solutions manifestly preserve

Poincaré invariance in four dimensions. They can be ob-
tained by adopting the following ansatz for the metric:

ds
2
DW = e

2A(⇢)dx
2
1,3 + d⇢2

. (3)

By assumption, the only non-trivial functions determin-
ing the background are A(⇢) and �(⇢), with no depen-
dence on other coordinates. The resulting second-order
equations of motion are the following:

0 = @
2
⇢�+ 4@⇢A@⇢�� @�V5 , (4)

0 = 4(@⇢A)2 + @
2
⇢A +

4

3
V5 , (5)

0 = 6(@⇢A)2 � @⇢�@⇢�+ 2V5 . (6)

The conventions we are using [16] in writing the action
in Eq. (2) are such that if the potential V5 of the model
can be written in terms of a superpotential W satisfying

V5 =
1

2
(@�W)2 �

4

3
W

2
, (7)

for the metric ansatz ds
2
DW , then the solutions to the

first-order equations

@⇢A = �
2

3
W and @⇢� = @�W , (8)

are also solutions to the second-order Eqs. (4)-(6).
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FIG. 1: The potential V5 of the sigma-model in D = 5 dimensions, as a function of the scalar �.

C. Reduction to D = 4 dimensions

Following the notation in Ref. [61] (see also Ref. [50]), the reduction to D = 4 dimensions is obtained by adopting
the following ansatz:

ds
2
5 = e

�2��(r)ds
2
4 + e

4��(r)d⌘
2
, (13)

where he angle 0  ⌘ < 2⇡ parametrises a circle, the four-dimensional metric takes the domain wall form

ds
2
4 = e

2A(r)dx
2
1,2 + dr

2
, (14)

and the background values of the new scalars �(r) and the metric warp factor A(r), depend only on the the radial
coordinate r.

One finds that the action of the theory in D = 4 dimensions is

S4 =

Z
d4

x
p

�g4

✓
R4

4
�

1

2
g

MN
Gab@M�a

@N̂ �̂b
� V4

◆
, (15)

where the sigma-model metric for the scalar fields (�, �) is Gab = diag
�
1, 3�

2
�
, and the potential is

V4 = e
�2��

V5 . (16)

We explicitly verified that

S5 =

Z
d⌘

⇣
S4 + @S

⌘
, (17)

where

@S =

Z
d4

x@M

✓
�

2

p
�g4g

MN
@N�

◆
. (18)

We will make use of the change of variables @r = e
���

@⇢. It is also convenient to simplify the notation by choosing
� = 1, as this choice is purely conventional.

The equations of motion for the background functions can be written as follows:

0 = 2@⇢�(⇢) (3@⇢A(⇢) � @⇢�(⇢)) + 2@
2
⇢�(⇢) + 4

r
2

3
e
�2

p
2
3 �(⇢)

⇣
e

p
6�(⇢)

� 1
⌘

, (19)

0 = 6@⇢A(⇢)@⇢�(⇢) � 2@⇢�(⇢)2 + 2@
2
⇢�(⇢) �

4

3
e
�2

p
2
3 �(⇢)

⇣
2e

p
6�(⇢) + 1

⌘
, (20)

0 = �@⇢A(⇢)@⇢�(⇢) + 3@⇢A(⇢)2 + @
2
⇢A(⇢) � 2e

�2
p

2
3 �(⇢)

⇣
2e

p
6�(⇢) + 1

⌘
, (21)

FIG. 1: The potential V5 in Eq. (10) for the sigma-model in
D = 5 dimensions, as a function of the scalar �.

The superpotential is the following [12, 147, 151, 152]:

W = �e
� 2�p

6 �
1

2
e

4�p
6 , (9)

and admits an exact AdS5 solution with unit scale. The
potential is given by

V5(�) = �e
� 4�p

6 � 2e
2�p

6 , (10)

and is depicted in Fig. 1.
The first-order equations admit solutions that yield

a departure from AdS5 in the interior of the geometry,
which may correspond to n = 2 (D3 branes distributed
on B

2) or n = 4 (D3 branes on B
4). For small � one finds

that W ' �
3
2 � �

2 + · · · , hence these solutions are in-
terpreted in terms the VEV of an operator of dimension
� = 2 in the dual field theory. This saturates the BF
bound and, with respect to Refs. [1, 2], brings this study
in closer contact with the arguments in Ref. [3].

B. Reduction to D = 4 dimensions

We want to model a confining dual field theory in three
dimensions. Following Ref. [59], we therefore assume that
one spatial dimension is a circle, the size of which may
depend on the radial direction parametrised by ⇢ in the
five-dimensional geometry, and we hence allow for the
breaking of four-dimensional Poincaré invariance.

Regular background solutions in which the size of the
circle shrinks smoothly to zero (at some finite value of
the radial direction ⇢ = ⇢o) introduce a mass gap in
the (lower-dimensional) dual field theory, and exhibit the
physics of confinement—we discuss how in Sects. III C
and III D.

We elect to describe the geometry by applying dimen-
sional reduction of the gravity theory to four dimensions,
with the introduction of a new dynamical scalar that en-
codes the size of the circle. In the remainder of this
subsection we provide the technical details of the con-
struction.

We reduce to D = 4 dimensions by adopting the fol-
lowing ansatz, as in Refs. [131] and [52]:

ds
2
5 = e

�2�(r)ds
2
4 + e

4�(r)d⌘2
, (11)

where the angle 0  ⌘ < 2⇡ parametrises a circle, the
four-dimensional metric takes the domain wall form

ds
2
4 = e

2A(r)dx
2
1,2 + dr

2
, (12)

and the new background scalar �(r) and warp factor A(r)
depend only on the new radial coordinate r.

The action in D = 4 dimensions is

S4 =

Z
d4

x
p

�g4


R4

4
�

g
MN

2
Gab@M�a

@N�b
� V4

�
,(13)

where the sigma-model metric for the scalar fields �a =
{�,�} is Gab = diag (1, 3), and the potential is

V4 = e
�2�

V5 . (14)

We explicitly verified that S5 =
R

d⌘
�
S4 + @S

�
, where

@S =

Z
d4

x@M

✓
1

2

p
�g4g

MN
@N�

◆
. (15)

After the change of variables @r = e
��
@⇢, the equations

of motion for the background read as follows:

0 = @⇢�(3@⇢A�@⇢�)+ @
2
⇢�+

r
8

3
e
�
p

8
3 �
h
e

p
6�

�1
i
,(16)

0 = 3@⇢A@⇢�� @⇢�
2+ @

2
⇢��

2

3
e
�
p

8
3 �
h
2e

p
6� + 1

i
,(17)

0 =@⇢A@⇢�� 3@⇢A
2
� @

2
⇢A + 2e

�
p

8
3 �
h
2e

p
6� + 1

i
,(18)

0 = 3@⇢A
2

� 3@⇢�
2
� @⇢�

2
� 2e

�
p

8
3 �
h
2e

p
6� + 1

i
.(19)

By combining Eqs. (17) and (18), we obtain

@⇢

⇥
e
3A�� (3@⇢�� @⇢A)

⇤
= 0 , (20)

which defines a conserved quantity along the flow in ⇢.

C. Lift to type IIB in D = 10 dimensions

We take the lift to type IIB supergravity in D = 10
dimensions from Ref. [134]. The dilaton/axion subsystem
is trivial (see Sect. 3.2 of Ref. [134]), and there is no
distinction between Einstein and string frames.

We parametrise the five-sphere S
5 in terms of five an-

gles 0  ✓  ⇡/2, 0  ✓̃  ⇡, 0  ', '̃ < 2⇡, and
0    4⇡. The SU(2) left-invariant 2-forms are

�1 = cos d✓̃ + sin sin ✓̃d'̃ , (21)

�2 = sin d✓̃ � cos sin ✓̃d'̃ , (22)

�3 = d + cos ✓̃d'̃ , (23)
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normalised according to d�i = 1
2

P
jk ✏ijk�j ^ �k.2 We

write the metric of the S
3 as d⌦2

3 ⌘
1
4

P3
i=1 �

2
i , or

d⌦2
3 =

1

4


d✓̃2 + sin2

✓̃d'̃2 +
⇣
d + d'̃ cos ✓̃

⌘2
�

. (24)

We then follow Ref. [134] (see also Ref. [159]), with the
following identifications: we set the two scalars {↵,�} of
Ref. [134] to ↵ ⌘ �/

p
6 and � = 0 (not to be confused

with � in this paper), we set the coupling g = 2, and the
normalisation in Eq. (3.14) of Ref. [134] to a

2 = 2. The
metric in D = 10 dimensions is

ds
2
10 = ⌦2ds

2
5 + d⌦̃2

5 , (25)

where ds
2
5 has been introduced in Eq. (11), while

d⌦̃2
5 =

X
1/2

⇢̃3

✓
d✓2 +

⇢̃
6

X
cos2 ✓d⌦2

3 + sin2
✓
d'2

X

◆
. (26)

The warp factor in the lift depends on ⇢ and ✓, because

⌦2
⌘

X
1/2

⇢̃
, (27)

where the functions determining the backgrounds are

⇢̃ ⌘ e
�/

p
6
, (28)

X ⌘ cos2 ✓ + ⇢̃
6 sin2

✓ . (29)

For � = 0 one has ⇢̃ = 1 = X, and recovers the round
S

5. The isometries associated with d⌦2
3 and d'2 match

the SO(4) and SO(2) symmetries of the field theory.
By making use of the equations of motions for the

scalars � and � and for the function A, we find that
R10 = 0 identically. Yet, other invariants, such as the
square of the Ricci and Riemann tensors, are non-trivial.

D. Rectangular Wilson loops

The expectation value of rectangular Wilson loops of
sizes L and T in space and time, respectively, is computed
using the standard holographic prescription [20, 21] (see
also Refs. [22–24]). Open strings, with extrema bound to
the contour of the loop on the boundary of the space at
⇢ = +1, explore the geometry down to the turning point
⇢̂o in the holographic direction, and the problem reduces
to a minimal surface one. The warp factor ⌦2 depends
on ✓, but we restrict attention to configurations with ✓

held fixed, and focus on the limiting cases ✓ = 0 and ✓ =
⇡/2. Taking T ! +1, we obtain the e↵ective potential
between static quarks as a function of the separation L

between end-points of the string.

2 Compared to Ref. [134], we have �i(here)= 2�i(Ref. [134]).

The calculation of the Wilson loop can proceed along
the lines of the prescription in Refs. [22–26]. Starting
from the elements of the metric in D = 10 dimensions,
ds

2 = gttdt
2 + gxxdx

2 + g⇢⇢d⇢2 + · · · , we introduce the
functions F

2(⇢, ✓) ⌘ �gttgxx and G
2(⇢, ✓) ⌘ �gttg⇢⇢,

and the convenient quantity

V
2
e↵(⇢, ⇢̂o) ⌘

F
2(⇢)

F 2(⇢̂o)G2(⇢)

�
F

2(⇢) � F
2(⇢̂o)

�
, (30)

where the dependence on (constant) ✓ is implicit. The
separation between the end points of the string is

L(⇢̂o) = 2

Z 1

⇢̂o

d⇢
1

Ve↵(⇢, ⇢̂o)
, (31)

and the profile of the string in the (⇢, x)-plane is

x(⇢) =

( R1
⇢

dy
Veff (y,⇢̂o) , x < L(⇢̂o)/2 ,

L(⇢̂o) �
R1

⇢
dy

Veff (y,⇢̂o) , x > L(⇢̂o)/2 .

(32)

The energy of the resulting configuration is

E(⇢̂o) = 2

Z 1

⇢̂o

d⇢

s
F 2(⇢)G2(⇢)

F 2(⇢) � F 2(⇢̂o)
. (33)

As gxx = �gtt = ⌦2
e
2A�2� and g⇢⇢ = ⌦2, we find

the ✓-dependent functions F
2(⇢, ✓) = X ⇢̃

�2
e
4A�4� and

G
2(⇢, ✓) = X ⇢̃

�2
e
2A�2�, also written explicitly as

F
2(⇢, ✓) = (cos2 ✓ + e

p
6� sin2

✓)e4A�4��2�/
p

6
, (34)

G
2(⇢, ✓) = (cos2 ✓ + e

p
6� sin2

✓)e2A�2��2�/
p

6
. (35)

Eq. (33) is UV-divergent, requiring the introduction of
⇢⇤ as a UV cuto↵, and to define the regulated E⇤(⇢̂o)
by restricting the range of integration. We define the
following:

�E⇤,✓ ⌘ 2

Z ⇢⇤

⇢o

d⇢G(⇢, ✓) , (36)

where the integral extends all the way to the end of space
⇢o, choose the case ✓ = 0 as a counterterm, and finally
define the renormalised energy as

EW (⇢̂o) ⌘ lim
⇢⇤!+1

⇣
E⇤(⇢̂o) � �E⇤,0

⌘
. (37)

In confining theories, at large separations L(⇢̂o) the
energy grows linearly and the string tension is given by

�e↵ ⌘ lim
⇢̂o!⇢o

dEW (⇢̂o)

dL(⇢̂o)
= F (⇢o) . (38)

A limiting configuration consists of two straight rods
at distance L, both with fixed ✓, extending from the
boundary to the end of space, connected by a straight
portion of string at ⇢̂o = ⇢o. Its energy is E✓ =
�E⇤,✓ � �E⇤,0 + F (⇢o, ✓) L. If F (⇢o, ✓) vanishes, this



6

configuration is indistinguishable from two disconnected
ones, yielding screening in the dual theory—barring the
caveats discussed in Ref. [160]. We set the normalisation
 = 1 from here on. There may be cases in which this
procedure shows the emergence of a phase transition for
the theory living on the probe [23] (see also the discus-
sions in Refs. [26, 161]).

III. BACKGROUND SOLUTIONS

We classify in this section the background solutions
we are interested in. We present their UV and IR expan-
sions, and discuss curvature invariants and Wilson loops.

A. UV expansions

All the solutions of interest have the same asymptotic
UV expansion, and they all correspond to deformations of
the same dual theory. We expand them for z = e

�⇢
⌧ 1.

�(z) = z
2
�2 + z

2
�2l log(z) +

+

p
6

12
z
4
�
2�2

2
� 4�2�2l + 3�2l

2�+

+

p
6

3
z
4 log(z)

�
�2�2l � �2l

2�+

+
z
4
�2l

2 log2(z)
p

6
+ O(z6) , (39)

�(z) = �U �
log(z)

2
+ �4z

4
�

1

6
z
4
�2�2l log(z) +

�
1

12
z
4
�2l

2 log2(z) + O(z6) , (40)

A(z) = AU �
3 log(z)

2
�

1

2
z
4
�2�2l log(z) +

+z
4

✓
�4

3
�

1

36

�
8�2

2 + �2l
2�
◆

+

�
1

4
z
4
�2l

2 log2(z) + O(z6) . (41)

The integration constant AU can be reabsorbed and set
to zero, while �U can be removed by a shift of radial coor-
dinate ⇢. �2 is associated with the VEV of the aforemen-
tioned dimension-2 operator of the dual field theory, and
�2l with its (supersymmetry-breaking) coupling. The pa-
rameter �4 is associated with the VEV of a dimension-4
operator which triggers confinement.

Domain wall (DW) solutions in D = 5 dimensions are
recovered (locally) for A = A � � = 2�, yielding two
constraints on the five parameters of a generic solution:

AU = 3�U , �4 = �
1

96
(8�2

2 + �
2
2l) . (42)

We illustrate the behaviour of the singular DW solutions
with the comprehensive catalogue in Fig. 2. We devote
to them Sects. III B and III C (and Appendix A), before
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FIG. 3: Stream plot representing all the solutions with five-dimensional domain-wall (DW) metric, that approach the trivial
fixed point at (0, 0) when the radial direction diverges to ⇢ ! +1. The red solutions are examples of the negative DW family
described by the IR expansions in Eqs. (113) and (114). The blue solutions are examples of the positive DW family described
by the IR expansions in Eqs. (121) and (122); the special case of the susy solutions in Eqs. (92) and (93) is denoted by a darker
shade of blue. The two special solutions are depicted in grey—for the case of the susy solution in Eqs. (90) and (91), which
also coincides with Eqs. (94) and (95)—and in purple—for the case described by Eqs. (129) and (131).

The results agree with Ref. [23]. In the case of the n = 2 solutions (��, A�), for both ✓ = 0, ⇡/2 the energy is a
monotonically increasing function of L, the separation between the end points of the string. The separation L between
end points converges. The numerical calculation shows that in both cases there is a maximum value of L = Lmax, and
at that point the energy agrees with the energy of a configuration in which the string reaches the end of space. As a
function of L, the minimum of EW describes a second-order phase transition, and the configuration with ✓ = ⇡/2 has
lower energy.

In the case (n = 4) characterised by (�+, A+), there is a very major di↵erence between the two cases with ✓ = 0, ⇡/2.
The case of ✓ = 0 yields a convergent result: L vanishes when the string approaches the end of space. We have a
first-order phase transition: EW is multivalued as L changes, there are three branches, with the configuration in
which the string reaches the end of space and becomes tensionless dominating at large L, while there is a maximum
L = Lmax to configurations that have a turning point at finite ⇢̂o.

In this case for ✓ = ⇡/2, again for the (�+, A+) solutions, we find a linear potential at asymptotically large L,
reachable because L diverges, but notice that this is not the minimum-energy configuration.

All of these results are in complete agreement with Figs. 1, 4, and 5 of Ref. [23]. By contrast to the analysis in
Ref. [23], we generated the figures by making use of numerical solutions obtained by setting up the boundary conditions
by means of the asymptotic IR expansions, rather than relying of the exact solutions. We do so for the purpose of
checking that our formalism and numerical strategy agrees with known results, before we proceed to applying it to
new solutions, in the subsequent sections.

FIG. 2: Stream plot of the DW solutions departing from the
trivial fixed point at (�, @⇢�) = (0, 0). The dashed (red) so-
lutions are examples of the negative DW family described by
the IR expansions in Eqs. (43) and (44). The long-dashed
(blue) solutions are examples of the positive DW family with
IR expansions in Eqs. (46) and (47); the case of the super-
symmetric solution in Eqs. (A5) and (A6) is denoted by a
darker shade of blue. The two special solutions are depicted
by the continuous thick (grey) line—for the case of the su-
persymmetric solution in Eqs. (A3) and (A4), or Eqs. (A7)
and (A8)—and the short-dashed (purple) line—for the case
described by Eqs. (49) and (50).

discussing in Sect. III D the scion of regular solutions
corresponding to confining theories in three dimensions.

B. The negative DW family

The DW solutions for which � diverges to �1 at the
end of space generalise the n = 2 supersymmetric case—
see the dashed (red) lines in Fig. 2. The background
functions, evaluated near the end of space ⇢o, are

��(⇢) = �o +
1

2

r
3

2
log(⇢� ⇢o) +

+
4

9

r
2

3
(⇢� ⇢o)

2
e
�4

p
2
3 �o + · · · , (43)

A�(⇢) = AI +
log(⇢� ⇢o)

4
+

+
2

3
(⇢� ⇢o)e

�2
p

2
3 �o + · · · . (44)

Ignoring the inconsequential constants AI and ⇢o, this
one-parameter family of solutions is labelled by the free
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FIG. 6: Energy EW as a function of the separation L in the Minkowski directions, computed with rectangular Wilson loops
with gauge-gravity prescription, for four di↵erent backgrounds belonging to non-supersymmetric class of DW solutions. Left
to right, and top to bottom, the panels show the results for the following backgrounds: the (��, A�) solution with �o = �1,
the (�+, A+) solution with �o = �1, the (�+, A+) solution with �o = +1, and the special (�+, A+) solution corresponding
to �o ! +1. The horizontal black (long-dashed) line refer to string configurations sitting at the end of space, the blue
(continuous) lines to configurations with ✓ = 0, and the red (short-dashed) lines to configurations with ✓ = ⇡/2.

separation L converges to zero for strings with end points at ⇢ = +1, in the limit in which the turning point
of the string configuration reaches the end of space, and at that point the string tension vanishes. But in these
backgrounds the behaviour is di↵erent for the case ✓ = ⇡/2, for which lim⇢!⇢o F

2(⇢) = �
2

> 0 is finite. The
separation L diverges, and one recovers the linear potential with EW = �L+ · · · . The top-right and bottom-left
panels of Fig. 6 illustrate this behaviour, for the representative choices �o = �1 and �o = +1, respectively.

Notice that when �o < �
1
2

q
3
2 log

�
4
3

�
(the supersymmetric case), the assumption of keeping ✓ fixed fails, as

at show distances the configurations with ✓ = ⇡/2 have smaller energy that those with ✓ = 0, but at large
separations L the converse is true.

• The limiting case of the special (�+, A+) solution corresponding to �o ! +1, we find that lim⇢!⇢o F
2(⇢) = 0.

In this case the separation L diverges for strings that touch the end of space in the geometry, but the potential
vanishes, and so does the string tension. The bottom-right panel of Fig. 6 shows this behaviour explicitly, in
which we find a Coulombic potential at arbitrary separations L.

We should remember that all these background solutions are singular. Yet the case of the special (�+, A+) solutions
is singled out by the mildness of the divergence, which manifests itself only in the square of the Riemann tensor. It
is interesting to notice how this behaviour is accompanied by the emergence of a Coulombic potential for arbitrary
values of L. This is, after all, what one would expect to happen along the Coulomb branch, as the name indicates.
It is also encouraging to remember, as we saw in Sect. V B, that the spectrum of fluctautions in this limit did not

contain a tachyon. E↵ectively, this special solution is the limiting case of the one for �o > �
1
2

q
3
2 log

�
4
3

�
, in which the

phase transition leading to a screening potential is removed to Lmax ! +1. These arguments are very suggestive,
yet they must be taken with caution. We will return to this discussion later in the text, when we will compute the
free energy and compare it to other classes of solutions.
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2(⇢) = 0.

In this case the separation L diverges for strings that touch the end of space in the geometry, but the potential
vanishes, and so does the string tension. The bottom-right panel of Fig. 6 shows this behaviour explicitly, in
which we find a Coulombic potential at arbitrary separations L.

We should remember that all these background solutions are singular. Yet the case of the special (�+, A+) solutions
is singled out by the mildness of the divergence, which manifests itself only in the square of the Riemann tensor. It
is interesting to notice how this behaviour is accompanied by the emergence of a Coulombic potential for arbitrary
values of L. This is, after all, what one would expect to happen along the Coulomb branch, as the name indicates.
It is also encouraging to remember, as we saw in Sect. V B, that the spectrum of fluctautions in this limit did not
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, in which the

phase transition leading to a screening potential is removed to Lmax ! +1. These arguments are very suggestive,
yet they must be taken with caution. We will return to this discussion later in the text, when we will compute the
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In this case the separation L diverges for strings that touch the end of space in the geometry, but the potential
vanishes, and so does the string tension. The bottom-right panel of Fig. 6 shows this behaviour explicitly, in
which we find a Coulombic potential at arbitrary separations L.

We should remember that all these background solutions are singular. Yet the case of the special (�+, A+) solutions
is singled out by the mildness of the divergence, which manifests itself only in the square of the Riemann tensor. It
is interesting to notice how this behaviour is accompanied by the emergence of a Coulombic potential for arbitrary
values of L. This is, after all, what one would expect to happen along the Coulomb branch, as the name indicates.
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(continuous) lines to configurations with ✓ = 0, and the red (short-dashed) lines to configurations with ✓ = ⇡/2.
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panels of Fig. 6 illustrate this behaviour, for the representative choices �o = �1 and �o = +1, respectively.
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2(⇢) = 0.

In this case the separation L diverges for strings that touch the end of space in the geometry, but the potential
vanishes, and so does the string tension. The bottom-right panel of Fig. 6 shows this behaviour explicitly, in
which we find a Coulombic potential at arbitrary separations L.

We should remember that all these background solutions are singular. Yet the case of the special (�+, A+) solutions
is singled out by the mildness of the divergence, which manifests itself only in the square of the Riemann tensor. It
is interesting to notice how this behaviour is accompanied by the emergence of a Coulombic potential for arbitrary
values of L. This is, after all, what one would expect to happen along the Coulomb branch, as the name indicates.
It is also encouraging to remember, as we saw in Sect. V B, that the spectrum of fluctautions in this limit did not

contain a tachyon. E↵ectively, this special solution is the limiting case of the one for �o > �
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, in which the

phase transition leading to a screening potential is removed to Lmax ! +1. These arguments are very suggestive,
yet they must be taken with caution. We will return to this discussion later in the text, when we will compute the
free energy and compare it to other classes of solutions.

FIG. 3: Energy EW as a function of the separation L in space, computed with rectangular Wilson loops by applying the
prescription of gauge-gravity dualities, for four di↵erent backgrounds belonging to classes of non-supersymmetric DW solutions
chosen to have AI = 0. Left to right, and top to bottom, the panels show the results for the following backgrounds: the
(��, A�) solution with �o = �1, the (�+, A+) solution with �o = �1, the (�+, A+) solution with �o = +1, and the special
(�1, A1) solution corresponding to �o ! +1. The horizontal long-dashed (black) lines denote string configurations sitting
at the end of space, the continuous (blue) lines depict configurations with ✓ = 0, and the short-dashed (red) lines represent
configurations with ✓ = ⇡/2.

parameter �o. The curvature invariants of the gravity
formulation in D = 5 dimensions diverge; lifting to D =
10 dimensions, the singular behaviour first appears in

R10,M̂N̂R
M̂N̂

10 =
10e

�
p

6�o

cos2(✓)(⇢� ⇢o)3/2
+ · · · , (45)

A special limiting case (corresponding to �o ! �1)
of the (singular) negative DW solutions is represented by
the thick (grey) line in Fig. 2, and is given by the IR
expansions in Eqs. (A7) and (A8). It satisfies the first-
order equations, as it coincides with the supersymmetric
solutions (�2, A2) described by Eqs. (A3) and (A4)—the
solution corresponding to the (n = 2) case of D3 branes
distributed on a disk (B2).

The study of the Wilson loops is exemplified in Fig. 3.
The top-left panel depicts the case of backgrounds
(��, A�) with �o = �1. The string is tensionless at
the end of space, as lim⇢!⇢o F

2(⇢) = 0 for both choices
✓ = 0,⇡/2. The separation L converges to zero for strings
with end points at ⇢ = +1, when the turning point of
the string configuration reaches the end of space, yield-
ing the description of a phase transition such that the
Wilson loop mimics screening at large L.

C. The positive DW family

In the stream plot in Fig. 2, the long-dashed (blue)
lines are examples of DW solutions in which the scalar
� diverges to � ! +1 at the end of space. Their IR
expansions are

�+(⇢) = �o �
1

2

r
3

2
log(⇢� ⇢o) +

+
8

15

r
2

3
e

p
2
3 �o(⇢� ⇢o)

3/2 + · · · , (46)

A+(⇢) = AI +
log(⇢� ⇢o)

4
+

+
32

45
(⇢� ⇢o)

3/2
e

p
2
3 �o + · · · . (47)

These solutions generalise the supersymmetric one de-
noted (�4, A4) in Eqs. (A5) and (A6)—the solutions
corresponding to the (n = 4) case of D3 branes dis-
tributed on B

4—to a one-parameter family, labelled by
�o. The supersymmetric case is recovered with the choice

�o = �
1
2

q
3
2 log

�
4
3

�
, and is highlighted by a darker long-

dashed line in Fig. 2.
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The five-dimensional curvature invariants diverge. In
D = 10 dimensions the divergence appears in

R10,M̂N̂R
M̂N̂

10 =
405e

�8
p

2
3 �o sin4(2✓)

2048 sin10(✓)
+ · · · . (48)

The limit ✓ ! 0 is singular at the end of space, even in the
case of the supersymmetric solution—see also Eq. (A12)
and the discussion that follows it.

The calculation of the Wilson loops is exemplified
in the top-right and bottom-left panels in Fig. 3, for
�o = �1 and �o = +1, respectively. For ✓ = 0, once
more lim⇢!⇢o F

2(⇢) = 0. The separation L vanishes
when the turning point of the string configuration reaches
the end of space, as we found for (��, A�). But in the
case ✓ = ⇡/2, we find that lim⇢!⇢o F

2(⇢) = �
2

> 0 is
finite. The separation L diverges, and one recovers the

linear potential EW ' �L. When �o < �
1
2

q
3
2 log

�
4
3

�
,

the assumption of keeping ✓ fixed fails, as at small L the
configurations with ✓ = ⇡/2 have lower energy than those
with ✓ = 0, while at large L the converse is true.

1. Special positive DW solutions

A limiting case of the positive DW solutions is depicted
by the short-dashed (purple) line in Fig. 2. The IR ex-
pansions are:

�1(⇢) =

r
3

2
log

✓
45

2

◆
�

p
6 log(⇢� ⇢o) +

+
2
p

2

59535
p

3
(⇢� ⇢o)

6 + · · · , (49)

A1(⇢) = AI + 4 log(⇢� ⇢o) +

+
16

893025
(⇢� ⇢o)

6 + · · · . (50)

The only parameters are the inconsequential AI and
⇢o. The five-dimensional curvature invariants diverge,
but the lift to D = 10 dimensions yields

R10 = 0 = lim
⇢!⇢o

R10,M̂N̂R
M̂N̂

10 . (51)

Yet, these solutions are singular as well, as illustrated by
the simultaneous limits ⇢ ! ⇢o and ✓ ! 0 of the square
of the Riemann tensor:

lim
⇢!⇢o

(R10,M̂N̂R̂Ŝ)2 =
9(15 + 10 sin2(✓) + 7 sin4(✓))

5 sin6(✓)
.(52)

These solutions are the limiting case �o ! +1 of
the (�+, A+) general class, and the bottom-right panel
in Fig. 3 shows a peculiarly interesting behaviour for
the quark-antiquark potential. The separation L is un-
bounded, the potential vanishes for L ! +1, and so
does the string tension. We find the potential EW '

�e
1/6

/L at short L, and EW ' �e
6
/L

2 at large L (for
AI = 0).

28
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FIG. 8: Energy EW as a function of the separation L, for two representative confining solutions, chosen to have 4AI = 0 = �I ,
and �I = �1 (left) or �I = +1 (right). Continuous (blue) lines correspond to configurations with ✓ = 0, short-dashed (red)
lines to configurations with ✓ = ⇡/2.

B. Spectrum of fluctuations in D = 4 dimensions.

In the case of confining solutions with � = 0, the spectrum has been computed in Ref. [58], although only after
truncating completely the tower of excitations of �. This special solution is sometimes called QCD3 (with abuse of
language) in the literature, and is a well known example in which the spectrum of bound states can be computed. In
units of the lightest spin-2 excitation, they report (T3 in Table 4 of Ref. [58]) the spectrum of mass of the tensors to
be

M2 = 1 , 1.73 , 2.44 , .3.15 , 3.86 , 4.56 , · · · . (149)

For the scalars (S3 in Table 4 of Ref. [58]) they find

M0 = 0.69 , 1.62 , 2.37 , .3.10 , 3.81 , 4.53 , · · · . (150)

The results of our numerical study of the spectrum of fluctuations of the gravity background are displayed in Fig. 7.
The masses of scalars (blue disks) and tensors (red circles) are plotted as a function of the parameter �I . We also
display the result of applying the probe approximation to the treatment of the scalars. We notice that for �I = 0 the
tensor masses, as well as the masses of half the scalars (the second, fourth, six, eight, . . . ) are in excellent agreement
with Ref. [58]. Yet, we notice that the truncation adopted in Ref. [58] misses the lightest of the scalar states, which
can be decoupled only for � = 0—in this case, the probe approximation is accurate for the first, third, fifth, . . . , scalar
states, but only within a narrow range around � = 0, as can be seen in the Fig. 7.

The main feature emerging from the study are that the spectrum is positive definite only for �I > �
⇤
I ' �0.5. For

large and negative values of �I , we find the emergence of a tachyonic scalar state, signaling the appearence of an
instability. This is qualitatively similar to what we found in the case of DW positive solution. Comparison with the
probe approximation yields to a dramatic result: the probe approximation always fails to capture the features of the
spectrum, even at the qualitative level, yielding an unphysical proliferation of tachyonic states.

C. Rectangular Wilson loops for confining solutions

The study of the rectangular Wilson loop (in D = 3 dimensions) in the case of the confining solutions is carried
out by fixing the coordinates ⌘ and ✓, and allowing the two sides of the rectangle to be along time and one of the
non-compact space-like directions. The results are illustrated by Fig. 8. We considered two representative choices
with �o = �1 (in which case we saw that the spectrum of fluctuations is positive definite) and �I = +1 (in which
case we found the presence of a tachyon in the spectrum). In all cases, the short-distance Coulombic behaviour gives
way to the linear potential typical of confinement, and L is unbounded.

We can compute the string tension, and we find (for AI = 0 = �I) and find:

�0 ⌘ lim
⇢̂o!⇢o

F (⇢̂o) = e
�
p

2
3 �I , (151)

�⇡/2 ⌘ lim
⇢̂o!⇢o

F (⇢̂o) = e
+2

p
2
3 �I . (152)
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FIG. 8: Energy EW as a function of the separation L, for two representative confining solutions, chosen to have 4AI = 0 = �I ,
and �I = �1 (left) or �I = +1 (right). Continuous (blue) lines correspond to configurations with ✓ = 0, short-dashed (red)
lines to configurations with ✓ = ⇡/2.

B. Spectrum of fluctuations in D = 4 dimensions.

In the case of confining solutions with � = 0, the spectrum has been computed in Ref. [58], although only after
truncating completely the tower of excitations of �. This special solution is sometimes called QCD3 (with abuse of
language) in the literature, and is a well known example in which the spectrum of bound states can be computed. In
units of the lightest spin-2 excitation, they report (T3 in Table 4 of Ref. [58]) the spectrum of mass of the tensors to
be

M2 = 1 , 1.73 , 2.44 , .3.15 , 3.86 , 4.56 , · · · . (149)

For the scalars (S3 in Table 4 of Ref. [58]) they find

M0 = 0.69 , 1.62 , 2.37 , .3.10 , 3.81 , 4.53 , · · · . (150)

The results of our numerical study of the spectrum of fluctuations of the gravity background are displayed in Fig. 7.
The masses of scalars (blue disks) and tensors (red circles) are plotted as a function of the parameter �I . We also
display the result of applying the probe approximation to the treatment of the scalars. We notice that for �I = 0 the
tensor masses, as well as the masses of half the scalars (the second, fourth, six, eight, . . . ) are in excellent agreement
with Ref. [58]. Yet, we notice that the truncation adopted in Ref. [58] misses the lightest of the scalar states, which
can be decoupled only for � = 0—in this case, the probe approximation is accurate for the first, third, fifth, . . . , scalar
states, but only within a narrow range around � = 0, as can be seen in the Fig. 7.

The main feature emerging from the study are that the spectrum is positive definite only for �I > �
⇤
I ' �0.5. For

large and negative values of �I , we find the emergence of a tachyonic scalar state, signaling the appearence of an
instability. This is qualitatively similar to what we found in the case of DW positive solution. Comparison with the
probe approximation yields to a dramatic result: the probe approximation always fails to capture the features of the
spectrum, even at the qualitative level, yielding an unphysical proliferation of tachyonic states.

C. Rectangular Wilson loops for confining solutions

The study of the rectangular Wilson loop (in D = 3 dimensions) in the case of the confining solutions is carried
out by fixing the coordinates ⌘ and ✓, and allowing the two sides of the rectangle to be along time and one of the
non-compact space-like directions. The results are illustrated by Fig. 8. We considered two representative choices
with �o = �1 (in which case we saw that the spectrum of fluctuations is positive definite) and �I = +1 (in which
case we found the presence of a tachyon in the spectrum). In all cases, the short-distance Coulombic behaviour gives
way to the linear potential typical of confinement, and L is unbounded.

We can compute the string tension, and we find (for AI = 0 = �I) and find:

�0 ⌘ lim
⇢̂o!⇢o

F (⇢̂o) = e
�
p

2
3 �I , (151)

�⇡/2 ⌘ lim
⇢̂o!⇢o

F (⇢̂o) = e
+2

p
2
3 �I . (152)

FIG. 4: Energy EW as a function of the separation L, for two
representative confining solutions, chosen to have AI = 0 =
�I , and �I = �1 (top) or �I = +1 (bottom). Continuous
(blue) lines correspond to configurations with ✓ = 0, short-
dashed (red) lines to configurations with ✓ = ⇡/2.

While the results of the study of the Wilson loops for
the DW solutions are very suggestive, with the emer-
gence of screening, confining, several types of Coulombic
potentials and phase transitions, they must be all taken
with caution; all the background solutions discussed so
far (and in Appendix A) are singular. Hence, such so-
lutions cannot be considered as complete gravity duals
of field theories, but they provide only approximate de-
scriptions that may miss important long-distance details.

D. Confining solutions

The solutions of this class are completely regular, and
dual to confining, three-dimensional field theories. Here
we present their IR expansions, discuss the gravitational
invariants, and compute the Wilson loops. The expan-
sion in proximity of the end of space ⇢o, is

�C(⇢) = �I �

(⇢� ⇢o)2e
�2

p
2
3 �I

⇣
e

p
6�I � 1

⌘

p
6

+

+ O
�
(⇢� ⇢o)

4
�

, (53)

�C(⇢) = �I +
log(⇢� ⇢o)

2
+

�
1

18
(⇢� ⇢o)

2
e
�2

p
2
3 �I

⇣
2e

p
6�I + 1

⌘
+



9

+ O
�
(⇢� ⇢o)

4
�

, (54)

AC(⇢) = AI +
log(⇢� ⇢o)

2
+

+
5

18
(⇢� ⇢o)

2
e
�2

p
2
3 �I

⇣
2e

p
6�I + 1

⌘
+

+ O
�
(⇢� ⇢o)

4
�

. (55)

The gravity invariants in five dimensions are finite, and
when restricted to the (⇢, ⌘) plane, the metric reduces to

ds
2
2 = d⇢2 + e

4�I (⇢� ⇢o)
2d⌘2

. (56)

We fix �I = 0 in order to avoid a conical singularity. The
integration constant AI is trivial and can be reabsorbed
by a rescaling of the three Minkowski directions. The
constant �I characterises this one-parameter family of
solutions. The curvature invariants of the lift to D = 10
dimensions are regular, for all choices of 0  ✓  ⇡/2.

In the study of the rectangular Wilson loop (in three
dimensions) we fix ✓, and allow the two sides of the rect-
angle to align with time and one non-compact space-like
direction. The static potential EW (L) is illustrated by
Fig. 4, for two representative choices with �o ± 1. The
short-distance Coulombic behaviour gives way to the lin-
ear potential typical of confinement, and L is unbounded.
For this reason, with some abuse of language, we call
these regular solutions confining. We can compute the
string tension, and we find

�0 ⌘ lim
⇢̂o!⇢o

F (⇢̂o, 0) = e
2AI�2�I�

p
1
6 �I , (57)

�⇡/2 ⌘ lim
⇢̂o!⇢o

F (⇢̂o,⇡/2) = e
2AI�2�I+2

p
1
6 �I . (58)

The configuration with ✓ = 0 has lower energy in the case
where �I > 0, and vice versa.

IV. MASS SPECTRA AND PROBE
APPROXIMATION

The spectrum of small fluctuations of a sigma-model
coupled to gravity of the form of Eqs. (2) and (13) in
generic D dimensions can be interpreted in terms of the
spectrum of bound states of the strongly-coupled dual
field theory, by applying the dictionary of gauge-gravity
dualities. We adopt the gauge-invariant formalism de-
scribed in detail in Refs. [15–19]. Due to the divergences
in the deep IR and far UV, we introduce two unphysi-
cal boundaries ⇢1 < ⇢ < ⇢2 in the radial direction—the
physical results are recovered in the limits ⇢2 ! +1 and
⇢1 ! ⇢o. The calculation involves fluctuating solutions
for which the metric has the DW form in D dimensions.
The confining solutions assume the DW form in the di-
mensionally reduced (D = 4) formulation of the theory.
For the confining solutions, it is also understood that in
the following equations (59 - 62) appearing in this section
of the paper, A is to be replaced by A.

The tensorial fluctuations eµ⌫ are gauge-invariant,
obey the equations of motion

h
@

2
⇢ + (D � 1)@⇢A@⇢ + e

�2A(⇢)
M

2
i
eµ⌫ = 0 , (59)

where M is the mass in D�1 dimensions, and are subject
to Neumann boundary conditions @⇢eµ⌫

��
⇢i

= 0. The

scalar gauge invariant fluctuations aa
⌘ '

a
�

@⇢�a

2(D�2)@⇢Ah

are a combination of fluctuations 'a of the scalar fields
and h of the trace of the metric. They obey the following
equations of motion and boundary conditions

0 =
h
D

2
⇢ + (D � 1)@⇢AD⇢ + e

�2A
M

2
i
aa

�


V

a
|c +

4(@⇢�a
V

b + V
a
@⇢�b)Gbc

(D � 2)@⇢A
+

16V @⇢�a
@⇢�b

Gbc

(D � 2)2(@⇢A)2

�
ac

, (60)

0 =
2e

2A
@⇢�a

(D � 2)M2@⇢A


@⇢�

b
D⇢ �

4V @⇢�b

(D � 2)@⇢A
� V

b

�
ab + aa

���
⇢i

. (61)

The notation follows the conventions of Ref. [19]. The
sigma-model metric being trivial, the covariant deriva-
tive simplifies to V

a
|c ⌘ DcV

a = @c(Gab
@bV ) , and the

background-covariant derivative to D⇢aa = @⇢aa.

The probe approximation is defined according to the
prescription tested in Ref. [131], and we use it as a diag-
nostic tool to identify particles coupled to the trace of the
energy momentum tensor, because of their mixing with
h. The probe approximation ignores the fluctuation h,

in the definition of aa, yielding variables pa that satisfy

0 =
h
D

2
⇢ + (D � 1)@⇢AD⇢ � e

�2A
q
2
i
pa

� V
a

|cp
c
, (62)

subject to Dirichlet boundary conditions pa
���
⇢i

= 0.

The fluctuation h is interpreted as the bulk field cou-
pled to the dilatation operator in the dual field theory.
If the approximation of ignoring h captures correctly the
spectrum, then the associated scalar particle is not a dila-
ton. Conversely, the probe approximation either com-
pletely misses, or fails to capture the correct mass of, an
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FIG. 4: Mass spectrum of the fluctuations around the negative DW solutions. The (red) circles are the spin-2 states, the (blue)
disks are the spin-0 states, and the (black) diamond represent the probe approximation calculation of the spin-0 masses. The
masses M are normalised to those of the lightest spin-2 state, and plotted as a function of �o defined in Eqs. (113) and (114).
For �o ! �1 the backgrounds are approaching the susy solutions in Eqs. (90) and (91), which also coincides with Eqs. (94)
and (95). The numerical calculations are performed with finite cuto↵s ⇢1 = 10�6 and ⇢2 = 0, but we checked explicitly that
these choices are close enough to the physical limits ⇢1 ! ⇢o = 0 and ⇢2 ! +1 that the results do not display any discernible
residue spurious dependence on the physical cuto↵s, given the numerical precision.

established. In the case of the background of this mode that respect four-dimensional Poincaré invariance, this is
never the case, due to the singularity in the background. Yet, it is instructive to perform the calculation, applying the
rules of gauge-gravity dualities, hence generalising the results for the (singular) supersymmetric solutions of Sec. IV B
(and references therein) to non-supersymmetric solutions, for which we already ascertained the singularities are no
worse.

The result of the numerical study of the fluctuations for the (��, A�) soluitions (corresponding to the n = 2 coset
along the Coulomb branch) is displayed in Fig. 4, as a function of the parameter �o characterising the 1-parameter
family of solutions. We find it convenient to normalise the mass M of the spin-0 (displayed as the blue disks) as well
as spin-2 states (the red circles) so that the lightest tensor mode has unit mass.

For any finite value of �o the spectrum is characterised by an unremarkable discrete sequence of state, and by the
existence of tachyonic state, which signals a fatal instability in the background solutions. Only in the strict limit
�o ! �1, corresponding to the supersymmetric solution, the tachyon becomes exactly massless. In the same limit,
the spectrum shows the presence of a gap, followed by a continuum, in all the channels, for M

2
> 1. This result

reproduces precisely the results we already quoted from the literature, confirming that the gauge-invariant formalism
we adopted, and the choices of boundary conditions we impose, are such to correctly identify the poles of the relevant
2-point correlation functions int eh gauge-gravity prescription.

By comparing the gauge-invariant spin-0 fluctuations to the probe approximation (the black diamonds in Fig. 4),
one observes a huge discrepancy, both qualitative and quantitative. Clearly, the probe approximation fails most
completely to capture the lightest (tachyonic) state at all values of �o, so that we can establish that the dilaton
component is always important in such spin-0 state. For large and positive values of �o, the probe approximation
captures well all other excited sclalar states, and hence yields a good identification of the dilaton with the tachyon.
Mixing e↵ects become prevalent for negative �o, and such identification becomes more obscure.

Fig. 5 displays the result of the study of the fluctuations for the DW solutions with (�+, A+). These include the
supersymmetric case (marked for convenience by a vertical dashed line) and the special limiting case of �o ! +1 that
is reached asymptotically at the right-hand side of the figure. The symbols (and colors) follow the same conventions
as in Fig. 4.

One immediate di↵erence appears: there is a region, for �o > �
1
2

q
3
2 log

�
4
3

�
(the supersymmetric solution), over

which all the scalar states calculable with the known classical action have positive definite mass squared. We saw in

FIG. 5: Mass spectrum of the fluctuations of the negative
DW solutions. The (red) circles are spin-2 states, the (blue)
disks are spin-0 states, and the (black) diamonds represent the
probe approximation calculation of the same spin-0 masses.
The masses M are normalised to the lightest spin-2 state,
and plotted as a function of �o, defined in Eqs. (43) and (44).
For �o ! �1 the backgrounds approach the supersymmetric
solution in Eqs. (A3) and (A4)—or Eqs. (A7) and (A8). The
numerical calculations are performed with finite cuto↵s ⇢1 =
10�6 and ⇢2 = 8. We checked explicitly that these choices are
close enough to the physical limits ⇢1 ! ⇢o = 0 and ⇢2 ! +1
that the numerical results do not display important residual
spurious dependence on the cuto↵s.

approximate dilaton. We tested these ideas on a large
selection of examples in Ref. [131].

In order to improve the convergence of the numeri-
cal computation of the spectrum, we make use of the
UV expansions for the fluctuations given in Appendix B,
setting up the boundary conditions such that only the
sub-leading modes are retained. This is the customary
prescription, as well as the one selected by the boundary
conditions in Eq. (61), in the limit in which we remove
the UV regulator (boundary) at ⇢2.

We start the analysis from the DW solutions. The
result of the numerical study of the fluctuations for the
(��, A�) solutions is displayed in Fig. 5, as a function
of the parameter �o characterising this one-parameter
family. We find it convenient to normalise the masses M

of the spin-0 (blue disks) and spin-2 states (red circles)
so that the lightest tensor mode has unit mass.

For any finite value of �o the spectrum is characterised
by an unremarkable discrete sequence of states, and by
the existence of a tachyon, which signals a fatal insta-
bility in the background solutions. Only in the strict
limit �o ! �1 does the tachyon become exactly mass-
less. In the same limit, the spectrum degenerates to a
gapped continuum, in all the channels, for M

2
> 1 (in

units of the lightest tensor mode). This result reproduces
the results quoted from the literature in Appendix A, for
the n = 2 case, confirming that the gauge-invariant for-
malism we adopt, the choices of boundary conditions we
impose, and the numerical strategy we deploy combine
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FIG. 5: Mass spectrum of the fluctuations around the positive DW solutions. The (red) circles are the spin-2 states, the (blue)
disks are the spin-0 states, and the (black) diamond represent the probe approximation calculation of the spin-0 masses. The
masses M are normalised to those of the lightest spin-2 state, and plotted as a function of �o defined in Eqs. (121) and (122).
The special case of the susy solutions in Eqs. (92) and (93) is the choice of �o that yields a massless scalar state, and is marked
by a vertical dashed line. The numerical calculations are performed with finite cuto↵s ⇢1 = 10�6 and ⇢2 = 0, but we checked
explicitly that these choices are close enough to the physical limits ⇢1 ! ⇢o = 0 and ⇢2 ! +1 that the results do not display
any discernible residue spurious dependence on the physical cuto↵s, given the numerical precision.

Sect. VA 2, and particularly in Sect. V A3, that solutions of this type have a milder singularity, and hence this is an
encouraging result. We shall return to it when appropriate, later in the text.

Once again, the spectrum of the supersymmetric backgrounds is in splendid agreement with the literature, which
further confirms that our numerical strategy is reliable. The spectrum for the case of nagetice values of �o contains
always a tachyon, followed by a light scalar state and a densely packed sequence of heavy excitations. In the limit
�o ! �1, the spectrum agrees again with the case of the supersymmetric solution with (��, A�), except for the
addition of a tachyon. Indeed, this superficially surprising feature can be explained by staring at the stream plot
in Fig. 3, from which one can see that it is possible to choose boundary conditions for the (�+, A+) solutions that
yield a trajectory that can be made to approximate for arbitrarily long interval the special (supersymmetric) limit
of (��, A�) with �o ! �1. Yet, in the case of (��, A�), this limit is not well defined, as eventually the solutions
depart from the limiting case, and �(⇢) becomes positive (and divergent) close enough to the end of the space.

Once more, the comparison with the probe approximation is instructive: the tachyonic state is never captured by
the probe approximations, which produces an arbitrary number of such negative-mass states, governed by the precise
value of �o.

C. Rectangular Wilson loops for DW solutions

The calculation of the Wilson loops yields behaviours that generalise those we found for the supersymmetric
solutions. We exemplify them in Fig. 6, where we focus on four illustrative examples: the case of background
(��, A�) with �o = �1, the (�+, A+) solution with �o = �1, the (�+, A+) solution with �o = +1, and the special
(�+, A+) solution corresponding to �o ! +1. In both cases, we assume that the angle ✓ be fixed and assumes either
the value ✓ = 0 or ✓ = ⇡/2.

• For backgrounds generated by DW solutions (��, A�), we find that for both values of ✓ = 0, ⇡/2 lim⇢!⇢o F
2(⇢) =

0. The separation L converges to zero for strings with end points at ⇢ = +1, in the limit in which the turning
point of the string configuration reaches the end of space, and at that point the string tension vanishes. The
top-left panel of Fig. 6 illustrates this behaviour.

• For backgrounds generated by DW solutions (�+, A+), we find that for ✓ = 0, again lim⇢!⇢o F
2(⇢) = 0. The

FIG. 6: Mass spectrum of the fluctuations of the positive
DW solutions. The (red) circles are the spin-2 states, the
(blue) disks are the spin-0 states, and the (black) diamonds
represent the probe approximation calculation of the spin-0
masses. The masses M are normalised to the lightest spin-2
state, and plotted as a function of �o, defined in Eqs. (46)
and (47). The special case of the supersymmetric solutions in
Eqs. (A5) and (A6) is the choice of �o that yields a massless
scalar state, and is marked by a vertical dashed line. The
numerical calculations are performed with finite cuto↵s ⇢1 =
10�6 and ⇢2 = 8. We checked explicitly that these choices are
close enough to the physical limits ⇢1 ! ⇢o = 0 and ⇢2 !
+1 that the numerical results do not display any important
residual spurious dependence on the cuto↵s.

to correctly identify all the poles of the relevant 2-point
correlation functions.

By comparing the gauge-invariant spin-0 fluctuations
to the probe approximation (the black diamonds in
Fig. 5), we clearly see that the probe approximation
fails most completely to capture the lightest (tachyonic)
masses, for all values of �o, so that we can establish that
the dilaton component is always important in such spin-0
objects. Mixing e↵ects become prevalent for negative �o.
For large and positive values of �o, the probe approxi-
mation captures well the excited scalar states, and hence
yields a clear, unambiguous identification of the dilaton
with the tachyon.

Fig. 6 displays the result of the study of the fluctua-
tions for the DW solutions (�+, A+). These include the
supersymmetric n = 4 case in Appendix A (marked for
convenience by a vertical dashed line in the figure.) The
special limiting case of �o ! +1 is reached asymptot-
ically at the right-hand side of the figure. The symbols
(and colors) follow the same conventions as in Fig. 5.

One di↵erence appears immediately evident: there

is a region of parameter space (�o > �
1
2

q
3
2 log

�
4
3

�
),

bounded by the supersymmetric n = 4 solution, over
which all the scalar states have positive-definite mass
squared. (We also saw in Sect. III C, and particularly
in Sect. III C 1, that solutions of this type have a milder
singularity.)
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and hence we fix �I = 0 in order to avoid a conical singularity. While the integration constant AI is trivial (it could
be reabsorbed by a rescaling of the three Minkowski directions, the constant �I characterises this 1-parameter family
of solutions. The curvature invariants of the lift to D = 10 dimensions are regular, and at the end of space they can
be written as follows:

R10 = 0 , (146)

lim
⇢!⇢o

R10,M̂N̂R
M̂N̂

10 =
20e

�
p

6�I (1 � e

p
6�I (�3 + cos(2✓)) + cos(2✓))4

(1 + cos(2✓) + 2e
p

6�I sin2(✓))5
, (147)

lim
⇢!⇢o

R
M̂

10 N̂R̂Ŝ
R

N̂R̂Ŝ
10 M̂

=
e
�

p
6�I

2
⇣
2e

p
6�I sin2(✓) + cos(2✓) + 1

⌘5 ⇥ (148)

�
+2048 cos8(✓) � 64e

p
6�I (61 cos(2✓) � 93) cos6(✓)+

+24e
2
p

6�I

⇣
� 324 cos(2✓) + 73 cos(4✓) + 443

⌘
cos4(✓)+

�16e
3
p

6�I

⇣
555 cos(2✓) � 120 cos(4✓) + 37 cos(6✓)+

�408
⌘

cos2(✓) + e
4
p

6�I

⇣
24e

2
p

6�I sin4(✓)(�92 cos(2✓)+

+17 cos(4✓) + 147) + 12e

p
6�I sin2(✓)

⇣
207 cos(2✓)+

�114 cos(4✓) + 33 cos(6✓) � 158
⌘

+

�3456 cos(2✓) + 1036 cos(4✓) � 384 cos(6✓)+

+157 cos(8✓) + 4695
⌘ �

.

The solutions of this class are regular, both in D = 5 dimensions, but also in D = 10 dimensions: the invariants have
an awkward analytical expression, but are completely smooth, finite functions for all chocies of 0  ✓  ⇡/2.
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FIG. 7: Mass spectrum of the fluctuations around the confining solutions. The spectrum can be interpreted in terms of the
masses of bound states in a confining theory in D = 3 dimensions. The (red) circles are the spin-2 states, the (blue) disks are
the spin-0 states, and the (black) diamond represent the probe approximation calculation of the spin-0 masses. The masses
M are normalised to those of the lightest spin-2 state, and plotted as a function of �I defined in Eq. (139). The numerical
calculations are performed with finite cuto↵s ⇢1 = 10�6 and ⇢2 = 0, but we checked explicitly that these choices are close
enough to the physical limits ⇢1 ! ⇢o = 0 and ⇢2 ! +1 that the results do not display any discernible residue spurious
dependence on the physical cuto↵s, given the numerical precision.

FIG. 7: Mass spectrum of the fluctuations of the confin-
ing solutions. The spectrum can be interpreted in terms of
the masses of bound states in a confining theory in three
dimensions. The (red) circles are the spin-2 states, the
(blue) disks are the spin-0 states, and the (black) diamonds
represent the probe approximation calculation of the spin-0
masses. The masses M are normalised to the lightest spin-2
state, and plotted as a function of �I , defined in Eq. (53).
The vertical dashed line denotes the value of the parameter
�I = �?

I ' �0.067 at which a phase transition takes place.
The numerical calculations are performed with finite cuto↵s
⇢1 = 10�6 and ⇢2 = 8. We checked explicitly that these
choices are close enough to the physical limits ⇢1 ! ⇢o = 0
and ⇢2 ! +1 that the numerical results do not display any
important residual spurious dependence on the cuto↵s.

Once more the spectrum of the supersymmetric back-
ground is in agreement with the literature, which fur-
ther confirms that our numerical strategy is reliable.

The spectrum for �o < �
1
2

q
3
2 log

�
4
3

�
always contains

a tachyon, followed by a light scalar state and a densely
packed sequence of heavy excitations. In the limit �o !

�1, the spectrum agrees with the case of the super-
symmetric solution (�2, A2), except for the addition of
a tachyon. Indeed, this superficially surprising feature
can be explained by close examination of the stream plot
in Fig. 2, from which one can see that it is possible to
choose boundary conditions for the (�+, A+) solutions
that yield a trajectory approaching the special (super-
symmetric) limit (�2, A2) with �o ! �1. Yet, eventu-
ally all the �+(⇢) solutions turn positive (and divergent),
close enough to the end of the space; the tachyon emerges
as an unavoidable consequence of the intrinsic instability
of these flows.

The comparison with the probe approximation is in-
structive: the tachyon is never captured by the probe
approximation, which rather produces an arbitrary num-
ber of negative-mass-squared states, depending on �o.
Conversely, in the region of large and positive �o the
probe approximation highlights that an infinite number
of scalars mix with the dilaton.

The spectrum of confining solutions with � = 0 has
been computed in Ref. [60], although only after trun-

cating the tower of excitations of �. This background
is sometimes called QCD3 (with abuse of language) in
the literature. In units of the lightest spin-2 excitation
the spectrum of mass of the tensors (T3 in Table 4 of
Ref. [60]) is reported to be

M2 = 1 , 1.73 , 2.44 , .3.15 , 3.86 , 4.56 , · · · , (63)

and for the scalars (S3 in Table 4 of Ref. [60]):

M0 = 0.69 , 1.62 , 2.37 , .3.10 , 3.81 , 4.53 , · · · . (64)

We extend the numerical study to the whole one-
parameter scion of solutions characterised by �o, and
retain both fluctuations of � and �. The resulting spec-
trum is displayed in Fig. 7. The masses of scalars (blue
disks) and tensors (red circles) are plotted as a function
of �I . We also display the result of applying the probe
approximation to the treatment of the scalars (black di-
amonds). For �I = 0, the tensor masses, as well as the
masses of half the scalars (the second, fourth, six, eight,
. . . ) are in excellent agreement with Ref. [60], confirm-
ing for the third time the robustness of our procedure.
Yet, the truncation adopted in Ref. [60] misses the light-
est of the scalar states, which can be decoupled only for
� = 0—in this case, the probe approximation is accu-
rate for the first, third, fifth, . . . , scalar states, but only
within a narrow range around � = 0.

The main feature that emerges is that the spectrum
is positive definite only for �I > �

⇤
I ' �0.52. For large

and negative values of �I , we find the emergence of a
tachyon, signaling the appearance of an instability. The
probe approximation fails to capture the features of the
spectrum, even at the qualitative level, yielding an un-
physical proliferation of tachyons.

In summary, in the case of the confining solutions, and
for �I > �

⇤
I ' �0.52, the solutions are regular (the cur-

vature invariants computed in D = 5 and D = 10 di-
mensions are all finite) and smooth (there is no conical
singularity at the end of space), the spectrum is positive
definite, and the calculation of the Wilson loop via the
dual gravity prescription leads to the linear potential ex-
pected in a confining field theory (in three dimensions).
All of these properties are preserved all the way along the
scion of confining solutions until the critical value �⇤

I , in
proximity of which the lightest scalar separates from the
rest of the spectrum, and becomes arbitrarily light, be-
fore turning into a tachyon. This light state, as shown
by the probe approximation, has a substantial overlap
with the dilaton, and couples to the trace of the energy-
momentum tensor of the dual confining theory.

V. FREE ENERGY AND STABILITY ANALYSIS

Because we regulate the theory by introducing two
boundaries ⇢1 and ⇢2 in the radial direction of the ge-
ometry, the complete action in D = 5 dimensions must
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include also boundary-localised terms:

S = S5 +
X

i=1,2

(�)i

Z
d3

xd⌘
q

�˜̂g


K

2
+ �i

� �����
⇢i

. (65)

The Gibbons-Hawking-York (GHY) term is proportional
to the extrinsic curvature K, and �i are boundary poten-
tials. We choose �1 = � @⇢A|⇢=⇢1

, and, as in Ref. [12]
(see also Eq. (3.66) of Ref. [153]),

�2 = �
3

2
� �

2

✓
1 +

1

log(k2z2
2)

◆
, (66)

where z2 ⌘ e
�⇢2 , and the freedom in the choice of k

reflects the scheme-dependence of the result.
The explicit appearance of the term containing the un-

physical constant k in this result is a peculiarity of this
model, distinguishing it from those in Refs. [1, 2]. It is
due to the mass of the scalar field corresponding to the
deforming field theory operator exactly saturating the
BF unitarity bound. In this sense, this model is a more
direct realisation of the ideas exposed in Ref. [3], where
the proximity to the BF bound is the starting point of
the analysis. As we shall see shortly, though, our results
here are qualitatively similar to those in Refs. [1, 2].

The need for counter-terms that are quadratic in �,
and their scheme dependence, imply that the concavity
theorems do not hold for the free energy of this system.
The free energy F and its density F are defined as

F ⌘ � lim
⇢1!⇢o

lim
⇢2!+1

S
on�shell

⌘

Z
d3

xd⌘F , (67)

and by using the equations of motion, supplemented by
the observation that Eq. (20) defines a conserved quantity
along the radial direction ⇢, we find

F = � lim
⇢2!+1

e
3A��

⇣
@⇢A + �2

⌘���
⇢2

. (68)

We can now use the UV expansions, take the e
�⇢2 ! 0

limit, and arrive at

F =
1

18
e
3AU ��U

⇣
2�2

2 + 9�2�2l � 2�2
2l + (69)

+24�4 � 9�2
2l log(k)

⌘
.

For the DW solutions, further simplifications yield

F
(DW ) =

1

8
e

8
3 AU

⇣
4�2 � �2l � 4�2l log(k)

⌘
�2l .(70)

Along the lines of Ref. [1], we find it convenient to
define a scale ⇤ as follows [162]:

⇤�1
⌘

Z 1

⇢o

d⇢ e
�(⇢)�A(⇢)

. (71)

While this is not a unique choice, its simplicity and uni-
versality gives it a practical value for our applications. In

29

It emerges that the configuration with ✓ = 0 has lower energy in the case where �I > 0, in which case the spectrum
of fluctuations of the background is always positive definite.

We hence conclude that for �I > �
⇤
I ' �0.5 the solutions are regular (the curvature invariants computed in D = 10

dimensions are all finite) and smooth (there is no conical singularity at the end of space), the spectrum is positive
definite, and the calculation of the Wilson loop via the dual gravity prescription leads to the linear potential expected
in a confining field theory (in D = 3 dimensions, in this case). All of these properties are preserved all the way along
the one-parameter branch of confining solutions until the critical value �

⇤
I , in proximity of which the lightest scalar

separates from the rest of the spectrum, and becomes arbitrarily light, before turning into a tachyon. This light state,
as shown by the calculation of the spectrum in probe approximation, has a substantial overlap with the dilaton.

————————————–

F⇤�4

�2l⇤
�2
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FIG. 9: The free energy density F⇤�5, defined in Eq. (45), expressed in units of the scale-setting parameter ⇤ defined in
Eq. (45), plotted as a function of the deformation parameter �2l⇤

�2, for the various classes of solutions considered in the
paper. The bottom panel is a detail of the top one.
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as shown by the calculation of the spectrum in probe approximation, has a substantial overlap with the dilaton.
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FIG. 9: The free energy density F⇤�5, defined in Eq. (45), expressed in units of the scale-setting parameter ⇤ defined in
Eq. (45), plotted as a function of the deformation parameter �2l⇤

�2, for the various classes of solutions considered in the
paper. The bottom panel is a detail of the top one.

FIG. 8: The free energy density F⇤�4, defined in Eq. (70),
expressed in units of the scale-setting parameter ⇤ defined in
Eq. (71), plotted as a function of the deformation parame-
ter �2l⇤

�2, for the various classes of solutions considered in
the paper. For the confining solutions, the tachyonic back-
grounds are denoted by continuous (black) lines, while back-
grounds with positive-definite mass spectrum are represented
by the (black) short-dashed line. The long-dashed (blue) lines
are the positive DW solutions, the dashed (red) lines are the
negative DW solutions, while the grey disk represents the su-
persymmetric solutions. The bottom panel is a detail of the
top one.

the calculation of the free energy density, we set k = ⇤,
as this quantity scales with dilatations in the same way
as z

�1.
We display in Fig. 8 the result of the calculation of

F⇤�4 as a function of the source �2l⇤�2, for the three
classes of negative DW, positive DW and confining solu-
tions. For negative values of �2l⇤�2, as we saw the reg-
ular confining solutions have positive definite spectrum
(as �I > �

⇤
I), and furthermore their free energy is the

lowest among the solutions we considered. When �2l⇤�2

is positive, but small, we still find regular confining solu-
tions, but the lightest scalar state has lower mass, which
vanishes when �I = �

⇤
I ' �0.52, after which it turns

tachyonic. There is hence a regime of parameter space
in which the lightest scalar has suppressed mass. But
these solutions are metastable: the positive DW solu-
tions (despite being singular) have lower free energy when
�2l⇤�2

> �
?
2l⇤

�2
' 0.13, the critical value identified by

the crossing in Fig. 8 (corresponding to �
?
I ' �0.067)
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Once more, as in the models in Refs. [1, 2], we find that
the lightest scalar can be identified with a parametrically
light dilaton along the metastable solutions. In the sta-
ble solutions the lightest scalar is still an approximate
dilaton, but not parametrically light.

VI. CONCLUSION AND OUTLOOK

We studied new classes of background solutions of
maximal supergravity in D = 5 dimensions, truncated
to retain only one scalar field. This is the theory related
to the dual of the Coulomb branch of N = 4 SYM. We
focused on solutions that are regular, have positive defi-
nite spectrum, and can be interpreted as the gravity dual
of confining field theories in three dimensions. We found
evidence that the lightest scalar state is an approximate
dilaton, and can be made parametrically light, in a region
of parameter space in which these new regular solutions
are metastable.

The study confirms, in a lower-dimensional simple set-
ting, for a well known example of gauge-gravity duality
related to the study of N = 4 SYM, the qualitative fea-
tures that emerged in the models in Refs. [1, 2]. We no-
tice the emergence of a first-order phase transition sep-
arating the metastable from the stable portions of the
parameter space of the new confining solutions. As in
Refs. [4–6], the approximate dilaton is not parametri-
cally light in the stable solutions, confirming this generic
feature also in confining theories in three dimensions.

Further exploration of the catalogue of supergravity
theories will possibly help to understand whether the
aforementioned results are universal or model dependent.
Of particular interest would be to ascertain whether it is
possible, and under what conditions, to find systems for
which the phase transition is weak enough to render the
dilaton parametrically light already in the stable region
of parameter space, in proximity of the phase transition
itself. It would also be interesting to see whether systems
exist for which the phase transition is of second order.
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Appendix A: The two supersymmetric solutions

The first-order Eqs. (8) can be solved exactly by chang-

ing variable according to @⇢ = e
�p
6 @⌧ . The first-order

equations are then

@⌧�(⌧) = �
4

p
6

sinh

 r
3

2
�(⌧)

!
, (A1)

@⌧A(⌧) = cosh

 r
3

2
�(⌧)

!
+

�
1

3
sinh

 r
3

2
�(⌧)

!
. (A2)

There are two exact solutions [23, 147, 151]. The case of
n = 2 is given by

�2(⌧) = �
4

p
6
arctanh

⇣
e
�2(⌧�⌧o)

⌘
, (A3)

A2(⌧) = Ao + ⌧ � ⌧o �
1

3
arctanh

⇣
e
�2(⌧�⌧o)

⌘
+

+
1

2
log
⇣
1 � e

�4(⌧�⌧o)
⌘

, (A4)

and the n = 4 case by

�4(⌧) =
4

p
6
arctanh

⇣
e
�2(⌧�⌧o)

⌘
, (A5)

A4(⌧) = Ao + ⌧ � ⌧o +
1

3
arctanh

⇣
e
�2(⌧�⌧o)

⌘
+

+
1

2
log
⇣
1 � e

�4(⌧�⌧o)
⌘

, (A6)

where ⌧o and Ao are two integration constants.
The two classes of supersymmetric solutions can be

rewritten as expansions valid for 0 < ⇢� ⇢o ⌧ 1:
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r
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r
3

2
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and
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The n = 2 case is the limit �o ! �1 of the general
DW solutions in Eqs. (43) and (44), while the n = 4

case is recovered with the choice �o = �
1
2

q
3
2 log

�
4
3

�
in

Eqs. (46) and (47).
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Both solutions exhibit a naked singularity in D = 5
dimensions, which softens in D = 10 dimensions. For
the n = 2 solutions (�2, A2) we find

R10,M̂N̂R
M̂N̂

10 =
135

4 cos2(✓)(⇢� ⇢o)3
+ · · · .(A11)

For the (n = 4) solutions given by (�4, A4) the behaviour
of this invariant is milder:

R10,M̂N̂R
M̂N̂

10 =
5 sin4(2✓)

8 sin10(✓)
+ · · · . (A12)

The singularity at the equator of S
5 displayed by the

curvature invariant in Eqs. (A11) and (A12) at the end
of space signals the incompleteness of the supergravity
description in both supersymmetric cases.

The Wilson loops for the supersymmetric solutions
have been computed in Ref. [23]. We display our result
in Fig. 9, as a test of our procedure. In the case of the
n = 2 solutions (�2, A2), for both ✓ = 0,⇡/2 we find a
monotonic potential, and a maximum value of L = Lmax.
In the case n = 4 of (�4, A4), there is a very major di↵er-
ence between the two cases with ✓ = 0,⇡/2. The case of
✓ = 0 displays the features expected by a first order phase
transition, with long-distance screening. Conversely, for
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FIG. 2: Energy EW as a function of the separation L, for supersymmetric solutions corresponding to n = 2 with (��, A�)
(left) and n = 4 with (�+, A+) (right). Continuous (blue) lines correspond to configuratons with ✓ = 0, short dashed (red)
lines to configurations with ✓ = ⇡/2, and long dashed (black) lines represent configurations reaching exactly the end of space.

where  is the digamma function, q the four-momentum in Euclidean signature, and a depends on the momentum as

a = �
1

2
+

1

2

p
1 + q2 . (111)

We notice the presence of a massless pole, besides the gap and the cut.
We borrow also the tensorial correlation function from Section 3.3 of Ref. [153]:

hTµ⌫(q)T⇢�(�q)i = �µ⌫⇢�
q
2

2


1

3
�

q
2

2

⇣
 (a + 1) �  (1)

⌘�
, (112)

where  is some constant that is of no concern to us, and where a has been define in Eq. (111). The tensorial spectrum
has the same properties and cut as the scalar one, except for the absence of a massless state.

The other supersymmetric solutions, with n = 4, denoted by (�+, A+) in Eqs. (92) and (93), correspond to swopping
the global symmetries in the cosets. The resulting discrete spectrum is for example described in Eq. (26) of Ref. [149].
With j = 0, 1, · · · , the spectrum is given by M /

p
j(j + 1)/2 ' 0, 1, 1.7, 2.5, 3.2, · · · .1 The spectrum of tensors can

be found for example in Eq. (45) of Ref. [151], according to which it agrees ‘. . . to an extremely good approximation
. . . ’, but for the fact that there is no zero mode.

C. Rectangular Wilson loops for supersymmetric solutions

The Wilson loops for the supersymmetric solutions have been computed in Ref. [23], with the gauge-gravity pre-
scription we summarised in Sec. III C. They considered the simplified problem of setting ✓ = 0,⇡/2, rather than
allowing the strings to have generic profiles in the (✓, ⇢) place. We reproduce the same analysis here.

Se set the end of space ⇢o = 0 and the constant Ao = 0, for convenience. We start by computing the functions F
2

and G
2 for both solutions.

• For the n = 2 case we find that lim⇢!0 F
2
�(⇢, 0) = 0, as well as lim⇢!0 F

2
�(⇢,⇡/2) = 0. In both cases the string

becomes tensionless at the end of space.

• For the n = 4 case we find that lim⇢!0 F
2
+(⇢, 0) = 0, with the string becoming tensionless at the end of space.

But we find that lim⇢!0 F
2
�(⇢,⇡/2) = 3

4 .

By making use of the results we discussed, we learn that in three of the four cases an open string becomes tensionless
at the end of space, while in the n = 4 case for ✓ = ⇡/2 we find that EW (⇢̂o) ' �L(⇢̂o) when ⇢̂o ! 0, with � =

p
3/4.

We hence compute �E⇤,0 by setting ✓ = 0, and show the results in Fig. 2.

1 The massless state is missing in the analysis of Ref. [149], as is the case also for the spectrum of the �� (n = 2) supersymmetric solution,
for which Ref. [149] identifies only the gap and the cut.
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FIG. 2: Energy EW as a function of the separation L, for supersymmetric solutions corresponding to n = 2 with (��, A�)
(left) and n = 4 with (�+, A+) (right). Continuous (blue) lines correspond to configuratons with ✓ = 0, short dashed (red)
lines to configurations with ✓ = ⇡/2, and long dashed (black) lines represent configurations reaching exactly the end of space.

where  is the digamma function, q the four-momentum in Euclidean signature, and a depends on the momentum as
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We notice the presence of a massless pole, besides the gap and the cut.
We borrow also the tensorial correlation function from Section 3.3 of Ref. [153]:
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where  is some constant that is of no concern to us, and where a has been define in Eq. (111). The tensorial spectrum
has the same properties and cut as the scalar one, except for the absence of a massless state.

The other supersymmetric solutions, with n = 4, denoted by (�+, A+) in Eqs. (92) and (93), correspond to swopping
the global symmetries in the cosets. The resulting discrete spectrum is for example described in Eq. (26) of Ref. [149].
With j = 0, 1, · · · , the spectrum is given by M /

p
j(j + 1)/2 ' 0, 1, 1.7, 2.5, 3.2, · · · .1 The spectrum of tensors can

be found for example in Eq. (45) of Ref. [151], according to which it agrees ‘. . . to an extremely good approximation
. . . ’, but for the fact that there is no zero mode.

C. Rectangular Wilson loops for supersymmetric solutions

The Wilson loops for the supersymmetric solutions have been computed in Ref. [23], with the gauge-gravity pre-
scription we summarised in Sec. III C. They considered the simplified problem of setting ✓ = 0,⇡/2, rather than
allowing the strings to have generic profiles in the (✓, ⇢) place. We reproduce the same analysis here.

Se set the end of space ⇢o = 0 and the constant Ao = 0, for convenience. We start by computing the functions F
2

and G
2 for both solutions.

• For the n = 2 case we find that lim⇢!0 F
2
�(⇢, 0) = 0, as well as lim⇢!0 F

2
�(⇢,⇡/2) = 0. In both cases the string

becomes tensionless at the end of space.

• For the n = 4 case we find that lim⇢!0 F
2
+(⇢, 0) = 0, with the string becoming tensionless at the end of space.

But we find that lim⇢!0 F
2
�(⇢,⇡/2) = 3

4 .

By making use of the results we discussed, we learn that in three of the four cases an open string becomes tensionless
at the end of space, while in the n = 4 case for ✓ = ⇡/2 we find that EW (⇢̂o) ' �L(⇢̂o) when ⇢̂o ! 0, with � =

p
3/4.

We hence compute �E⇤,0 by setting ✓ = 0, and show the results in Fig. 2.

1 The massless state is missing in the analysis of Ref. [149], as is the case also for the spectrum of the �� (n = 2) supersymmetric solution,
for which Ref. [149] identifies only the gap and the cut.

FIG. 9: Energy EW as a function of the separation L, for
supersymmetric solutions n = 2, (�2, A2) (top) and n = 4,
(�4, A4) (bottom), and chosen to have AI = 0. Continuous
(blue) lines correspond to configurations with ✓ = 0, short-
dashed (red) lines depict configurations with ✓ = ⇡/2, and
long-dashed (black) lines represent configurations reaching ex-
actly the end of space.

✓ = ⇡/2 we find a linear potential at asymptotically large
L, which is unbounded; this configuration has higher en-
ergy than the ✓ = 0 one.

For the n = 2 solutions (�2, A2) in Eqs. (A3) and (A4),
the 2-point function of the operator O dual to the scalar �
can be found in Section 3.3 of Ref. [153] (see also Eq. (8.6)
of Ref. [12]):

hO(q)O(�q)i =
16

3q2
� 4

⇣
 (a(q) + 1) �  (1)

⌘
,(A13)

and for the tensors

hTµ⌫T⇢�i /
q
2

20

h1
3

�
q
2

2

⇣
 (a(q) + 1) �  (1)

⌘i
,(A14)

where  is the digamma function, q the four-momentum
in Euclidean signature, 0 is a constant, and a is

a(q) ⌘ �
1

2
+

1

2

p
1 + q2 . (A15)

The scalar correlator displays a massless pole, a gap and
a continuum cut, the tensor di↵ers by the absence of the
massless state.

The n = 4 solutions (�4, A4) in Eqs. (A5) and (A6),
have a discrete spectrum, for example described in
Eq. (26) of Ref. [147]. With j = 0, 1, · · · , the spectrum is
given by M /

p
j(j + 1)/2 ' 0, 1, 1.7, 2.5, 3.2, · · · . The

spectrum of tensors can be found for example in Eq. (45)
of Ref. [151], according to which it agrees with that of
the scalars ‘. . . to an extremely good approximation . . . ’,
but for the fact that there is no zero mode.

The results of studying the Wilson loops agree with
Figs. 1, 4, and 5 of Ref. [23]. We relied on numerical so-
lutions guided by the asymptotic IR expansions, rather
than using the exact solutions as in Ref. [23]. Our nu-
merical study of the spectrum yields numerical results in
splendid agreement with pre-existing calculations, as can
be seen in Figs. 5 and 6. These results and their agree-
ment with earlier studies of the supersymmetric solutions
confirm the robustness of our formalism and numerical
strategy.

Appendix B: Expansions for the fluctuations

In the numerical calculation of the spectra, we used
the asymptotic expansions of the gauge-invariant fluctu-
ations, as a way to optimise the decoupling of spurious
cuto↵ e↵ects present at finite ⇢2. In the case of DW
solutions, we find that we can expand the physical fluc-
tuations as follows:

a� = a�
2l log(z)z2 + a�

2z
2 + O(z4) , (B1)

eµ⌫ = (e0)
µ

⌫

✓
1 �

e
�8AU

4
q
2
z
2

�
e
�16AU

16
q
4 log(z)z4

◆
+

+(e4)
µ

⌫z
4 + O(z6) , (B2)
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In these expressions, a�
2l, a

�
2 , (e0)µ

⌫ , and (e4)µ
⌫ are the in-

tegration constants governing the solutions of the second-
order linearised equations, half of which are determined
by the boundary conditions. In the probe approximation,
the expansion for the scalars p� is of the same form, up
to O(z4):

p� = p�
2l log(z)z2 + p�

2z
2 + O(z4) . (B3)

The confining solutions do not satisfy the DW condi-
tions. For the scalars we find

a� = a�
2l log(z)z2 + a�

2z
2 + O(z4) , (B4)

a� = a�
0

✓
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e
�2AU+2�U

4
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2
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2 + (B5)
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�4AU+4�U

16
q
4 log(z)z4

◆
+ a�

4 z
4 + O(z6) ,

where a�
2l, a

�
2 , a�

0 , and a�
4 are the free parameters. For the

probe approximation of the scalars, the free parameters
are p�

2l, p
�
2 , p�

0 , and p�
4 , and as a result of mixing in the

second derivative of the potential in Eq. (62) we have:

p� = p�
2l log(z)z2 + p�

2z
2 + O(z4) , (B6)

p� = p�
2l log(z)z2 + p�

2 z
2 + O(z4) . (B7)

For the tensor fluctuations we find

eµ⌫ = (e0)
µ

⌫
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