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EDITORIAL SUMMARY This protocol describes Deepometry, an open-source application 

for supervised and weakly supervised deep learning analysis of imaging flow cytometry 

datasets. The protocol provides runtime scripts for Python, MATLAB and a stand-alone 

application. 
 

TWEET A new protocol for deep learning analysis of imaging flow cytometry datasets 

using #Deepometry. 

 

COVER TEASER Deep learning analysis of imaging cytometry data 

 

ABSTRACT 

Deep learning offers the potential to extract more than meets the eye from images 

captured by imaging flow cytometry. This protocol describes the application of deep 

learning to single-cell images to perform supervised cell classification and weakly 

supervised learning, using example data from an experiment exploring red blood cell 

morphology. We describe how to acquire and transform suitable input data as well as 

the steps required for deep learning training and inference using an open-source web-

based application. All steps of the protocol are provided as open-source Python as well 

as MATLAB runtime scripts, through both command-line and graphic user interfaces. 

The protocol enables a flexible and friendly environment for morphological phenotyping 

using supervised and weakly-supervised learning and the subsequent exploration of the 

deep learning features using multi-dimensional visualization tools. The protocol requires 

40 hours when training from scratch, and 1 hour using a pre-trained model.    

 

  

INTRODUCTION 

Imaging flow cytometry (IFC) is a powerful technique that combines the high-throughput 

nature of flow cytometry together with the ability to capture multi-channel fluorescence 

images of every cell 1. Current instruments can measure 12 channel fluorescence images at a 

magnification of up to 60X from 3 different excitation wavelength sources at rates of 

thousands of cells per second. This technology has found a host of different applications such 
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as the investigation of receptor activity 2, nuclear translocation studies 3, the detection of foci 

in the nucleus of cells with DNA damage 4, asymmetric cell division 5, autophagy 6 and cell 

cycle analysis 7. While all of these applications have taken advantage of the image capture 

capabilities, not possible with traditional flow cytometry, most have only used very basic 

information from these images. For example, early approaches used simple image-derived 

morphological features such as cell area or pixel intensities within the cell or its nucleus3,5,7. 

As few parameters were extracted per cell, the typical gating strategies employed in traditional 

flow cytometry sufficed for these applications but fell far short of the potential in the rich 

datasets obtained from imaging flow cytometry. 

The advent of high throughput fluorescence microscopy has driven the rapid development of 

techniques to analyse very large numbers of cell images 8,9. Typically these techniques involve 

the segmentation of individual cell borders from each field of view, the extraction of the rich 

information from the multichannel cell images 10, and the subsequent analysis of these high-

dimensional datasets using tools such as machine learning 11. High content analysis, where 

several hundreds of morphological, intensity and texture features are extracted per 

fluorescence image, yields a rich dataset that can be used with standard high dimensional 

analysis techniques to explore cell phenotypes. These high content image analysis tools can 

be readily applied to images from IFC because the suspension cells do not need to be 

segmented, which can be challenging for single-cell microscopy analysis 12. There has also 

been rapid progress in the development of non-fluorescent high throughput modalities such as 

quantitative phase 13 and Raman 14 imaging which can provide single-cell images for high 

content analysis. 

Previously we developed open-source software and procedures for extracting image features 

from the multiple fluorescence, bright field and dark field (side scatter) image channels of 

imaging flow cytometry data from an ImageStream 15 using the open-source software 

CellProfiler 16. CellProfiler measures hundreds of morphological features per channel for 

individual cells and subcellular structures, such as nuclei. The high-dimensional data can then 

be analysed using machine learning and clustering algorithms for various tasks including 

phenotype classification and identifying the impact of drug treatments. In particular, we used 

supervised machine learning to detect cell cycle phases in cells from imaging flow data and 

to reconstruct the DNA stain intensity from bright and dark field images 17. While this 

approach maximises the usefulness of the information-rich imaging flow cytometry datasets, 

the process involves several steps requiring different software solutions and is time-

consuming. Also, as the researcher needs to predefine the morphological features to be 

included in the analysis this process can be subjective. 

Recent advances in multi-core graphical processing units have provided the computational 

power required to train deep neural networks. Their accuracy typically surpasses that of 

traditional machine learning methods for image recognition problems, while also eliminating 

the hand-tuned feature extraction step18. Multichannel images are directly input to a first 

convolution layer which is connected to several additional convolution layers that down-

sample the image size and successively define more complicated image features by training 

the network with labelled images. 

In this protocol, we describe the use of deep learning for the common classification problem 

of phenotype identification as well as for data exploration. The workflow we describe here 

uses Deepometry, open-source software we developed to prepare imaging cytometry data in 

the proper format for deep learning and carry out phenotype classification. We outline the 

different data pre-processing steps that can affect the usefulness of these algorithms. We 
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describe how to use the activation values of one of the later fully connected layers of the 

network to allow data exploration using high dimensional visualisation and mapping 

techniques. These techniques, such as t-SNE 19, diffusion mapping 20 and UMAP 21 , can 

determine relationships among cells, for example, to map out the timing of each cell within 

its cell cycle 17 or to visualise the continuous morphology changes of red blood cells during 

storage for transfusion 22.  We provide scripts in MATLAB and Python including a graphic 

user interface and a stand-alone application to perform all the steps and techniques outlined 

here. 

 

Development of the protocol 
Our first efforts to exploit the information-rich image data from imaging flow cytometry 

mirrored the traditional methods applied for microscopy-based high content data analysis. We 

used IDEAS, the ImageStream analysis software, to export 16-bit (raw unprocessed) TIFF-

format images of every cell. Typically, IFC image sizes are small (less than 100X100 pixels) 

so we developed open-source software to montage the single-cell images to large images with 

grids of thousands of cells to improve the efficiency of file handling. We used CellProfiler 16 

to segment the individual cells and then extract hundreds of features per cell for each 

fluorescence channel. The features included morphological measurements such as metrics of 

size and shape, granularity and texture, and fluorescence intensities, from the cells and 

subcellular organelles. A large number of feature values per cell were then used as input to 

traditional machine learning algorithms to perform supervised cell classification and 

unsupervised clustering. This strategy succeeded in demonstrating that the position of a cell 

in the cell cycle, and the intensity of a DNA stain, could be predicted from just bright and dark 

field images 17. We later refined this protocol to generate the montaged cell images directly 

from the ImageStream proprietary output file (.cif) format 23 eliminating the TIFF image 

exporting step. 

While the ImageStream’s single-cell image format is generally inconvenient for input into the 

majority of cell image analysis software tools, which were developed to analyse wide-field 

microscopy images, they are ideal for deep learning algorithms, which have been designed to 

readily accept individual images of each object of interest. We therefore next used the IDEAS 

software to export images representing each channel, which were then combined into multi-

layered TIFF-format images. We found that DeepFlow 18, a neural network based on the 

“Inception” architecture 24, significantly improved classification accuracy 23 as compared to 

our previous cell cycle analysis using traditional machine learning, which required feature 

extraction from the cell images. We also found the activation values of the last fully connected 

layer of the network to be helpful in exploring the data using tools such as t-SNE, UMAP, and 

diffusion maps  19, 20, 21. 

In addition to refinements to the logistics of handling the incoming image files, our later 

refinements to the protocol include providing an option to take advantage of a pre-trained deep 

learning network and use transfer learning to classify cell phenotypes, as opposed to training 

the DeepFlow network from scratch. This approach can be beneficial when training sets are 

small, and we successfully used it to classify cells from the bone marrow of patients diagnosed 

with acute lymphoblastic leukaemia (ALL) 25. The accuracy of detecting leukemic 

lymphoblasts was over 93% when the cells were labelled with an ALL-discriminating 

antibody combination while our strategy of training using just the bright and dark field images 

(thus reducing substantial labor and reagents) achieved an accuracy of 88% 25. To achieve this 

level of accuracy we used a modified version of the ResNet50 architecture, which was 

developed and trained to perform classification on the million images of the ImageNet 

database 26. The original network accepts a 3 (RGB) channel 224 by 224 pixel input so we 
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modified the network to accept the smaller images from the ImageStream and include an 

arbitrary number of channels. We took the pre-trained network as a starting point and used 

transfer learning to speed up the training process. This forms the core of the current 

Deepometry deep learning protocol described herein. 

Clearly, deep learning is a powerful alternative to traditional machine learning on classically 

extracted features, delivering increased classification accuracy and eliminating the need for 

feature engineering. Also, deep neural networks can be used to employ novel training 

strategies such as weakly supervised learning, which we include as part of this protocol. 

Weakly supervised learning involves training a deep learning network with images annotated 

in such a way to promote maximum learning and generate the greatest number of generally 

useful features. This is achieved by annotating the images with a label that may not be directly 

relevant to the cell morphology but be an easily obtainable label, such as the day the cells were 

imaged. Obviously, we would not expect the network to classify the images based on such 

labels and accuracy may be very low. However, setting an auxiliary task for the network can 

yield interesting benefits. Often the upper convolution layers generate features, which can be 

used for another task.  

We used this weakly supervised learning to classify the morphology changes in red blood cells 

during storage for transfusion 22. Instead of annotating thousands of cells into different 

morphological phenotypes, we trained Deepometry using cells labelled with the number of 

days the blood had been in storage. The storage time may ‘weakly’ encode temporal 

phenotypic variations of the cells and is a far poorer label than the cell phenotype itself. 

However, these labels are trivial to generate. As expected, the accuracy of predicting the 

storage time was low however the features generated by the network could be mapped onto a 

progression of the morphological phenotype of each cell with a high correlation (>0.9) 

compared with manual labels. The protocol described here includes the option to perform 

weakly supervised learning by changing the annotation of the cell images used to train the 

network. 

Applications of the method  

The protocol and software described herein are flexible; it can perform both supervised and 

weakly-supervised learning. Researchers can carry out the protocol using our provided easy-

to-use scripts, a web browser-based app that has been developed using Flask (Python), or a 

MATLAB standalone app. The latter options are compiled along with all required 

dependencies and may be downloaded and used on any machine. The protocol allows 

visualising the activation values of key layers in the deep learning network using U-map, but 

activation values can also be exported into any dimensional reduction visualisation tool, for 

example, to perform cluster analysis or assign a pseudo-time to each cell in the population 23. 

The software is not optimized to a particular biological application. Instead, it currently 

contains a variety of pre-designed architectures and pre-trained classifiers but can also be 

expanded to accommodate new developments in the rapidly changing field of deep learning. 

The protocol might also be expanded to real-time analysis as opposed to the post-acquisition 

classification (offline analysis) described here. Multiple proof-of-concept studies have 

demonstrated the possibility to rapidly actualize the categorical prediction in a microfluidic 

system, allowing on-the-fly cell sorting based entirely on morphology 27,28. Furthermore, a 

recent application of a convolutional neural network with 16 layers (VGG-16) enabled an in 

silico enhancement of acquired image data from an imaging flow cytometry system by 

virtually freezing the motion of flowing cells on the sensor to achieve ~1,000 times longer 

exposure time for microscopy-grade fluorescence image, allowing high-throughput without 
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sacrificing sensitivity 29. The protocol here could be used as a testbed for developing 

algorithms for on-the-fly classification. 

While the protocol was developed for use with imaging flow data, it could be readily adapted 

to traditional microscopy image data. For use with this protocol, individual cells from 

microscopy images must be segmented 30,31 and individually cropped cells saved as separate 

images; these can be input directly to this protocol. The different size cells would be 

standardised to the correct size for the deep learning network using the padding/cropping steps 

of the protocol; down-sampling might be required for high-resolution images in order to take 

advantage of the included networks with modest computing power. 

A huge diversity of biological applications could be accomplished with this workflow. Two 

variants of phenotype classification are possible: first, the system can be trained to identify 

phenotypes that are annotated by human expert assessment. Second, the system can be trained 

using an alternate source of ground truth, such as a fluorescent label that identifies the cells of 

interest, that is not provided to the machine learning system. In this strategy, the system is 

forced to use available image-based features (such as in the label-free bright field and dark 

field channels only) to learn to recognize the phenotype. The cues it learns may not even be 

visible to the human visual system. Label-free cytometry using machine and deep learning on 

images generated from a range of different measurement techniques has now been used for 

blood cell classification 32, 33, rare cell 34 and cancer detection 35, 36. Recently quantitative phase 

microscopy has been used to measure the progression of cell states including the activation of 

T cells37 and progression of B-cell ALL38 and this protocol could be used on these single-cell 

images to quantify and visualise progressive morphological changes.  

Apart from phenotype classification, this protocol can be used to extract biologically relevant 

image features that allow the unsupervised arranging of cells in two ways: first, cells can be 

clustered in space to identify subpopulations, including those that may not be distinguishable 

to humans, and second, cells can be ordered based on a biological progression in order to 

identify dynamic processes such as development, metastasis, or degradation. 

 

Comparison with classical bioimaging analysis approaches 

A conventional image analytic pipeline typically consists of several steps: i) segmentation of 

the object-of-interest; ii) feature measurement; iii) feature selection and dimension reduction; 

iv) classification/regression and phenotyping (upper panel, blue path in Fig. 1). This design, 

however, has a number of limitations. First, each of these steps typically requires different 

software/platforms, forcing researchers to gather suitable solutions and familiarise themselves 

with software usage and installations. The input/output formats might be unique for each 

package and bespoke tools are then required to bridge them. Second, the efficacy of a classical 

pipeline depends on fine-tuning parameters in each module. Restarting and assessing the 

pipeline after each adjustment is time-consuming. Finally, the handcrafted features (shape, 

intensities, texture, etc.) need to be pre-defined. This might not be an issue when the phenotype 

is known to exhibit certain known characteristics, however, a combination of these features is 

often required, demanding researchers to carefully conduct feature selection procedures to 

search for the right set of features amidst the vast number of combinatorial choices. 

In contrast, a deep learning-based method naturally supports the interconnection of feature 

extraction, feature selection and phenotyping in one integrated architecture, and therefore 

reduces the number of user-tunable parameters for each task (lower panel, orange path in Fig. 

1). Today state-of-the-art deep neural network architectures allow the information in pixel 
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patterns to be stored in millions of intrinsic parameters (weights), which are automatically 

updated each time the training materials pass through the network (an epoch). The features 

that are relevant to the ultimate classification/regression target are extracted and selected 

directly from the input pixels, which means an accurate segmentation of each object-of-

interest might not be necessary. A well-separated, single-framed object, as in the case of IFC, 

is convenient input for a deep neural network. 

Comparison with other deep learning approaches 

Given that several deep neural networks are successfully applied in image classification 

contests in the computer vision domain, such as ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) and Common Objects in Context (COCO), it is tempting to apply the 

winning solutions to bioimaging data; using a network trained in one domain on another is 

termed transfer learning. Limitations exist, however: (a) pre-trained networks are usually 

based on one (grayscale), three (RGB), or four (CMYK) channel inputs, which are 

incompatible with the multiple channels contained in biological images (sometimes in the 

order of 40+ channels); (b) the efficiency of pre-trained networks are often strongly linked to 

specific input size, such as 224x224 in the original use of ResNet50 on ImageNet; biological 

images have a wide range of frame sizes that often require preprocessing treatments to fit into 

pre-trained networks, (c) information per channel in photographic images are often sufficient 

per se (i.e. a single channel of the red color of a cat still provides sufficient features for the 

correct classification of the cat); while in bioimaging data, each channel captures unique 

information of biological components (e.g. fluorescent signals in one channel provides 

information of proteins, another channel provides information of lipids, exclusively). 

Our protocol addresses these issues using our Python library Keras-ResNet 

[https://github.com/broadinstitute/keras-resnet], which allows unlimited dimensions of the 

input shape, including widths, heights and number of channels. This framework efficiently 

enables the implementation of deep residual networks, which contain a stack of convolutional 

layers that gradually transform the input signal into a feature vector. Each convolutional layer 

is composed of a set of learned filters that recognize patterns in a small region of the input 

(size of 3×3) with a stride of 1. The depth of our CNN is appropriate for the typical resolution 

of IFC; 10 µm-width cells are captured in 20-30 pixels. As layers of a network build a 

hierarchy of increasingly more complex nonlinear features, deeper networks involving more 

layers have the ability to detect complex relationships that may be used for challenging 

classification problems. It has been shown, however, that, as more layers are added to the 

network, degradation in performance can be observed. Our workflow is based on the 

ResNet50 architecture which is 50 layers deep and includes skip connections, a strategy 

ensuring that layers that are not useful do not degrade training. Additionally, our selected CNN 

architecture has a light footprint and can be efficiently run on a CPU in an acceptable time 

period for typical classification problems (~30 hours, see Table 1). 

Recently a general deep learning tool, AIDeveloper (AID)39 has been developed to allow the 

application of deep neural networks for image classification. The AID has a user-friendly 

graphical user interface that allows researchers to choose from several different networks and 

allows transfer learning from previous training image sets. AID is well suited to the use for 

the small image datasets from typical cytometry platforms and the authors demonstrate high 

accuracy on the classification of cell types from whole blood bright field real-time 

deformability cytometry images. The application of different neural networks to classification 

problems can run within the graphical user interface while with Deepometry this requires 

changes to the code. However, currently, AID does not allow the user to visualise the layers 
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of the network to study cell morphology progression and does not allow the use of weakly 

supervised learning to eliminate the need for phenotype annotation; this was the major 

advancement recently demonstrated in the context of red blood cells 21, the subject of this 

protocol. 

Levels of expertise required 
The protocol is designed to be accessible to any researcher, regardless of computational 

expertise. We provide a step-by-step installation guide for the user to install a simple 

executable app on their local computer (general workflow shown in Fig. 2). For those 

interested in customizing the code, we also provide instructions to install Python and/or 

MATLAB in the correct configuration to run the protocol web apps and software packages. 

Once code and accompanying packages have been downloaded onto the computer following 

the step-by-step instructions, the protocol requires very little prior experience. Knowledge of 

the dataset and what you hope to achieve is key to derive the most benefit from the workflow. 

You may wish to explore and interpret some of the features extracted from various layers of 

the trained model and so some familiarity with the overall network architecture is useful but 

not crucial. Scientists may need to consult information technologists to assist with setup if the 

workflow is to be run on a commercial cloud or local server computing system. 

Limitations 

Deep learning in general is data-hungry and requires training examples on the order of 

hundreds of thousands to millions, unless pre-trained networks are used. Typically, IFC 

produces images at this scale, but labelling images according to their phenotype manually is 

not scalable. It is therefore ideal to use a secondary source of information as ground truth, 

such as a fluorescent stain in an alternate channel that indicates the phenotype classes, or to 

physically separate samples containing different phenotype classes, while taking care to 

minimize technical variation among batches. As well, the accuracy of deep learning depends 

on the depth and complexity of its architecture, which can require large computational 

resources, primarily during the training step. 

Commercial IFC yields a pixel size between 0.33 and 0.5 µm at 40× magnification, such that 

10 µm cells would have a width of 20-30 pixels. Although the input dimensions of 48x48 

pixels are sufficient for many phenotypes, it may not be sufficient for others, and high-

resolution microscopy may be required. As with all machine and deep learning protocols, the 

lack of annotated data may be an obstacle in the quest to achieve a trained network capable of 

accurate classification. Although Deepometry accepts any 3D tensor array inputs (image 

width x image height x channels) it delivers more meaningful results when the inputs are 

isolated images of individual objects, i.e. one centered/prominent object in a bounding-box 

frame. Large images with multiple objects are not ideal, as the object segmentation is not 

included. One alternative approach is to perform object detection/segmentation, for example 

using image analysis software such as CellProfiler 4.0 and save the bounding-boxed objects 

as individual images for input to Deepometry. 

Deepometry uses the ResNet50 architecture because of its practical implementation 

(reasonable model complexity), efficiency and robustness (delivering reasonable results for a 

wide range of applications) allowing researchers to focus on answering the biological 

questions at hand rather than finetuning the architecture to achieve the absolute highest 

accuracy. While advanced users will find it relatively easy to swap alternate networks in the 

codebase, there is no option to change or alter the deep learning network in the current GUI. 

Likewise, the use of data augmentation techniques is not facilitated within the application 

although relatively straightforward to modify in code. 
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When using image files in a manufacturer's proprietary file format, for example, a .cif file 

from the ImageStream imaging flow cytometer, the individual image files are extracted and 

subsequently stored on the host computer hard drive. A typical .cif file can contain 105-106 

single cells with 12 channels and therefore Deepometry needs to store 106-107 individual .tiff 

images or 105-106 .npy/.mat files on the local drive. 

 

 

Experimental design 

Supervised learning design 

To perform supervised deep learning requires annotated cell images for each phenotype. A 

suitable annotation tool can make this often-onerous task easier. For example, the 

ImageStream analysis software IDEAS has an annotation tool that allows the user to tag 

multiple phenotypes and save these as separate .cif files which can be input directly into 

Deepometry. For microscopy data, a tool such as CellProfiler 16 can be used to segment the 

individual cells and CellProfiler Analyst can be used to tag individual cells with a phenotype 

label. For certain applications, for example, label-free classification, a fluorescent biomarker 

can indicate the phenotypic classes but is excluded from the training process. The strategy of 

weakly supervised learning described in this protocol can also remove the need to annotate 

individual cell phenotypes. 

If there is no avoiding the use of expert-annotated cell phenotype images, then typically we 

find that the Deepometry network becomes more accurate when in excess of 100 images per 

phenotype are used. However, when low numbers of annotated images are used the network 

becomes very susceptible to over-fitting 40. ResNet uses drop-out regularization however this 

alone cannot guarantee over-fitting and the most robust test is using hold-out data which 

unfortunately also needs to be annotated. As with all machine and deep learning algorithms, 

an imbalance in the number of annotated images for each phenotype can cause problems in 

training. Deepometry compensates for this class imbalance in the softmax layer, however, this 

is no substitute for maximising the number of examples of rarer phenotypes if possible. If 

lower numbers of training images are unavoidable then the use of cross-validation might be 

advisable, however, care must be taken to ensure your cross-validation strategy matches the 

conditions of any future test data 41. There is a range of cross-validation strategies 41 that can 

be used when training deep learning algorithms and rather than implicitly incorporating all 

these techniques we have included the option to randomly partition the image data into training 

and hold-out sets. However, if there is a class imbalance (more examples of one class versus 

the others), the user should manually predefine a test and hold-out set. 

As with any supervised machine learning algorithm, poorly annotated data causes a significant 

drop in the accuracy of the network prediction. If there is uncertainty about the phenotype of 

a significant number of images, then one might introduce an un-scorable category. Optimal 

results will be achieved when the training and test images are acquired using identical 

experimental conditions e.g. using the same dyes, same laser excitation, magnification etc. 

However, it may be helpful to intentionally train a network that is robust to these experimental 

variations. Often combining data from different experimental conditions as a training set can 

produce a more generalisable model, although the user must be aware of any batch effects that 
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might be introduced. We have optimised the training parameters for the deep learning network 

based on previous studies 21,23,25, however, these may need to be modified to achieve high 

accuracy, as discussed later in the procedure. 

Weakly supervised learning design 

The success of a supervised model is largely dependent on the availability of hand-labeled 

training examples. It is however expensive and time-consuming to create such an annotated 

database, especially when domain expertise is required, and it is clearly not ideal in high-

throughput analysis such as imaging cytometry, where there are generally thousands of objects 

per class. 

When a complete ground-truth annotation is not immediately available, weakly supervised 

learning is a plausible and rapid alternative for learning feature representations, in which a 

model can still be trained using easy-to-collect labels that describe the experimental 

organization of the images. In high-throughput imaging cytometry, for instance, while 

obtaining a manually assigned phenotypic label for every cell might not be possible, we can 

still allow a neural network to learn the generic features that represent cells under the same 

phenotype, based on common metadata such as treatment names, dates of experiments, etc. 

When choosing a supervised model, the bias and variance could be addressed by observing 

the learning curve. When a weakly supervised learning design is used, the error rate for the 

auxiliary task might not matter as much as how useful the learned features could be, and 

therefore the observation for bias and variance is not obvious. The best practice, in this case, 

is to increase the size of the training set, including as many learning examples as possible. 

Materials  

Equipment 

Imaging flow cytometer and companion software: 

 In this work, we used image data from the ImageStream X Mark II (Luminex). In general, any 
high-throughput cytometer that can generate image data of single cells would suffice, 
although customized code to extract images in a suitable format may be needed. In our case, 
the INSPIRE acquisition software generates IFC data in the form of a raw image file (.RIF file), 
which is then loaded into IDEAS (v6.0 or later https://www.luminexcorp.com/imaging-flow-
cytometry-support/) for pre-processing. A small dataset for testing Deepometry 
functionality, containing annotated images of Red Blood Cells is publicly available at 
https://figshare.com/articles/software/Expert_Annotated_RBC/13053968 

Computing system for deep learning workflow: 

 Although all steps of the workflow including data preparation, training deep learning 
classifiers, and visualization can be effectively done by a typical laptop or desktop’s CPU (see 
Table 1), training the classifier on a GPU will significantly reduce training time. We thus 
suggest operating the workflow on a computer equipped with a modern CUDA-compatible 
graphics card if possible; a 1x NVIDIA Titan X GPU would suffice. Alternatively, if sufficient 
expertise is available, a cloud computing resource could also be used, for instance, a high-
performance server or a cloud-computing platform such as Amazon AWS. 

https://www.luminexcorp.com/imaging-flow-cytometry-support/
https://www.luminexcorp.com/imaging-flow-cytometry-support/
https://figshare.com/articles/software/Expert_Annotated_RBC/13053968
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 The models are trained using single-precision floating point (32-bits), which generally suffices 
to obtain an accurate classification. Modern CPUs and GPUs can handle double precision (64-
bits) but this is not recommended as it has not been shown to improve classification 
accuracy, and doubles the memory requirements. Required storage space highly depends on 
the number of objects (cells) collected by IFC, and can range from megabytes (MB) for dozens 
of objects to gigabytes (GB) for hundreds of thousands of objects. Subsequent steps of the 
workflow will generate more secondary data and require further storage space, most 
importantly after data pre-processing. Typically, an IFC experiment of 1 million cells would 
need ~5 GB disk capacity for initial storage, ~5 GB for pre-processed images produced by 
IDEAS, and ~10 GB for all downstream analysis steps of the workflow. 

 

Software  

CRITICAL The key motivation in developing this workflow was to make it user-friendly so 

that those with little coding experience could employ deep learning for phenotype 

classification and unsupervised data exploration. The protocol describes in detail the 

installation steps for both the Python (Step 1 Option A) and MATLAB versions (Step 1 

Options B and C). For the Python version, the instructions include installing all necessary 

dependencies to accelerate installation and setup. Likewise, MATLAB uses the “Deep 

learning toolbox”. We also provide a stand-alone executable version of Deepometry written 

in MATLAB for Windows (GPU compatible) which can be installed without any 

programming language requirements (Step 1 Option C). For those wishing to customize or 

explore individual modules, the following packages are used.   

Essential packages for Python environment (see more details and download sites in 

Supplementary note 1, Python Installation guide): 

● Python 3.6 

● Tensorflow-gpu 1.9.0 

● Keras 2.1.5 

● Numpy 1.18.1 

● Scipy 1.4.1 

● Keras-resnet 0.0.7 

● Java Development Kit 8.0/11.0 

● Python-bioformats 1.5.2 

● Jupyter notebook 

Essential packages for MATLAB environment (see more details and download sites in 

Supplementary note 2, MATLAB Installation guide): 

● Image processing toolbox 

● Deep learning toolbox 

For the stand-alone application the details and download sites are given in Supplementary 

note 3, Stand-alone installation guide. 

 

Equipment setup 
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Image acquisition: 

Images should be acquired with the maximum resolution possible, and at least 8-bit depth. 

Each channel should be captured as an individual grayscale image. No further pre-processing 

should be performed on the images before beginning this protocol. For common cellular 

objects (mammalian cells, yeast, bacteria etc.), objective magnification is recommended to be 

at least 40×, together with high-resolution pixel size (at least 0.5 µm per pixel). A single object 

should be contained comfortably within a bounded box with dimensions at least 30 x 30 pixels 

(such that each object has a sufficient number of pixels representing it) but less than 128 x 

128 pixels (such that objects can be fed directly into the networks, although larger images can 

be down-sampled). Usually, high-throughput imaging flow cytometers capture all 

fluorescence channels simultaneously, however, in other imaging modalities the order in 

which the channels are imaged may impact the likelihood of photobleaching.  

The usual recommendations for any mode of fluorescence microscopy apply in order to obtain 

high-quality images. The fluorescence dyes should be selected to minimise channel bleed-

through and also compensation (using the necessary controls) should be carried out to correct 

for any bleed-through that might occur. Also, signals generated by different excitation and 

illumination paths should be calibrated well to avoid misalignment, following the 

manufacturer’s instructions. Likewise, autofocusing should be carefully calibrated, and out-

of-focus cells should be excluded using the image acquisition software. For example, using 

IDEAS software for ImageStream data, there are built-in procedures for gating out cells that 

are out of focus and also removing debris and multiple cells stuck together. If phenotypes will 

be manually annotated, IDEAS’ annotation tool allows tagging multiple phenotypes and 

saving them as separate .cif files which can be input directly into Deepometry. All these steps 

are detailed in the user manual for analysing ImageStream data using IDEAS, which can be 

downloaded from https://www.luminexcorp.com/download/amnis-ideas-software-user-

manual/. 

For manually annotating microscopy data, a tool such as CellProfiler 16 can be used to segment 

the individual cells and output a properties file. This file allows CellProfiler Analyst to be 

used to view individual cells and tag them with phenotype labels, as described in the manual 

https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-Analyst-2.2.1/5_classifier.html 

For exporting cropped single-cell images from microscopy data, the 

MeasureObjectSizeShape module in CellProfiler can be used according to its manual 

https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.5/index.html. The module 

exports each cell’s X and Y coordinates together with the bounding box coordinates of the 

rectangle which encloses that particular cell. This information can then be used to generate 

single-cell images from the wide-field microscopy files using custom scripts. 

 

 

Procedure 

CRITICAL: Step 1 guides users through the installation of the software and packages 

required to run Deepometry (Python/MATLAB) or install the stand-alone application 

(MATLAB). The application of Deepometry to image data analysis starts with step 2 and is 

https://www.luminexcorp.com/download/amnis-ideas-software-user-manual/
https://www.luminexcorp.com/download/amnis-ideas-software-user-manual/
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-Analyst-2.2.1/5_classifier.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-4.0.5/index.html
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compatible with both the Python and MATLAB versions. 

 

1. For installation of the Python version, follow Option A. For installation of the MATLAB 

version, follow Option B. For installation of the MATLAB executable version (Windows 

only), follow Option C. 

Option A: Installation – Python version 

TIMING: ~1 hour varies according to internet download speed 

CRITICAL: Check the GitHub webpage for any updates to the Python version of this 

Deepometry protocol https://github.com/broadinstitute/deepometry 

CRITICAL: The following guide is for Windows 10 64-bit users. UNIX users (Linux or 

Mac OS) can skip to step vi (or step vii if Anaconda is preinstalled). For a repeat of these 

steps including screencasts to aid installation and software version recommendations see 

Supplementary Note 1. 
 

i. Install Microsoft Visual Studio 2019 (Community version is free): 

https://visualstudio.microsoft.com/thank-you-downloading-visual-

studio/?sku=Community&rel=16. Choose Desktop Development with C++. 

 

ii. Install Microsoft Visual Studio Build 

Tools: https://visualstudio.microsoft.com/thank-you-downloading-visual-

studio/?sku=BuildTools&rel=16. Choose C++ build tools. 

 

iii. Install Java SE Development Kit 11 

https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-

5066655.html. 

 

iv. Once Java SE Development Kit 11 is installed, set JAVA_HOME variables: Open 

file explorer window, right-click on the ‘This PC’ option and select ‘Properties’ 

from the drop-down menu.  

 

The control panel will pop up as a separate window. Select ‘Advanced system 

settings’ from the list appearing at the left of the window. 

 

Select ‘Environment Variables’, appearing as a button at the bottom of the window. 

This will cause a new window to appear. Click the ‘New’ button option at the bottom 

of this window. 

 

A new window allowing the user to specify details for a new System Variable will 

now appear, select the ‘Browse Directory’ option at the bottom of this window 

followed by ‘Java’ then ‘jdk-11’ from the list that appears. Select ‘OK’ to create 

this new variable. 

 

https://github.com/broadinstitute/deepometry
https://github.com/broadinstitute/deepometry
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
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v. Select ‘Path’ from the second list of ‘System variables’ at the bottom half of the 

window. Click the ‘Edit’ button at the bottom of this window. A new window will 

appear. Type in ‘%JAVA_HOME%\bin’ from the list of environment variables 

provided. 

 

Click ‘OK’ to apply changes and close all opened windows. 

 

vi. Install Anaonda  

 For WINDOWS, visit https://repo.anaconda.com/archive/Anaconda3-2019.03-

Windows-x86_64.exe. Once installed, right-click the ‘Anaconda Navigator’ icon, 

choose ’Run as administrator’. It may take a while for Anaconda to fully launch for 

the first time. 

 

 For MacOSX, visit https://docs.anaconda.com/anaconda/install/mac-os/ to install 

Anaconda. We recommend using the graphical installer, as detailed on the 

Anaconda website. 

 

MacOSX users are also advised to install JDK8, using the commands: 

 

/usr/bin/ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" 

brew tap homebrew/cask-versions 

brew update 

brew cask install adoptopenjdk8 

 

Once installed, run the Anaconda Navigator from the Applications folder. 

 

vii. Create a new environment with Python 3.6 using the name of your choice in the 

Anaconda Navigator. For example: 

 

conda create --name Deepometry python=3.6 

 

Details on creating an Anaconda environment can be found in the Anaconda 

documentation at this link: 

https://docs.anaconda.com/anaconda/navigator/tutorials/manage-environments/. 

 

viii. Once the environment is fully created, launch it in a command line terminal window:  

 

conda activate Deepometry 

 

or use the Anaconda prompt or by using Anaconda Navigator (Click the right arrow 

next to its name to open a terminal). 

 

ix. Inside the environment terminal, type the following sequence of installation 

packages. Choose “Yes” when prompted: 

https://repo.anaconda.com/archive/Anaconda3-2019.03-Windows-x86_64.exe
https://repo.anaconda.com/archive/Anaconda3-2019.03-Windows-x86_64.exe
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/navigator/tutorials/manage-environments/
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conda install tensorflow-gpu==1.9.0 

 

CRITICAL: if your device does not have a compatible GPU for deep learning, you 

should only install the CPU-only Tensorflow version by the command: 

 

conda install tensorflow==1.9.0 

 

Once Tensorflow is installed, continue to install other required libraries for 

Deepometry: 

conda install keras==2.1.5 numpy==1.18.1 scipy==1.4.1 

pandas==1.0.3 scikit-learn==0.22.1 scikit-image==0.16.2 

conda install git jupyter==1.0.0 ipython==7.13.0 seaborn==0.10.1 

flask==1.1.2 wtforms==2.3.3 jinja2==2.11.2 

conda install -c anaconda openjdk 

pip install keras-resnet==0.0.7 opencv-python==4.2.0.34 

javabridge==1.0.19 python-bioformats==1.5.2 

git clone https://github.com/broadinstitute/deepometry.git 

cd deepometry 

pip install . 

 

 

x. Opening Deepometry GUI using Python (Steps x-xi): For a graphical user interface 

of Deepometry, run the following commands in the environment terminal: 

 

git checkout GUI 

 

python Deepometry_GUI.py 

 

A HTTP address will be given to run the Deepometry local web app, e.g. 

http://127.0.0.1:5000 or http://localhost:5000 

 

xi. Open a web browser and type in the address given above. A web app (see Fig. 3) 

will appear for executing deep learning operations (this is a local server running on 

your own device; no data is sent out to the internet). 

 

Option B: Installation – MATLAB version 

TIMING: ~45 minutes, may vary according to internet download speed 

http://127.0.0.1:5000/
http://localhost:5000/
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CRITICAL: Check the GitHub webpage for any updates to the MATLAB version of this 

Deepometry protocol https://github.com/ClaireBarnes197/Deepometry_MATLAB_GUI 

CRITICAL: Deepometry requires a minimum of MATLAB R2017b, together with the 

following toolboxes which may be obtained from your MATLAB provider, with the 

appropriate licenses: 

● Statistics and Machine Learning toolbox. 

https://mathworks.com/products/statistics.html 

● Deep learning toolbox. https://mathworks.com/products/deep-learning.html 

i. Deepometry makes use of the MATLAB version of Bio-Formats, a standalone Java 

library for reading and writing life science image file formats42. (Note: the minimum 

MATLAB version recommended for this package is R2017b). Download and unzip 

the MATLAB toolbox from the link below. https://www.openmicroscopy.org/bio-

formats/downloads/ 

 

ii. Download the MATLAB UMAP toolbox43 from File Exchange (link below) and 

unzip the folder. This toolbox is required for the visualisation step: 

https://www.mathworks.com/matlabcentral/fileexchange/71902-uniform-manifold-

approximation-and-projection-umap 

 

iii. Add the location of the downloaded UMAP file to the MATLAB search path by 

typing the following at the command line. e.g. 

>> addpath ‘/Downloads/Umap’ 

iv. Execute the command:  

>> run_umap 

A window will appear which will take you to Google Drive.  

v. Access the folder by clicking ‘OK’ at the window prompt. At the time of this 

publication, this folder can be found at 

https://drive.google.com/drive/folders/1VXj6J0D-Z8qE6rkPIx35FIkcOhNWjnrq 

A new window with instructions will appear on the screen. You will be directed to 

download a new updated version of the UMAP distribution, 

‘UMAPDistribution.zip’. 

Download and unzip the file before removing the incomplete version downloaded 

from File Exchange. 

vi. This version of UMAP makes use of a new C++ MEX implementation of stochastic 

gradient descent, which can be downloaded from the above Google Drive location. 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FClaireBarnes197%2FDeepometry_MATLAB_GUI&data=02%7C01%7CP.Rees%40Swansea.ac.uk%7Cb3ef78dad2644ee36abc08d86abac0f5%7Cbbcab52e9fbe43d6a2f39f66c43df268%7C0%7C0%7C637376697610071062&sdata=D%2BqSnH8SVK4%2FXVqqXeOAwsDgFPI6aCZV6cwleeQCopQ%3D&reserved=0
https://www.openmicroscopy.org/bio-formats/downloads/
https://www.openmicroscopy.org/bio-formats/downloads/
https://www.openmicroscopy.org/bio-formats/downloads/
https://www.mathworks.com/matlabcentral/fileexchange/71902-uniform-manifold-approximation-and-projection-umap
https://www.mathworks.com/matlabcentral/fileexchange/71902-uniform-manifold-approximation-and-projection-umap
https://drive.google.com/drive/folders/1VXj6J0D-Z8qE6rkPIx35FIkcOhNWjnrq
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Depending on the operating system being Windows or Mac OS, download the 

appropriate MEX file, along with the file named lobpcg.m: 

 For MacOSX: mexStochasticGradientDescent.mexmaci64 

 For WINDOWS: mexStochasticGradientDescent.mexw64 

Move the MEX and .m files to the UMAP subfolder within your UmapDistribution.  

vii. (Optional) Users may wish to improve the understanding of using various UMAP 

parameters in MATLAB for downstream exploration. For useful examples and 

comprehensive documentation, type: 

>> doc run_umap 

viii. Download the MATLAB PHATE44 toolbox from GitHub 

https://github.com/KrishnaswamyLab/PHATE 

 

ix. Add the location of the PHATE module to MATLAB’s search path by typing the 

following at the command line. e.g. 

>> addpath ‘/Downloads/PHATE-master/Matlab’ 

 

x. Opening and running Deepometry GUI using (Steps x-xi): Download the 

GUI_deepometry.mlapp file, storing it on the appropriate MATLAB path on your 

machine, for example, ‘C:\Users\Documents\MATLAB\Deepometry’. 

 

xi. Run the app by typing: 

>> GUI_deepometry 

or by selecting the file and hitting ‘run’ at the top of the window. This step will bring 

up the interactive interface (Fig. 4). 

 

Option C. Installation – Executable version for Windows (written using MATLAB) 

TIMING: ~30 minutes, may vary according to internet download speed 

i. The executable version of the app makes use of the MATLAB Runtime installer 

(Version R2019b), which will be automatically downloaded and installed upon 

execution of the ‘MyAppinstaller.web.exe’ which can be obtained from Figshare 

(see Code Availability). Download the executable file to your machine and right-

click, this will initiate the installation process. This application could take some time 

to install. 

 

%20
%20
https://github.com/KrishnaswamyLab/PHATE
https://github.com/KrishnaswamyLab/PHATE
https://github.com/KrishnaswamyLab/PHATE
https://github.com/KrishnaswamyLab/PHATE
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ii. A window will appear summarising the app you are about to install, you should click 

‘Next’ to proceed. 

 

iii. Change the destination of the installation as you wish, before clicking ‘Next’. 

 

iv. Choose where to save the MATLAB Runtime by selecting a folder, then click 

‘Next’. 

 

v. Once all folders have been specified, begin the installation by clicking ‘Install’. 

Installation may take some time depending on download speeds, once complete the 

GUI app will appear as an executable file in your programs folder. 

 

vi. Opening and running Deepometry GUI executable version (Step vi): Once the 

necessary executable file from GitHub is installed on your machine, locate the app in 

your programs folder and click on this to open and begin to use the Deepometry 

interactive GUI. 

CRITICAL STEP: Deepometry accepts images organized in folders and subfolders. 

It is highly recommended that folder names contain groupable metadata prefixes, 

such as “Sample A”, “sample_B”, “sample C”, “class-D”, “Class-e” as exemplified 

in the directory structure in Fig 5. Note: many separation characters for prefixes are 

acceptable (including comma “,”, hyphen “-”, underscore “_” and empty space) and 

the prefixes are case-insensitive. This directory structure provides the application 

with important information about your data. After the raw image inputs have been 

organised into tagged folders, they can then be fed directly to Deepometry to be pre-

processed. Images may be in a number of different formats (.cif, .tif or .tiff formats 

are accepted).  

 

Pre-processing training data  

TIMING: typically 5-15 minutes for 50,000-100,000 cells, may vary according to the size of 

the data and performance of the computer's CPU and memory. 

CRITICAL: Steps 2-21 have been validated for a number of datasets, but each step may 

need adjustment depending on the application. A small dataset for testing Deepometry 

functionality, containing annotated images of Red Blood Cells is publicly available at 

https://figshare.com/articles/software/Expert_Annotated_RBC/13053968 

2. Image information from original raw files (.cif or .tiff) needs to be converted into 

Numpy (.npy) or MATLAB (.mat) arrays. Under the section titled ‘Preprocessing’ 

(Fig. 3 and Fig. 4), input the appropriate parameters as specified in Box 1.  

Box 1 | Reshaping and reformatting data inputs for deep learning operations  

 

Input location – The location where the original single-cell images are stored, e.g. 

C:/Deepometry/Data/raw 

 

https://figshare.com/articles/software/Expert_Annotated_RBC/13053968
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Output location – The location where the processed Numpy (.npy) or MATLAB 

(.mat) arrays should be stored, e.g. C:/Deepometry/Data/parsed 

 

Frame size – The desired size of the resulting image frames (width or height, not 

both, in pixel unit), e.g. 48. It is highly recommended to use a frame size that 

comfortably enclosures a single object-of-interest. For instance, a frame size too 

small could result in the cropping of a cell, while a very large frame size could 

excessively increase the run time for deep learning operations. The user can load the 

.cif files into IDEAS and investigate a single cell to determine the pixel size. 

 

Channels – The channels that should be used for training, specified as an index 

array, e.g. [1,9,12] in Python GUI (minus the brackets, 1,9,12, when using 

MATLAB). If a single channel is desired, input an integer without brackets. These 

numbers correspond directly with the channel numbers shown in the IDEAS 

software. 

 

Montage size (optional) – This option is only used if the user wants to generate per-

channel tiled (stitched) montages, which can be efficiently used for image analysis 

software, such as CellProfiler. Leave blank or input 0 for no stitching otherwise input 

the number of images to be included in the square montage e.g. 15 (Fig. 6). 

 

Train/Hold-out split (optional) – Consider using this option for hold-out–based 

cross-validation. Use only when parsing the training datasets. Input a ratio to split the 

parsed data into Training and Hold-out Cross-Validation subsets. The data is 

randomly shuffled and then split according to the specified percentages, e.g. if users 

input ‘80/20’, eighty percent (80%) of the data will be defined as training and 20 

percent as hold-out. The resulting training set will be then stored in a subfolder 

named “Train” and can be used for model training; the resulting hold-out set will be 

stored in a subfolder named “Hold-out” and can be used to evaluate the performance 

of a trained model. Leave blank if cross-validation does not need to be applied. 

 

CRITICAL STEP: The .cif file from IDEAS contains channel number 1-6 or 1-12 

depending on the number of cameras. The channel numbers to be input into 

Deepometry must correspond to the channel number in the .cif file which should be 

checked in the IDEAS software. Only the channels containing relevant information 

should be included. 

 

3. Once all required fields have been populated, click the ‘Parse’ button to execute the 

parsing of raw images. The resulting Numpy (.npy) or MATLAB (.mat) arrays will 

then be stored in the structure in Fig. 5. ?TROUBLESHOOTING 

  

Training a classification model – supervised learning (common to Python and 

MATLAB) 
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TIMING: typically 5-20 hours for 50,000-100,000 cells, may vary according to the size of 

the data and performance of the computer's processors (CPU or GPU) and memory. 

CRITICAL When working toward weakly supervised learning, you will need to follow all 

steps outlined for supervised learning (see Experimental Design). The difference is that the 

weakly-supervised approach does not require fully annotated images. You should, however, 

choose a target classification that is fairly useful based on your data structure. For example, 

when using a similar directory structure to the recommended format in Fig. 5, users may 

choose target classification “Day…” to learn and extract features related to phenotypic 

biological degradation associated with time. 

4. The parsed data from steps 2-3 can now be used to train a ResNet model in the 

section titled ‘Model training’ (Fig. 3 and Fig. 4). Input the following information: 

Input location – The location where the pre-processed images can be found, e.g. 

C:/Deepometry/Data/parsed. 

Output location – The location where the resulting deep learning model is to be 

stored, e.g. C:/Deepometry/Model. 

 For Python, if a folder location is an input here,  a fully trained model will be saved 

as a .h5 file, named after the number of possible classes and the target category 

prefix, for example, “model_7-class_categories.h5”. If no folder location is 

provided, the input location specified above will be used. 

 

 For MATLAB, this step will result in a fully trained model, stored at this location. 

The model will be named according to the time it was saved and the number of 

classifications it has been trained to recognise. 

Learning iterations – The number of epochs for a deep learning training session. By 

default, it is set to 512 (40 in MATLAB), which might take several hours (depends 

on the size of the training materials and available hardware, especially GPUs). 

Target classification – Once the location of training data (“Input location”) is 

specified, click the ‘Retrieve’ button to retrieve a list of trainable classification 

targets. As mentioned in the critical prerequisite for step 2, Deepometry assumes raw 

input files and parsed data are organized in folders and subfolders with groupable 

metadata prefixes, such as “Experiment...”, “Day...”, “Sample...”, or “Class...”.  

Once the list of classification targets is populated, choose from the dropdown menu a 

target as the learning task for the neural network. For example, the provided sample 

training dataset available in this protocol contains annotated classes of red blood cell 

phenotypes. For this type of experiment, you would select the "Class..." category 

Temporary folder (MATLAB only) – This option is used to reorganise your data into 

subfolders named according to the category labels of the target classification. This 

temporary folder and its content will be removed after the model has been trained. 

Specify where the temporary folder should be stored. If you are certain about the 

categorical labelling scheme, it is recommended that you tick the ‘Regroup images’ 

check box. This will store a permanent folder based on the selected labels for later 

use. 

 

5. Click the ‘Train’ button to initiate the deep learning model training. This operation 

might take several hours (depends on the size of the training materials and available 
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hardware, especially GPUs). The MATLAB version plots the training accuracy and 

loss used to optimise the network in real time. ?TROUBLESHOOTING 

 

 

 

Evaluation of a trained model  

TIMING: typically, 5-15 minutes for 50,000-100,000 cells, may vary according to the size 

of the data and performance of the computer's processors (CPU or GPU) and memory. 

6. Once the classifier has been trained, evaluate the trained model against a held-out 

dataset to control overfitting. If the user previously used the option Train/Hold-out 

split as described in Box 1 (step 2), skip to step 9, since the parsed data in the “Hold-

out” subfolder can be readily used here. If not, collect annotated images with 

appropriate labels for each cell, similar to that of the training materials, and continue 

to step 7. 

 

7. As described in Box 1, input the following parameters at the ‘Preprocessing’ section 

according to the evaluation data set. 

Input location – The location where the original single-cell images are stored, e.g. 

C:/Deepometry/Data/raw. 

Output location - The location where the resulting Numpy (.npy) arrays or 

MATLAB (.mat) arrays should be stored, e.g. C:/Deepometry/Data/parsed. 

Frame size – The desired size of the images (width or height, not both, in pixels) so 

that the appropriate amount of resizing may be applied, must be the same setting 

used for the training dataset (step 2) e.g. 48.  

Channels – The channels that were used for training, specified as an index array, 

must be the same setting as in step 2 e.g [1,9,12] for Python or 1,9,12 for the 

MATLAB version. If a single channel is desired, input an integer without brackets. 

Montage size (optional) – Use this option to generate per-channel tiled (stitched) 

montages for feature extract. 

Train/Hold-out split (optional) – Leave blank as this option is not needed for model 

evaluation. 

 

8.  Click the ‘Parse’ button to parse the images. The resulting Numpy (.npy) or 

MATLAB (.mat) arrays will then be processed and stored in the folder structure 

similar to that of the training dataset. 

  

9.  Once the evaluation set is parsed, the accuracy of the trained model can be assessed 

by comparing predictions made with the known ground truth for each image in a 

form of a confusion matrix. Input the following fields into the section titled 

‘Prediction’ (Fig. 3 and Fig. 4): 

Input location – The location where the processed Numpy/MATLAB arrays are 

stored, e.g. C:/Deepometry/Data/parsed. 

Output location – The location where evaluation results should be stored e.g. 

C:/Deepometry/Results. Results include a confusion matrix, displaying counts of all 

correctly classified and misclassified images belonging to the various categories, and 

a classification accuracy report. 
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Target classification – Similar to step 4, first specify the location of the training 

images in the ‘Model training’ section, then hit the ‘Retrieve’ button. The directory 

structure will be examined and all potential classification schemes that may be used 

as classification targets will appear as part of the dropdown menu ‘Target 

classification’. Select the categories to evaluate the trained model. It is important to 

note that in MATLAB, if at step 4, you had chosen to save the re-grouped data, you 

may skip the actions of choosing a target classification here, instead specify the 

location of the regrouped folder in Input location. 

Temporary folder (MATLAB only) – Input the place where the reorganised test 

images are to be stored. 

 

CRITICAL STEP: In Python, users should re-define the input location of the 

training dataset and re-retrieve the proper list of Target classification from training 

materials used in the ‘Model training’ section. This is critical to ensure the correct 

reconstruction of the category range, because only the original training data contain 

images for all categories the network had been exposed to and thus can be effectively 

used to reconstruct the correct categorization structure.  In MATLAB, if you have 

chosen to save the folder containing re-organised images according to the desired 

classification, input the location of this folder and skip the retrieving step. 

 

10. Define the location of the trained model (output from step 5) for the field Model 

location. 

 For Python, the location of the trained model should either be a folder location that 

contains your trained model or an exact .h5 or .hdf5 file. If the provided folder 

location contains more than one model, the latest .h5 or .hdf5 will be loaded. If no 

folder location is provided, the last checkpoint.hdf5 (in deepometry/data/) will be 

used. 

 

 For MATLAB, the location of the trained model should be a folder location that 

contains your trained model. Should this folder contain more than one model, this 

step will load the most recently saved network with the appropriate number of 

training classifications, determined by a search of the training dataset (the location 

for which should be provided for this step). 

CRITICAL STEP Ensure that trained models are stored and located in a 

separate subfolder from other .mat files that are being created and stored. 

This can help avoid unrelated files with similar names being loaded in error. 

 

11. Ensure the box ‘Unannotated data?’ is not checked, then click the ‘Predict’ button 

to evaluate the accuracy of the trained model. A confusion matrix will be generated 

(for example for Python see Figure 7a). ?TROUBLESHOOTING 

  

Predicting the classification of unlabelled data  

TIMING: typically, 5-15 minutes for 50,000-100,000 cells, may vary according to the size 

of the data and performance of the computer's processors (CPU or GPU) and memory. 
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12.  A trained model can be used to predict the labels of unlabelled images. In contrast to 

step 6, here users do not need to collect annotated data. As described in Box 1, input 

the following fields into the section titled ‘Preprocessing’ (Fig. 3 and Fig. 4): 

Input location – The location where the original single-cell images are stored, e.g. 

C:/Deepometry/Data/raw. 

Output location - The location where the resulting Numpy (.npy) arrays or 

MATLAB (.mat) arrays should be stored, e.g. C:/Deepometry/Data/parsed. 

Frame size – The desired size of the resulting image frames (in pixels) so that the 

appropriate amount of resizing may be applied, must be the same setting used for the 

training dataset (step 2) e.g. 48. 

Channels – The channels that were used for training, specified as an index array, 

must be the same setting as in step 2 e.g [1,9,12] or 1,9,12 for the MATLAB version. 

If a single channel is desired, input an integer without brackets. 

Montage size (optional) – Use this option to generate per-channel tiled (stitched) 

montages for feature extract. 

Train/Hold-out split (optional) – Leave blank as this option is not needed for 

prediction. 

  

13. After all specified fields are completed, click the ‘Parse’ button to action pre-

processing of unlabelled data. 

 

14. Once raw image data has been converted to the correct format, the user may feed 

images to the trained model for categorical prediction. This step will generate a 

predicted label for each single-cell image. Fill in the input fields in the section titled 

‘Prediction’. Inputting the following information similar to steps 4: 

Input location – The location where the processed Numpy arrays (.npy) or 

MATLAB arrays (.mat) are stored, e.g. C:/Deepometry/Data/parsed. 

Output location – This step will generate predicted classifications for each image. 

This information will be stored as a .csv file and a histogram for predicted categories 

at the location specified here. For example, C:/Deepometry/Results. 

Target classification – Similar to step 4, first specify the location of the training 

images in the ‘Model training’ section, then hit the ‘Retrieve’ button. The directory 

structure will be examined and all potential classification schemes that may be used 

as classification targets will appear as part of the dropdown menu ‘Target 

classification’. Select the desired categories to evaluate the trained model.  

Temporary folder (MATLAB only) – Input the place where reorganised test images 

are to be stored. 

 

CRITICAL STEP: In Python, users should re-define the input location of the 

training dataset and re-retrieve the proper list of Target classification from the 

training materials used in the ‘Model training’ section. This is critical to ensure the 

correct reconstruction of the range of categories, because only the original training 

data contain images for all categories the network had been exposed to and thus can 

be used to reconstruct the correct categorization structure.  In MATLAB, if you have 
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chosen to save the folder containing the organised images according to the desired 

classification, input the location of this folder and skip the retrieving step. 

 

15. Define the location of the training module input for the field Model location. 

 For Python the location of the trained model. Input either a folder location or an 

exact .h5 or .hdf5 file. If the provided folder location contains more than one 

model, the latest .h5 or .hdf5 will be loaded. If no folder location is provided, the 

last checkpoint.hdf5 (in deepometry/data/) will be used. 

 

 For MATLAB the location of the trained model should be the folder location that 

contains your model. Should this folder contain more than one model, this step will 

load the most recently saved model with the appropriate number of training 

classifications, determined by a search of the training dataset, the location for 

which should be provided for this step. 

CRITICAL STEP: Ensure that trained models are stored and located in a 

separate subfolder from other .mat files that are being created and stored. 

This can help avoid unrelated files with similar names being loaded in error. 

 

16. Ensure the box ‘Unannotated data?’ is checked, then click the ‘Predict’ button to 

predict the categories of the unknown single cells in testing data. 

?TROUBLESHOOTING 

 
Extracting and visualizing deep learning feature embeddings  

TIMING: typically 5-15 minutes for 50,000-100,000 cells, may vary according to the size of 

the data and performance of the computer's processors (CPU or GPU) and memory. 

 

CRITICAL The protocol enables the use of Res4a_ReLU, Res5a_ReLU and pool5 (deeper 

and closer layer toward the ultimate layer, in that order) within the ResNet50 architecture as 

feature extractors. In general, the deeper the layer is, the more specified the features are 

captured, with regard to the assigned tasks. For example, if the task and the ultimate goal are 

both to distinguish different phenotypes of the cells, pool5 layer will more likely capture 

morphological features that are specific signatures of the phenotypes. In another example, if 

the task was to classify the date of the experiment, but the actual biological question was to 

group cells into clusters of morphological similarity, then users would want to use 

Res4a_ReLU and Res5a_ReLU to preserve the generic features of the cells. 

CRITICAL Features may be extracted from several layers of a trained model. Features can 

be then stored in a tabular data file (.csv/.tsv/.txt) and used in downstream analysis, 

including unsupervised clustering or dimension reduction techniques. Features output in this 

format may also be combined with features generated from other analysis platforms and 

used for in-depth explorations. 

 

17. Input the following information into the ‘Feature extraction’ section: 

Input location – The location where processed Numpy arrays (.npy) or MATLAB 

arrays (.mat) are stored. 

Output location – Specify where the extracted features and metadata should be 
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stored. 

Target classification (MATLAB) – After specifying the input location of the process 

MATLAB arrays, hit the ‘Retrieve’ button. The directory structure will be examined 

and all potential classification schemes that may be used as classification targets will 

appear as part of the dropdown menu ‘Target classification’. This information will 

be used to color-code all plots so that subpopulations may be easily observed. If you 

do not know labels you may leave this blank   

 

18.  Enter the Model location. 

 For Python, input either a folder location or an exact .h5 or .hdf5 file. If the 

provided folder location contains more than one model, the latest .h5 or .hdf5 will 

be loaded. The model name must contain the numeric identifier of how many 

categories the model was trained to classify. Please check whether such a file exists 

after model training, for example, "model_7-class_categories.h5". 

 

 For MATLAB, input either a folder location or an exact file. If the provided folder 

location contains more than one model, the latest model trained to recognise the 

correct number of classifications will be loaded. Errors occurring at this stage may 

be due to the fact that the model you wish to use does not exist in the specified 

location and so this should be verified before running this step. 

 

19. Use the radio buttons to input the name of the layer to be used as the feature 

extractor: 

 For Python choose one of the following layers from which to extract features: 

Res40_ReLU, Res5a_ReLU or pool5. 

 

 For MATLAB choose one of the following layers from which to extract features: 

activation_40_ReLU, activation_25_ReLU or Avg_pool_4_4. 

20. Click the ‘Extract’ button to execute this step. ?TROUBLESHOOTING 

21. (Optional) To further explore the features: 

 For Python, once feature extraction is done, the output files, such as 

features_extracted_by_pool5.txt, metadata.tsv can be uploaded to 

http://projector.tensorflow.org for 2D/3D PCA, t-SNE, and UMAP (Fig. 7) 

visualization of deep learning embeddings. A short video demonstrating the 

generation of a typical visualisation of features using tensorflow can be found here 

https://www.youtube.com/watch?v=HZZUDobELJM. 

 

 For MATLAB basic PCA and tSNE plots are generated by default and stored at the 

specified output location. The application also employs PHATE, a dimensional 

reduction tool for visualising high-dimensional information such as that provided by 

the network. A short tutorial outlining all of the parameters and full capability may 

be found at the following URL: 

https://dburkhardt.github.io/tutorial/visualizing_phate/ . Moreover, a basic UMAP 

plot is also saved; for users interested in further exploring the MATLAB version of 

UMAP and its functionality a short video discussing some of the input variables of 

interest may be found here (Supplementary video 1). This step will also generate a 

http://projector.tensorflow.org/
http://projector.tensorflow.org/
https://www.youtube.com/watch?v=HZZUDobELJM
https://www.youtube.com/watch?v=HZZUDobELJM
https://dburkhardt.github.io/tutorial/visualizing_phate/
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.mat and .csv file for further exploration and advanced visualisation of your 

features. 

  

Troubleshooting 

If a section is not properly executed, make sure that all required fields are populated to execute 

a particular step. If you have not given sufficient information, the module will not proceed. It 

is also important to ensure that only the required fields for a particular section are populated. 

Providing unnecessary information can also cause errors, for example, filling fields in 

unrelated sections. Make sure that the raw data have been properly pre-processed/parsed 

before actioning any of the steps. Model training, evaluation, prediction and feature extraction 

sections all require that the raw image data be converted into the correct arrays (.npy or .mat). 

Ensure that data is in the recommended directory structure given in Figure 5. 

To aid the user we have optimised the training parameters used by the neural network. When 

training a ResNet model with a limited number of objects (<2,000), users may need to consider 

trying different learning rates (parameter lr=0.0001 by default). This can be found at line 42 

of the file model.py within the Deepometry folder for the Python codebase, or line 110 of 

MATLAB’s train.m file. Also, the number of epochs used to train the network can be modified 

to improve accuracy or to avoid overfitting. The choice of these parameters is highly 

dependent on the application (number of classes, number of images, resolution of the images 

etc.) and we encourage the user to optimise these as they see fit. 

 

All versions of the GUI were intentionally designed to output error messages providing the 

user with some guidance, mainly warnings about missing input when trying to execute a step. 

For additional troubleshooting guidance for the specific steps of the procedure, see Table 2. 

 

Table 2| Troubleshooting Table 

 

Step/Section Problem Possible reason Possible solution 

Step 3 

(Preprocessing)  

This step cannot be 

executed 

Missing input 

information  

Hover over the 

‘Parse’ button to 

view an interactive 

tooltip with guidance 

on which fields are 

necessary. 

Step 3 

(Preprocessing) 

 

When .cif files are 

being used and this 

step cannot be 

executed 

Images are in an 

unreadable format 

The .cif file must be 

one exported from 

Imaging flow 

cytometry analysis 

software IDEAS 6.0 

or later, which 

contains a population 

of cells/objects gated 

through IDEAS 

interface (any 

manual gate will 

work). It is important 
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to ensure that input 

files are in one of 

these formats. 

Step 3 

(Preprocessing) 

 

(Python only) When 

.cif files are being 

used, this step is 

correctly executed 

once but in the 

second time, an error 

page appears. 

Javabridge VM is 

not correctly called 

the second time; the 

function 

‘javabridge.start_vm

’ can only be called 

one time. 

This error only 

occurs in Python 

version of 

Deepometry. Users 

should terminate the 

app by attending to 

the command line 

terminal, hitting 

Ctrl+C twice, and 

then restart the app 

Deepometry_GUI.py  

Step 3 

(Preprocessing) 

 

When .tif/.tiff files 

are being used, this 

step is executed but 

an error page 

appears. 

Missing input 

information for .tif 

images. 

It is crucial to ensure 

.tif/.tiff filenames 

contains a channel 

identifier, such as 

‘Ch1’ for channel 1, 

‘Ch2’ for channel 2 

etc. as in 

“Class_SmoothDisc_

Ch1.tif”. User will 

also need to specify 

the channel ID(s) to 

be parsed as 

described in Box 1, 

do not leave blank. 

Step 5 

(Model training) 

This step cannot be 

executed 

Missing input 

information  

Hover over the 

‘Train’ button to 

view an interactive 

tooltip with guidance 

on which fields are 

necessary. 

Step 5 

(Model training) 

This step cannot be 

executed 

Input images have 

not been converted  

All images should be 

converted into 

Numpy/MATLAB 

arrays (.npy or .mat) 

to be accepted by the 

network. Please use 

the ‘Preprocessing’ 

section of the 

protocol to convert 

your images into the 

correct formats 
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Step 5 

(Model training) 

Training accuracy is 

lower than expected 

It is important that 

once you have used 

the Retrieve 

function to 

determine all 

possible 

classification targets, 

check if you have 

selected the correct 

classification, 

IMPORTANT: 
When working 

toward Weakly 

supervised learning, 

an auxiliary 

classifier may be 

chosen. In this case, 

it is normal that 

training will result in 

lower accuracies. At 

the end of this 

process, a rich 

feature set will be 

extracted from the 

data. 

Chosen another 

classification target 

from the dropdown 

menu that appears 

once the list has been 

properly populated. 

Step 11 

(Prediction) 

This step cannot be 

executed 

Missing input 

information 

Hover over the 

‘Predict’ button to 

view an interactive 

tooltip with guidance 

on which fields are 

necessary. 

Step 11 

(Prediction) 

This step cannot be 

executed 

Ensure that the same 

categorical system 

that was used to train 

the model is 

correctly re-used for 

the evaluation data. 

Your data may 

include fewer 

classifications than 

your training images. 

However, the 

training dataset 

should present every 

possible class of 

targets.   

Check that the 

correct classification 

system has been 

selected from the 

dropdown menu. 
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Step 16 

(Prediction) 

This step cannot be 

executed 

As this step can also 

be used to predict the 

classifications of 

unannotated data, it 

may be possible that 

although you wish to 

use this step for this 

purpose you have 

not made this clear 

(tick the box) and 

therefore the 

workflow is looking 

for ground truth for 

each image 

If you wish to use 

this step to predict 

the classifications of 

unlabelled data you 

should make sure 

that you click the 

‘Unannotated 

data?’ checkbox 

Step 20 

(Feature extraction) 

 

This step cannot be 

executed 

Missing input 

information 

Hover over the 

‘Extract’ button to 

view an interactive 

tooltip with guidance 

on which fields are 

necessary. 

Step 20 

(Feature extraction) 

 

This step cannot be 

executed 

Input images have 

not been converted  

All images should be 

converted into 

Numpy/MATLAB 

arrays (.npy or .mat) 

to be accepted by the 

network. Please use 

the ‘Preprocessing’ 

section of the 

protocol to convert 

your images into the 

correct formats 

Step 20 

(Feature extraction 

for MATLAB 

version) 

 

This step cannot be 

executed 

You should Retrieve 

information for the 

directory structure of 

images that you wish 

to extract features 

for. For the 

MATLAB version, 

this step will not 

execute if this 

information is 

missing (Python 

version is not 

affected) 

Please check to 

make sure the 

correct labeling is 

applied to the images 

that you are 

extracting features 

from. 
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Anticipated results 

For a critical test of the protocol, we suggest using the dataset used to train Deepometry to 

classify red blood cells into the progressive morphologies associated with damage to the cells 
22. The dataset which includes approximately 67,400 images including 7 different phenotypes 

(split into a training, unlabelled and holdout set) is available on Figshare (see Data 

Availablity). This dataset was used to generate the confusion matrix, t-SNE and UMAP plots 

shown in Fig. 7. However, Deepometry can take a significant amount of time to train using 

this large dataset, especially if using the CPU. Therefore, to simply test the installation of the 

protocol, we suggest using the much smaller sample of the same dataset available on Figshare 

(see Data Availablity).  This dataset includes the same 7 classes as the larger datasets, 

however with 2958 annotated cells for training and 858 cells for testing. The data is also 

structured in the same format as described in Figure 5 which will allow direct input into the 

graphic user interface. The results for this dataset may not be as accurate as in the case when 

training with the larger dataset. The lower number of images might nevertheless serve well to 

test the protocol. A typical confusion matrix, t-SNE and PHATE results for this dataset are 

given in Supplementary Fig. 1. 

 

During storage, red blood cells deform from smooth/crenated discs to crenated 

discoids/spheroids and finally irreversibly to crenated/smooth spheres, a process which 

reduces oxygen delivery and increased viscosity. Current assessments of the suitability of 

blood for transfusion are done by manually counting these cell morphologies so the automated 

classification of red blood cells can eliminate this laborious and subjective process. To train 

the network a significant number of human curated morphology images must be provided, 

however using weakly supervised learning we demonstrated22 using this dataset that we could 

train Deepometry using an auxiliary classification task which requires easily obtainable labels 

e.g. the age of a blood sample. The network learns useful features which then serve to label 

the cells with an index which predicts the deterioration of the cells due to morphology changes.  

 

 

Timing 

The time taken to complete the protocol will be dependent on the dataset size (in terms of 

the number images and number of channels per image) you are using for training. We have 

estimated the time taken to run each step of the protocol training on the data used to generate 

the outputs in Fig. 7 and this is provided in Table 1 with further detail in Supplementary 

Note 4. 
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Data availability 

The full dataset for Annotated images of different phenotypes of red blood cells is publicly 

available at https://figshare.com/articles/URL7_Annotated_Data/12432506 . Deposited 6 

May 2020. The smaller subset for testing Deepometry functionality, containing annotated 

images of Red Blood Cells is publicly available at 

https://figshare.com/articles/software/Expert_Annotated_RBC/13053968 . Deposited 9th 

October 2020. 

 

Code availability 

The codebase for Deepometry (Python) is publicly accessible at 

https://github.com/broadinstitute/deepometry , under BSD 3-Clause License, Broad Institute. 

The codebase for Deepometry (Python) is publicly accessible at 

https://github.com/ClaireBarnes197/Deepometry_MATLAB_GUI , under BSD 3-Clause 

License, Broad Institute.  

The stand-alone MATLAB app is publicly available at 

https://doi.org/10.6084/m9.figshare.13082231 deposited 18th December, 2020. 
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 Doan M, et al. Cytometry A. 2020;97(4):407-414. https://doi.org/10.1002/cyto.a.23987  
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Figure captions  

Figure 1 | A comparison of Deepometry protocol with traditional machine learning 

approaches. The top half of the flowchart represents typical steps executed by traditional 

analysis, these include the use of commercial software to segment objects-of-interest, generate 

features, feature reduction and classical machine learning. The bottom half (orange arrows) 

represents the protocol presented here: the deep learning network accepts inputs in multiple 

image file formats (.cif, .tiff) and during training, the network simultaneously performs the 

usual steps from the machine learning protocol. The workflow is significantly simplified and 

involves minimal user interaction. The side of the representative image displayed here is 

48x48 pixel (at 40× magnification, pixel resolution 0.5 µm). 

Figure 2 | The overall workflow of Deepometry procedure. Step 1 (not shown here) 

guides users through the installation of the software and packages required to run 

Deepometry (Python/MATLAB, Options A/B) or install the stand-alone application 

(MATLAB, Option C). The application of Deepometry to image data analysis starts with 

step 2. Steps 2-3, 6-8, 12-13 are preprocessing actions for the training set, validation set, and 

testing set, respectively, served to transform raw input images to data types and shapes 

appropriate for deep learning operations. Steps 4-5 are model training actions (highlighted in 

red). Steps 9-11 and 14-16 are predicting mechanisms for annotated data (highlighted in 

cyan) and unannotated data (highlighted in purple), respectively. Steps 17-21 are used to 

extract deep learning feature embeddings for dimension reduction and data exploration. 

Figure 3 | A screenshot of Deepometry graphical user interface (Python version). 

 

Figure 4 | A screenshot of Deepometry graphical user interface (MATLAB version). 

 

Figure 5 | Example data structure for use in Deepometry. (a) and (b) Recommended data 

structure. Deepometry is able to process single-cell images in a number of formats (.cif, .tif, 

and .tiff are acceptable). (c) Deepometry takes raw image data and transforms and stores this 

information into Numpy (.npy) or MATLAB (.mat) arrays, organized into categories 

mirroring the input folder structure. 

 

Figure 6 | A typical montage image generated by Deepometry.  An example of a 15x15 

montage output by the software interface, where each tile is 48x48 pixels, generated when 

selecting “Montage size” as 15 in the ‘Preprocessing’ section of the GUI and “Frame size” 

as “48”. This montage image can be readily used for regular image analytic pipelines, for 

example using CellProfiler, to generate features for input into traditional machine learning 

techniques for classification and visualisation (upper panel, blue path of Fig. 1). The pixel 

resolution of each single-cell image displayed here is 0.5 µm at 40× magnification. 
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Figure 7 | Typical outputs of the Deepometry protocol (a) An example of a confusion 

plot, generated by the Deepometry for the red blood cell data 17. Correctly classified images 

are represented by the diagonal of the plot and those images misclassified by the fully 

trained model sit off-diagonal. Single-cell feature embeddings extracted by the penultimate 

layer (pool5) of a trained ResNet50 were used as morphological parameters and can be 

projected on routine t-SNE (b) or UMAP (c). Here a 3-D t-SNE allows the visualization of 

distinct cell clusters, whereas a UMAP allows the reconstruction of a continuum of 

morphologies, transitioning from disc-shape to spherical phenotypes. 

 

 

 

 

Tables 

 Deepometr

y 

by CPU 

Deepometr

y 

by GPU 

ResNet50 

by CPU 

ResNet50 

by GPU 

CPCML 

by CPU 

Data digestion 18m:00s 3m:49s 25m:00s 3m:49s 25m:40s 

Feature 

extraction 

 
30h:20m:18s 

 
47m:11s 

 
7d:19h:35m: 

14s 

 
04h:26m:25s 

15m:00s 

Classification 04h:00m:00s 

User’s 

attendance 

20 minutes 20 minutes 20 minutes 20 minutes 8 hours 

 

Table 1| Deepometry processing times This table demonstrates the Deepometry processing 

times (CPU: Intel i7-3770 3.4 GHz, GPU: 1x NVIDIA Titan) taken to classify the position of 

cells within their cell cycle using the data given in reference 13 in comparison with the Keras 

version of ResNet50 and classical machine learning (CML). The classical machine learning 

protocol generates montages (e.g. Fig. 6) of the individual image files and inputs these into 

CellProfiler (CP) to measure the cell features which are then used to classify the cells using 

RUS boosting as described in reference 13. The data consisted of TIFF images of 33,060 

single cells, each cell is imaged in 2 channels (Bright field and Dark field), each image is 

cropped/padded to 48x48 pixels. 

 

SUPPLEMENTARY INFORMATION 

- Supplementary Video 1: Video guide to using MATLAB UMAP with Deepometry 
- Supplementary Figure 1: Typical outputs of the Deepometry for reduced dataset  
- Supplementary Note 1: Python Installation guide 
- Supplementary Note 2: MATLAB Installation guide 
- Supplementary Note 3: Stand-alone application installation guide. 
- Supplementary Note 4: Timings. 
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Figure 3 
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Figure 5 
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Figure 7 

 


