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Abstract

Numerical simulations are a standard tool to investigate field theories in
non-perturbative regimes. Typical algorithms used to evaluate path in-
tegrals in Euclidean space rely on importance sampling methods; i.e., a
probabilistic interpretation of the Boltzmann weight e−S . However, many
theories of interest suffer from the infamous sign problem: the action is
complex and the Boltzmann weight cannot be used as a probability distri-
bution. Complex Langevin simulations allow numerical studies of theories
that exhibit the sign problem, such as QCD at finite density.

In this thesis, we study methods to investigate the phase diagram of QCD
in the temperature–chemical potential plane, using the complex Langevin
method. We provide results on the phase diagram for the heavy-dense
approximation of QCD (HDQCD) for three spatial volumes, using complex
Langevin and the gauge cooling technique. We also present polynomial
fits of the critical temperature as function of the chemical potential for
each volume. Subsequently, we discuss instabilities encountered during this
study, which motivated a novel technique, named Dynamic Stabilisation,
which will be introduced and the theoretical ideas behind it, explained.

Dynamic stabilisation was, then, used in an investigation of the dependency
of the critical chemical potential on the hopping parameter. The two previ-
ous studies were used to guide a second examination of the HDQCD phase
diagram, focussed around the phase boundary.

Lastly, we present preliminary results on the phase diagram of QCD with
fully dynamical quarks at high temperatures. This shows that complex
Langevin, augmented with gauge cooling and dynamic stabilisation, is suited
for investigating QCD at finite chemical potential.
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Chapter 1

Introduction

S ince being proposed in the 1970s, the lattice formulation of Quantum Chro-

modynamics (QCD) has stabilished itself as the main tool to investigate non-

perturbative phenomena in the interactions of hadrons. The technique enables

the study of strongly interacting matter, for which traditional perturbation theory is

not applicable. Moreover, with ever increasing computational power available, both

precision measurements and investigations into questions concerning non-perturbative

behaviour are becoming feasible.

An important milestone of modern particle physics is the understanding of the

QCD phase diagram—i.e., how strongly interacting matter behaves under different

thermodynamical conditions. The thermodynamics of QCD will be reviewed in the

next section, where we explain what the current knowledge of the phase diagram is, and

how analytical and numerical techniques have been used to make further conjectures.

We present a sketch of the diagram, mention some applications, and discuss modern

computational methods currently used to study the phase diagram. Good reviews on

this topic include [1–4].

In the subsequent section we proceed to examine the motivation for the lattice

approach to strongly interacting theories. We then discuss how the quark and gluon

actions are translated into the lattice formulation and explain how the infamous sign

problem, which burdens computer simulations of QCD at finite density, arises. We

finish the section explaining the heavy-dense approximation of QCD, which shares

many interesting features with QCD at nonzero baryon density, but is computationally

1
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cheaper, allowing rather inexpensive testing of numerical methods before applying them

to the full theory.

1.1 Thermodynamics of QCD

The strongly interacting sector of the Standard Model, composed of quarks and gluons,

is described by QCD. This non-abelian gauge theory exhibits three striking features,

namely chiral symmetry breaking, asymptotic freedom and confinement. These features

will be reviewed below and are largely responsible for the existence of hadrons at

small temperatures and low net baryon densities, compared to the intrinsic QCD scale

ΛQCD ∼ 200 MeV.

An early understanding of how different thermodynamical environments affect the

strongly interacting matter came from the study of the hadron resonance gas model

[5], where it was realised that the observed resonance spectrum leads to a limiting

temperature, the Hagedorn temperature, in a gas of hadrons. In other words, above

this temperature ordinary nuclear matter is not expected to exist.

Since the formulation of QCD, it has been shown via renormalisation group analysis

[6, 7] that its running coupling vanishes in the limit of high energies. This is known as

asymptotic freedom: the dominant degrees of freedom in high temperature environments

are no longer hadrons but their constituents, quarks and gluons, which form what is

known as the quark–gluon plasma (QGP). Conversely, at low energies the coupling

constant is very large and quarks are permanently bound inside hadrons. However, at

large baryonic densities, nB, hadrons start to overlap and screen this potential. Quarks

are then liberated, and may move over macroscopic distances. In both high energy

regimes (high temperature T or large nB) QCD can be studied perturbatively.

Observed values for hadronic masses, such as the proton’s (∼ 1GeV), suggest that

their three constituent quarks should have masses in the order of hundreds of MeV,

assuming quarks carry all the mass. This mass is generated by QCD interactions

which, because of the large coupling, cannot be studied perturbatively. However, in

the QGP phase quarks are deconfined, and propagate with their bare massees. This

change suggests a phase transition from a state of heavy constituent quarks to another,

with light current quarks. In these energetic media the light quarks are essentially

massless and thus possess approximate chiral symmetry. This symmetry, realised for

2



1.1 Thermodynamics of QCD

massless quarks, implies that left- and right-handed fermions behave in the same way.

A mass term, which mixes both helicity states, explicitly breaks this symmetry. Its

order parameter, the chiral condensate 〈ψψ〉, can be used to identify the broken and

unbroken phases. The chiral condensate is related to the pion mass via the Gell-Mann–

Oakes–Renner relation [8], and chiral perturbation theory and lattice results indicate

that it decreases with the temperature and chemical potential.

QCD at thermodynamical equilibrium has, as mentioned above, two external control

parameters: the temperature, T , and the baryon number density, nB. We study QCD

in the grand canonical ensemble, where the quark chemical potential, µ ≡ µq = µB/3,

is introduced as a conjugate variable to the quark number density n ≡ nq = 3nB.

Considering the topics discussed above, some conjectures have been made about the

QCD phase diagram in the T–µ plane. Either at finite temperature, above the critical

one, and small baryon density (T � Tc and µB � T ) or at asymptotically high densities

(µB � ΛQCD), firm statements can be made from perturbation theory. Other parts of

the phase diagram have been investigated using numerical methods, some of which will

be briefly discussed below. Some noteworthy sections of the diagram are:

• Quark deconfinement at µB = 0: The gauge part of QCD (with Nf = 0 quark

flavours) has a first-order deconfinement transition at the critical temperature

Tc ∼ 270 MeV [9]. When light quark flavours are present, chiral symmetry

analyses indicate a crossover between the hadronic phase and the QGP for realistic

u, d and s quark masses [10,11] at T ∼ 155 MeV [12,13].

• Liquid–gas transition of nuclear matter : When the baryon chemical potential is

around the nucleon mass, the density is expected to vary from zero to the normal

nuclear density n0 = 0.17 fm−3. Below n0 the nuclear matter is fragmented into

droplets with nB = n0, such that nB < n0 is achieved on spatial average. This

behaviour, typical of first order phase transitions of the liquid-gas type, weakens

as the temperature grows and is expected to end at a second order critical point.

• QCD critical points: Chiral models suggest that QCD has a critical point in the

transition between hadronic matter and QGP. This transition is of first order,

above a certain critical chemical potential, while below it, it is a crossover that

connects to the µB = 0 region [14–17].
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• Colour superconductivity : For asymptotically large baryon chemical potentials,

QCD becomes weakly coupled, and some knowledge can be borrowed from con-

densed matter physics, with quarks playing the part of electrons. With this

analogy in mind, it is possible to expect the formation of Cooper pairs, leading

to a superconducting phase carrying colour charge [18–21]. This state, known as

colour-flavour locked phase, is a superfluid and breaks chiral symmetry.

Figure 1.1 summarises this discussion in a sketch of the QCD phase diagram. In it, the

different phases and their expected locations can be seen. The dashed lines represent

first order phase transitions, with the conjectured critical point being of second order.

Reweighting, Taylor expansion

µ

T

Hadrons

Quark-Gluon

Plasma

Nuclear matter

Colour
Superconductor?

Critical point?

Figure 1.1: A sketch of the phase diagram of QCD, based on the statements above,
originating from perturbation theory and numerical calculations.

An important application of understanding the QCD phase diagram is the determi-

nation of the QCD equation of state. This is of particular phenomenological significance

for the study of hot or dense systems. Heavy-ion collision experiments, which have a

hydrodynamical description, as well as investigations of cosmological objects and the

physics of the early universe, can use the equation of state as input. One such exam-

ple is the study of the stability of neutron stars. The Tolman–Oppenheimer–Volkoff

equation [22], when supplied with an equation of state relating density and pressure,

completely determines the structure of a spherically symmetric body of isotropic ma-

terial in static gravitational equilibrium.

Experiments involving heavy-ion collisions have been very successful in creating

quark-gluon plasmas. In the high temperature phase there is evidence from the Rela-

tivistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL), USA,
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1.1 Thermodynamics of QCD

for an ‘almost perfect liquid’ picture for the strongly interacting medium. Hydro-

dynamical quantities, such as transport coefficients, shear and bulk viscosities and

conductivities, can then be analysed numerically and compared to these experiments.

Current experiments at RHIC, at the Large Hadron Collider (LHC) in Switzerland,

and planned facilities and experiments at the Facility for Antiproton and Ion Research

(FAIR), in Darmstadt, Germany, and the Nuclotron-based Ion Collider Facility (NICA),

in Dubna, Russia, will further explore the QCD phase diagram. This allows for the

study of how quarks and gluons interact in extreme conditions, where the high baryonic

density dominates the energy scale, or the early universe where very high temperatures

were present. Future experiments are being proposed and constructed seeking deeper

understanding of cold/dense systems.

1.1.1 Simulation methods

The study of QCD outside limiting cases of very small chemical potentials and high

temperature, or very large chemical potentials outlined above, has to be done via

numerical simulations on Euclidean spacetimes. However, a problem hinders these

investigations: the addition of chemical potential to Euclidean field theories leads to

the so-called sign problem. These topics will be discussed in more detail in the next

section. For now we just quote the main effects related to the sign problem and briefly

discuss the main methods to deal with it.

At a finite chemical potential the effective quark action obtained by integrating out

the fermionic fields in the Euclidean path integral is complex-valued. The evaluation

of the functional integral requires dealing with very precise cancelations of positive and

negative numbers. Some of the most common methods to circumvent the sign problem

are [1, 23,24]

• Reweighting : Given an operator O, its expectation value at finite µ can be written

in terms of an ensemble average at µ = 0 as

〈O〉µ =
〈OR(µ)〉µ=0

〈R(µ)〉µ=0
, (1.1)

where R(µ) is referred to as the reweighting factor. The right hand side of the

equation is evaluated at zero chemical potential and is therefore sign problem-

free. However, the overlap between configurations at µ = 0 and finite µ is known
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to decrease exponentially with the volume, in a situation known as the overlap

problem, and the evaluation of 〈O〉µ becomes difficult when 〈R(µ)〉µ=0 is close to

zero or its error becomes large. Nevertheless, reweighting is a powerful tool to

guide, or when combined with, other methods, and when the overlap problem is

under control. A short introduction to reweighting can be found in appendix A.

• Taylor expansion: For sufficiently small µ it is possible to expand observables in

powers of µ/T . Examples include expansions around µ = 0 of the reweighting

factor mentioned previously [25], pressure and quark number susceptibility [26]

and baryon number susceptibility [27]. This method can be used to estimate the

location of critical point via the radius of convergence, but extrapolations for

larger µ/T are difficult.

• Imaginary chemical potential : If µ is purely imaginary, the effective quark action

becomes real and there is no sign problem [28, 29]. Analytical continuation can

then be used to get information about QCD at real chemical potentials from

lattice simulations at imaginary ones,

〈O〉µi =
∞∑
n=0

cn

(µi
T

)n
→ 〈O〉µ =

∞∑
n=0

cn

(−iµ
T

)n
, (1.2)

where we used µi to identify imaginary chemical potentials. This region of the

phase diagram has interesting phases of its own, with periodicity in µi known as

the Roberge–Weiss periodicity [30].

• Canonical ensemble: In the thermodynamic limit, all statistical mechanics ensem-

bles are equivalent. In particular, the grand canonical ensemble with chemical

potential µ and average particle number N is equivalent to the canonical ensem-

ble with particle number N . The conversion between them requires a Fourier

transform in terms of the imaginary chemical potential [28, 31–33],

〈O〉N =

∫ 2π

0

dφ

2π
e−iNφ〈O〉µi=φT . (1.3)

This conversion is done with a Laplace transform for real chemical potentials.

For large volumes the difficulties caused by the sign problem manifest in the
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1.1 Thermodynamics of QCD

integration with respect to φ = µi/T . Moreover, the order of the phase transition

is sensitive to how the thermodynamic limit is approached [34].

• Density of states: The density of states method involves writing the partition

function in terms of a density function that enumerates the number of states for

a given hyper-surface in configuration space. Some examples of surfaces include

the phase of the complex-valued effective fermion action [35], the plaquette [36],

or the action [37]. This density is given, in the latter case, by

ρ(E) = 〈δ (S[φ]− E)〉 , (1.4)

with expectation values now reading

〈O〉 =

∫
dE ρ(E)O(E)e−βE , (1.5)

where φ generically represents the relevant fields and S[φ] is the classical action

of the theory. This method’s success relies on determining ρ effectively and to

high precision. Two recent techniques are the Logarithmic Linear Relaxation

(LLR) [37, 38] and the Functional Fit Approach (FFA) [39] methods. Recent

works include [40,41].

• Lefschetz thimbles: In this approach, the integration is done over the paths known

as Lefschetz thimbles [42]. These are paths that pass through fixed (or critical)

points of the complex action, which live in a complexified space, and follow con-

tours where the imaginary part of the action is constant. This does not eliminate

the sign problem, but replaces it by two: one related to the curvature of the

integration contour (known as residual); and the other appearing in cases where

more than one thimble contributes (known as global). These can be dealt with

independently, with the first one being easily tractable when one thimble has a

dominant contribution, and reweighting being applicable to the latter, at least in

simple cases [43]. The first use of Lefschetz thimbles on the lattice was carried

out in [44], and a comparison with complex Langevin can be found in [45].

• Complex Langevin: This method is based on stochastic quantisation [46], where

the fields evolve in a fictitious time dimension following a Langevin equation.

7
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Using the generic representation shown above,

∂φ(θ)

∂θ
= − δS[φ]

δφ(θ)
+ η(θ) , (1.6)

with θ being the fictitious (Langevin) time and η(θ) a white noise field. Quantum

expectation values are recovered in the θ → ∞ limit. Allowing the fields to be

complex-valued and complexifying their Langevin evolution can circumvent the

sign problem by deforming the path integration into a larger (complexified) phase

space. Some early studies include [47–49], while more recent results are found

in [50–52]. This method is the central tool used in this thesis and will be reviewed

in detail in chapter 2.

1.2 The lattice approach

We start by considering the QCD action and its fermionic and bosonic constituents

in Euclidean spacetime. From those, we can justify the need for the lattice approach

as a technique that allows for computations not restricted to a particular interval in

the energy spectrum. Then the lattice formulation of the quark and gluon actions are

discussed, as well as how the sign problem manifests itself in this context.

The action that describes the strong interactions, SQCD = SF + SG, consists of

fermionic, SF, and bosonic, SG, parts. Throughout this thesis we work in natural

units,

~ = c = 1 . (1.7)

The fermionic portion is formed by Dirac fermions minimally coupled to SU(3) gauge

fields,

SF =

∫
d4xψ (γµ(∂µ + iAµ) +m)ψ , (1.8)

where the Dirac spinors ψ = ψ(x) and ψ = ψ(x) carry Dirac, colour and flavour

indices, Aµ = λaAaµ is the gluon field, and m is the mass for each quark flavour. The

group’s generators, λa, are reviewed in appendix B. The Euclidean γ matrices, with

µ = 1, 2, 3, 4, satisify the anti-commutation relations

{γµ, γν} = 2δµν1 . (1.9)
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In QCD, the quark fields have 4 spinor, 3 colour and 6 flavour (up, down, charm,

strange, top and bottom) components. Quarks also carry weak and electric charges.

The bosonic part of the QCD action, the SU(3) Yang–Mills term, is given by

SG =
1

2g2

∫
d4xTr [FµνFµν ] , Fµν =

[
∂µA

c
ν − ∂νAcµ − f cdeAdµAeν

]
λc , (1.10)

with g representing the gauge coupling constant, Acµ = Acµ(x) the colour and spacetime

components of the gauge field, Fµν the field strength tensor and λc and f cde the genera-

tors and structure constants of SU(3), respectively. The above action is similar to that

of electrodynamics, with one copy for each generator, together with the self-interacting

term proportional to the structure constants. This latter term gives rise to cubic and

quartic self-interactions in the action, making Yang–Mills theories highly complex.

Renormalisation group calculations made in the 1970s [6,7] have shown that Yang–

Mills actions are asymptotically free—i.e., they become weakly coupled at high energies.

Because of this result, conventional perturbation theory methods could be applied to

QCD leading to, e.g., calculations of cross sections in deep inelastic processes.

On the other hand, for low energy processes QCD was still untractable. After the

seminal work by Kenneth Wilson in 1974 [53], which provided a way of writing the

QCD action in a format suitable for computer simulations, the study of low energy

hadronic interactions became possible.

Typically, the Euclidean spacetime is discretised in a 4-dimensional lattice, with

neighbouring points separated by the lattice spacing, a. Spacetime points are then

identified by integer multiples of a: xµ = anµ, with nµ a 4-dimensional vector with

integer components. The simulation box then has spatial and temporal extents

L = aNσ and Lt = aNτ = 1/T , (1.11)

respectively, with Nσ and Nτ integers and T being the temperature. QCD at finite

temperature will be discussed in sec. 1.2.3. In this context, integrals become sums over

all lattice points ∫
d4x→ a4

∑
x

, (1.12)

with x also being used to identify lattice points. For the discrete derivatives we choose
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the symmetric form

∂µφ(x)→ φ(x+ µ̂)− φ(x− µ̂)

2a
, (1.13)

where µ̂ denotes a unit vector in the µ direction.

One characteristic of the lattice approach is that it naturally provides a UV mo-

mentum regulator. In each spacetime direction the momentum is constrained in the

interval [−π/a, π/a], known as the Brillouin zone. In the continuum limit, as a → 0,

the usual integrations in momentum space are recovered.

1.2.1 Quarks on the lattice

We begin with the free fermion action in continuum Euclidean spacetime, given by eq.

(1.8) with Aµ = 0, and apply the prescriptions of eqs. (1.12) and (1.13):

SF → a4
∑
x

ψx

(
γµ
ψx+µ̂ − ψx−µ̂

2a
+mψx

)
, (1.14)

where we have written the spacetime position as a subscript. Usually periodic or anti-

periodic boundary conditions are imposed to mimic an infinite geometry,

ψx+Lµ̂ = ±ψx . (1.15)

Anti-periodic boundary conditions are used in the temporal direction to account for

Fermi–Dirac statistics.

The terms in the discretised action must be made dimensionless in order to make it

suitable for computer simulations. In four spacetime dimensions this is accomplished

via the replacements

a3/2ψ → ψ̂ , (1.16)

a3/2ψ → ψ̂ , (1.17)

am→ m̂ . (1.18)

This way SF is written in terms of dimensionless variables only as

SF =
∑
x

ψx

(
γµ
ψx+µ̂ − ψx−µ̂

2
+mψx

)
, (1.19)
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where, for simplicity, we have dropped the hats. Unless otherwise stated, we will refer

exclusively to dimensionless quantities from this point on.

This formulation is known as the näıve discretisation of the fermion action. The

reason behind this name is that it contains lattice artefacts that do not vanish in the

continuum limit. For convenience, we rewrite it as

SF =
∑
x,y

ψxD(x, y)ψy , (1.20)

with the Dirac operator D(x, y) given by

D(x, y) =
γµ
2

(δx+µ̂,y − δx−µ̂,y) +mδx,y . (1.21)

The lattice quark inverse propagator, obtained by the Fourier transform of D, reads

D̃(q, p) = δ(p− q) (γµ sin(pµ) +m) . (1.22)

The propagator has the usual pole at p = 0, but also additional ones at pµ = π.

This issue is known as the fermion doubling problem in d spacetime dimensions: the

continuum limit of the free quark propagator contains contributions from 2d fermion-

like excitations.

1.2.1.1 Removing fermion doublers

There are many ways of dealing with doublers, each with their own advantages and

disadvantages. Here we will focus on two of the most well established: the Wilson and

Staggered (or Kogut–Susskind) formulations.

Wilson proposed in [53] the addition of a second-derivative term that removes the

additional poles and vanishes in the contiuum limit. The Wilson fermion action is

defined as

SW =
∑
x

ψx [κ (γµ − r)ψx+µ̂ + κ (γµ + r)ψx−µ̂ + ψx] , (1.23)

where the hopping parameter,

κ =
1

2m+ 8r
, (1.24)

and the coefficient r have been introduced. Typically r is set to one. This change

requires the quark fields to be re-scaled as ψ → (m+4r)−1/2ψ and ψ → (m+4r)−1/2ψ.

11
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The addition included by Wilson to remove the unphysical fermion poles, however,

causes an explicit breaking of the chiral symmetry even for massless quarks,

{DW, γ5} 6= 0. (1.25)

In the continuum limit, with the lattice spacing restored, the Wilson action for

massless fermions reads

Scont
W =

∫
d4xψ

(
γµ∂µ + ra∂2

)
ψ . (1.26)

The second term on the right-hand side is irrelevant for low momenta (near p = 0), but

is relevant at the unphysical ones. When a → 0 the doublers are then removed from

the theory, at the expense of the chiral symmetry.

Staggered fermions were proposed in [54], and reduce the degeneracy of the poles

described above from 16 to 41, while maintaining a remnant chiral symmetry. It makes

use of the symmetry made explicit by applying the staggered transformation

ψx → γx1
1 γx2

2 γx3
3 γx4

4 ψx , ψx → ψxγ
x4
4 γx3

3 γx2
2 γx1

1 . (1.27)

This transformation mixes Dirac and spacetime indices via products of gamma matrices

raised to the power of the corresponding xµ of site x = (x1, x2, x3, x4).

The mass term in the action is invariant, since γ2
µ = 1. In the kinetic term, ψ

fields are shifted with respect to ψ. Therefore, a factor of γµ will remain after the

transformation. This extra γµ cancels the one already present in the action. Accounting

for the necessary reordering of gamma matrices to achieve this cancellation, a generic

term in the kinetic part of the action becomes

ψxγµψx+µ̂ → ηx,µψx1ψx+µ̂ , (1.28)

where we have introduced the staggered sign function, also known as Kawamoto–Smit

phases

ηx,µ = (−1)
∑µ−1
i=1 xµ , ηx,1 = 1 . (1.29)

The new action, which is diagonal in Dirac space and has the same form for all four

1In general, from 2d to d.
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Dirac components, reads

SKS =
∑
x

ψx1

(
ηx,µ

ψx+µ̂ − ψx−µ̂
2

+mψx

)
. (1.30)

Keeping only one of the four identical components gives us the staggered fermion

action, where the fields possess spacetime and colour indices only. By discarding 3 of

the 4 components it is expected that only 4 degrees of freedom are left. More details

on staggered fermions can be found in [55,56].

Modern implementations of lattice quark actions include Ginsparg-Wilson [57], over-

lap [58], and domain wall [59]. These fermionic actions obey the Ginsparg-Wilson

relation,

γ5D(x, y) +D(x, y)γ5 = a
∑
z

D(x, z)γ5D(z, x) . (1.31)

This equation was based on renormalisation group transformations and replaces the

continuum expression for the chiral symmetry. The factor of a on the right-hand side

appears for dimensional reasons, and ensures the continuum result is recovered.

1.2.1.2 Gauging the colour symmetry

For now, we shall stick to the näıve lattice fermion implementation due to its simplicity.

The concepts discussed here translate immediately to the other formulations. We shall

see how the local SU(3) gauge symmetry of QCD is realised on the lattice, thus paving

the way for a discrete version of the Yang–Mills action to be reviewed in the following

section.

We start by considering the mass term mψxψx. This term is trivially invariant

under global and local SU(3) transformations, since

ψx → Ωψx , ψx → ψxΩ† , (1.32)

with Ω = eiλ
aωa or Ω = Ωx = eiλ

aωax for global and local transformations, respectively.

On the other hand, the kinetic term’s elements change under a local transformation as

ψxψx+µ̂ → ψxΩ†xΩx+µ̂ψx+µ̂ ; (1.33)

i.e., they are not generally invariant.
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As is done in the continuum, we augment the action by coupling the fermions to

fields that behave under gauge transformations in such a way as to keep the action

invariant. Elements of the SU(3) group, Ux,µ = exp
[
iλaAax,µ

]
, transform as

Ux,µ → ΩxUx,µΩ†x+µ̂ , (1.34)

so that the combination

ψxUx,µψx+µ̂ (1.35)

is invariant under local gauge transformations. The elements Ux,µ are known as gauge

links, since they are the parallel transporters of colour charge between neighbouring

lattice sites. The gauged fermion action then reads

SF = a4
∑
x

ψx

(
γµ
Ux,µψx+µ̂ − U †x−µ̂,µψx−µ̂

2
+mψx

)
. (1.36)

This action is invariant under local gauge transformations at finite lattice spacing, and

reduces to the continuum action in the näıve continuum limit.

1.2.2 Gluons on the lattice

With the gauge links introduced in the previous section, we now proceed to make them

dynamical. The lattice action has to be gauge invariant, and reduce to the continuum

one when a → 0. The simplest non-trivial objects that can be constructed from the

gauge links, Ux,µ, are elementary closed loops, known as plaquettes, Ux,µν , defined as

Ux,µν = Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν . (1.37)

It is easy to see that upon a gauge transformation the plaquette changes as

Ux,µν → ΩxUx,µνΩ†x , (1.38)

such that its trace is invariant.

Since the plaquettes transport the gauge fields along an elementary closed path it is

expected that they are related to the field strenght tensor Fµν(x) in some fashion. The
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relation between them can be seen by using the Baker–Campbell–Hausdorff formula

eAeB = exp

(
A+B +

1

2
[A,B] + · · ·

)
(1.39)

on the gauge links in eq. (1.37) and the fact that

Ux+µ̂,ν = exp [iAx+µ̂,ν ] = exp
[
iAx,ν + a∂µAx,ν +O(a2)

]
, (1.40)

where we have used Ax,µ ≡ λaAax,µ. These expansions combined lead to

Ux,µν = exp
[
ia2 (∂µAx,ν − ∂νAx,µ + i[Ax,µ, Ax,ν ]) +O(a3)

]
= exp

[
ia2Fx,µν +O(a3)

]
. (1.41)

The Wilson gauge action is then given by

SG[U ] =
2

g2

∑
x

∑
µ<ν

ReTr [1− Ux,µν ] =
a4

2g2

∑
x

∑
µ,ν

Tr
[
F 2
x,µν

]
+O(a2) . (1.42)

Traditionally the coefficient in front of the Wilson action is written using the inverse

coupling

β =
6

g2
. (1.43)

With that, and using the definition Re[z] = 1
2(z + z), we finally write

SG[U ] =
β

3

∑
x

∑
µ<ν

Tr

[
1− 1

2

(
Ux,µν + U †x,µν

)]
. (1.44)

1.2.3 QCD at finite temperature

In statistical mechanics, the canonical partition function is given by

Z = Tr
[
e−H/kBT

]
=

∫
dφ 〈φ|e−H/kBT |φ〉 , (1.45)

where H is the system’s Hamiltonian, kB is Boltzmann’s constant and T the tempera-

ture. From here on, we shall take kB = 1. The trace indicates a sum over all possible

states; this is generically written as the integral on the right-hand side in terms of a

field φ. Similarly, the quantum mechanical evolution between states φi, at time 0, and
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φf , at time tf can be written in terms of a path integral as

〈φf |eiHtf |φi〉 =

∫ φf

φi

Dφ exp

[
i

∫ tf

0
dtL

]
, (1.46)

with L being the Lagrangian density of the system. By doing the associations

itf → 1/T , (1.47)

φi = φf = φ (1.48)

t→ τ (1.49)

it is possible to write the partition function in eq. (1.45) using eq. (1.46) as

Z =

∫
dφ

∫ φf=φ

φi=φ
Dφ exp

[
−
∫ 1/T

0
dτL

]

=

∫
φ(0)=φ(1/T )

Dφ e−S[1/T ] , (1.50)

where S is the classical action of the system, and the integration is done over fields

satisfying the periodic boundary condition φ(0) = φ(1/T ).

Hence, in the language of path integrals, where the classical action is the central

object, finite temperature is introduced by restricting the integration in the Euclidean

time direction in eqs. (1.8) and (1.10) to the interval [0, 1/T ], where we have taken

Boltzmann’s constant to be unity. On the lattice, the temperature can be controlled

by changing the number of points in the temporal direction or by making the lattice

anisotropic, with the spatial and temporal lattice spacings being different. This makes

the Euclidean lattice formulation the natural framework to study field theories at non-

zero temperature. Throughout this thesis we work with isotropic lattices.

At finite temperature, a commonly studied observable is the trace of the Polyakov

loop P (also known as thermal Wilson line). On the lattice it is given by

P~x =
1

3
Tr [P~x] =

1

3
Tr

[
Nτ−1∏
x4=0

U(~x,x4),4̂

]
. (1.51)

It represents the world-line of a static quark evolving in Euclidean time and wrapping

around the (anti-)periodic box, while P †~x represents that of an anti-quark. The expec-
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1.2 The lattice approach

tation value of the product P~xP
†
~y gives the free energy difference between an ensemble

with a quark–anti-quark pair at positions ~x and ~y, respectively, and that of the vacuum,

via [55,56]

〈P~xP †~y 〉 = exp [− (Fqq − F0) /T ] . (1.52)

It is also interesting to study the expectation value of the spatial average of the

Polyakov loop

P =
1

N3

∑
~x

P~x , (1.53)

since we assume translation invariance. By the reasoning outlined above it can be seen

to be related to e−(Fq−F0)/T . In a confining regime, the energy necessary to create a

single quark would be infinite. Therefore it is expected that 〈P 〉 = 0 for such a case.

Conversely, if a non-zero expectation value is observed it means that Fq − F0 is finite

and deconfined quarks are possible. This indicates that 〈P 〉 is an order parameter for

the deconfinement transition for pure gauge theories.

As is known from statistical mechanics, phase transitions are accompanied by the

breaking of a global symmetry. In the case of pure SU(3) Yang–Mills the action is

not only invariant under gauge transformations, but posseses an additional symmetry.

Transformations of all gauge links in the temporal direction in a given time slice x4 of

the form

U(~x,x4)4̂ → zU(~x,x4)4̂ , (1.54)

with z = e2iπn/31, n = 0, 1, 2, belonging to the centre of the group, do not change

the action. This happens because centre elements commute with all group elements

and trivially cancel in closed loops that do not wrap around the time direction. The

Polyakov loop, consequently, is not invariant under this transformation,

P → zP . (1.55)

If the ground state of the quantum system respects the symmetries of the classical

action, configurations related to one another by centre transformations should have

equal statistical weight making ensemble averages of the Polyakov loop vanish, since

〈P 〉 ∼ 〈P + zP + z2P 〉 =
(

1 + e2iπ/3 + e4iπ/3
)
〈P 〉 = 0 (1.56)
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Thus, an unbroken centre symmetry is expected to be a signal of confinement. In

situations where the ground state breaks the centre symmetry, a non-zero average

Polyakov loop is observed and the theory is deconfined.

Strictly speaking, the Polyakov loop is only an order parameter of the pure Yang–

Mills theory, since quarks do explicitly break the centre symmetry. One way to see

this is by considering the hopping expansion of the fermion determinant [55,56,60,61],

where it is written as a sum over all possible closed loops on the lattice, including

Polyakov loops. In particular, this sum will include terms of the form

κNτ
(
P + P †

)
, (1.57)

where the hopping parameter κ ∼ 1/ma. A centre transformation will modify such a

term non-trivially, with the full action being no longer invariant. Nevertheless, despite

〈P 〉 not being an order parameter when quarks are present, some information can

still be gained by studying it. An especially good example of this is the heavy-dense

approximation, to be discussed later, where the quarks are very heavy and remnants

of the centre symmetry are present in the theory. Alternatively, the explicit breaking

of the centre symmetry can be seen by applying a centre transformation to eq. (1.36),

which will not leave the action invariant.

We note here that finite systems cannot exhibit phase transitions. They are associ-

ated with non-analytic behaviour in the partition function, which can only be achieved

in the thermodynamic limit. In principle, assuming ergodicity and an infinitely long

simulation time for a finite system, all allowed configurations should contribute and the

expectation value of the Polyakov loop should always vanish. In this case, analyses of

scatter plots of the Polyakov loop’s real and imaginary parts, or of its absolute value,

indicate whether only the trivial vacuum or the three vacua allowed by centre symmetry

contribute.

1.2.4 Finite density and the sign problem in lattice QCD

In order to achieve a dynamical asymmetry between the numbers of quarks and anti-

quarks, and therefore a non-zero density, a chemical potential is introduced. The grand

canonical ensemble of statistical mechanics is, in a nutshell, constructed by adding
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1.2 The lattice approach

µN/T to the statistical weight in the partition function,

Z = Tr
[
e−(H−µN)/T

]
, (1.58)

with µ being the chemical potential and N the number of particles.

Näıvely adding the new term to a lattice field theory leads to a theory that does not

possess a continuum limit. A proper discretisation of the chemical potential is obtained

by realising that it couples to the Noether charge of the U(1) global symmetry of the

quarks. Again, this explanation will use the näıve free fermion discretisation; all steps

can be easily translated to the appropriate formulations, if necessary. The lattice

version of the Noether current density reads [62]

jx,µ =
1

2

[
ψx−µ̂γµψx + ψxγµψx−µ̂

]
. (1.59)

Adding the corresponding charge density with suitable µ-dependent coefficients to the

lattice fermion Lagrangian density leads to the correct way of including a chemical

potential on the lattice. The charge densities can be combined with the temporal part

of the kinetic term of the näıve fermion lattice action as

∑
x

ψxγ4

f(µ)ψx+4̂ − f−1(µ)ψx−4̂

2
(1.60)

with f(µ) a real function. The anti-quark term is modified by the inverse of f so that

closed quark loops with trivial topology; i.e., those that do not wrap around the periodic

boundaries, are not affected. At µ = 0 the original action should be recovered, therefore

f(0) = 1. In order to recover the correct continuum behaviour f has to be linear in the

chemical potential, f(µ) = 1 + µ + O(µ2) . Introducing the parallel transporter of the

quark U(1) global symmetry in the same way as for the colour symmetry we arrive at

f(µ) = eµ [63, 64]. Hence, the lattice action of fermions at finite density coupled to a

gauge field can be written as

SF =
∑
x

ψx

(
γν
eµδν,4Ux,νψx+ν̂ − e−µδν,4U †x−ν̂,νψx−ν̂

2
+mψx

)
. (1.61)

We remark that different prescriptions are possible, provided that they agree in the

continuum limit [62].
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A side-effect of including the chemical potential to an Euclidean field theory is the

so-called sign problem. At µ = 0, the Dirac operator D(U) in Euclidean spacetime is

γ5-Hermitian,

D†(U) = γ5D(U)γ5 . (1.62)

This implies that its eigenvalues are either real or come in complex conjugate pairs;

and hence the determinant is real. Since the quadratic fermion action can be integrated

analyticaly,

Z =

∫
DψDψDU e−SF−SG =

∫
DU det [D(U)] e−SG =

∫
DU e−SG+ln det[D(U)] ,

(1.63)

this leaves ln det [D(U)] as an effective fermion action in terms of the gauge fields. For

µ 6= 0, however, D(U, µ) is not γ5-Hermitian,

D†(U, µ) = γ5D(U,−µ)γ5 , (1.64)

which means that its determinant is a complex number, and consequently eln det[D(U,µ)]

can no longer be interpreted as a probability distribution. This is the origin of the

sign problem: the weight of the field configuration in the path integral ceases to be

positive definite, in general. An accurate computer simulation would require precise

cancellations of these oscillating factors among different configurations.

If a complex chemical potential is considered, then

D†(U, µ) = γ5D(U,−µ∗)γ5 , (1.65)

and hence for purely imaginary µ, the Dirac operator is again γ5-Hermitian, with a

real determinant. Then, the study of the phase structure of QCD becomes possible, as

mentioned in section 1.1.

An interesting special case is the study of isospin chemical potential, µI , where two

quark species with degenerate mass and opposite isospin charges are considered. Their

chemical potentials are related via µa = µI and µb = −µI . This causes the Dirac

operator to have a block diagonal form, with each entry being a single flavour operator

(
D(U, µI) 0

0 D(U,−µI)

)
=

(
D(U, µI) 0

0 γ5D
†(U, µI)γ5

)
, (1.66)
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making use of the relation in eq. (1.64). Its determinant is real and positive, since

det
[
D(U, µI)γ5D

†(U, µI)γ5

]
= det

[
D(U, µI)D

†(U, µI)
]

= |det [D(U, µI)]|2 . (1.67)

It is worth noting that at finite isospin density, the quark determinant corresponds to

that of the phase quenched theory. Works on the thermodynamics of QCD at finite

isospin density can be found in [65–67].

An important note is that the sign problem is not exclusive to fermionic fields.

Bosonic fields in Euclidean spacetime also display a sign problem at finite real chemical

potential. Some examples include the Bose gas [68, 69], the XY model [70] and the

SU(3) spin model [71,72].

1.2.5 The heavy-dense approximation

Because the evaluation of the fermion determinant in QCD is very demanding, it is

useful to have a simpler model which shares some of QCD’s features, such as the sign

problem, where new methods and techniques can be tested first. One such model is

QCD in the limit of heavy and dense quarks (HDQCD) [47, 73], where quarks are

considered static in space but the full chemical potential dependency, which resides in

the temporal hopping terms, is retained. In this approximation, the gluonic terms are

not changed; i.e., the standard Wilson gauge action is used.

We start with the Dirac operator for Wilson fermions,

Dxy = δxy − 2κ
[
eµδν,4Γ−νUx,νδx+ν̂,y + e−µδν,4Γ+νU

†
x−ν̂,νδx−ν̂,y

]
, (1.68)

where we have used Γ±ν = (1±γν)/2. By dropping the spatial hopping terms we arrive

at

[DHD(U, µ)]xy ≈ δxy − 2κ
[
eµΓ−4Ux,4δx+4̂,y + e−µΓ+4U

†
x−4̂,4

δx−4̂,y

]
, (1.69)

whose determinant in spacetime and Dirac indices takes the form

detDHD(U, µ) =
∏
Nf

∏
~x

{
det
[
1 + heµNτP~x

]2
det
[
1 + he−µNτP−1

~x

]2}
. (1.70)
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The + sign originates from the anti-periodic boundary conditions in the temporal di-

rection, and the powers of 2 from the γ-matrix structure. The Polyakov loop P and

its inverse were defined in eq. (1.51); the exponent µNτ is the lattice version of the

ratio µ/T , h = (2κ)Nτ , and Nf is the number of quark flavours. We have used the

inverse rather than the Hermitian adjoint of the Polyakov loop because they coincide

for SU(N) fields, but using the inverse will be necessary in later chapters. The term

related to the contribution from anti-quarks has been kept, despite being exponentially

suppressed compared to that of quarks, so that the fermion matrix obeys

D†HD(U, µ) = γ5DHD(U,−µ∗)γ5 . (1.71)

The fermion determinant in the HDQCD approximation then exhibits the sign problem

for real chemical potential, as in QCD,

det [DHD(U, µ)]∗ = detDHD(U,−µ∗) , (1.72)

and is real when µ is purely imaginary.

The heavy dense approximation also allows for a closed expression for the expecta-

tion value of the quark number density in terms of the Polyakov loop,

〈n〉 =
T

V

∂ lnZ

∂µ
=

1

V

∑
~x

〈n~x〉 , (1.73)

with V the spatial volume and n~x is given by [47]

n~x = 6Nf

[
zP~x + 2z2P−1

~x + z3

1 + 3zP~x + 3z2P−1
~x + z3

− zP−1
~x + 2z2P~x + z3

1 + 3zP−1
~x + 3z2P~x + z3

]
, (1.74)

where z = heµ/T and z = he−µ/T , and we have used the identity for SL(3,C) matrices

det (1 + cU) = 1 + cTrU + c2TrU−1 + c3 . (1.75)

Additionally, in the zero temperature limit, Nτ → ∞ at fixed lattice spacing, it is

possible to determine analyticaly the critical chemical potential at which the quarks

condense. The contribution from the anti-quarks to n~x is exponentially suppressed for
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1.2 The lattice approach

µ > 0. For the quark contribution we can write

z = heµ/T = (2κeµ)Nτ ≡ exp
[(
µ− µ0

c

)
Nτ

]
, µ0

c ≡ − ln (2κ) , (1.76)

where we have introduced the critical chemical potential at zero temperature, µ0
c . It

follows that, at zero temperature, z → 0 when µ < µ0
c (the Silver Blaze region [74,

75]), and the density reaches its saturation value1, nsat = 2 × Nf × Nc for µ > µ0
c ,

irrespective of the value of the Polyakov loop. Thus µ0
c is the critical chemical potential

at T = 0. Additionally, the expectation value of the Polyakov loop must vanish at zero

temperature: in the z → 0 sector the HDQCD fermion determinant becomes 1, which

means the quarks have no influence and the theory reduces to pure Yang–Mills. On

the other hand, above the critical chemical potential z →∞ for T = 0, and 〈P 〉 = 0 in

order to keep the quark determinant finite.

The region beyond the critical chemical potential at zero temperature is a lattice

artefact. At zero temperature, as soon as µ > µ0
c every lattice site is filled with the

maximum number of quarks allowed by the Pauli exclusion principle, nsat. For higher

temperatures this transition is expected to be smoother, as thermal effects lower the

threshold for the creation of deconfined quarks, for µ < µ0
c .

The thermal transition at µ ≈ 0 can be understood in terms of that of pure Yang–

Mills, due to the heavy quarks of this model. In this situation, the centre symmetry

is approximate; a critical temperature, Tc, at which the quarks deconfine is expected.

For temperatures above Tc, quarks are deconfined for all chemical potentials. A sketch

of this behaviour for the HDQCD phase diagram is shown in figure 1.2.

It is important to stress that the heavy-dense approximation is based on the hopping

parameter expansion, where the fermion determinant is written in powers of κ ∼ 1/ma.

In other words, the approximation assumes very heavy quarks, compared to the energy

scale set by the lattice spacing. In turn, this implies that a continuum extrapolation

is not possible, as the quark masses would have to become infinite as a → 0, in order

to keep κ fixed, leading to a quenched approximation of QCD with completely static

quarks.

1The 2 comes from spin orientations (up and down), Nf is the number of flavours and Nc the
number of colours.
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µµ0
c

T

Hadrons

Quark-Gluon

Plasma

Figure 1.2: Sketch of the phase diagram of HDQCD. Pink areas represent regions in the
parameter space where quarks are confined, whereas in the grey region quarks are free.
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Chapter 2

Theoretical framework

T raditionally, Monte Carlo techniques have been used to simulate QFTs on

the lattice at zero density, but the sign problem makes their results unreliable

when one tries to apply it to finite density, especially for µ/T & 1. There-

fore, it is instructive to briefly review these standard procedures, in order to understand

where they differ from stochastic quantisation, which is the basis for complex Langevin.

We, then, introduce the complex Langevin method as a possible way to perform lattice

simulations of quantum field theories in Euclidean spacetime at finite chemical poten-

tial. Subsequently, stochastic quantisation applied to gauge fields will be discussed in

more detail and with emphasis on a discrete evolution time, more suitable for computer

simulations. We then review the complex Langevin method, including a discussion on

its correctness and on methods to improve the technique—namely gauge cooling and

dynamic stabilisation. This chapter concludes with a discussion on using the complex

Langevin method to simulate dynamical quarks.

2.1 Monte Carlo formalism

Path integrals on the lattice typically have a very large number of degrees of freedom,

making them practically impossible to calculate directly. A good example is a 2-state

system on a lattice of Ns points (e.g., the Ising model). In this case, the number of

states in the phase space would be 2Ns , a number prohibitively large if one hopes to

get close to the thermodynamical limit. In a quantum field theory the situation is even
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more problematic as there are infinitely many values a field could have at each lattice

point.

One way to estimate a path integral for a gauge theory is to randomly generate

a sequence of configurations of gauge links {Un}Nn=1 (where spacetime and direction

indices have been suppressed for clarity) such that the entire phase space may be

visited, and average the observables over its elements. In other words,

〈O〉 =
1

Z

∫
DU O(U) e−S ≈ 1

N

N∑
n=1

O(Un) e−S[Un] , (2.1)

where O(U) represents any observable that is a function of the gauge links, and the

partition function Z is given by

Z =

∫
DU e−S . (2.2)

In the above equations DU is the path integration measure on the lattice, which can

be expressed as

DU =
∏
x,µ

dUx,µ , (2.3)

with x indicating spacetime points, µ = 1, . . . , 4 are the Euclidean directions and dUx,µ

is the Haar measure of the group.

The fact that the action in Euclidean spacetime is positive semi-definite can be used

to improve the generation of the Un. If the Un are generated with, e.g., an uniform

probability distribution, many configurations will have their contributions exponen-

tially suppressed by the weight e−S , while configurations close to a minimum of S will

have a larger contribution to the sum in eq. (2.1). It is useful, then, to produce field

configurations using e−S/Z as probability distribution and estimate 〈O〉 simply as

〈O〉 ≈ 1

N

N∑
n=1

O(Un) . (2.4)

There is a variety of different Monte Carlo algorithms: Metropolis, Heat-Bath and

Hybrid Monte Carlo, to name a few. The underlying principle in all of them is that

described above. Their differences reside in how the sequence {Un} is generated. Typ-

ically an update procedure is applied to a field configuration to generate the next one,
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in a Markov chain. Each algorithm has a different updating process, making some of

them more efficient in certain situations. Further information can be found in [55, 56]

and references therein.

2.2 Stochastic quantisation

Stochastic quantisation is an alternative formulation of quantum mechanics and quan-

tum field theory [46] in Euclidean spacetime. Its workings are similar to stochastic

processes like the Brownian motion, where the long time distribution for the velocity

of the Brownian particle is e−mv
2/2kT . The idea is that evolving the fields in an extra

“time” dimension according to a Langevin equation can lead to an equilibrium distri-

bution that is proportional to e−S . Then, ensemble averages (i.e., path integrals) can

be calculated as “time” averages over this extra dimension. The connection between

the equilibrium distributions is given by the Fokker–Planck equation, to be discussed

in this section.

Calling the extra temporal dimension θ—also known as Langevin time—the evolu-

tion of a gauge link Ux,µ(θ) with dynamics given by the action S is

∂Ux,µ
∂θ

U−1
x,µ = i [−∇x,µS + ηx,µ] . (2.5)

Here ∇x,µ = λa∇ax,µ, where ∇a is defined in appendix B and ηx,µ(θ) = λaηax,µ(θ) is a

white noise field that satisfies

〈
ηax,µ(θ)

〉
η

= 0 and
〈
ηax,µ(θ)ηby,ν(θ′)

〉
η

= 2 δabδxyδµνδ(θ − θ′) . (2.6)

Here 〈· · · 〉η represents an average over the noise fields,

〈· · ·〉η =

∫
Dη (· · · ) exp

[
−1

4

∫
dθ η2(θ)

]∫
Dη exp

[
−1

4

∫
dθ η2(θ)

] . (2.7)

Quantum expectation values are then calculated as

〈O(U)〉 = lim
θ→∞

〈O(U(θ))〉η . (2.8)

Alternatively, the noise average in eq. (2.8) can be formulated in terms of a proba-
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bility distribution P (U, θ),

〈O(U(θ))〉η =

∫
DU O(U)P (U, θ) , (2.9)

provided that

lim
θ→∞

P (U, θ) ≡ Peq(U) =
e−S

Z
. (2.10)

There are many ways of showing that eq. (2.8) correctly reproduces the quantum

correlation functions. The most common ones use eqs. (2.5) and (2.9) to derive a

Fokker–Planck equation describing the Langevin time evolution of P (see, e.g., [76]),

and show that eq. (2.10) holds. We shall focus on one that involves a discrete Langevin

time, where it is incremented by finite steps, as it is the most natural one for computer

simulations. Results for continuous fictitious time can be obtained by taking the limit

of the Langevin step size going to zero.

2.2.1 Stochastic quantisation for SU(N) gauge links

Upon discretisation of the Langevin time, eq. (2.5) takes the form [76]

U(θ + ε) = exp
[
i
(
−ε∇S +

√
ε η
)]
U(θ) ≡ exp [iX(ε)]U(θ) , (2.11)

where ε is the Langevin step size and, from here on, the indices on U will be suppressed

when no ambiguity arises. In order to define the probability distribution P (U, θ),

introduced in eq. (2.9), we must define a delta function on the group manifold that works

similarly to the usual one on real or complex space. The equivalent of a subtraction in

group space is multiplication by the inverse, while the neutral element is the identity:{
x− y = 0 ⇐⇒ UV −1 = 1

δ(x− y) ⇐⇒ δ(UV −1)
. (2.12)

This way we have∫
dU δ(UV −1)f(U) =

∫
dU δ(V U−1)f(U) = f(V ) . (2.13)

Formally, the probability distribution P (W, θ) is connected to the noise averages

via

P (W, θ) =
〈
δ(U(θ)W−1)

〉
η
. (2.14)
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The transition probability between two configurations W at time θ and V at θ + ε

reads [77]

P (V, θ + ε |W, θ) =
〈
δ
(
eiX(ε)W V −1

)〉
η
, (2.15)

where the delta function enforces the equation of motion, eq. (2.11), and the noise

average guarantees that all realisations compatible with the initial and final states in

the ensemble are taken into account. It is important to notice that, despite similar

functional forms, equations (2.14) and (2.15) represent different objects: the former is

the probability of the gauge link U having value W after time θ, while the latter is the

conditional probability of the link being equal to V at time θ+ ε given that it equated

W at time θ. From the above equation one obtains

P (V, θ + ε) =

∫
dW P (V, θ + ε |W, θ)P (W, θ)

=
〈
δ
(
eiXU(θ)V −1

)〉
η
, (2.16)

as expected from the equation of motion.

Following [78] we expand the delta function of eq. (2.15) as a power series in ε =
√
ε

δ
(
eiXUV −1

)
= δ

(
UV −1

)
+ ε

[
X ′a∇a

]
ε=0

δ
(
UV −1

)
+ ε2/2

[
X ′aX ′b∇a∇b +X ′′a∇a

]
ε=0

δ
(
UV −1

)
+O(ε3) , (2.17)

with X ′a = dXa/dε, Xa representing the components of the Langevin drift, X, in the

Lie algebra. We then use the transition probability to write P (V, θ + ε) as

P (V, θ + ε) = P (V, θ) + ε P1(V, θ) + ε2/2P2(V, θ) +O(ε3) , (2.18)

where, after integrating by parts,

P1(V, θ) = −∇a
〈
X
′a
P (V, θ)

〉
η
, (2.19)

P2(V, θ) = ∇a∇b
〈
X
′a
X
′b
P (V, θ)

〉
η
−∇a

〈
X
′′a
P (V, θ)

〉
η
, (2.20)
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with, c.f. appendix C,

X
(n)

=
∂nX

∂εn

∣∣∣∣
ε=0

. (2.21)

Using the definition of X(ε) from eq. (2.11) and the properties of the white noise

η, we can see that

P1(V, θ) = −∇a 〈ηaP (V, θ)〉η = −〈ηa〉η∇aP = 0 , (2.22)

P2(V, θ) = ∇a∇b
〈
ηaηbP (V, θ)

〉
η

+∇a 〈2∇aS P (V, θ)〉η
= 2∇a [(∇aS +∇a)P (V, θ)] . (2.23)

Combining the above with eq. (2.18) we arrive at the (discrete time) Fokker–Planck

equation for P

P (V, θ + ε)− P (V, θ)

ε
= ∇a [(∇a +∇aS)P (V, θ)] +O(ε) . (2.24)

It is easy to see that Peq(V ) = Z−1e−S[V ] is an equilibrium solution of the Fokker–

Planck equation. Using the transformation

P (V, θ) = ψ(V, θ) e−
1
2
S , (2.25)

one can write the Fokker–Planck equation in a Schrödinger-like form

ψ(V, θ + ε)− ψ(V, θ)

ε
= −HFP ψ(V, θ) , (2.26)

where the operator

HFP =

(
−∇a +

1

2
∇aS

)(
∇a +

1

2
∇aS

)
(2.27)

is known as the Fokker–Planck Hamiltonian. It is self-adjoint for real actions, and a

discrete and positive spectrum is strongly suggested by numerical evidence, depending

on the model and parameter values, in many interesting models [47,69].

Assuming the discrete spectrum mentioned above, a generic solution ψ can be ex-

panded as

ψ(V, θ) =

∞∑
n=0

anψn(V ) exp (−En θ) , (2.28)
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2.2 Stochastic quantisation

with En being the eigenvalues of HFP and ψn the respective eigenfunctions. From the

factorisation of HFP it is clear that the eigenfunction of zero energy is

ψ0(V ) = a0 exp

(
−1

2
S

)
. (2.29)

Since En > 0 for n > 1, it follows that the probability distribution for θ → ∞ is

indeed given by Z−1e−S . This shows the equivalence between stochastic quantisation

and conventional path integrals for large Langevin time.

2.2.2 Finite Langevin step size corrections

For a finite Langevin step size the equilibrium distribution exhibits an ε-dependence:

P ∼ e−S[V ]−εS2[V ]. The terms that give rise to S2 are obtained by continuing the Taylor

expansion of eq. (2.17) up to order ε4 = ε2, and modifying the expansion for P (V, θ+ε)

accordingly, by adding the coefficients of ε3 and ε4,

P3(V, θ) =
〈
ηaηbηc∇a∇b∇cP − 3

(
ηa∇bS + ηb∇aS

)
∇a∇bP

〉
η
, (2.30)

P4(V, θ) = 12
〈
∇aS∇bS∇a∇bP

〉
η

− 4
〈(
ηaηb∇cS + ηbηc∇aS + ηaηc∇bS

)
∇a∇b∇cP

〉
η

+
〈
ηaηbηcηd∇a∇b∇c∇dP

〉
η
, (2.31)

respectively. Details of this expansion can be found in appendix C.

Due to the odd numbers of noise fields, P3 will average out to zero. For P4 we

repeatedly use the ansatz proposed in [78], ∇aP = − (∇aS) P +O(ε2), except for the

last derivative:

P4(V, θ) = 12∇a
[(
∇2∇aS −∇b∇aS∇bS +

α2

6
CA∇aS

)
P

]
, (2.32)

where CA = N is the Casimir invariant for SU(N) in the adjoint representation and α

is related to the normalisation of the group generators (c.f. appendix B) ,

Tr
[
λaλb

]
=
α2

2
δab . (2.33)
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The discrete-time Fokker–Planck equation including corrections up to ε2 then reads

P (V, θ + ε)− P (V, θ)

ε
= ∇a [(∇a +∇aS + ε∇aS2)P (V, θ)] +O(ε2) , (2.34)

with

S2 =
1

2
∇2S − 1

4
∇aS∇aS +

α2

12
CA S . (2.35)

The equilibrium distribution with order ε corrections is

Peq(V ) =
1

Z
exp [−S − εS2] . (2.36)

2.2.3 Second order algorithms

In the numerical analysis of ordinary differential equations, Runge–Kutta methods are

used to decrease the dependence on the discretisation step size, at the expense of more

complicated algorithms. This is done by generating “intermediate” solutions between

consecutive steps and using those to cancel out the dependence on the lowest powers

of the step size. Here we show how a similar procedure can be applied to stochastic

differential equations on a gauge group. This was first done in [77,79]

It is necessary for the second order Langevin equation to have a Boltzmann-like

equilibrium probability distribution. Therefore, the new drift, X, must have a similar

form to X, as defined in eq. (2.11). Additionally, information from the first order

solution must be used in order to cancel S2.

We use a “generalised” first-order drift [80],

Xa = −ε2k1∇aS[U ] + ε k2 η
a , (2.37)

where k1 and k2 will be set later, to generate intermediate gauge links U ′ = eiXU .

These links are used in the second-order drift Xa, defined as

Xa = −ε2k3∇aS[U ]− ε2k4∇aS[U ′]− ε4k5
α2

2
CA∇aS[U ] + ε k6 η

a (2.38)

= −ε2(k3 + k4)∇aS[U ]− ε3k2k4 η
b∇b∇aS[U ]

− ε4

(
1

2
k2

2k4 η
bηc∇b∇c∇aS[U ]− k1k4∇bS[U ]∇c∇aS[U ]

+ k5CA
α2

2
∇aS[U ]

)
+ ε k6 η

a , (2.39)
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2.2 Stochastic quantisation

where ∇aS[U ′] has been expanded to order ε2. Ignoring terms of O(ε3) and following

the same steps that lead to eq. (2.24), the first order Fokker–Planck equation now reads

P (V, θ + ε)− P (V, θ)

ε
= ∇a

{[
(k3 + k4)∇a + k2

6∇aS
]
P (V, θ)

}
+O(ε) . (2.40)

In this form, it is clear that for an equilibrium distribution of the form e−S it is necessary

to have k3 + k4 = 1 and k2
6 = 1.

The expansion of P (V, θ + ε), again up to order ε4, and with X for the drift, leads

once more to P3 = 0 while P4 is modified to

PX
4 = P4 −∇a

〈
X

(4)a
P
〉
η

+ 2∇a∇b
〈
X
′a
X

(3)b
+ X

(3)a
X
′b
P
〉
η
. (2.41)

Following the previously used procedure, we insert the derivatives of the drift into PX
4 ,

and use the ansatz ∇aP = − (∇aS) P , except for the last derivative of P 1

PX
4 = 4!∇a

{[(
k2

2k4 − 2k2k4k6 +
1

2

)
∇2∇aS

+

(
2k2k4k6 − k1k4 −

1

2

)
∇bS∇b∇aS

+

(
k5 − k2k4k6 +

1

6

)
α2

2
CA∇aS

]
P

}
. (2.42)

Therefore, in order to eliminate all ε4 = ε2 dependence from the expansion of P (V, θ+ε),

it is required that

k2 =
2k4k6 ±

√
2k4 (2k4 − 1)

2k4
, (2.43)

k1 =
4k2k4k6 − 1

2k4
, (2.44)

k5 = k2k4k6 −
1

6
. (2.45)

1The terms coming from P4 are not changed, as they depend only on k3 + k4 or k2
6.
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2. THEORETICAL FRAMEWORK

Two possible choices for the k’s are [79]

k3 = k4 =
1

2
, (2.46)

k1 = k2 = k6 = 1 , (2.47)

k5 =
1

3
, (2.48)

in which the intermediate and final evolution steps resemble Heun’s method for solving

ODE’s, and [80]

k4 = k6 = 1 (2.49)

k3 = 0 (2.50)

k1 =
3± 2

√
2

2
(2.51)

k2 =
2±
√

2

2
(2.52)

k5 =
10± 6

√
2

12
(2.53)

where X and X have similar forms, with X depending only on ∇S[U ′]. From a compu-

tational point of view, this second method is preferred as it reduces the memory needs,

since ∇S[U ] does not need to be stored for the second step.

2.3 Complex Langevin method

For theories with a complex action, such as QCD at finite chemical potential, the

force on the right-hand side of (2.5) will cause the gauge links to become non-unitary.

Allowing the physical fields to explore a larger (complexified) phase space is central

to the complex Langevin method, proposed in the early 1980s by Klauder [81] and

Parisi [82]. Because field configurations generated by stochastic processes do not rely

on e−S as a probability distribution, but have it as a consequence of the evolution over

Langevin time, the complex Langevin method is a very good candidate for simulating

theories with complex actions, in particular those that exhibit the sign problem.

After a certain initial popularity [76,83], some problems were found with the com-

plex Langevin method. Those can be categorised in two classes: runaway trajectories,

where the simulation would not converge, and convergence to a wrong limit [84, 85].
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2.3 Complex Langevin method

These difficulties have recently begun to be overcome, allowing the method to be suc-

cessfully revived [47, 68, 69, 86–90]. Runaway trajectories have been eliminated with

the use of adaptive Langevin step size [48], while the convergence to wrong limits is

subject of active research and methods to deal with it will be reviewed in the following

subsections.

In essence, this method requires adding an imaginary part to each component of

the fields and re-writing the action and observables in terms of them. For instance,

in a 0-dimensional model one has x → z = x + iy as the complexified field, whose

components evolve as

ẋ = −Re∇S(x+ iy) +
√
NRηR ,

ẏ = −Im∇S(x+ iy) +
√
NIηI , (2.54)

with ηR and ηI being the real and imaginary noise fields, respectively, and NR−NI = 1,

with NI ≥ 0. For example, an observable x2 becomes z2 = x2 − y2 + 2ixy. In the

language of gauge fields on the lattice, this complexification amounts to allowing for

non-unitary gauge links, i.e. U † 6= U−1.

A key observation is that the new phase space has twice the dimension of the original

one. Because of the extra degrees of freedom, the sign problem can be circumvented,

as the path integration is deformed in the enlarged space. However, compact manifolds

such as U(1) and SU(N) are no longer compact after complexification, allowing for

potential runaway trajectories. Additionally, the Langevin evolution of the probability

distribution and the observables might cause them to break the proof of convergence,

to be explained in the next subsection, culminating in convergence to wrong limits.

2.3.1 Proof of convergence

The usual proofs of convergence to the probability weight e−S are problematic for

complex actions. We shall discuss here the necessary criteria for those fields’ Langevin

evolution to converge to the correct distributions. More details can be found in [49],

while an analysis focussing on issues related to finite Langevin step sizes is done at [91].

When simulating theories with complex actions, one is faced with a complex distri-

bution ρ = e−S , with S a holomorphic function on a real manifold M . The complex

Langevin approach concerns the evolution of real and imaginary parts of complexified
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fields, defined on the complexification Mc of M . The idea is to simulate the evolu-

tion of entire holomorphic observables, O, on Mc, such that their expectation values

converge to those with complex distribution ρ,

〈O〉 =

∫
Mc

dUdU †P (U,U †)O(U) =

∫
M
dV ρ(V )O(V ) . (2.55)

The Langevin evolution of a complex density ρ(V, θ), with V ∈ SU(N) and S(V ) a

holomorphic action, follows the same steps outlined above for real PDFs, whose Taylor

expansion can be written generically as

ρ(V, θ + ε) =
∞∑
n=0

εn

(2n)!
LT1,2n [ρ(V, θ)] , (2.56)

with LT
1,2n being an operator that generates the terms from the expansion of P shown

in section 2.2. A slight generalisation of this operator, LTP0,2n
, involves replacing V as

argument in the action by P0V , where P0 is a positive semi-definite Hermitian matrix.

This change is akin to adding a constant imaginary part to a real number: x→ x+ iy0,

and leads to a stationary solution ρP0 ∼ exp [−S(P0V )].

One must be careful when considering these processes on non-unitary manifolds,

such as SL(N,C), since U and U † are independent group elements. A suitable redefi-

nition of the gauge group derivative is found in appendix C. It suffices here to say that

terms of the form X
(n)a∇a, in Taylor expansions in powers of the Langevin step size,

are replaced by (X
(n)a
R ∇aR + X

(n)a
I ∇aI ), where XR and XI are the real and imaginary

parts, respectively, of the complex Langevin drift

Xa
C(ε) =

(√
NRη

a
R +

√
NIη

a
I

)
ε−∇aRS(U)ε2 , (2.57)

with the assumption of a holomorphic action.

Analogous to the Langevin evolution over SU(N), evolving a PDF P (U,U †; θ) with

U,U † ∈ SL(N,C) results in a Taylor expansion similar to eq. (2.56)

P (U,U †; θ + ε) =

∞∑
n=0

εn

(2n)!
L̃T2n

[
P (U,U †; θ)

]
, (2.58)

where L̃T2n also generates the terms shown in section 2.2, using the redefined derivative

and eq. (2.57).
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2.3 Complex Langevin method

The holomorphic observables, O(U, θ), can be evolved using the operators obtained

from the above equation as

〈O(U, θ + ε)〉η =

∫
DUDU † O(U)P (U,U †; θ + ε)

=
∞∑
n=0

εn

(2n)!

∫
DUDU † O(U) L̃T2n

[
P (U,U †; θ)

]
=

∞∑
n=0

εn

(2n)!

∫
DUDU † P (U,U †; θ) L̃2n [O(U)]

=

〈 ∞∑
n=0

εn

(2n)!
L̃2n [O(U)]

〉
η

≡
〈

Θ̃ε [O(U, θ)]
〉
η
, (2.59)

where Θ̃ has been introduced as a shorthand notation for the power series in ε and L̃2n

represents the formal adjoint of L̃T2n with respect to the above integral. It is important

to notice that O(U, θ + ε) will be holomorphic if O(U, θ) is. This can be seen from the

fact that, by hypothesis ∂ijO(U, θ) = 0, where ∂ij represents the derivative with respect

to the (i, j)-th component of U †. Since the operators L̃2n only contain ∂ij , ∂ij and S,

which is assumed to be holomorphic, we have that

∂ijO(U, θ + ε) = ∂ijΘ̃ε [O(U, θ)] = Θ̃ε

[
∂ijO(U, θ)

]
= 0 . (2.60)

We now proceed to show that

〈O〉P (θ) = 〈O〉ρ(θ) , (2.61)

where 〈·〉P (θ) and 〈·〉ρ(θ) represent expectation values with respect to P and ρ, respec-

tively, provided that the initial conditions agree,

〈O〉P (0) = 〈O〉ρ(0) . (2.62)

This is achieved by choosing

P (U,U †; 0) = ρ(P0V, 0)δ(UU †(P 2
0 )−1) , (2.63)

with P0V = U , V being a unitary matrix and P0 a constant, self-adjoint and positive

semi-definite matrix. The delta function enforces UU † = P 2
0 , or U † = U−1P 2

0 . Start-
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ing from the expectation value 〈O〉P (θ) of a holomorphic observable O and using the

properties of the time evolution operators we see that

〈O〉P (θ) =

∫
DUDU †P (U,U †; θ)O(U)

=

∫
DUDU †Θ̃T

θ

[
P (U,U †; 0)

]
O(U)

=

∫
DUρ(U, 0)Θθ [O(U)]

=

∫
DUΘT

θ [ρ(U, 0)]O(U)

=

∫
DUρ(U, θ)O(U) = 〈O〉ρ(θ) , (2.64)

where we have introduced Θθ [·] as a shorthand for Θε [Θε [· · · ]] with n = θ/ε operators

chained, and used the fact that O is holomorphic on going from Θ̃ [O] to Θ [O], since

∇aIO = i∇aRO and terms of the form (X
(n)a
R ∇aR + X

(n)a
I ∇aI ) reduce to X

(n)a
C ∇aR. In

doing the above manipulations it has been assumed that boundary terms do not arise.

It is expected that if the distribution of the observables, O(U,U †)P (U,U †, θ), decays

fast enough in the non-compact directions, the Langevin process should converge to the

right result [92–94]. So far we have assumed that the Langevin drift Xa is a regular

function. If, however, the derivative of the action, ∇aS, has poles, it is necessary

to study in more detail how they influence the dynamics and the correctness of the

results [95–97].

2.3.2 Gauge cooling

The addition of new degrees of freedom via the complexification of the original man-

ifold allows for the circumvention of the sign problem, as already discussed, but the

non-compactness of groups like SL(N,C) poses extra problems, as the Langevin pro-

cess could run away to infinity by following an unstable classical trajectory. In some

situations, the noise can knock the system off such trajectories; in others, the adaptive

step size can help in avoiding them. However, it is not always possible to keep the sys-

tem away from them. Therefore, it is instructive to consider the gauge links’ average

distance from SU(N), as a function of the Langevin time.

Given that SL(N,C) matrices can be written, as used in the previous section, ac-

cording to the polar decomposition as U = PV , with P being Hermitian and positive
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semi-definite and V unitary, one may consider the unitarity norm [98, 99]

d =
1

N
Tr
[
UU † − 1

]
≥ 0 . (2.65)

This distance is only null if U is unitary and is otherwise strictly positive1. Similar

measures of this distance can be defined, but this is the simplest one and our choice

for this work. It is worth noting that d is not invariant under general SL(N,C) gauge

transformations

Ux,µ → ΩxUx,µΩ−1
x+µ , U †x,µ →

(
Ω−1
x+µ

)†
U †x,µΩ†x , (2.66)

but is unchanged if the Ωx are unitary.

Deep explorations of the non-compact directions of the complexified manifolds of

gauge theories can lead to wide probability distributions that violate the criteria for

correctness mentioned above, as has been shown in previous studies [88, 98, 99]. The

SU(N) gauge invariance of the unitarity norm can be used to reduce these explorations

without changing the physics, in a procedure known as gauge cooling [98].

Taking Ωx = exp [εαλafax ] as the transformation matrix, with ε the Langevin time,

α a positive control parameter and fax ∈ C, we consider the changes in d to first order

in ε

δd ≈ 2εαfaxTr
[
λa
(
UxµU

†
xµ − U †x−µ,µUx−µ,µ

)]
. (2.67)

Since we want d to decrease after the transformation, choosing

fax = −Tr
[
λa
(
UxµU

†
xµ − U †x−µ,µUx−µ,µ

)]
(2.68)

ensures that δd ≤ 0. This choice also guarantees that the fax are real numbers, and

therefore that Ωx acts orthogonally to SU(N), and directed toward it. Gauge fixing on

the lattice works similarly, with fax as imaginary numbers and the “distance” function

d = Tr
[
U + U †

]
, for the Landau gauge.

1In the case of U(1) gauge theories one must also include the inverted links as

d = UU† − U−1U−1†
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In simulations, gauge cooling steps are applied between consecutive Langevin evolu-

tion steps. Any potential non-unitarity of the gauge links, originating from the dynam-

ics, is reduced in a gauge invariant way. The links are transformed into those equivalent

to them that are closer to the unitary manifold in a steepest descent fashion. Many

studies of this technique have been undertaken in different models, such as one SL(N,C)

link and SU(2) Polyakov chain models [99], where an adaptive control parameter has

also been employed, 0 + 1 and 1 + 1 dimensional QCD [100], and also different norms

have been investigated [101]. Other variations of the method, where different norms

have been studied for, e.g., random matrix theories, can be found in [102,103].

2.3.3 Dynamic stabilisation

The aforementioned studies indicate that gauge cooling seems to be a necessary condi-

tion to avoid convergence to wrong limits, but it is not sufficient, as has been pointed

out in [50, 99]. In particular, it is known that gauge cooling becomes less effective on

coarser lattices—i.e., for smaller values of the gauge coupling β. This limits the appli-

cability of complex Langevin on lower temperatures, which would require potentially

very large lattices.

Since the simulations cannot be trusted when the unitarity norm is large (i.e., of

O(1)) one is faced with the need to remove all data points after the norm becomes

large from the analysis. This can be problematic, as in certain cases the unitarity norm

grows very quickly, leaving only a small statistical sample available.

We have proposed a new method, called dynamic stabilisation [52,104], which mod-

ifies the Langevin drift, Xa, for each lattice site and spacetime direction by adding

a SU(N)—but not SL(N,C)—gauge invariant term that is trivial in the continuum

limit, and grows with the distance from the unitary manifold. This lattice artefact

has the effect of a restoring force pointing toward the SU(N) submanifold, and is not

holomorphic, since it must depend on UU †. As such, it cannot be derived from an

action.

Applying this method to the simple 0-dimensional model of eq. (2.54) modifies the

drift of the imaginary component y by a force of the form −αyn, such that

ẋ = −Re∇S(x+ iy) + η ,

ẏ = −Im∇S(x+ iy)− αyn , (2.69)
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since y is the equivalent of the unitarity norm for this model and we have specialised for

real noises. In this case, large excursions into the imaginary direction can be controlled

by changing α and n, while still allowing for a certain exploration of the complexified

phase space.

One possible implementation of dynamic stabilisation in gauge theories is given by

Xa
x,µ → Xa

x,µ + iεαDSM
a
x , (2.70)

with αDS a real control coefficient and

Ma
x = ibax

(∑
c

bcxb
c
x

)3

, bax =
∑
ν

Tr
[
λaUx,νU

†
x,ν

]
. (2.71)

This choice of the dynamic stabilisation drift straightforwardly implements the criteria

outlined above: Ma
x depends only on the non-unitary parts of the gauge links, and the

power of 3 ensures scaling with a high power of the lattice spacing. Moreover, since

Ma
x is purely imaginary, it can only affect the non-unitary parts of the gauge links.

To check for the triviality of Ma
x in the continuum limit, we use the definition of

the gauge links Ux,ν in terms of continuum gauge fields,

Ux,ν = exp
[
iaλc

(
Acx,ν + iBc

x,ν

)]
, (2.72)

where the complexified field has been split as A+ iB, and a is the lattice spacing. An

expansion in powers of a shows that

Ux,νU
†
x,ν = 1− 2aλcBc

x,ν + a2
(

2λcλdBc
x,νB

d
x,ν + iBc

x,νA
d
x,ν

[
λc, λd

])
+O(a3) , (2.73)

which leads to

bax ∼ −a
∑
ν

Ba
x,ν ≡ −aB

a
x , (2.74)

and

Ma
x ∼ −ia7

(∑
c

B
c
xB

c
x

)3

B
a
x . (2.75)

It is clear that Ma
x should become irrelevant compared to, for example, F 2

µν in the

continuum limit. With this modification to the drift, the Fokker–Planck equation
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becomes, neglecting O(ε) effects,

P (U, θ + ε)− P (U, θ)

ε
= ∇a [(∇a +∇aRS + iαDSM

a)P (U, θ)] . (2.76)

We point out that while our choice for Ma
x was isotropic, this is not necessary.

Other choices can be proposed, but we do not have any method to know their efficacy

a priori. Furthermore, it is worth emphasizing this procedure is different from gauge

cooling, where gauge transformations are used between Langevin steps, with the drift

unchanged. Dynamic stabilisation is a direct modification of the Langevin drift by a

non-holomorphic term. This cannot be derived from an action, and as such the proof

of convergence outlined in section 2.3.1 is not directly applicable. It is not yet known

how it can be extended to include such terms. However, promising results can be found

in the references given and in section 3.4, where studies of the dependence of both the

Langevin drift and of observables on αDS are reviewed, together with comparisons with

results from the literature.

2.4 Simulating dynamical quarks

The simulation of dynamical fermions using Langevin dynamics is not as straightfoward

as that of gluons. The effective quark action—basically the determinant of the Dirac

operator, obtained after integrating out the fermionic fields—is highly non-local. The

Langevin method requires calculating a derivative of the action with respect to the

gauge links, which, in turn, requires inverting the Dirac matrix. We will briefly discuss

here how the necessary steps can be carried out and potential issues related to them.

Our approach follows that of [105].

The effective fermion action at finite chemical potential µ generically reads (c.f.

section 1.2.4)

SF = −Nf ln detD(U, µ) , (2.77)

where Nf is the number of quark flavours, assuming degenerate masses, and U are

the gauge links. Using the identity ln detM = Tr lnM , we can rewrite the drift term

originating from SF as

∇aSF = −Nf∇aTr lnD(U, µ) = −NfTr
[
D−1(U, µ)∇aD(U, µ)

]
. (2.78)
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Given that the size of D scales as the number of lattice sites squared, exact evaluations

of its inverse are possible only in very few cases.

One cost-effective alternative, proposed in [77, 106], is known as the bilinear noise

scheme. This method, which is related to pseudofermionic variables, involves first

writing the trace in eq. (2.78) as an average over vectors ηi of Gaussian random numbers

Tr
[
D−1(U, µ)∇aD(U, µ)

]
≈ 1

Nvec

Nvec∑
i=1

ηi
†
D−1(U, µ)∇aD(U, µ)ηi , (2.79)

with

1

Nvec

Nvec∑
i=0

ηi
†
xη

i
y = δxy . (2.80)

In the limit of Nvec →∞ this approximation becomes exact. Then a new set of vectors,

ψi, is introduced as the solution to the following linear system

D†(U, µ)ψi = ηi . (2.81)

This system can be solved using, e.g., the Conjugate Gradient (CG) algorithm. In

terms of ηi and ψi the fermion drift reads

∇aSF ≈ −Nf
1

Nvec

Nvec∑
i=1

ψi
†∇aD(U, µ)ηi . (2.82)

Using this method, it is in principle necessary to compute the inverse of D(U, µ) for

Nvec random vectors at each Langevin step.

If Nvec is sufficiently large, the actual drift is expected to be well approximated.

However, the linear system in eq. (2.81) is typically very expensive to solve, thus forcing

Nvec ∼ O(1). Unfortunately, since this approximation is only exact for a large number of

vectors, the drift can develop an imaginary component even at zero chemical potential,

where the determinant of the Dirac matrix is real. Therefore care must be taken in

controlling potential systematic uncertainties stemming from this. An extrapolation to

zero Langevin step size can be used to obtain correct results for finer lattices [105].

A source of difficulties when inverting the Dirac matrix is the non-zero chemical

potential. This can be seen more easily with the continuum version of the Dirac operator

in momentum space,

D = γνpν +m+ γ4µ . (2.83)
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When µ = 0 the smallest eigenvalue of D is proportional to m. However, the combina-

tion m + γ4µ can make the Dirac matrix singular. In such situations the matrix does

not have a formal inverse, while when m+ γ4µ ≈ 0 the numerical inversion procedure

becomes very expensive and prone to errors. This issue makes the study of nearly

massless quarks and certain regions of the phase diagram very difficult.

A subject of ongoing research is the presence of poles in the drift of eq. (2.78), due

to branch cuts of the complex logarithm on the negative real axis, as suggested in [95].

This has been studied in [97], where the effect of these poles in the formal justification

of complex Langevin has been investigated and the findings applied to HDQCD and

full QCD.
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Chapter 3

Tests of complex Langevin

W e consider a wide variety of tests of the complex Langevin method, applied

to pure SU(3) Yang–Mills theory, and then to QCD with heavy-dense

quarks (HDQCD). QCD with staggered quarks will be mentioned briefly.

Our main goal here is to test the ideas described in the previous chapter against known

results generated using Monte Carlo and analytical expectations.

The first test considered is the application of complex Langevin to the pure Yang–

Mills theory, where we study the deconfinement transition as function of the gauge

coupling. In this theory the sign problem is not present, and therefore this is typically

done with Monte Carlo or real Langevin simulations. However, here, we do not apply

any reunitarisation procedure to counter the numerical round-off errors that push the

evolution off the SU(3) manifold. Instead, gauge gooling is applied in combination

with the Langevin evolution to contain the potential non-unitarity of the gauge links.

This provides a good consistency check for complex Langevin, as complexification is

not necessary, but the known results for the critical coupling should be reproduced.

Secondly, we consider HDQCD in the vicinity of µ2 = 0. For purely imaginary

chemical potentials, µ2 < 0, the sign problem is absent and simulations using real

Langevin are possible. Upon considering observables that are continuous functions

of µ2 we can check if and when complex Langevin is applicable by verifying if this

continuity1 is observed around µ2 = 0.

Then, we study the dependence of the plaquette on the Langevin step size. We

compare complex Langevin simulations of HDQCD using the first and second order

1Provided that there is no transition to a different state of matter.
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3. TESTS OF COMPLEX LANGEVIN

algorithms, described in sections 2.2.1 and 2.2.3, at a variety of average step sizes with

known results from Metropolis-based Monte Carlo methods, which do not have step

size dependences, due to their characteristic accept/reject step. The latter cannot be

applied to Langevin simulations because they follow trajectories given by a (stochastic)

differential equation. The Monte Carlo results were possible in the cases studied because

they were carried out in regions of the parameter space where the sign problem is mild

and the reweighting technique is applicable.

Lastly, we perform a number of tests of our dynamic stabilisation (DS) method,

detailed in section 2.3.3. To motivate this method, we begin by showing a situation

where gauge cooling is not enough to keep the dynamics stable. Then we study two

situations, with mild and severe sign problems, for a wide range of the DS control

parameter αDS. We study histograms of the DS drift to see whether it introduces

boundary terms to the partial integrations necessary in the proof of convergence, and

also of the Langevin drift to see how it responds to the added force. Studies of how

the DS drift behaves as function of the gauge coupling β are also performed, in order

to check for the expected scaling with the lattice spacing. Then we move to a study

of the deconfinement transition in HDQCD, comparing results from complex Langevin

with DS and results from Monte Carlo. Again, this comparison is possible because the

sign problem for the studied case is mild and reweighting can be used. Lastly, we show

how dynamic stabilisation can help when simulating dynamical quarks on the lattice.

Before going further, it is useful to review the actions discussed in section 1.2

for Yang–Mills, HDQCD and QCD with staggered quarks, with the relevant fields

being rescaled by the appropriate power of the lattice spacing in order to make them

dimensionless. Throughout this chapter we will be using the Wilson plaquette action

for the SL(N,C) gauge links:

SG =
β

N

∑
x

∑
µ<ν

Tr

[
1− 1

2

(
Ux,µν + U−1

x,µν

)]
, (3.1)

with β being the gauge coupling constant and the plaquette

Ux,µν = Ux,µ̂Ux+µ,ν̂U
−1
x+ν,µ̂U

−1
x,ν̂ . (3.2)

The quarks’ actions, being bilinear in the fermion fields, can be integrated analytically,
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and lead to the quark determinants. We will consider that of staggered quarks,

det [DKS] = det
x,c,s

{
mδxy +

∑
ν

ηx,ν
2a

[
eµδν,4Ux,νδx+ν̂,y − e−µδν,4U−1

x−ν̂,νδx−ν̂,y
]}

, (3.3)

where detx,c,s means that the determinant is taken over spacetime, spinor and colour

indices, µ is the chemical potential, and ηx,ν is the staggered fermion sign function. We

also consider the limit of heavy quarks (HDQCD) that only propagate in the Euclidean

time direction,

det [DHD] =
∏
Nf

∏
~x

{
det
[
1 + (2κeµ)Nτ P~x

]2
det
[
1 +

(
2κe−µ

)Nτ
P−1
~x

]2
}
, (3.4)

with Nf the number of (mass degenerate) flavours and the Polyakov loop defined as

P~x =

Nτ−1∏
τ=0

U(~x,τ),4̂ . (3.5)

For HDQCD, we have studied the expectation value of the traced Polyakov loop

and its traced inverse

〈P 〉 =
1

V

∑
~x

〈P~x〉 =
1

3V

∑
~x

〈Tr [P~x]〉 , (3.6)

〈P−1〉 =
1

V

∑
~x

〈P−1
~x 〉 =

1

3V

∑
~x

〈Tr
[
P−1
~x

]
〉 . (3.7)

Both the Polyakov loop and its inverse are complex-valued for a given gauge configu-

ration, but with real expectation values, since they are related to the free energy of a

single (anti-)quark. Therefore we consider the symmetrised combination

Ps~x =
1

2

(
P~x + P−1

~x

)
, (3.8)

which matches the definition of real part of a complex number for SU(3) configurations.

Additionally, when searching for the critical parameters of the models where the

Polyakov loop is a (quasi-)order parameter, we have looked at other statistical quanti-

ties, namely the susceptibility,

χ = N3
[
〈O2〉 − 〈O〉2

]
, (3.9)
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3. TESTS OF COMPLEX LANGEVIN

and Binder cumulant [107]

B = 1− 〈O4〉
3〈O2〉2 , (3.10)

shown here written in terms of a generic observable, O. The susceptibility is defined

as the (pure or mixed) second derivative of a free energy, measuring the response of

an observable with respect to changes in an external parameter. Analyses of the sys-

tem’s susceptibility with respect to different paramaters, at various volumes, provides

information on its critical behaviour.

The Binder cumulant has limiting values 0 and 2/3, which can be understood as

follows: Let 〈O〉 be zero in one phase and non-zero in another. Assuming the higher

moments are governed by Gaussian fluctuations one can see that

〈O〉 = 0 ⇐⇒ B = 0 , 〈O〉 6= 0 ⇐⇒ B =
2

3
, (3.11)

where it is assumed that 〈O2〉 − 〈O〉2 � 〈O〉2 in the latter case. These values have

corrections that scale with the inverse of the lattice volume. Additionally, for large

enough volumes, curves for the Binder cumulant as a function of an external parameter

cross at a ‘fixed point’ value, whose location is a critical point.

In our tests involving staggered quarks we have looked at the chiral condensate,

Σ =
1

N3Nτ

∂ logZ

∂m
= 〈ψψ〉 , (3.12)

where Z is the partition function, m is the quark mass, and N and Nτ are the lattice

extents in the spatial and temporal directions, respectively. It is the order parameter

for the chiral symmetry of the massless fermion action. When light quarks are present

it is no longer an order parameter, but similar to the Polyakov loop when the centre

symmetry is not exact, it provides information on the different phases of matter.

3.1 Deconfinement transition in pure Yang–Mills

In order to validate the complex Langevin and gauge cooling methods we have inves-

tigated their range of validity as function of the gauge coupling β in the SU(3) pure

Yang–Mills theory. This theory has a real action, and so does not exhibit a sign prob-

lem; consequently, traditional methods like Monte-Carlo and real Langevin dynamics
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3.1 Deconfinement transition in pure Yang–Mills

would suffice. However, the updates could lead to non-unitary gauge links due to nu-

merical roundoff errors, which are typically dealt with by periodically reunitarising the

links. Simulations of pure Yang–Mills theories are good consistency checks for complex

Langevin and gauge cooling, as they should agree with known results generated with

other techniques, but with gauge cooling providing an alternative way to control the

non-unitarity of the gauge links. These results have first appeared in [108].

This agreement was tested by searching for the critical gauge coupling, βc, at which

the SU(3) centre symmetry of the Yang–Mills theory is broken. This breaking is marked

by a first order phase transition to non-zero expectation values for the Polyakov loop,

which also signifies the transition from the confined to the deconfined phase.

Simulations were performed for two lattice volumes, 123 × 3 and 163 × 4 with the

gauge coupling in the range 0.5 ≤ β ≤ 6.5 using complex Langevin with adaptive

step size and gauge cooling. Volumes were chosen such that a comparison with the

literature [109] was possible. Our typical simulations have run until a Langevin time

of 500, with the first 100 discarded to account for the thermalisation time, and average

step sizes ranging from 10−3 to 10−4. We have compared our results for βc, determined

using the Binder cumulant, with those of [109]. Figures 3.1 and 3.2 show the average

Polyakov loop, while figs. 3.3 and 3.4 show the Binder cumulant for these lattices as

functions of β.

Figures 3.1 and 3.2 show the expected behaviour, with the average Polyakov loop

vanishing in the confined phase, with β < βc, and jumping to a non-zero value after

the critical gauge coupling. The region where the jump happens is consistent with the

value obtained in [109]. A clearer signal of the transition can be seen in figures 3.3 and

3.4, where Binder cumulants of 0 and 2/3 identify each phase of the theory.

It is noticeable that the critical β for the second lattice, 163 × 4, is slightly larger

than that of the first one. If we consider the Yang–Mills theory as the description

of some physical phenomenon, the transition happens at well-defined temperature. In

terms of lattice parameters, the physical temperature is given by T = 1/aNτ , with a

the lattice spacing and Nτ the lattice extent in the temporal direction. By increasing

the number of points in the Euclidean time direction from 3 to 4, a decrease in a is

to be expected for a fixed temperature. From renormalisation group arguments [55],

β ∼ 1/g2 ∼ − log(a), hence the observed larger inverse coupling is to be expected.
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Figure 3.1: Average value of the Polyakov loop in a 123 × 3 lattice as a function of β for
a pure SU(3) Yang–Mills theory. The vertical line indicates βc from [109].
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Figure 3.2: Average value of the Polyakov loop in a 163 × 4 lattice as a function of β for
a pure SU(3) Yang–Mills theory. The vertical line indicates βc from [109].
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Figure 3.3: Binder cumulant of the Polyakov loop in a 123 × 3 lattice as a function of β
for a pure SU(3) Yang–Mills theory. The vertical line indicates βc from [109].
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Figure 3.4: Binder cumulant of the Polyakov loop in a 163 × 4 lattice as a function of β
for a pure SU(3) Yang–Mills theory. The vertical line indicates βc from [109].
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The critical gauge coupling extracted from our simulations via the Binder cumulant

is in accordance with the expected value from the literature. Figures 3.1 to 3.4 also

support that, despite the enlarged phase space, the complex Langevin method is able to

produce the correct results. Excursions into the non-compact directions of SL(3,C) have

been prevented without reunitarising the gauge links, as the typical average unitarity

norm of our simulations was of O(10−27).

We stress that, strictly speaking, the behaviour shown in figs. 3.1 to 3.4 arises

from the apparent absence of tunnelling between the three vacua allowed by the Z3

symmetry. This is further demonstrated in fig. 3.5, where results from three sets of

simulations are shown, each of them starting close to a different vacuum. This shows

that, for the system size and simulation time used, tunnelling is absent and, moreover,

the Z3 symmetry was not affected by the complexification procedure.
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Figure 3.5: Scatter plot of the real and imaginary parts of the Polyakov loop of three
simulations with different initial conditions. The simulations were carried out in a volume
of 163 × 4 and gauge coupling β = 5.75.
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3.2 Continuity of the plaquette around µ = 0

3.2 Continuity of the plaquette around µ = 0

As previously discussed, QCD in the limit of heavy quarks (HDQCD) suffers from

the sign problem at real chemical potentials. On the other hand, when µ is purely

imaginary, the quark determinant is real and the model can be simulated using, e.g.,

the real Langevin equation method, where the gauge links are periodically reunitarised.

Therefore, observables that are continuous functions of µ2 should have compatible

average values for both purely imaginary and purely real chemical potentials. These

results have first appeared in [108].

One such observable is the plaquette, which we have studied as a function of µ2,

for different values of the gauge coupling, using the first order algorithm. We have

used κ = 0.04 as the hopping parameter, Nf = 2 quark flavours in a 83 × 16 lattice

and −0.3 < µ2 < 0.3, well below the critical chemical potential at zero temperature of

µ0
c ≈ 2.53. At this temperature the system is within the Silver Blaze region; very little

dependence on the chemical potential is expected, as it is exponentially suppressed. As

with the previous tests, the points before Langevin time of 100 were discarded, with

the simulation running until θ = 500, employing gauge cooling and adaptive Langevin

step size averaging around O(10−4). Our results are shown in figures 3.6, 3.7 and 3.8.

For β = 6.2 and β = 5.8 we provide linear fits for the real part of the plaquette,

together with their error bands. The figures show clearly that the points fluctuate

randomly around the fitted line, thus confirming the expected continuity. It is worth

noting that the statistical fluctuations are in the fifth decimal place. Reducing them

at this precision is considerably expensive and beyond the scope of this test.

At stronger couplings (lower β) the complex Langevin method has been known

to give inaccurate results. Some can be seen in [99], where it fails to match results

generated using reweighting, in a region where the latter is reliable. The graph in fig.

3.8 verifies this statement, showing a discontinuity at β = 5.4. Besides the discontinuity,

we note that the large error bars on the right-hand side of figure 3.8 are due to the

difficulty in determining the plaquette accurately. Another contributing factor is that

the unitarity norm grew to O(1) very quickly; as will be discussed in more details in

section 4.2, data generated after the unitarity norm becomes too large is unreliable and

should not be included in the statistical analysis.
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Figure 3.6: The average plaquette as function of µ2 at β = 6.2. Points at µ2 < 0,
generated with real Langevin, and at µ2 > 0, using complex Langevin, are compatible
with the linear fit (black line). An error band for the fit is also shown.
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Figure 3.7: The average plaquette as function of µ2 at β = 5.8. Points at µ2 < 0,
generated with real Langevin, and at µ2 > 0, using complex Langevin, are compatible
with the linear fit (black line). An error band for the fit is also shown.
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Figure 3.8: The average plaquette as function of µ2 at β = 5.4. Points at µ2 < 0, have
been generated with real Langevin, and those at µ2 > 0, with complex Langevin.

It is important to note that this study has been carried out using a first order

discretisation scheme, with average Langevin step size of 〈ε〉 ∼ 1.5×10−4, and therefore

systematic errors are to be expected. A simulation at 〈ε〉 ∼ 1.5 × 10−5, β = 5.8

and µ = 0 using real Langevin and the same discretisation method gives an average

plaquette of 0.567458(46), which differs from the value of figure 3.7 in the third decimal

place. We stress that despite the high statistical precision of the results quoted in this

section, our aim was to verify the plaquette’s continuity around µ2 = 0 and not make

precision measurements.

3.3 Dependence of observables on Langevin step size

We have tested the effectiveness of the O(ε2) improvement to the Langevin process dis-

cussed in section 2.2.3 in the HDQCD model. This improvement should cause the finite

Langevin step size corrections to be smaller, making an eventual extrapolation ε → 0

more reliable and closer to the correct answer for finite ε. With these systematic uncer-

tainties reduced, better comparison with results from Monte Carlo and other methods
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are possible, when the sign problem is milder and techniques such as reweighting can

be applied.

Our first test was done using HDQCD in a lattice of size 63 × 6, coupling β = 5.9,

hopping parameter κ = 0.12 and chemical potential µ = 0.85, and used gauge cooling

and dynamic stabilisation, with αDS = 100, to guarantee that the unitarity norm was

under control. These parameters were chosen to match those used in [99], from which

the value generated using reweighting was used to compare with our simulations. As

before, a thermalisation time of 100 has been used, but now with longer runs, going

up to 2100. Figure 3.9 shows, in a logarithmic scale for the horizontal axis, our results

for the usual first order algorithm, both choices of parameters (eqs. (2.46)-(2.48) and

(2.49)-(2.53)) for the second order one, and the result from reweighting.
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Figure 3.9: A comparison of the step size dependence of the plaquette in HDQCD between
1st and 2nd order algorithms and reweighting, for 63 × 6, β = 5.9, κ = 0.12 and µ = 0.85
using dynamic stabilisation with αDS = 100. Dashed lines are to guide the eye.

The graph shows that both second order methods agree with one another and with

the grey band representing the reweighting result already at step sizes of O(10−3), while

the first order scheme required 〈ε〉 . O(10−4). One of the main reasons for using an

improved discretisation scheme is that, for given finite ε corrections, simulations are
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faster, since an improvement in this systematic uncertainty by a factor of 10 compared

to 1st order outweighs their greater computational complexity.
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Figure 3.10: A comparison of step size dependence of the plaquette in HDQCD between
1st and 2nd order algorithms and reweighting for 63 × 6, β = 5.9, κ = 0.12 and µ = 0.85
using dynamic stabilisation with αDS = 100. Linear and quadratic fits are provided.

Figure 3.10 shows the same data as figure 3.9 with a linear scale for the Langevin

step size, together with linear and quadratic fits, for the first and second order points,

respectively. The linear fit shows an evident trend for the first order points, with clear

indication that the improved algorithm removes this linear dependence on the step size.

We have also performed tests including staggered fermions. However, it is known

that dynamical fermions cannot be fully improved to O(ε2) due to the non-integrability

of certain terms in the Langevin drift [106]. Our results using the second order scheme

were incompatible with those of first order, further confirming that the Langevin evo-

lution of dynamical fermions cannot be improved in the same way as that of gluons,

as shown in fig. 3.11. These simulations have been performed in a lattice of volume

83 × 2, inverse coupling β = 5.4, chemical potential µ = 0 and quark mass m = 0.05.

The average Langevin step sizes have been of O(10−5); i.e., in the region where step

size corrections should be small enough that both algorithms should agree.
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Figure 3.11: A comparison of first and second order algorithms applied to a Langevin
simulation of staggered fermions. The simulations have been performed in a lattice of
volume 83 × 2, with β = 5.4, µ = 0 and m = 0.05.

3.4 Tests of dynamic stabilisation

3.4.1 Dependence of observables on αDS

Our proposed method to constrain the exploration of the SL(N,C) phase space, dy-

namic stabilisation (DS), has one free parameter labelled αDS that controls how strong

the restoring force is. Its effect on the Langevin dynamics is difficult to predict, how-

ever, due to the high complexity of the gauge theories and of the complex Langevin

method itself. In the low αDS limit the DS drift becomes very small and the dynam-

ics is essentially unaffected. For large αDS, on the other hand, excursions into the

non-unitary directions of SL(N,C) become heavily suppressed. In practice, this can be

viewed as a “soft” reunitarisation of the gauge links.

The question of whether there is an interval of values for αDS that keeps the unitarity

norm bounded while still allowing for exploration of the enlarged group manifold is

the central point of this section. This has been tested using the HDQCD model. In

some cases, results from reweighting were available, so a comparison was possible.

However, this means that the average phase of the quark determinant is not close to

58



3.4 Tests of dynamic stabilisation

zero, indicating the absence of (or a very mild) sign problem. More interesting tests

have been done closer to the deconfinement transition, where reweighting cannot be

applied, but simulations with gauge cooling suffered from instabilities that reduced the

size of the statistical sample available.

Our initial tests have been done in a situation where the average phase of the

quark determinant is close to unity, and therefore a comparison with reweighting was

possible. We have chosen a volume of 103 × 4, β = 5.8, κ = 0.04 and µ = 0.7. In

this situation, the average Polyakov loop generated using complex Langevin and gauge

cooling does not agree with that from reweighting. Further investigation has shown

that their values did match for Langevin time below ∼ 50, while the unitarity norm

was below O(0.1), as shown in figure 3.12. Further discussion about the instabilities
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Figure 3.12: The average Polyakov loop and unitarity norm as functions of the Langevin
time for HDQCD in a 103×4 lattice, with κ = 0.04, β = 5.8 and µ = 0.7. Values generated
using gauge cooling and reweighting agree when the unitarity norm is lower than O(0.1).

displayed by the average Polyakov loop can be found in section 4.2. For now we

consider the effect of adding the DS, term iεαDSM
a
x , defined in section 2.3.3, to the

Langevin drift for a variety of values for αDS. The results of this change applied to

the same simulation parameters used above are shown in figs. 3.13 and 3.14, where the

59
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simulations included one step of gauge cooling between successive Langevin updates.

The former shows the Langevin time evolution of the average Polyakov loop, comparing

gauge cooling, dynamic stabilisation for αDS = 100, and reweighting, while the latter

presents the same observable for different values of αDS, with a panel zooming around

the reweighting result.
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Figure 3.13: The average Polyakov loop as function of the Langevin time for HDQCD in
a 103 × 4 lattice, with κ = 0.04, β = 5.8, µ = 0.7 and αDS = 100. The plot shows results
using only gauge cooling, gauge cooling with dynamic stabilisation, and reweighting.

We find agreement between reweighting and the simulation using DS for all Langevin

times after thermalisation, in fig. 3.13. Its average unitarity norm was of O(10−3), below

the region known to cause convergence to wrong limits. In fig. 3.14, we see that complex

Langevin results agree with those from reweighting for sufficiently large αDS. When

the contribution from dynamic stabilisation is small, the instabilities shown in fig. 3.12

are still present.

Figures 3.13 and 3.14 seem to indicate that αDS could be chosen arbitrarily large

without consequences to the dynamics—i.e., without changing the physics. As men-

tioned previously, for the parameters used in those simulations the average phase of the

quark determinant is close to unity, which means that the sign problem is very mild.
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Figure 3.14: The average Polyakov loop as a function of αDS compared with the result
generated with reweighting for HDQCD in a 103 × 4 lattice, with κ = 0.04, β = 5.8 and
µ = 0.7. Agreement is reached once αDS is sufficiently large.

In situations where the average phase of the fermion determinant is (close to) zero,

reweighting is unreliable, and restricting the simulation to the unitary manifold would

mean ignoring the oscillating phase of the quark determinant. Complex Langevin

combined with gauge cooling is, in principle, a viable option, but the instabilities

shown in fig. 3.12 have also been observed in this context. Dynamic stabilisation,

given the previous results, is the ideal method to be applied in this case. Moreover, in

such situations an excessive suppression of explorations of SL(3,C) could have effects

similar to those of projecting the gauge links onto the unitary submanifold. This can

give indications of upper bounds on αDS.

Our choice of parameters for these tests are a lattice of size 83 × 20, with coupling

β = 5.8, hopping parameter κ = 0.04 and chemical potential µ = 2.45, which is very

close to the critical one at zero temperature, µ0
c ≈ 2.53. The average phase of the

fermion determinant has been compatible with zero for all of our choices of αDS, being

of O(10−20) in some cases, indicating a severe sign problem. As before, we have used

a Langevin time of 100 for thermalisation and have ran the simulations until θ = 500.

The effect of DS on the unitarity norm is shown in fig. 3.15, where we analyse it as
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function of αDS for the previously discussed set of parameters (103×4, β = 5.8, κ = 0.04

and µ = 0.7), which has an average quark determinant close to unity, and that of the

previous paragraph, with detM ≈ 0. Essentially, the DS term was able to restrict

the excursions in SL(3,C) to a submanifold whose distance from SU(3) decreases with

αDS. When the sign problem is more severe, a plateau seems to emerge for large αDS,

whereas for milder sign problems it follows an almost straight line in the log-log plot,

as indicated by the fit of form y = axb.
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Figure 3.15: The average unitarity norm as a function of αDS for HDQCD, with κ = 0.04,
β = 5.8, and volume and chemical potential indicated on the figure. A power-law fit is
provided for the data with average fermion determinant close to unity.

Due to the severity of the sign problem, comparisons with reweighting are not

possible. Fig. 3.16 shows results for the average Polyakov loop using only gauge cooling,

and also with dynamic stabilisation, with αDS = 103 and Langevin time 0 < θ <

100. The gauge cooled simulation exhibits the aforementioned instabilities when the

unitarity norm becomes too large, which happens sooner than in the previous scenario.

Nevertheless, the system seems to thermalise quickly, before converging to the wrong

limit, and DS results are compatible with those of gauge cooling while d < O(0.1),

which corresponds to θ . 22.
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Figure 3.16: The Polyakov loop as function of Langevin time using gauge cooling and
dynamic stabilisation for HDQCD in a 83×20 lattice, with κ = 0.04, β = 5.8 and µ = 2.45.
Convergence to wrong limiting value is seen in the gauge cooling data after θ ≈ 22.

A comparison amongst simulations using real Langevin, gauge cooling with unitarity

norms above and below our threshold of 0.03 and dynamic stabilisation at various values

of αDS can be found in fig. 3.17. We have also added a line representing the value from

the phase quenched version of HDQCD, where the fermion determinant is replaced by

its absolute value. As in fig. 3.14 there is a region where DS agrees with gauge cooling

results prior to the instability. However, for larger values of αDS we observe a departure

from this agreement, possibly towards the value simulated using real Langevin.

As will be discussed in 4.2, gauge cooling simulations provide robust results when

the unitarity norm is small. The agreement between DS and gauge cooling with low

unitarity norm, shown in fig. 3.17, is further evidence that dynamic stabilisation suc-

ceeds in keeping explorations of SL(3,C) under control. Thus, convergence to the right

limit can be achieved with reasonable values for αDS. For the moment, there is no

known a priori way of determining them, which must be done in a case-by-case basis.

Fortunately, αDS does not require fine-tuning, since the range of values that results in

correct convergence spans a few orders of magnitude, at least in the studied cases.

There is evidence in random matrix models [110] that complex Langevin simulations
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Figure 3.17: The average Polyakov loop as function of αDS. Also shown are results from
simulations with gauge cooling (GC) at different unitarity norm cutoffs, phase quenched
(PQ) HDQCD, and with real Langevin.

can converge to phase quenched results in certain situations. When that is the case,

a reweighting procedure can assure convergence to the right limit. However, we have

found no indication of this behaviour in HDQCD, as the phase quenched result for the

average Polyakov loop in the setup outlined above is 0.180844(91), shown in fig. 3.17.

For some of the simulations discussed above, we have plotted histograms of the

absolute value of the dynamic stabilisation drift, αDSε|Ma
x |, as shown in fig. 3.18 on

a log-log scale. In the context of the criteria for correctness and convergence to the

correct limit, discussed in section 2.3.1, these histograms show how the count of the new

addition to the Langevin drift decays. A slow decay, perhaps with heavy “tails”, would

spoil the arguments used in the proof. On the other hand, a localised distribution, with

fast decay, should not prevent the convergence to the right limit, despite the term’s

non-holomorphy.

At αDS = 1.0, the dynamic stabilisation force has little effect and the unitarity

norm is still high, causing larger values of |Ma
x |. As αDS increases we see an initial

decrease in the number of larger values of |Ma
x |, due to the smaller unitarity norms,

followed by an increase. This is due to αDS increasing faster than the decrease in Ma
x .
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Figure 3.18: Histogram of the drift added by dynamic stabilisation for different values
of the control parameter αDS in a log-log scale.

When this happens, the DS drift risks overshadowing the Langevin drift coming from

the physical action if αDS is made larger. It is also clear that the drifts are localised

for the intermediate range of αDS where the results match those of gauge cooling prior

to instabilities: there are no countings of αDSε|Ma
x | > 10−2. This means that dynamic

stabilisation does not add boundary terms to the partial integrations needed in the proof

of convergence discussed in section 2.3.1. The values of the DS control parameter shown

in the figure were chosen to display the DS drift’s behaviour at extreme (αDS = 1.0

and αDS = 1010) and more sensible cases (αDS = 105 and 107). The former two can be

seen to give results away from that of gauge cooling with low unitarity norm, while the

latter two are much closer to it.

We have also prepared histograms of the real and imaginary parts of the Langevin

drift, Ka
x,µ = −∇ax,µS. The imaginary part, that which is orthogonal to SU(3), is sup-

pressed by dynamic stabilisation. This clearly is visible in fig. 3.19, which also indicates

a decreasing unitarity norm. Additionally, the real part is essentially unchanged by the

DS term once αDS is large enough, as seen in fig. 3.20. The reason Re[Ka
x,µ] is different

for lower DS parameters is that the system is still exploring a wide region of SL(3,C)
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and converging to a wrong limit. The kink in the graph is due to a change in the

Langevin step size, from the adaptive algorithm.
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Figure 3.19: Histogram of the imaginary part of the Langevin drift Ka
x,µ = −∇ax,µS,

multiplied by the Langevin step size, for different values of the DS control parameter αDS

in a log-log scale.

3.4.2 Dependence of dynamic stabilisation on the gauge coupling

As mentioned in section 2.3.3, the dynamic stabilisation has been constructed to be

irrelevant in the continuum limit. One way to verify this irrelevance is to analyse the

distribution of the values of the DS drift at different lattice spacings. We have again

used κ = 0.04 and µ = 2.45 in a 83×20 lattice in a further three simulations at different

values of the gauge coupling, specifically β = 5.8, 6.0 and 6.2, with αDS = 103. From

the results we have generated histograms of the DS drift, shown in fig. 3.21 in a log-log

scale, together with power-law fits of the form y = bxa, and also of the real part of the

Langevin drift, shown in fig. 3.22. The fitted parameters, a and b, are shown in table

3.1.

The occurence of larger values of |Ma
x | in fig. 3.21 decreases at finer lattices—i.e.,

larger β. In addition, comparing figs. 3.21 and 3.22 confirms that |Ma
x | is more sensitive
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Figure 3.20: Histogram in a log-log scale of the real part of the Langevin drift
Ka
x,µ = −∇ax,µS, multiplied by the Langevin step size, for different values of the DS control

parameter αDS.

β a log10(b)

5.8 −4.372(44) −9.48(12)
6.0 −4.637(58) −11.50(17)
6.2 −5.64(10) −15.61(34)

Table 3.1: Values and uncertainties for the parameters of the power law y = bxa fitted
to the data shown in fig. 3.21.
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Figure 3.21: Histogram of the drift added by dynamic stabilisation for different values
of the gauge coupling β in a log-log scale. Power law fits are also provided.
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Figure 3.22: Histogram of the real part of the Langevin drift, for different values of the
gauge coupling β, in a log-log scale. The kink in the graph is caused by a change in step
size, introduced by the adaptive algorithm.
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to changes in the gauge coupling than the real part of the Langevin drift. This indicates

that |Ma
x | is decreasing with the coupling faster than Ka

x,µ, as it is supposed to. The

small differences between the different data sets in fig. 3.22 are caused by the different

physics being simulated because of the smaller coupling.

This is a crucial test for the dynamic stabilisation method, since it has been con-

structed to

• curb large exploration of SL(3,C);

• not change the SU(3) part of the Langevin drift;

• be irrelevant in the continuum limit.

The first point above has been demonstrated in the previous section, while the second

is true in our construction shown section 2.3.3. It is worth noting that, as with gauge

cooling, DS does not directly change the real part of the drift. However, due to the

non-linearity of the update process, both can affect the observables, as expected. The

last point is seen to be true from fig. 3.21 and table 3.1, where larger values for the

inverse coupling resulted in larger slopes for the fitted lines.

3.4.3 Deconfinement transition for HDQCD

In this section we apply dynamic stabilisation to QCD with heavy quarks in order to

reproduce the deconfinement transition by varying the gauge coupling. Our results

are compared to those of [99], which have been generated with reweighting and with

complex Langevin with adaptive step size and gauge cooling. As noted before, complex

Langevin has been known be inaccurate at lower values of the coupling, namely β . 5.5.

Even though DS has been conceived to deal with large explorations of the enlarged

phase space necessary for the complex Langevin method, its effect on the dynamics at

different couplings is not manifest.

We have employed dynamic stabilisation with αDS = 103 on complex Langevin

simulations of HDQCD with parameters chosen to match those used in [99], namely

a lattice of size 63 × 6, κ = 0.12 and µ = 0.85, with one gauge cooling step between

successive Langevin updates. The same parameters have been used in simulations using

complex Langevin and gauge cooling only, with a variable number of gauge cooling

steps, depending on its effectiveness. Our average Langevin step size is of O(10−4),
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with thermalisation time of 100 and total Langevin time ranging from 600 to 5000 for

gauge cooling simulations, and 5000 for all DS runs. The gauge coupling has been varied

from β = 5.4 to 6.2. Fig. 3.23 shows the Polyakov loop and its inverse as functions of

β, comparing reweighting results to our DS results. As already known, it is possible
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Figure 3.23: The average of Polyakov loop and of its inverse as functions of the gauge cou-
pling. Data has been generated using dynamic stabilisation and compared with reweight-
ing.

to go from a deconfined to a confined phase using complex Langevin. There is good

agreement between our Polyakov loop averages and reweighting results for all β, and

the same is true for the inverse Polyakov loop. Both methods see a zero Polyakov

loop average at the same coupling, meaning that the critical gauge coupling should be

compatible between them.

We compare the spatial plaquette’s expectation value simulated using dynamic sta-

bilisation, gauge cooling and reweighting in fig. 3.24 and table 3.2. As already noticed

in [99], there is a clear discrepancy between gauge cooling and reweighting results for

lower values of the gauge coupling. Including all points generated with gauge cooling in

the analysis makes the disagreement appear much sooner than in the reference. When

simulation data after the unitarity norm reaches our threshold of 0.03 is excluded from
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the analysis, also shown in the figure, we are able to reproduce their results. Unfortu-

nately, this also makes our statistical sample small, since the unitarity norms rise very

quickly, making the error bars much larger than those from reweighting.

Using dynamic stabilisation, however, largely seems to resolve this tension. Both

the figure and the table show excellent agreement between reweighting and DS for all

values of β used in the simulations: at β = 5.4 the difference in the spatial plaquette

between these methods is approximately of 1.08σ, while for β ≥ 5.5 it is less than one

standard deviation.

This indicates that going through the deconfinement transition is not the cause

of the disagreement between complex Langevin with gauge cooling and reweighting.

Large explorations of SL(3,C) could be related to the observed discrepancy, since cut-

ting off data points after the unitarity norm became too large improved the results.

Nevertheless, the non-trivial effects of DS on the dynamics seem to be more beneficial

than just keeping the unitarity norm under control.
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Figure 3.24: The expectation value of the spatial plaquette as function of the gauge
coupling β from HDQCD simulations at 63 × 6, κ = 0.12 and µ = 0.85. Results generated
with dynamic stabilisation, gauge cooling and reweighting, from [99], are shown.
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β RW DS GC d < 0.03 GC

5.4 0.47164(33) 0.472007(86) 0.4931(24) 0.504292(75)
5.5 0.49687(38) 0.49708(11) 0.5133(38) 0.516607(56)
5.6 0.52461(47) 0.52441(12) 0.5404(16) 0.530817(72)
5.7 0.55086(63) 0.55064(19) 0.5559(18) 0.54705(97)
5.8 0.57097(58) 0.570849(69) 0.57062(55) 0.56547(22)
5.9 0.58417(47) 0.584086(37) 0.584(34) 0.5822(16)
6.0 0.59533(42) 0.59522(28) 0.59604(31) 0.59449(67)
6.1 0.60533(38) 0.605332(24) 0.60524(30) 0.604713(50)
6.2 0.6146(36) 0.614567(22) 0.61441(15) 0.614275(33)

Table 3.2: The average value for the spatial plaquette, from HDQCD simulations at
63× 6, κ = 0.12 and µ = 0.85, using reweighting, dynamic stabilisation and gauge cooling.
Reweighting data have been taken from [99]. In the fourth column data after the unitarity
norm became too large was excluded from analysis.

3.4.4 Staggered fermions with dynamical stablisation

As a final test of dynamic stabilisation we have investigated whether agreement between

QCD simulations with lighter quarks using gauge cooling and dynamical stabilisation is

observed, as it is with HDQCD, when the unitarity norm is below O(0.1). These tests

have been performed at zero chemical potential, since the number of random vectors

used in the bilinear noise scheme, discussed in section 2.4, has to be small to keep the

simulation costs low. Therefore a non-zero unitarity norm is to be expected, which can

lead to instabilities if uncontrolled.

We have simulated QCD with staggered fermions in a lattice of volume 83, inverse

coupling β = 5.4, quark mass m = 0.03 and µ = 0, and two different temporal extents,

Nτ = 2 and Nτ = 16. These simulations used one random vector in the evaluation

of the fermionic drift. Small tests with 2 and 4 random vectors have not resulted in

a cost-effective improvement, especially in the unitarity norm. As is common practice

also in Monte Carlo simulations, we have not inverted the Dirac matrix at every single

Langevin step, but at every four steps.

Our simulations were set to run for 1100 Langevin time units. In the cases where

only gauge cooling was applied, the unitarity norm rose very quickly and instabilities

set in. This has severely limited the statistics available, as evident in figs. 3.25 and

3.26. They show the Langevin time evolution of the real part of the chiral condensate

for the studies with dynamical stabilisation combined with gauge cooling and just with

gauge cooling for Nτ = 2 and Nτ = 16, respectively. Agreement between both cases
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can be seen for small Langevin time, with the DS simulations maintaining their trends

for the full stipulated simulation time.
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Figure 3.25: Langevin time evolution of the chiral condensate, in a lattice of 83 × 2,
β = 5.4, m = 0.03 and µ = 0, of simulations using only gauge cooling and gauge cooling
with dynamic stabilisation. Large fluctions develop on the former.

Despite the window where gauge cooling tests gave reliable results being small, the

agreement with dynamic stabilisation is clear. We conclude that DS can be applied

to QCD with fully dynamical quarks, and is able to control the rising unitarity norm

caused by the small number of random vectors used to calculate the fermionic drift.
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Figure 3.26: Langevin time evolution of the chiral condensate, in a lattice of 83 × 16,
β = 5.4, m = 0.03 and µ = 0, of simulations using only gauge cooling and gauge cooling
with dynamic stabilisation. The former has stopped around θ ∼ 5.
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Chapter 4

Lattice results using complex

Langevin

W e have applied the techniques described in chapter 2 and the tests of

chapter 3 to different studies of lattice QCD and its heavy-dense approx-

imation at finite temperature and chemical potential. We present our

results in this chapter. Preliminary results from the studies discussed in sections 4.1

and 4.2 have appeared in [111–114], with the final results in [50]. Results from the

subsequent sections will appear in [115].

The first section concerns the exploration of the phase diagram of HDQCD using

the first order discretisation algorithm of complex Langevin combined with gauge cool-

ing. We have done multiple simulations of this theory at a variety of temperatures and

chemical potentials for three different lattice volumes. By analysing statistical quan-

tities of the Polyakov loop, such as average, susceptibility and Binder cumulant we

have been able to determine the boundary between the different phases of the heavy-

quark approximation of QCD, as sketched in fig. 1.2. A polynomial fit to the critical

temperature as a function of the chemical potential is also provided.

Afterwards, we discuss instabilities in the Langevin evolution encountered during

the study of the HDQCD phase diagram. These have been discovered to be related to

large unitarity norms—i.e., large explorations of the SL(3,C) manifold. We have studied

how cutting off data after the norm becomes sufficiently large from the analyses can

improve them and allow for reliable results.
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

Section 4.3 discusses the application of the second order discretisation scheme, com-

bined with gauge cooling and dynamic stabilisation, to the determination of the critical

chemical potential of HDQCD as a function of the hopping parameter, κ, for low tem-

peratures (T < 100MeV). This analysis again uses the Binder cumulant of the Polyakov

loop. We have concluded that, for these low temperatures, the critical chemical poten-

tial can be described by linear fits in κ and T .

Using the information obtained in the studies of sections 4.1 to 4.3, we revisit the

phase diagram of HDQCD in sec. 4.4. In this second study, we have employed the

second order algorithm and dynamic stabilisation in a scan of the T −µ plane focussing

on points around the boundary line. For the thermal transition, a qualitative analysis

was used, due to the coarseness in the temperature axis. A quantitative result was

possible when studying the transition in the µ direction for fixed temperatures. We

fitted the data with a function that shows the quartic dependency of T on µ, for higher

temperatures, and the linear behaviour, close to T = 0.

We close this section with our preliminary results on the use of Dynamic Stabil-

isation to simulate QCD with dynamical quarks, at finite chemical potential, on the

lattice. We have restricted our studies to the high temperature region, where errors

stemming from the inversion of the Dirac operator are more easily under control. At

our lowest temperature we see large fluctuations developing after a certain chemical

potential, where the fermion matrix becomes harder to invert. Our studies concerned

varying the chemical potential until the saturation region, for four different tempera-

tures, and analysing the effects on chiral symmetry, via the chiral condensate, and on

the centre symmetry, via the Polyakov loop.

4.1 HDQCD phase diagram

Our objective in this study was an exploration of the phase diagram of HDQCD, dis-

cussed in section 1.2.5. As said there, this model shares interesting features with QCD

with fully dynamical quarks, such as the sign problem. On the other hand, because

its fermion determinant is simpler, it is much cheaper to simulate, and offers a good

testing ground for complex Langevin in a more realistic case.

We have investigated the phase diagram of QCD in the limit of heavy quarks via

direct simulation of points in the temperature–chemical potential plane. We have em-
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4.1 HDQCD phase diagram

ployed complex Langevin simulations with the first order algorithm, a variable number

of gauge cooling steps applied between consecutive Langevin updates and adaptive

Langevin step size. The reliability of this study has been tracked by monitoring the

unitarity norm and the distribution of the observables, and by making comparisons

with reweighting, when applicable. When analysing the data, we have imposed our

unitarity norm cutoff of 0.03, meaning that all data points after this threshold was

reached were omitted from the analysis. Larger unitarity norms will be discussed in

the next section.

We have taken an approach of fixed lattice spacing, a, in this study, with the various

numerical parameters, such as gauge coupling β, lattice volume V , hopping parameter

κ, number of flavours Nf and critical chemical potential µ0
c , described in table 4.1.

β = 5.8 V = 63, 83, 103 a ∼ 0.15 fm
κ = 0.04 Nf = 2 µ0

c = 2.53

Nτ 28 24 20 16 14 12 10 8 7 6 5 4 3 2
T [MeV] 48 56 67 84 96 112 134 168 192 224 268 336 447 671

Table 4.1: Parameters used in our study of the HDQCD phase diagram. The chemical
potential µ is varied from 0 to 1.3µ0

c , with µ0
c = − ln(2κ). The lattice spacing was set

in [116] using the gradient flow [117–119].

A wide range of chemical potentials and temperatures has been covered, with a total of

880 ensembles with different combinations of Nτ and µ, for each of our three volumes.

The lattice spacing has been determined in [116] using the gradient flow [117–119], and

has been used to convert the temperature into physical units. The fixed lattice spacing

approach provides good coverage of the phase diagram for low temperatures, with fixed

artefacts, but gives poor coverage at high temperatures.

Figures 4.1 and 4.2 show the average quark number density 〈n〉 and symmetrised

Polyakov loop 〈P s〉 = 1
2〈P + P−1〉, respectively, as functions of the chemical potential

and temperature for a spatial volume of 103. We show interpolated surfaces to guide

the eye, and black points, representing the individual simulations, on each figure. We

have expressed the chemical potential in units of µ0
c and used the lattice spacing to

write the temperature in physical units.

Figure 4.1 shows a sharp rise in the quark density to the saturation value1 of

nsat = 12 around µ = µ0
c for low temperatures. At higher temperatures, this be-

1nsat = Nspins ×Nc ×Nf = 2 × 3 × 2 = 12.
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

Figure 4.1: Average quark number density 〈n〉 as function of the temperature and chemi-
cal potential for a volume of 103. In addition to the black points, representing simulations’
results, we show an interpolated surface to guide the eye.

Figure 4.2: Average symmetrised Polyakov loop 〈P s〉 as function of the temperature
and chemical potential for a volume of 103. In addition to the black points, representing
simulations’ results, we show an interpolated surface to guide the eye.
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4.1 HDQCD phase diagram

haviour becomes smoother. Due to the quark number susceptibility at µ = 0 being

exponentially suppressed for heavy quarks, the quark number density only rises very

slowly as µ increases from zero. The region where µ� µ0
c is a lattice artefact, with the

lattice entirely filled with quarks, and the Pauli exclusion principle forbidding further

addition of quarks.

The Polyakov loop of fig. 4.1 exhibits both the transition to high densities, driven by

quark dynamics, and the deconfinement transition, drive by gluonic dynamics. In the

saturation region we see the Polyakov loop dropping to zero at low temperatures. This

can be understood in terms for the particle-hole symmetry of the HD approximation,

described in section 1.2.5. We then expect the Polyakov loop to be symmetric around

µ0
c . At high temperatures, the thermal energy is sufficient to deconfine the quarks and

we see a non-zero Polyakov loop for all chemical potentials.

In figs. 4.3 and 4.4, we show the quark density and Polyakov loop susceptibilities,

where outlines of the phase transitions can be seen. Note that, to improve visibility,

in both figures the dominant peaks are not shown. One of the peaks not displayed

in the figure has a negative value for the susceptibility. This happens because of the

complex nature of the observables, whose real and imaginary parts cannot be studied

separately, as that would break holomorphy. In principle, the susceptibilities can be

used to determine the phase boundary. However, a better signal has been obtained

Figure 4.3: Quark density susceptibility as function of the temperature and chemical
potential for a volume of 103. Peak heights have been cut, resulting in white plateaus.
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

Figure 4.4: Quark number susceptibility as function of the temperature and chemical
potential for a volume of 103. Peak heights have been cut, resulting in white plateaus.

by employing the Binder cumulant, introduced in chapter 3,

B = 1− 〈O4〉
3〈O2〉2 , (4.1)

where O represents a generic observable.

We have studied the Binder cumulant of the symmetrised Polyakov loop P s, shown

in fig. 4.5. The two phases, confined, with 〈P s〉 = 0, and deconfined, with 〈P s〉 6= 0,

are clearly separated. Here it shows that our fixed lattice spacing approach does not

have sufficient resolution to determine the thermal transition at high temperature with

precision. On the other hand, the coverage of the parameter space at low T is good,

and the transition can be easily identified, with a clear phase boundary seen to emerge.

In order to identify the parameters for which the phase transition occurs, we looked

for the points in the T − µ plane where the Binder cumulant equalled the mid-point

between the characteristic values for each phase—B = 1/3. The results are shown in

fig. 4.6. We have used half of the distance between the neighbouring points, in both

the T and µ directions, as estimates for the uncertainties. As previously mentioned,

the number of points in the temporal direction being an integer limits the resolution in

temperature, causing the thermal transition to suffer from larger discretisation effects.
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4.1 HDQCD phase diagram

Figure 4.5: Binder cumulant for the symmetrised Polyakov loop as function of T and µ.

Conversely, no such limitations apply to the chemical potential; the transition to higher

densities can be mapped with much more precision.
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Figure 4.6: Estimates of the phase boundary of HDQCD, with three fitted functions
being compared.

A description of the transition (critical) temperature as a function of the chemical

potential can be obtained by fitting estimates for Tc(µ) to a number of fitting functions.
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

We have used the notation

x =

(
µ

µ0
c

)2

, (4.2)

and considered an expansion around x = 0, i.e.,

Fit A: Tc(µ) =
n∑
k=0

akx
k , (4.3)

where we have taken into account that Tc(µ) is an even function of µ [29]. Alternatively,

due to our lattice setup, the transition can be better determined with an expansion

around x = 1, instead of x = 0. Given that, in HDQCD, Tc(µ
0
c) = 0, we have also

considered a power series

Fit B: Tc(µ) =
n∑
k=1

bk(1− x)k . (4.4)

The coefficients {ak} and {bk} can be trivially related, provided that the fitted ak

obey
∑

k ak = 0. Finally, to account for the non-analytic behaviour described by the

Clausius-Clapeyron relation [120], ∂Tc(µ)/∂µ→∞ at µ = µ0
c , we have fitted

Fit C: Tc(µ) = c0(1− x)α +
n∑
k=1

bk(1− x)k , (4.5)

with 0 < α < 1.

Figure 4.6 shows fits A, B and C for n = 2 applied to the data from our largest

volume, V = 103. Because our lowest temperature is not close enough to zero, the

non-analytic behaviour around µ ≈ µ0
c is not evident. Forcing α to be between zero

and one resulted in it being as close to 1 as possible with single-precision numbers; it

did not yield any new information and we did not study fit C any further. The fit

coefficients for A and B, together with the corresponding reduced χ2 value are shown

in tables 4.2 and 4.3 for n = 2. Fits A and B are seen to be compatible. Furthermore,

this indicates that Tc(µ
0
c) = 0 emerges naturally from the data. It is worth noting that

a rough estimate for Tc(µ = 0), in MeV, is given by b1 + b2 ∼ a0, which also sets the

scale of the coefficients.

We compare three different polynomials for fit B in fig. 4.7, with n = 2, 3 and 4,

for V = 103. Using higher-order polynomials resulted in almost identical curves as
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4.1 HDQCD phase diagram

fit A, n = 2
V a0 a1 a2 χ2

red

63 276.9 (7.2) 7.4 (33.7) -283.4 (31.8) 0.85
83 216.4 (5.0) 86.0(25.5) -305.8 (24.8) 1.51
103 203.9 (4.3) 58.9 (23.1) -257.1 (23.2) 1.62

Table 4.2: Fit parameters and reduced χ2 for fit A, as defined in eq. (4.3), used to
describe Tc(µ) for three spatial volumes.

fit B, n = 2
V b1 b2 χ2

red

63 564.3 (15.2) -287.8 (19.2) 0.83
83 507.8 (12.8) -289.9 (15.7) 1.49
103 481.4 (12.4) -279.3 (15.0) 1.62

Table 4.3: Fit parameters and reduced χ2 for fit B, as defined in eqs. (4.4), used to
describe Tc(µ) for three spatial volumes.

that of n = 2, and a χ2 analysis showed that the latter best represented the data.

Therefore, adding more parameters does not improve the fitting. A study of fit B with
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Figure 4.7: Estimates of the phase boundary of HDQCD, with three different orders for
fit B being compared.

n = 2 for all three volumes studied here is shown in fig. 4.8. Evident finite-size effects

can be seen, in particular for the smallest simulation volume of 63. A considerably

smaller trend is visible for the two larger volumes. However, as previously discussed, our
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

dominant limitation comes from discretisation effects at high temperature. In principle,
T
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Figure 4.8: Volume dependence of the phase boundary of HDQCD, using fit B and n = 2.

the Binder cumulant is suitable for determining the order of the phase transition,

since its value at the transition point depends only on the universality class [107].

This would require, however, a deeper volume dependence analysis, with more precise

determination of Tc(µ) throughout the T − µ plane, and smaller uncertainties.

4.2 Instabilities

As briefly mentioned in section 3.4, and exemplified in fig. 3.12, complex Langevin

simulations can suffer from instabilities. In this section we focus on those encountered

when simulating the phase diagram of HDQCD, described in the previous section.

These are generic problems, however, not exclusive to the parameters we have used.

Our goal is to show they are related to convergence to wrong limits, when the unitarity

norm becomes too large, and that keeping the latter under control improves the analysis

of the results.

Typically, the instabilities seen in complex Langevin result in a widening of the

distribution of observables during the simulations, significantly affecting susceptibilities

and other quantities. One can conclude that these wider distributions do not reflect

84



4.2 Instabilities

the original theory, based on comparisons with reweighting [121] and on the formal

justification discussed in section 2.3.1 and references therein.
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Figure 4.9: The average Polyakov loop and unitarity norm as functions of the Langevin
time at a low temperature setup (Nτ = 20 and µ = 0.5).

Figure 4.9 shows the real part of the Polyakov loop and the unitarity norm as

functions of the Langevin time in a low temperature (Nτ = 20) setup. Similar to fig.

3.12, we observe two distinct regions, the first characterised by small unitarity norm

and controlled fluctuations, followed by large unitarity norm and fluctations afterwards.

Unlike in fig. 3.12, though, in fig. 4.9 we do not see a change in the average value for

the Polyakov loop. Rather, in this case, the instability affects its fluctuations.

Table 4.4 has a further analysis of the data shown in figs. 3.12 and 4.9. We have

studied the expectation value of the Polyakov loop, its susceptibility, χP , and its Binder

cumulant, for each of the intervals where the Polyakov loop fluctuates consistently

around a certain value. We also present results obtained using reweighting.

The table shows that, within statistical errors, in the first interval the observables

are compatible with reweighting, while in the second one they are not. At low tem-

perature the susceptibility is a more sensitive measure of accuracy, since the apparent

agreement around B ∼ 0 for the entire interval is a reflection of 〈P 〉 ∼ 0. In figs. 4.10

and 4.11, we compare histograms for the low and high temperature scenarios, respec-

tively, with Gaussian fits added to guide the eye. The distributions are broader, with

larger tails, for the regions with higher unitarity norm. Additionally, at high tempera-
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4. LATTICE RESULTS USING COMPLEX LANGEVIN

Nτ = 20, µ = 0.5
100 < θ < 250 330 < θ < 500 Reweighting

〈P 〉 0.00009(65) −0.0002(44) 0.000032(22)
χP 0.0542(68) 0.0510(1796) 0.055473(68)
B 0.01(17) −22(207) 0.0013(19)

Nτ = 4, µ = 0.7
20 < θ < 60 100 < θ < 500 Reweighting

〈P 〉 0.2043(53) 0.0069(115) 0.202717(66)
χP 0.37(17) 1.44(73) 0.37993(17)
B 0.6544(57) −0.6332(8105) 0.65487(18)

Table 4.4: Analysis of the real part of the Polyakov loop, its susceptibility, and its Binder
cumulant, for the data presented in figs. 3.12 and 4.9. In each case, the two intervals
correspond to the regions where the Polyakov loop fluctuations are consistent around a
given value. Reweighting results are added for comparison.

ture, there is a shift of the mean value. Our conclusion is that the regions with small

unitarity norm lead to adequate results, whilst those with larger norms do not.
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Figure 4.10: Histograms of the real part of the Polyakov loop before and after the
unitarity norm becoming too large, for the simulation presented in fig. 4.9.

In all situations where the behaviour described above has been observed, the widen-

ing of distributions has coincided with severe changes in the unitarity norm. Reducing

the average Langevin step size used in the adaptive algorithm has not helped to prevent

this transition from occurring. The inability to control the unitarity norm of complex
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Figure 4.11: Histograms of the real part of the Polyakov loop before and after the
unitarity norm becoming too large, for the simulation presented in fig. 3.12.

Langevin simulations on coarser lattices using only gauge cooling has been already

noted in [98], and mentioned in section 3.4.

We have carried out additional simulations with larger gauge couplings, β = 6.0

and 6.2, to check the behaviour close to the continuum limit. We show the real part of

the Polyakov loop for setups identical to those described in table 4.4 and in fig. 4.12,

with results for low temperature (Nτ = 20) on the left hand side and high temperature

(Nτ = 4) on the right hand side. The combination of finer lattices and low temperature

produced unitarity norms that remain practically at 0 for the entire simulation. There

is, however, an exponential increase in the norm for higher temperatures, albeit with

smaller exponent than at β = 5.8. After the unitarity norm becomes too large, sub-

stantial fluctuations develop and skirts emerge. This behaviour is visible in fig. 4.13,

where we present histograms for the high-temperature simulations for the two larger β

values on a 103 lattice. Consequently, we conclude that instabilities can still develop in

finer lattices, except that they set in later, for high temperature, or only appear beyond

the length of the Langevin trajectory, for low temperature.

The Langevin time when the unitarity norm begins rising varied considerably among

the simulations shown in the preceeding section. Fortunately, that happened sufficiently

long after the thermalisation stage, in most cases, to leave enough data points to allow

for statistical analyses. However, we found different uncertainties, including auto-
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Figure 4.12: Real part of the Polyakov loop P and unitarity norm d2 for a larger gauge
coupling of β = 6.0 (top) and β = 6.2 (bottom) with low temperature (Nτ = 20, µ = 0.5,
left) and high temperature (Nτ = 4, µ = 0.7, right) on a 103 lattice.
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Figure 4.13: Histograms of the real part of the Polyakov loop before and after the rise
of the unitarity norm, for the larger gauge couplings of β = 6.0 (left) and 6.2 (right), at
high temperature (Nτ = 4, µ = 0.7).
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correlation time [122], in each setup, due to the variable amount of available data

among ensembles. We have taken these findings into account by making sure that the

results presented for the phase diagram contained only data for which the unitarity

norm was smaller than 0.03.

Because of the smaller lattice spacings, simulations with larger gauge couplings

require larger lattice volumes to keep the physical volume constant. We have found

that a gauge coupling of β = 5.8 offers a good compromise between the ability to

extract reliable information about the phase diagram and the simulation cost.

A study of the robustness and sensitivity of the physical observables, with respect

to changes in the cutoff imposed to the unitarity norm, is shown in fig. 4.14, with

graphs of the average quark density and Polyakov loop as functions of the maximum

unitarity norm allowed, for the high temperature setup discussed previously (Nτ = 4,

µ = 0.7 and volume 103). It is clear that the observables are stable and independent

of the cutoff over a broad range, up to ∼ 0.5. The widening of distributions happens

at the same Langevin time as the transition seen for larger values of the cutoff. We

remark that the change in the statistical uncertainties, shown in the insets, stems from

the decrease in the number of available data points.
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Figure 4.14: The quark density (left) and the Polyakov loop (right) as a function of the
cutoff imposed on the unitarity norm d2 for Nτ = 4, µ = 0.7 on a 103 lattice. For small
unitarity norms, d2 < 0.5, the observables are independent of the cutoff. The red point
indicates the value chosen in this study. The insets focus on the region of smaller cutoffs.

Our conclusion is that observables are independent of the cutoff imposed on the

unitarity norm, provided that it is below O(0.1). Throughout this thesis, unless other-

wise stated, we have conservatively chosen a cutoff of 0.03, to guarantee a safe distance
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from the regions affected by instabilities.

4.3 Critical chemical potential at different hopping pa-

rameters for HDQCD

In this section, we apply the second order algorithm described in section 2.2.3, in

combination with dynamic stabilisation, discussed in 2.3.3, to a series of simulations

of HDQCD. Our objective is to employ these two methods, in conjunction with the

known fact that at zero temperature the critical chemical potential for heavy quarks is

analyticaly known, to extract further information from HDQCD.

At T = 0 we expect to see the transition to higher densities at

µ = µ0
c ≡ − ln(2κ) , (4.6)

with κ being the hopping parameter. By studying the Binder cumulant of the Polyakov

loop as a function of µ for various values of κ and Nτ , we expect to find how the critical

chemical potential at finite temperature relates to µ0
c .

Our simulations have been done at a volume of 83 and gauge coupling β = 5.8, at

temporal extents of Nτ = 16 and 32. The chemical potentials used were fractions of

the relevant critical value at zero temperature for each value of the hopping parameter.

We have used αDS = 103 and one gauge cooling step between Langevin steps to control

excursions into SL(3,C), and an average Langevin step size of O(10−4).

Figures 4.15 and 4.16 show the Binder cumulant of the symmetrised Polyakov loop

as a function of the chemical potential for several values of the hopping parameter and

Nτ = 16 and 32, respectively. In both plots, the horizontal axis has been re-scaled by

the corresponding µ0
c for each value of κ, and dashed lines have been added to guide

the eye. Both phases, confined and deconfined, are easily seen for all simulation setups,

as well as the region where the systems transition between them.

As the quark masses increase (κ→ 0), more energy is required to allow their creation

from the vacuum, as clearly shown in the figures. At low, but non-zero, temperatures,

the energy available in the environment allows for critical chemical potentials smaller

than that of zero temperature for all quarks masses. This results in the curves of fig.

4.16 being shifter towards µ/µ0
c = 1, in comparison to those of fig. 4.15.
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Figure 4.15: Binder cumulant of the Polyakov loop as a function of the chemical potential
for various values of the hopping parameter at Nτ = 16. The x-axis has been re-scaled by
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The critical chemical potential has been studied in a manner similar to that used in

section 4.1—namely, by considering the points where the Binder cumulant was equal

to the mid-point between the characteristic values for each phase. Again, we use half

of the distance between neighbouring points in the µ direction as estimate for the

uncertainties. We show the results in fig. 4.17, together with linear fits of the form

µc/µ
0
c = a+bκ, the corresponding error bands, and a line representing µc(T = 0) = µ0

c .

We have used the lattice spacing, estimated using the gradient flow [117–119], to convert

the temperatures into physical units, also shown in the graph. As the temperature gets

closer to zero the fitted lines become increasingly more horizontal; i.e., µc tends to µ0
c

as expected.
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Nτ = 32 (T = 42.3± 0.4MeV)

Nτ → ∞ (T → 0)

Figure 4.17: The critical chemical potential, in units of that at zero temperature, as a
function of the hopping parameter. Linear fits and error bands are also shown.

The graph shown in fig. 4.17, together with the fact that at T = 0 we have µc =

µ0
c ≡ − ln(2κ), suggests that µc(κ, T ) can be parametrised as

µc(κ, T )

µ0
c

= a(T ) + b(T )κ , (4.7)

with a(T = 0) = 1 and b(T = 0) = 0. We have fitted a(T ) and b(T ) from eq. (4.7) with

linear functions to the data shown in the figure. Because of the above constraints, only
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the functions’ slopes had to be fitted. The results are −0.000582(49) and −0.01192(73),

for the functions a and b, respectively.

Our studies have covered most of the range of validity of κ, since the hopping

parameter is restricted to be smaller than 1/8. It is, then, possible to state that µc/µ
0
c

has a linear dependecy on κ, at low temperatures, for all allowed values. The linear

dependency on the temperature will be used, in the next section, to choose values of

the chemical potential around the phase boundary.

We stress that, strictly speaking, the critical chemical potential is undefined at

κ = 0, as at that point the theory reduces to pure Yang–Mills. At zero temperature,

µ0
c diverges logarithmically with the hopping parameter, and our results show that the

same behaviour is seen at finite T , such that µc/µ
0
c converges to a finite value.

4.4 HDQCD phase diagram revisited

With the information shown in the previous three sections—i.e., the exploratory scan

of the HDQCD phase diagram, study of instabilities in complex Langevin simulations,

and the search for the critical chemical potential for different hopping parameters—we

have performed a second study of HDQCD in the T − µ plane. We have used the

acquired knowledge on the location of the phase transition to do a finer scan around

the phase boundary. This included lower temperatures, up to Nτ = 88, and increased

density of points in the chemical potential axis using the second order algorithm and

dynamic stabilisation.

This study was done on a lattice of spatial volume 83, fixed inverse coupling β =

5.8, quark hopping parameter κ = 0.04 and DS control parameter αDS = 103. All

simulations have run for 1500 Langevin time units, with the first 100 excluded for

thermalisation. As described before, the fixed β scans led to rather coarse steps in the

temperature axis for higher temperatures. Thus, our focus has been on improving the

precision of our phase boundary with better simulation techniques and a finer sweep

of the chemical potential axis for the density transition and a qualitative study of the

thermal one.

Our use of dynamic stabilisation has allowed for faster simulations, since only one

step of gauge cooling was necessary, and increased statistics, due to the unitarity norm

being under control. The longer simulation times allowed the Polyakov loop to visit

93



4. LATTICE RESULTS USING COMPLEX LANGEVIN

the other minima, when its value was non-zero and the ground state still exhibited a

remnant of the Z3 centre symmetry, which is explicitly broken by the quarks. These

situations typically occur at low chemical potential and higher temperature. Owing

to the coarseness of our temperature axis, these cases also benefit from a qualitative

analysis in terms of histograms, as a crossover phase between broken and symmetric

Polyakov loops emerges.

We have divided our analysis in two parts. In the lower µ region we have carried

out simulations at fixed chemical potential, varying the temperature. Since the phase

boundary line is expected to be almost flat, within our statistical precision, for 0 ≤
µ/µ0

c . 0.5, as seen in fig. 4.8. For the intermediate to large chemical potential section

of the phase diagram we have employed the same analysis as before, and scanned in

the µ directions for fixed temperatures.

For temperatures in the range of 224MeV≤ T ≤ 336MeV (4 ≤ Nτ ≤ 6) some

qualitative statements can be made using histograms of the symmetrised Polyakov

loop. At Nτ = 4 we expect the system to be in a deconfined phase, whereas at Nτ = 6

the average Polyakov loop should be close to zero. Between them, at Nτ = 5, we can

see from the histograms in fig. 4.18 that the Polyakov loop exhibits influence from both

trivial and non-trivial vacua at µ = 0. It has almost equal probability of being found

on each of them, with the higher peak stemming from two of the non-trivial vacua

being on the negative x-axis. This crossover behaviour becomes less pronounced as the

chemical potential is increased, shown in fig. 4.19, and completely vanishes, as seen in

fig. 4.20, indicating that µc has been reached.

Concerning the lower temperature section of the phase diagram (7 ≤ Nτ ≤ 88,

or 15MeV ≤ T ≤ 192MeV), figure 4.21 shows typical cases, where the Polyakov loop

has a single peak that drifts from zero to a non-vanishing value as µ increases. In the

figure, with data collected from simulations at Nτ = 88, the top-most and right-most

plots show histograms of the real and imaginary parts of the symmetrised Polyakov

loop, respectively. The bottom left part displays a scatter plot. This shows similarities

and differences between each situation: in both cases the Polyakov loop has a localised

distribution, but around very different, µ-dependent, average values. Intermediate val-

ues for the chemical potential, between those shown in the figure, exhibit the same

behaviour, with the distributions shifting to the right as µ increases. Such a sharp
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Figure 4.18: Histograms of the Polyakov loop for HDQCD in a lattice with Nτ = 4, 5,
and 6, volume 83, β = 5.8, κ = 0.04 and µ = 0.
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change from essentially zero 〈P 〉 to non-zero ones is expected due to the low temper-

ature of this simulation and fig. 4.2. Studies at higher temperatures revealed similar

behaviour, only with a wider range of chemical potentials needed for the same effect

on the Polyakov loop.

Our choices of chemical potentials for this region of the phase diagram were in-

fluenced by the linear behaviour observed in section 4.3. We have used the critical

chemical potential, µfit
c , predicted by the linear fit at κ = 0.04 as function of the tem-

perature, as base point, and used its uncertainty, σµfit
c

, to choose neighbouring points.

They are summarised in table 4.5. For each temperature we have simulated 15 points,

from −7σµfit
c

to +7σµfit
c

. These ranges have been chosen to accommodate for potential

deviations from the linear behaviour, especially at higher temperatures. We have also

included two higher temperatures in this study, where we have used 14σµfit
c

instead of

7. The extra points, at Nτ = 6 and 5, have the highest temperatures we can reach at

our fixed inverse coupling of β = 5.8 that exhibit chemical potential-dependent phases.

At Nτ = 5 the system transitions between the crossover and broken phases, as shown

in figs. 4.18, 4.19 and 4.20, whereas Nτ = 4 has deconfined quarks for all chemical

potentials and does not provide any new information for this study.

Nτ T/MeV µfit
c µfit

c /µ
0
c µdata

c µdata
c /µ0

c

5 268.44 1.808(39) 0.716(15) 1.347(33) 0.533(13)
6 223.70 1.927(32) 0.763(13) 1.675(33) 0.663(13)
7 191.74 2.013(28) 0.797(11) 1.911(14) 0.7566(55)
8 167.78 2.077(24) 0.8224(96) 2.037(12) 0.8065(48)
10 134.22 2.167(19) 0.8579(77) 2.154(10) 0.8528(40)
12 111.85 2.227(16) 0.8816(64) 2.2160(80) 0.8774(32)
14 95.87 2.269(14) 0.8985(55) 2.2600(70) 0.8948(28)
16 83.89 2.301(12) 0.9112(48) 2.2930(60) 0.9079(24)
18 74.57 2.326(11) 0.9210(43) 2.3195(55) 0.9183(22)
20 67.11 2.3463(97) 0.9289(38) 2.3398(49) 0.9264(19)
32 41.94 2.4136(60) 0.9556(24) 2.4096(30) 0.9540(12)
48 27.96 2.4509(40) 0.9704(16) 2.4483(20) 0.96932(81)
64 20.97 2.4696(30) 0.9778(12) 2.4677(15) 0.97702(59)
88 15.25 2.4849(22) 0.98385(87) 2.4835(11) 0.98328(44)

Table 4.5: Temperatures used in our simulations with the respective projected critical
chemical potentials and uncertainties, calculated using the linear fits from section 4.3, and
results from simulations.

Since we have done fixed temperature scans, it is reasonable now to parametrise
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a b

−0.000225(46) 0.003154(12)

Table 4.6: Values for the parameters in eq. (4.8), used to fit the data shown in fig. 4.22.

the phase boundary using the critical chemical potential as function of temperature,

µc(T ), as opposed to our previous mapping of Tc(µ). As before, we have used as µc the

midpoint between the first points whose Binder cumulants were below and above 1/3,

and the error bars came from half of the distance between them. The resulting values

for the critical chemical potential, µdata
c , are shown in table 4.5 and fig. 4.22. Based on

the quartic polynomial used to fit Tc(µ) in section 4.1, we have fitted the current data

with
µc(T )

µ0
c

= aT + (1− bT )1/4 , (4.8)

which enforces µc(T = 0) = µ0
c , and whose parameters are shown in table 4.6. The

fourth root is based on the previously observed relation between µ and T , while the

linear term has been added to account for the low-temperature behaviour.

The fitted function and curves representing a 1σ confidence interval are also shown

in the figure. As expected from the discussion in the previous section, there is a clear

linear trend for µc(T ) for lower temperatures. Despite the lowest temperature being a

third of that used the study of section 4.1, the non-analytic behaviour of the critical

temperature at µ = µc still could not be observed. On the other side of the chemical

potential spectrum, a departure from the linear trend is visible for temperatures above

150MeV.

4.5 Finite density QCD with staggered quarks

We have conducted studies of QCD at high temperatures, spanning a wide range of

chemical potentials. Our objective was to test dynamic stabilisation applied to lattice

QCD with dynamical quarks at finite chemical potential, in a region where the inversion

of the fermion matrix is under control. First studies of staggered quarks at finite

chemical potentials were carried out in [105], while recent works include [123,124].

In high temperature scenarios, quarks are deconfined—no Silver Blaze region is

expected, with the quark number density increasing for any µ > 0. Additionally, the

absence of a Silver Blaze region makes the inversion of the Dirac operator considerably
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Figure 4.22: The critical chemical potential as a function of the temperature for HDQCD
at a volume of 83, β = 5.8 and κ = 0.04. Linear behaviour can be seen for T . 150MeV.
A 1σ confidence interval is provided.

easier, since there is no threshold above which particles will be created, leading to a

proliferation of eigenvalues close to zero. Nevertheless, the combination of mass and

chemical potential in the Dirac matrix can make it ill-conditioned and its inversion

prohibitively expensive.

Our simulations have been performed in a lattice of volume V = 123, with four

different temperatures (Nτ = 2, 4, 6 and 8), inverse coupling β = 5.6, and two quark

flavours of degenerate mass m = 0.025. These input parameters result in a pion mass

of mπ ≈ 0.42, and the nucleon mass mN ≈ 0.93, in lattice units [125].

Our studies used chemical potentials in the range of 0 ≤ µ/T ≤ 8. The simulations

have had a total run time of 300 Langevin time units, and we have taken the thermal-

isation time to be 100. For Nτ = 6 and 8 and µ/T & 3.5, the number of conjugate

gradient steps needed to invert the fermion matrix increased by an order of magnitude

compared to other regions. Therefore, large fluctuations developed in the observables,

making their measurements unreliable. These cases were removed from subsequent

analyses.

In a low temperature regime, pion condensation is expected to happen at µ =
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mπ/2 ≈ 0.21, when there is enough energy available for both quark species to start

forming pions. At µ = mN/3 ≈ 0.31, nucleons can form, leading to a non-zero quark

number density. For high temperatures, quarks are deconfined for all values of the

chemical potential. The Silver Blaze region is absent and the quark number density is

expected to be non-zero at any finite µ.

Figures 4.23 and 4.24 show the average quark number density, normalised by the

saturation value1, nsat. The latter, similar to the one observed in HDQCD simulations,

is reached for large values of the chemical potential. In the figures, for Nτ = 6 and
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Figure 4.23: The average quark number density 〈n〉 as function of the chemical potential,
in units of the temperature, for four temperatures, at a volume of 123. The x-axis extends
into the saturation region, while the y-axis has been divided by the saturation density.

8 only the results with µ/T . 4 are shown, since for larger chemical potentials the

inversion of the Dirac operator became prohibitively expensive. It is possible to see

that as the temperature decreases, the density’s dependency on the chemical potential

reduces, for low values of µ. For temperatures below the critical one, the Silver Blaze

phenomenon ensures that the average density exponentially suppressed for µ < mN/3.

The average Polyakov loop, shown in fig. 4.25, is non-zero before the saturation

region, due to the centre symmetry being explicitly broken by the quarks. After satu-

1For staggered fermions, there is no spin structure. Therefore, nsat = 3 × Nf/4, with the divisor
being due to staggered fermions keeping only one of the four identical components of the action.
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Figure 4.24: The average quark number density 〈n〉 as function of the chemical potential,
in units of the nucleon mass, for four temperatures, at a volume of 123. The x-axis extends
into the saturation region, while the y-axis has been divided by the saturation density. The
vertical line indicates µ = mN/3, with the inset zooming around that region.

ration, quarks have no influence and the dynamics reduces to that of pure a Yang-Mills

theory; Nτ = 2 corresponds to a temperature above the critical one, with 〈P 〉 6= 0,

while at Nτ = 4 the centre symmetry is restored. This is corroborated by the agree-

ment with the bands displayed in the plot, which have been generated with quenched

simulations. The same behaviour is expected to occur for Nτ ≥ 6, as the temperatures

are even lower.

At our highest temperature (Nτ = 2) we observe a small but non-zero (unrenor-

malised) chiral condensate, shown in fig. 4.26. In this high energy environment, the

quark masses are almost negligible, leading to a partial restoration of the chiral sym-

metry. Owing to the finite quark mass, the chiral symmetry is not completely restored

at µ = 0. With higher chemical potentials, however, chiral symmetry is seen to be

restored, as the medium becomes more energetic and the small fermion masses become

negligible. For lower temperatures, the explicit breaking of the chiral symmetry is

evident, with the chiral condensate growing with Nτ . Figure 4.27 displays the chiral

condensate as a function of µ/mN . The vertical line in the figure indicates the position

of the phase transition at µ = mN/3. A stronger dependence on the chemical potential
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Figure 4.25: The average Polyakov loop as function of the chemical potential for four
temperatures, at a volume of 123. The x-axis extends into the saturation region. Values
for quenched simulations at different temperatures are also shown.

can be seen for the simulations at Nτ & 4, whose saturation stage is confining.
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Figure 4.26: The average chiral condensate as function of the chemical potential, in units
of the temperature, for four temperatures, at a volume of 123. The x-axis extends into the
saturation region.
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Figure 4.27: The average chiral condensate as function of the chemical potential, in units
of the nucleon mass, for four temperatures, at a volume of 123. The x-axis extends into
the saturation region, and the vertical line indicates µ = mN/3.

The main issues in our studies have been related to the inversion of the fermion

matrix. As it becomes more difficult with lower temperatures and chemical potentials

close to the critical one, the number of iterations required in the conjugate gradient

procedure grows to unsustainable levels. Moreover, a proper calculation of the quark

contribution to the Langevin drift, using the bilinear noise scheme, requires as many

random vectors as possible, with a new inversion performed for each of them.

It is clear that a different approach is required here. One example is the addition of a

source to the Dirac operator that explicitly “lifts” the lowest eigenvalue, and therefore

improves the infrared behaviour of the operator. The reliability of this procedure,

then, depends on how the source is removed. The simple extrapolation to zero can be

ameliorated using, e.g., the valence quark improvement method [67], which uses the

singular value decomposition of the observables that depend on the added source.
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Chapter 5

Summary and outlook

I n chapter 1, we reviewed the main features of QCD and how they shape its ther-

modynamics. We discussed firmly stabilished and conjectured phases of hadronic

matter, based on analytical and numerical arguments and presented a sketch of

the QCD phase diagram. Then we examined the main techniques used to simulate

QCD at finite chemical potential and mentioned how current and future experiments

will investigate the phases of strongly interacting matter. Afterwards, we showed how

the lattice fomulation of QCD is obtained from the continuum one, and how to include

finite temperature and chemical potential on the simulations. Emphasis was given on

the sign problem and how it appears in such scenarios. The heavy-dense approxima-

tion of QCD (HDQCD) was introduced as a numerically cheaper alternative that shares

interesting features with QCD, such as the sign problem

Chapter 2 is devoted to stochastic quantisation at zero and finite chemical po-

tentials. We showed how, at zero chemical potential, fields evolving in an fictitious

(Langevin) time, according to a Langevin equation, can be used to calculate quantum

expectation values for continuous Langevin time. Then, we show how this argument

is translated to a discrete Langevin time, suitable for computer simulations, with a

discussion on algorithms to reduce the results’ dependence on the discretisation step

size. For finite chemical potentials, the sign problem causes the theory to explore a

complexified phase space. We reviewed the complex Langevin method, and how it al-

lows one to obtain meaningful results in such situations. A proof of convergence (to the

correct limit for long Langevin times) is discussed, as well as methods to improve such

convergence, such as gauge cooling and Dynamic Stabilisation (DS). The chapter ends
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with notes on the Langevin simulation of dynamical quark fields and the associated

difficulties.

A wide variety of tests of the complex Langevin method is presented in chapter 3.

We first show how complex Langevin can be used for systems without a sign problem,

with gauge cooling providing an alternative to reunitarisation. Then we assess the

continuity of the plaquette in HDQCD, when transitioning from purely imaginary to

purely real chemical potentials. We show that the combination of complex Langevin

and gauge cooling results in discontinuous plaquettes only for β . 5.4. A study of the

observables’ dependence on the Langevin step size follows. There, we test the second

order algorithms discussed in the previous chapter and show how they improve the

results, making extrapolations to zero step size easier. We also present results verifying

that the second order improvements cannot be applied to dynamical fermions. Lastly,

we present investigations related to our method of Dynamic Stabilisation. We analysed

how the observables depend on the parameter αDS, and verified that the forces added

to the Langevin drift decrease with the inverse gauge coupling. We show how DS

allows results compatible with Monte Carlo methods (e.g., reweighting) around the

deconfinement transition of HDQCD, and present data showing that DS also works for

simulations using staggered fermions.

Our main results are shown and discussed in chapter 4. We used complex Langevin

and gauge cooling to map the phase diagram of HDQCD, with simulations in a vari-

ety of temperatures and chemical potentials, for three different lattice volumes. We

determined, via polynomial fits, the boundary between the different phases of QCD

in this approximation, and were able to see the influence of the finite simulation box

size. During these studies, we have encountered instabilities in the Langevin evolution,

which have been shown to be related to large unitarity norms. We, then, discuss how

restricting the analyses to the region with small unitarity norms can lead to reliable

results. These instabilities were the original motivation for our method of Dynamic

Stabilisation. Afterwards, we applied the second order discretisation scheme and DS to

the determination of the critical chemical potential as a function of the hopping param-

eter for HDQCD. For low temperatures, linear fits in κ and T were seen to describe well

the critical chemical potential. Combining the information from these previous studies,

we revisited the HDQCD phase diagram, focussing around the phase boundary. The

use of second order algorithms and DS allowed for more data points to be collected,
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thus improving the analyses. We provided qualitative results for the thermal transition

at higher temperatures, since our fixed lattice spacing approach only allows for a coarse

exploration of this axis, with a quantitative analysis being employed for the transition

along the chemical potential axis. Finally, we show preliminary results of complex

Langevin and DS being applied to simulations of QCD with staggered quarks at high

temperature. In this regime, there is no Silver Blaze region, making the inversion of

the Dirac operator less expensive. We interpret the results based on the behaviour

of the chiral condensate and the Polyakov loop. The latter was compared to results

in quenched simulations when the system was in the saturation stage. These results

indicate that DS is able to prevent issues related to large unitarity norm for staggered

quarks, as our results agreed with expectations and known cases.

We intend to expand our studies of QCD with staggered quarks at finite chemical

potential even further. Initially, a more thorough scan of the high temperature phase

should be feasible, as inverting the fermion matrix in such situations is not as difficult as

for low temperatures. This can potentially provide some information on the crossover

region between quark–gluon plasma and the hadronic phase of matter. Additionally,

it is a good testing ground for novel techniques to deal with the inversion of the Dirac

operator when its eigenvalues become too small.

With the fermionic matrix under control in the infrared, our plan is to carry on

with simulations at lower temperatures. A fine scan in the chemical potential direction

of the phase diagram is expected to give information about the transition to nuclear

matter and also to quark–gluon plasma. Furthermore, the existence of the QCD critical

point can be assessed. Given the current success of complex Langevin, combined with

gauge cooling and dynamic stabilisation, such studies should be possible.
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Appendix A

The reweighting method

We consider a system whose dynamics is given by a Hamiltonian H, at fixed volume

V and temperature T , and assume that expectation values can be calculated in a

satisfactory manner. By that we mean that the average value of some observable O

can be calculated analytically or, e.g., using Monte Carlo techniques. The reweighting

method consists of using the system subject the Hamiltonian H to extract information

about a different one, with Hamiltonian H ′.

The expectation value of an observable O in the system with statistical weight

ρ′ = e−H
′/T can be written in terms of ρ = e−H/T as

〈O〉ρ′ =
Tr [Oρ′]
Tr [ρ′]

=
Tr
[
Oρ′

ρ ρ
]

Tr
[
ρ′

ρ ρ
] =

Tr
[
Oρ′

ρ ρ
]

Tr [ρ]

Tr [ρ]

Tr
[
ρ′

ρ ρ
] =

〈
Oρ′

ρ

〉
ρ〈

ρ′

ρ

〉
ρ

, (A.1)

where the ratio ρ′/ρ is known as the reweighting factor. Essentially, this method allows

one to write 〈O〉ρ′ as the average of the reweighted observable, divided by that of the

reweighting factor.

In lattice QCD, the expectation values calculated using path integrals weighted by

ρQCD = e−S . At finite chemical potential µ, the action becomes complex and ρQCD

loses its probabilistic interpretation. Reweighting can be used to calculate quantum

expectation values of quantities at finite µ using, e.g., simulations at µ = 0. This is

but one particular choice of the reweighting factor, with others being available [126].

The parameter range in which reweighting is still reliable is usually estimated as

follows. We require that the reweighted average of an observable O, 〈O〉ρ′ , should be
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A. THE REWEIGHTING METHOD

less than σO away from 〈O〉ρ, with σO being the statistical uncertainty in O. We assume

that H and H ′ differ by a change in a certain parameter λ, to λ + ∆λ, and that the

average of O can be obtained by differentiating the free energy, F , with respect to some

parameter η. Then, we can write our requirement as

〈O〉ρ′ − 〈O〉ρ .
[
〈O2〉ρ − 〈O〉2ρ

]1/2
=

√
∂2F

∂η∂λ
. (A.2)

A simplification can be made by Taylor expanding 〈O〉ρ′ around 〈O〉ρ,

〈O〉ρ′ ≈ 〈O〉ρ + ∆λ
∂2F

∂η∂λ
, (A.3)

from which it follows that

∆λ .

[
∂2F

∂η∂λ

]−1/2

=

[
V
∂2f

∂η∂λ

]−1/2

, (A.4)

where we have used F = fV , with f being the free energy density. It is clear, then,

that reweighting has a range proportional to V −1/2.

Other limitations on the applicability of reweighting, in particular to systems sub-

ject to a complex probability distribution with oscillating phase factor, stem from the

choice of reweighting factor. The denominator of eq. (A.1), being the ratio of two

partition functions, can be rewritten as〈
ρ

ρ′

〉
ρ′

=
Zρ
Zρ′

= exp

[
−V
T

∆f

]
, (A.5)

with ρ′ assumed to be real and non-negative, and ∆f = fρ − fρ′ being the free energy

density difference between the two ensembles. This difference is non-negative, since

the complex phase in ρ can cause field configurations to have opposite contributions to

the partition function, thus making Zρ ≤ Zρ′ . This implies that the reweighting factor

vanishes exponentially fast with the volume, being ill-defined in the thermodynamic

limit, and is known as the overlap problem. Suitable choices of ρ′ can lead to smaller

free energy differences, allowing for larger volumes to be used.
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Appendix B

Conventions on su(N) and SU(N)

In this appendix we explain our conventions regarding the elements of the Lie group

of special unitary matrices, SU(N), and its corresponding Lie algebra, su(N). We also

define the gauge group derivative in terms of conventional partial derivatives.

B.1 Conventions on Lie algebra elements

We denote the normalised generators of SU(N), which form a basis in the vector space

of su(N), in the fundamental representation by gaF . They are N×N traceless Hermitian

matrices that can be uniquely defined by the trace of their product and commutation

relations,

Tr
[
gaF g

b
F

]
=

1

2
δab , (B.1)[

gaF , g
b
F

]
= ifabcgcF , (B.2)

where δab is a Kronecker delta and fabc are the completely anti-symmetric structure

constants. The superscript indices run from 1 to N2 − 1 and repeated indices are

assumed to be summed over. The normalised generators in the adjoint representation

are defined from eq. (B.2), with the matrix elements

(gaA)bc = −ifabc . (B.3)
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The Casimir invariants of su(N) in the fundamental and adjoint representations are

constructed, respectively, as

CF δ
bd ≡ (gaF g

a
F )bd =

N2 − 1

2N
δbd , (B.4)

CAδ
bd ≡ (gaAg

a
F )bd = −fabcfacd = Nδbd . (B.5)

Other choices for the normalisation are, obviously, possible. To account for that

and allow for easier translation of group theoretical expressions amongst various publi-

cations we re-write the above expressions for the generators λaF = αgaF . The generators’

defining properties then become

Tr
[
λaF g

b
F

]
=
α2

2
δab , (B.6)[

λaF , g
b
F

]
= iαfabcgcF , (B.7)

with their adjoint representation now being

(λaA)bc = −iαfabc . (B.8)

The respective Casimir operators can easily be seen to be re-scaled by α2 in comparison

to the ones defined above:

CF → α2CF = α2N
2 − 1

2N
, (B.9)

CA → α2CA = α2N . (B.10)

Using the generators for su(N), a generic N ×N Hermitian matrix can be written

as X = X01 + Xaλa, from which the appropriate coefficients can be extracted using

the properties outlined above:

X0 =
Tr [X]

N
, (B.11)

Xb =
2

α2
Tr
[
λbX

]
. (B.12)

From the above relations one has that

X =
1

N
Tr [X]1+

2

α2
Tr [λaX]λa , (B.13)
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B.2 Gauge group derivative

which, in turn, leads to the Fierz identity

2

α2
(λa)ij (λa)kl +

1

N
δijδkl = δilδkj . (B.14)

Some of the references cited in this thesis use different conventions for their genera-

tors: [76] uses α = 1, [79,106] take α =
√

2 while [47–50,52,68,69,93,94,97,99,104] have

chosen α = 2. The choice of anti-Hermitian generators can be achieved by taking α as

a purely imaginary number: [78] used α = i. While this list is certainly not exhaustive,

it should help the interested reader.

B.2 Gauge group derivative

Following the derivations in [61] and [127] we proceed to define the gauge group deriva-

tive used in chapter 2. First we invoke the definition of the adjoint action in a Lie

algebra

adω(ξ) ≡ [ω, ξ] , (B.15)

where ω, ξ ∈ su(N) and define the function

E(x) =
1− exp(−x)

x
=
∞∑
n=0

1

(n+ 1)!
(−x)n . (B.16)

Then we use the fact that a SU(3) element can be parametrised in terms of the gener-

ators as U = exp(iλaAa), with Aa real numbers, to write

U−1 ∂

∂Ab
U = iE(adA)λb . (B.17)

It is possible to represent the adjoint action defined above as an anti-symmetric

matrix, ωcb = αωaf cba, through

adω(ξ) = iαfabcωaξbλc ≡ −iλcωcbξb . (B.18)

Therefore, we can write

U−1 ∂

∂Ab
U = iE(A)bcλc . (B.19)

Letting

∇a =
[
E(A)−1

]ab ∂

∂Ab
(B.20)
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we have ∇aU = iλaU , analogous to what happens in the simpler case of U(1) gauge

fields. An alternative way to represent this derivative is obtained by applying it to a

function of U and using the usual chain rule

∇af(U) =
[
E(A)−1

]ab ∂f

∂Uij

∂Uij
∂Ab

=
[
E(A)−1

]ab
E(A)bc

∂f

∂Uij
(iλcU)ij

=
∂f

∂Uij
(iλaU)ij , (B.21)

from which we get

∇a = (iλaU)ij
∂

∂Uij
. (B.22)

Another equivalent way, which is operationally simpler, is found in [47]

∇af(U) =
∂

∂α
f(eiαλ

a
U)

∣∣∣∣
α=0

. (B.23)

Gauge group derivatives, in general, do not commute. They follow a commutation

relation similar to that of the generators,[
∇a,∇b

]
= αfabc∇c . (B.24)

Additionally, the contraction ∇2 ≡ ∇a∇a commutes with all derivatives,[
∇2,∇b

]
= 0 . (B.25)

Two useful identities that arise from the commutation relation are

fabc∇a∇b =
α

2
CA∇c , (B.26)

and

fabc∇a∇b∇c =
α

2
CA∇2 , (B.27)

where we have used the complete anti-symmetry of the structure constants, and eqs.

(B.5) and (B.10) for the Casimir invariant of the adjoint representation.

114



Appendix C

Taylor expansion of f (eiX(ε)U)

In this appendix we present the steps necessary to write the Taylor expansion of a

holomorphic scalar function of a gauge link after one Langevin evolution step. This can

be particularly involved, since the terms in the expansion will contain non-commuting

elements. Writing the final result in terms of the gauge group derivative of appendix

B allows for easier use of the expansion.

We consider a scalar function f that takes gauge links into complex numbers,

f : SL(N,C)→ C. We also assume f to be holomorphic; i.e., f(U,U †) = f(U),

U,U † ∈ SL(N,C). After a Langevin step, a generic gauge link can be written as

U ′ = exp[iX(ε)]U , with U being the link from the previous time step, c.f. eq. (2.11),

and X(0) = 0. In order to facilitate subsequent calculations we introduce the following

notations for the derivatives of f(U),

∂nf

∂Uij ∂Ui′j′ · · · ∂Ui(n)j(n)

≡ ∂(n)

ji,j′i′,··· ,j(n)i(n)f ≡ f (n)

ji,j′i′,··· ,j(n)i(n) , (C.1)

and for those of X,

X
(n)

=
∂nX

∂εn

∣∣∣∣
ε=0

. (C.2)

We show here how to obtain the first two terms of the Taylor expansion of f(U ′)

around ε = 0. The first term is given by

∂f(U ′)
∂ε

∣∣∣∣
ε=0

=
∂f(U ′)
∂(U ′)ij

∂(U ′)ij
∂ε

∣∣∣∣
ε=0

. (C.3)

The second term in the right-hand side can be calculated using a further Taylor expan-
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sion, evaluated at ε = 0,

∂(U ′)ij
∂ε

∣∣∣∣
ε=0

=
∂(eiX(ε)U)ij

∂ε

∣∣∣∣∣
ε=0

=
∂

∂ε

(
δij + iXiaUaj +O(ε2)

)∣∣∣∣
ε=0

= i(X
′
U)ij . (C.4)

Then, using eq. (C.1) we may write eq. (C.3) as

∂f(U ′)
∂ε

∣∣∣∣
ε=0

= i(X
′
U)ijf

′
ji(U) = iX

′a
(λaU)ijf

′
ji(U) = X

′a∇af(U) , (C.5)

using the notation of eq. B.22.

The second order term requires the use of the identity

∂Uij
∂Ukl

= δikδjl , (C.6)

in order to be written in a closed form in terms of eq. (B.22). We start by applying the

chain rule

∂2f(U ′)
∂ε2

∣∣∣∣
ε=0

=

[
∂2f(U ′)
∂U ′ij ∂U

′
i′j′

∂U ′ij
∂ε

∂U ′i′j′

∂ε
+
∂f(U ′)
∂U ′ij

∂2U ′ij
∂ε2

]
ε=0

. (C.7)

The first term in the right-hand side is just f ′′ij,i′j′ , using eq. (C.1). The first derivative

of U ′ with respect to ε has been calculated in eq. (C.4), while its second derivative can

be manipulated into a convenient expression

∂2U ′ij
∂ε2

∣∣∣∣∣
ε=0

=
∂2

∂ε2

[
δij + i(XU)ij +

i2

2
(XXU)ij +O(ε3)

]∣∣∣∣
ε=0

= i(X
′′
U)ij + i2X

′
ipX

′
pqUqj

= i(X
′′
U)ij + i2X

′
ipX

′
i′q δi′pUqj′δj′j︸ ︷︷ ︸

= i(X
′′
U)ij + i2X

′
i′qUqj′X

′
ip
∂Upj
∂Ui′j′

= i(X
′′
U)ij + i2X

′a
(X
′
U)i′j′

∂(λaU)ij
∂Ui′j′

= i(X
′′
U)ij + i2X

′a
(X
′
U)i′j′∂j′i′(λ

aU)ij , (C.8)

where we inserted Kronecker δ’s on the third and used the identity of eq. (C.6) on going
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to the fourth line. Combining eqs. (C.7) and (C.8) and integrating by parts we have

∂2f(U ′)
∂ε2

∣∣∣∣
ε=0

= i2(X
′
U)ij(X

′
U)i′j′f

′′
ji,j′i′ + i(X

′′
U)ijf

′
ji + i2X

′a
(X
′
U)i′j′∂j′i′(λ

aU)ijf
′
ji

= i2X
′a

(X
′
U)i′j′

[
(λaU)ij∂j′i′f

′
ji + ∂j′i′(λ

aU)ijf
′
ji

]
+ i(X

′′
U)ijf

′
ji

= i2X
′a

(X
′
U)i′j′∂j′i′

[
(λaU)ijf

′
ji

]
+ i(X

′′
U)ijf

′
ji

= X
′a
X
′b∇b∇af(U) +X

′′a∇af(U) . (C.9)

Subsequent terms in the expansion can be dealt with in a similar manner: inserting

Kronecker deltas and using the identity in eq. (C.6) allows them to be written in terms

of the gauge group derivatives, ∇.

A suitable rederivation of the first order term for non-holomorphic functions f(U ′, U ′†) =

f(eiX(ε)U,U †e−iX
†(ε)) proceeds as follows:

d

dε
f(eiX(ε)U,U †e−iX

†(ε))

∣∣∣∣
ε=0

=
(
iX
′a
λaU

)
ij
∂ijf +

(
−iX ′∗aU †λa

)
ij
∂ijf

=
[(
iX
′a
R −X

′a
I

)
λaU

]
ij
∂ijf +

[(
−iX ′aR −X

′a
I

)
U †λa

]
ij
∂ijf

= X
′a
R

[
(iλaU)ij ∂ij −

(
iU †λa

)
ij
∂ij

]
f +X

′a
I

[
(−λaU)ij ∂ij +

(
−U †λa

)
ij
∂ij

]
f

≡
(
X
′a
R∇aR +X

′a
I ∇aI

)
f . (C.10)

This motivates the prescription

Xa∇a → Xa
R∇aR +Xa

I∇I , (C.11)

where Xa
R and Xa

I are the real and imaginary parts of Xa, respectively, for writing the

Taylor expansion above for a non-holomorphic function. It is important to stress that

when applied to holomorphic functions, this redefined derivative obeys the Cauchy-

Riemann equation

i∇aRf = ∇aIf , (C.12)

resulting in

Xa∇af → (Xa
R∇aR +Xa

I∇aI ) f = Xa∇aRf , (C.13)

for complex Xa.
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