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16 Abstract

17

18 The abundance of limonitic laterite ores in tropical and sub-tropical areas represents a large, 

19 and mostly unexploited, cobalt resource. Bioprocessing oxidised ores, and also waste 

20 materials such as tailings and processing residues, using acidophilic microorganisms to 

21 catalyse the reductive dissolution of iron and manganese minerals, is an environmentally 

22 benign alternative approach of extracting valuable base metals associated with these 

23 deposits. This work describes results from laboratory-scale experiments in which five cobalt-

24 bearing materials, three primary limonitic laterite ores and two processing residues (filter dust 

25 and slag), all sourced from mines and a processing plant in Greece, were bioleached under 

26 reducing conditions by a consortium of acidophilic bacteria (using elemental sulfur as electron 

27 donor) in stirred tank bioreactors at pH 1.5 and 35ºC. Whilst the target metal, cobalt, was 

28 successfully bioleached from all five materials (40 - 50% within 30 days) the extraction of some 

29 other metals was more variable (e.g. between 2 and 48% of iron). Concentrations of soluble 

30 cobalt were highly correlated, in most cases, with those of manganese, correlating with the 

31 finding that cobalt was primarily deported in manganese (IV) minerals. Acid consumption also 

32 differed greatly between mineral samples, ranging between 3 and 67 moles H2SO4 g-1 cobalt 

33 extracted. Comprehensive mineralogical analysis of the three limonitic samples before and 

34 after bioprocessing revealed significant variations between the ores, and demonstrated that 

35 elemental and mineralogical variabilities can greatly impact their amenability for reductive 

36 bioleaching.

37
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38 1. Introduction

39

40 The global demand for cobalt has greatly accelerated over the past 30 years, reflecting 

41 its increased use as an essential constituent of high technology materials, such as 

42 rechargeable batteries, superalloys and catalysts. Cobalt occurs in similar abundance to many 

43 other base metals such as copper and zinc in the earth’s crust, though rarely in concentrations 

44 and amounts that have made it economically viable to be mined as a primary resource 

45 (Roberts and Gunn, 2014). In 2011, the European Union identified cobalt as a critical raw 

46 material, being fundamental to industry and essential for enabling technological development, 

47 and requiring reliable and sustainable supply. The Democratic Republic of Congo is the 

48 world’s leading source of mined cobalt, accounting for approximately 70% of global cobalt 

49 production, and China is the world’s leading consumer, with over 80% being used to produce 

50 rechargeable batteries (US Geological Survey, 2020). With the exception of the Bou Azzer 

51 cobalt mine in Morocco, cobalt is obtained as a secondary product of copper and nickel (from 

52 sulfide ores) and nickel (from lateritic ores) production (Roberts and Gunn, 2014). 

53 Laterites are iron-rich deposits mostly found in tropical and subtropical areas. They are 

54 formed during the pervasive weathering of surface-located ultramafic rock leading to oxidation 

55 and precipitation of iron and enrichment of residual elements such as nickel and cobalt. The 

56 limonite layer of a laterite deposit typically contains 40 - 60% goethite (FeO·OH) along with 

57 0.8 - 1.5% nickel and 0.05 - 0.2% cobalt (Dalvi et al., 2004). Nickel in limonite is typically 

58 associated with iron (III) minerals whereas cobalt is associated with manganese (IV) minerals, 

59 such as asbolane ((Ni,Co)xMn(O,OH)4·nH2O) (Lambiv Dzemua et al., 2013). Although, 60% 

60 of the world’s nickel production currently derives from sulfide ores, lateritic ores account for 

61 70% of global nickel reserves (Dalvi et al., 2004). 

62 Current technologies used for processing laterites include pyrometallurgical (e.g. 

63 ferronickel and matte smelting) and hydrometallurgical (e.g. high-pressure acid leaching) 

64 methods, and the hybrid Caron process, all of which require high energy and/or chemical 

65 consumption (McDonald et al., 2008). Heap leaching technologies are proposed as low energy 
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66 alternatives with less specificity on the mineralogy of the laterite but a longer duration period 

67 prior to steady state production (Oxley et al., 2016). Cobalt is generally present in one or two 

68 orders of magnitude less than nickel in laterites, and therefore not usually considered an 

69 economically viable source of this metal. Cobalt can also be found in waste materials 

70 generated by processing laterites, including tailings (Marrero et al., 2015) and processing 

71 residues (e.g. slags) where concentrations may be greater than in the primary ores.

72  Several studies have demonstrated that limonite ores and laterite tailings are 

73 amenable to bioprocessing by acidophilic bacteria at relatively low temperatures (Hallberg et 

74 al., 2011; Johnson and du Plessis, 2015; Marrero et al., 2015; Smith et al., 2017). The 

75 approach used has been described as ‘biomining in reverse gear’ and is mediated by many of 

76 the same acidophilic microorganisms that are also used in conventional biomining operations, 

77 but in set-ups engineered to facilitate iron reduction rather (as in conventional biomining) iron 

78 oxidation. When processing oxidised ores, such as laterites, it is necessary to add an 

79 extraneous source of energy for the bacteria in order to provide an electron donor that can be 

80 coupled to iron reduction. Both organic and inorganic electron donors can be used, though 

81 zero-valent sulfur (ZVS) has been the material of choice, both because of its low cost and the 

82 fact that its oxidation, coupled to oxygen or soluble iron (III), generates sulfuric acid which 

83 helps to maintain the acidic conditions that enhance both metal dissolution and the activities 

84 of the acidophilic microorganisms. 

85 Lateritic ores have the potential to become major sources of cobalt in the future, and 

86 developing more environmentally benign technologies for processing these materials is an 

87 urgent issue. This work, carried out as part of the EU-funded CROCODILE project 

88 (https://h2020-crocodile.eu/), describes results from bioprocessing different oxidised cobalt-

89 bearing materials, including three primary limonitic laterite ores from different mines in Greece, 

90 and two processing residues. The materials were all bioleached by a consortium of acidophilic 

91 bacteria in stirred tank bioreactors.  

92

93

https://h2020-crocodile.eu/
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94 2. Material and methods

95 2.1. Sample characterisation

96

97 Five cobalt-bearing materials were bioprocessed at low pH and mesophilic 

98 temperatures (Table 1). All samples were provided by LARCO (General Mining and 

99 Metallurgical Company SA, Larymna, Greece), a partner in the EU-funded CROCODILE 

100 project. Three of these materials were limonitic ores from different mining operations in 

101 northern and central Greece, and the other two, a slag and a black filter dust, were wastes 

102 generated at a smelting plant for ferronickel production. Sample L1 was a very fine-grained 

103 black dust and L2 a crushed, black porous slag with occasional small (<500 µm) metallic 

104 beads. The Kastoria (sample L3) limonite zone forms the upper part of an in situ laterite 

105 deposit, whilst at Agios Ioannis (sample L4) and Evia (sample L5), the deposits are reworked 

106 karstic types, dominated by oxides with the Agios Ioannis limonite developed below a bauxitic 

107 laterite (Herrington et al., 2016). The three limonite samples were ground using a disc mill with 

108 a 500 µm disc separation, homogenised and sieved to <900 µm. Mineralogical and chemical 

109 analyses of samples and bioleached residues were carried out using a combination of 

110 techniques, including induction coupled plasma atomic emission spectroscopy (ICP-AES), 

111 induction coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD; 

112 PANalytical X’Pert Pro α1 scanning diffractometer) and thermogravimetry/differential thermal 

113 analysis (TG-DTA; TA Instruments SDT Q600). Detailed characterisation of cobalt hosting 

114 mineral phases was performed using scanning electron microscopy (SEM; Zeiss EVO 15LS 

115 SEM) and electron probe micro analyser (EPMA; Cameca SX100).

116

117 2.2. Bacterial cultures

118

119 A mixed culture consortium of acidophilic iron-oxidizing/reducing and sulfur-oxidizing 

120 bacteria were used in experimental work. The consortium contained Acidithiobacillus (At.) 

121 ferrooxidansT and At. ferrooxidans strain CF3, At. ferriphilusT, At. ferriduransT, Sulfobacillus 
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122 (Sb.) thermosulfidooxidansT. All cultures were sourced from the Acidophile Culture Collection 

123 maintained at Bangor University. A starter culture of the consortium was set up in shake flask 

124 containing 100 mL of liquid medium, containing basal salts and trace elements (Ñancucheo et 

125 al., 2016), 100 µM ferrous sulfate and 5% (w/v) ZVS at pH 2.5, and incubated at 35°C in an 

126 orbital shaker. 

127

128 2.3. Reductive bioleaching experimental set up

129

130 Bioreactor vessels (2 L working volume) coupled to FerMac 300 modular units that 

131 controlled pH, temperature and agitation (Electrolab, UK) were commissioned for each 

132 experiment, each using one of the five cobalt-bearing materials. Liquid medium containing 

133 basal salts and trace elements was added to each reactor vessel, followed by 1% (w/v) ZVS. 

134 All reactors were heat-sterilised at 110°C for 60 min and ferrous sulfate (100 µM) and 100 mL 

135 of the starter culture were added to the reactor, when cool. The pH in the bioreactors was 

136 maintained at 1.5 by automated addition of 1 M H2SO4 or 1 M NaOH and temperature fixed at 

137 35°C. All reactors were stirred at 150 rpm. The bioreactors were initially aerated with sterile 

138 atmospheric air in order to promote biomass growth using ZVS as the electron donor coupled 

139 to the reduction of molecular oxygen. Seven to ten days after the bioreactor inoculation, the 

140 gas supply was switched to oxygen-free nitrogen (OFN) to generate anaerobic conditions. 

141 Each cobalt-bearing material was added to the bioreactors at 5% (w/v) solid load. Volumes of 

142 acid or alkali consumed in order to maintain the pH of the bioreactor at 1.5 were recorded and 

143 cumulated daily. Liquid samples were withdrawn at regular intervals, pH and redox potential 

144 measured off-line, and metals concentration determined. Reductive bioleaching of the five 

145 samples was carried out for 25 - 30 days. At the end of each experiment, the solid phase was 

146 separated from the liquid phase (pregnant leaching solution; PLS) by filtration through 

147 Whatman (UK) #1 filter papers. The PLS was stored at 4 - 10ºC, and solid residues dried at 

148 room temperature, ground to fine powders using a pestle and mortar, and analysed for their 

149 mineralogical and geochemical compositions.
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150 2.4. Analytical techniques

151

152 Concentrations of soluble iron (II) were determined using the Ferrozine assay 

153 (Stookey, 1970). To measure concentrations of total soluble iron, an excess of ascorbic acid 

154 was used in order to reduce soluble iron (III) to iron (II) and the resulting solutions analysed 

155 again using the Ferrozine reagent. Concentrations of transition metals in leachates were 

156 measured using a SpectrAA Duo atomic absorption spectrophotometer (Varian, UK).  pH 

157 values were measured using a pHase combination glass electrode (VWR, UK) and redox 

158 potentials measurements using a platinum/silver-silver chloride electrode (Thermo Scientific, 

159 UK) and were adjusted to be relative to a standard hydrogen electrode (i.e. Eh values). Both 

160 electrodes were coupled to an Accumet 50 pH meter. 

161

162 2.5. Biomolecular analysis

163

164 The compositions of the bacterial communities of the different PLS produced were 

165 determined at the end of each experiment. Samples were filtered through sterile 0.2 µm (pore 

166 size) membrane filters to collect biomass and DNA extracted using DNeasy PowerSoil Kit 

167 (Qiagen, UK). Bacterial 16S rRNA genes were amplified and analysed using terminal 

168 restriction enzyme fragment length polymorphism (T-RFLP), as described by Santos and 

169 Johnson (2017). Terminal restriction enzyme fragments (T-RFs) were separated by capillary 

170 electrophoresis and their lengths and fluorescence intensity were measured using a Beckman 

171 Coulter CEQ8000 Genetic Analysis System and identified by comparison to the database of 

172 acidophilic microorganisms maintained at Bangor University.

173

174 3. Results

175 3.1. Characterisation of the cobalt-bearing materials

176
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177 Mineralogical analysis showed that the filter dust (L1) was dominated by quartz and a 

178 spinel (magnetite), and also contained silicates, phyllosilicates and clay minerals, while calcite 

179 (CaCO3) was identified as a minor phase. The processed slag (L2) was essentially an 

180 amorphous glassy phase with traces of maghemite and olivine (Table 2). 

181 Quartz occurred as a major mineral phase in all three limonite ore samples. Goethite, 

182 serpentine and calcite were also identified as major phases in sample L3, which additionally 

183 contained hematite and low amounts of phyllosilicate and clay minerals. In sample L4 both 

184 goethite and hematite were abundant phases, and phyllosilicates including clay minerals were 

185 found in trace amounts. In sample L5, hydrated hematite was identified as the main iron (III) 

186 oxide phase rather than goethite. Chlorite, smectite and serpentine were also present and, 

187 unlike the other laterites, it also contained two carbonate minerals, calcite and ankerite 

188 (Ca(Fe,Mg,Mn)(CO3)2) the latter in low abundance.

189 The chemical composition of the samples is shown in Table 3. The processing residues 

190 (samples L1 and L2) consisted predominantly of silicon and iron. The slag (L2) had more iron 

191 than the dust (L1) but contained an order of magnitude less nickel. Laterite samples L3, L4 

192 and L5 had similar concentrations of silicon to each other. Sample L4 contained ~ 350 g kg-1 

193 iron which was almost twice as much as L3. Sample L4 contained very low levels of calcium 

194 compared to L3 and L5, but concentrations of aluminium, vanadium and chromium were 

195 greater. Sample L3 differed from both L4 and L5 in containing ~3 to 4-times more magnesium, 

196 having a very low aluminium content and the lowest concentration of chromium of all three 

197 laterites. Concentrations of nickel were similar in L3 and L4, but were much smaller (~50% 

198 less) in L5. The filter dust (L1) had the highest concentration of cobalt, and the slag (L2) the 

199 lowest, of the five samples tested. 

200 In the filter dust (L1) and all laterite samples (L3, L4 and L5) cobalt was associated 

201 mainly with manganese within lithiophorite-asbolane intermediate Mn-oxyhydroxides. This 

202 mineral was found to contain between 0.79 and 9.47 wt% of Co (average value Co 3.21 wt%). 

203 Cobalt was also present in goethite in samples L3 and L4 (0.03 to 0.27 wt%, average value 

204 0.04 wt%), in the smectite of L5 (most likely nontronite 0.03 to 0.13 wt%, average value 0.08 
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205 wt%), in manganese carbonate (L3 only; 0.03 to 0.27 wt%, average value 0.15 wt%) and in 

206 chromites (0.03 wt% to 0.15 wt%, average value 0.06 wt%). Manganese carbonate and 

207 chromite were present in these samples in very low abundances, below the detection limit of 

208 XRD, but were observed in SEM and EPMA.

209

210 3.2. Sulfur-enhanced reductive bioleaching

211

212 The consortium of acidophilic iron-oxidising bacteria used in bioreactor experiments, 

213 was able to couple the oxidation of ZVS to the reduction of iron (III) under anaerobic conditions. 

214 The reductive dissolution of iron (III) (hydroxy)-oxide minerals was accompanied by increasing 

215 concentrations of soluble (ferrous) iron and other metals (Fig. 1).

216  Cobalt was effectively leached from all five Co-bearing materials. A rapid increase in 

217 cobalt dissolution occurred in the first 48 hours, followed by a slower phase of continuous 

218 dissolution (Fig. 1a). The kinetic data suggest that more protracted leaching would have 

219 enabled greater extraction of both cobalt and nickel for most of the samples tested (Figs. 1a 

220 and 1b). Manganese solubilisation followed a similar trend to that of cobalt, with the exception 

221 of the filter dust sample L1 (Fig. 1c). Concentrations of soluble manganese were highly 

222 correlated with those of cobalt, with regression coefficients >0.90, again with the exception of 

223 sample L1 where the value was 0.86. Data of nickel and iron extraction from the Co-bearing 

224 materials are shown in Fig 1b and 1d, respectively. Concentrations of nickel in the PLS ranged 

225 from 150 mg L-1 for L4 to 390 mg L-1 for L2. Iron solubilisation also varied greatly, with the 

226 smallest concentration of 400 mg L-1 total soluble iron for L4 and the largest (9,400 mg L-1) for 

227 the slag (L2). There was a strong correlation between iron and nickel solubilised (R2 > 0.90) 

228 for all laterite ores, but the values were lower (~ 0.80) for both processing residues. 

229 By inducing anaerobic conditions, a major change in solution chemistry occurred, from 

230 one dominated by iron (III) to one dominated by iron (II), though this was more protracted with 

231 limonite sample L4. In most cases, over 80% of total soluble iron was present as iron (II) in 

232 less than 24 hours after gassing with OFN, though with sample L4 this figure was not reached 
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233 until day 20 (Fig. 2a). These changes were also reflected in redox potentials, as shown in Fig 

234 2b. For limonite samples L3 and L5, Eh values sharply decreased (by ~ +100 mV) in the first 

235 24 hours, stabilising at between +620 and +640 mV, but for sample L4, the fall in Eh was much 

236 slower, taking about 20 days to stabilise at ~ +620 mV. Redox potentials of PLS of both 

237 processing residues decreased to below +600 mV by day 2 and stabilised at +550 mV for L1 

238 and ~ +400 mV for L2.

239 The reductive dissolution of iron (III) (hydroxy)oxides (shown for goethite in Eq. 1) is a 

240 proton-consuming reaction and addition of sulfuric acid was necessary to maintain solution 

241 pH at 1.5.

242 6FeO·OH + 2S0 + 10H+  6Fe2+ + SO4
2- + 8H2O (Eq. 1) 

243

244 Cumulative acid consumption throughout each of the experiments is shown in Fig. 3. Sample 

245 L4 consumed far less acid (60 mmoles) than the other samples, which corresponded to this 

246 material containing only trace amounts of carbonate minerals and showing lower rates of iron 

247 dissolution. Samples L1, L3 and L5 consumed over 380 mmoles sulfuric acid to maintain pH 

248 at 1.5, while the slag waste (L2) consumed 730 mmoles.

249 Extraction of cobalt was similar with all five samples, with about 40 - 50% solubilised 

250 over the timescale of the experiments (Table 4). Dissolution of nickel varied greatly, with 

251 recoveries varying between 37% for L4 and 73% for L3. The extent of iron solubilisation from 

252 all of the limonite ores was less than that of both cobalt and nickel (and was only 2% for sample 

253 L4) but was considerably higher for both of the processing residues (Table 4).

254 In general, analysis of the solid phase bioleaching residues supported results obtained 

255 with the PLS, with the major discrepancies most likely due to the potential for heterogeneity 

256 and the very small sample volume analysed in the solid residue (Supplementary Table S1). 

257 XRD analysis showed that there had been some dissolution of ferric iron minerals, and 

258 residual ZVS was also detected in all residues (Fig. 4). In addition, gypsum precipitated in all 

259 samples except for L4, which had the lowest Ca content and did not contain detectable 

260 carbonates. Analysis of the bioleached filter dust (L1) residue revealed that there had been a 
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261 loss of magnetite, carbonate and a lower clay mineral content due to bioleaching. Carbonate 

262 (in L3 and L5) and serpentine were removed during low pH bioleaching of all the laterite 

263 samples and there were also lower clay contents in the bioleached residues. The removal of 

264 serpentine was most prominent in sample L3, where this phase was much more abundant 

265 than in samples L4 and L5. For the limonite samples, the strong correlation between cobalt 

266 and manganese suggested that cobalt was solubilised, predominantly, from manganese 

267 oxyhydroxide minerals. This was also confirmed by SEM investigation of the bioleaching 

268 residues, where it was observed that manganese-rich phases were no longer detected or were 

269 in a much lower abundance in the leached residues (Supplementary Fig. S1). 

270 Bacterial diversities in the final PLS were much lower than that in the initial inocula. At. 

271 ferrooxidans and Sb. thermosulfidooxidans were detected in L3 leachate, while only At. 

272 ferrooxidans was detected at the end of bioleaching of L4 and L5 limonites. All attempts to 

273 amplify 16S rRNA genes from both L1 and L2 leachates were unsuccessful. 

274

275 4. Discussion 

276

277 The abundance of limonitic laterite ores in tropical and sub-tropical areas represent a 

278 large resource of cobalt yet to be exploited. Previous studies have shown that different primary 

279 target metals, including nickel (Johnson et al., 2013), copper (Ñancucheo et al., 2014) and 

280 cobalt (Smith et al., 2017) can be recovered from limonitic ores via reductive bioleaching. 

281 There have, however, been no previous reports of bioprocessing lateritic ores located in 

282 Europe, or none about using this approach to recover metals from ore processing wastes, with 

283 the exception of laterite tailings from the CARON process (Marrero et al., 2015). In addition, 

284 the comprehensive inventory of the detailed mineralogy of the three limonitic samples used in 

285 the present study illustrate how variations between lateritic ores, even within the same 

286 geographical location, can impact their amenability for bioleaching.

287 The smelting operation at Larymna (Greece) generates different solid waste materials, 

288 one being a fine dust which is collected in filters during the process of ferronickel production, 
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289 which contained greater concentrations of cobalt and nickel than in the limonite ores tested 

290 (Table 3). Smelting of ore in an electric furnace at the Larymna site produces a metallic phase, 

291 which contains most of the nickel, and a slag phase, which accounts for 85% of the furnace 

292 feed. These are separated; the former is further processed, and the latter is mostly discarded. 

293 In contrast to the filter dust, the slag contained less cobalt and nickel than the limonitic ores 

294 tested. The three limonites, sourced from different mines in Greece, showed significant 

295 variability in elemental and mineralogical composition. 

296 Iron (III) minerals are known to be highly variable in terms of their susceptibility for 

297 reductive dissolution at low pH (Bridge and Johnson, 2000). The mechanism by which 

298 acidophilic prokaryotes accelerate the dissolution of iron (III) minerals is thought to be by 

299 reducing small amounts of soluble iron (III) produced by the acid dissolution of these minerals, 

300 shifting the equilibrium between iron (III) present in the solid and soluble phases (Johnson and 

301 du Plessis, 2015). The rate-limiting step is usually the abiotic acid dissolution of the mineral 

302 with, for example, goethite being much more susceptible than hematite. Acidophilic bacteria 

303 that couple the oxidation of ZVS to the reduction of iron (III) can, however, also oxidise iron 

304 (II) when oxygen is present, so anaerobic conditions are usually required for reductive mineral 

305 bioprocessing to occur. The reduction of iron (III) has also been observed in aerobic cultures 

306 of acidophiles, such as Acidithiobacillus caldus and Acidithiobacillus thiooxidans, that do not 

307 oxidise iron (Johnson et al., 2017), but the mechanism by which this happens is unknown, and 

308 these bacteria do not grow via iron respiration. The reductive dissolution of iron (III) and 

309 manganese (IV) oxyhydroxide minerals, such as goethite and lithiophorite-asbolane, is highly 

310 consumptive of protons (hydronium ions) which is why addition of sulfuric acid was required 

311 to maintain the pH of all bioreactors. The presence of calcite and other basic minerals (e.g. 

312 serpentine, chlorite) also contributed to the net acid consumption, which is a significant cost 

313 associated with reductive mineral bioprocessing (Johnson and du Plessis, 2015). It was 

314 interesting to note that the three limonite samples varied greatly in acid demand, with limonite 

315 sample L4 requiring ~ 10 - 15 times less acid to extract ~ 1.5 fold more cobalt than the other 

316 two samples. Sample L4 required 3 moles H2SO4 g-1 cobalt extracted, compared with 18 moles 
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317 g-1 for L1, 67 moles g-1 for L2, 48 moles g-1 for L3 and 28 moles g-1 for L5. Acid consumption 

318 was greater for the slag (L2) than all other samples tested, whereas the filter dust (L1) required 

319 less acid to maintain the bioreactor pH than the slag and two of the limonites. The amount of 

320 iron solubilised and acid consumed were highly correlated (R2  >0.92) for all samples tested, 

321 apart from limonite L4, providing strong supportive evidence that the reductive dissolution of 

322 iron (III) (hydroxy)oxides, as well as the destruction of carbonates and other acid-soluble 

323 minerals, was a major cause of acid consumption. Although the percentages of iron solubilised 

324 from all three limonites were relatively small compared to the percentage of the other transition 

325 metals leached, the large contents of iron (III) minerals in the ores meant that concentrations 

326 of iron (II) in PLS were always greater than those of manganese (II). 

327 The strong correlation between cobalt and manganese in the limonite leachates (R2 

328 >0.90) and in the bioleached mineral residues were in agreement with the finding that most of 

329 the cobalt present was associated with manganese (IV) minerals rather than with iron (III) 

330 minerals. Manganese oxyhydroxides can be solubilised either indirectly by microbially-

331 generated ferrous iron or directly by some species of acidophilic bacteria (Ehrlich, 2008). While 

332 the objective in this study was to optimise cobalt extraction rather than nickel, the economics 

333 of the process would ultimately be dictated more by nickel than cobalt yields, since the former 

334 (currently the lower value metal) was present in orders of magnitude greater than the latter in 

335 all samples apart from the slag (L2).

336 The results from this study highlight the importance of mineralogical variability in 

337 dictating the amenabilities of different limonites to reductive bioprocessing. Combined 

338 mineralogical and elemental analysis showed that goethite was the most abundant iron (III) 

339 mineral in sample L3, while L5 was dominated by hematite and L4 contained a mixture of the 

340 two minerals. Given the relative susceptibilities of the two iron (III) minerals to acid dissolution, 

341 it might have been anticipated that the concentration of soluble iron in L5 would have been 

342 less than in both L3 and L4 PLS, but this was not the case. In support of these data, a simple 

343 acid leaching test (1 g of each of the limonite samples leached with 10 mL of 1 M sulfuric acid, 

344 shaken at 30°C for 1 hour) generated concentrations of total soluble iron that followed a similar 
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345 trend of that obtained in the bioreactors, with more iron being released from L5 (~ 350 mg L-

346 1) than L3 (~ 200 mg L-1), and both of these were orders of magnitude greater than L4 (4 mg 

347 L-1). EPMA analysis suggested that the hematite in L5 was partly hydrated and this altered-

348 type hematite may be the reason for high amounts of iron being solubilised in this sample. 

349 Jang et al. (2007) demonstrated that hematite may get hydrated without structural 

350 transformation to its fully hydrated equivalent (e.g. goethite) and also showed that such 

351 hydrated hematite presented higher solubility compared to non-hydrated hematite. 

352 Another apparent anomaly was the relatively low amount and percentage of iron 

353 bioleached from sample L4, which contained appreciable amounts of goethite in addition to 

354 some hematite, and the largest percentage of total iron. XRD analysis showed that the peaks 

355 for hematite were broad, suggesting poorer crystallinity of this mineral phase, though this is 

356 not unusual in such materials. In addition, the peak height ratios between goethite and 

357 hematite were similar before and after bioleaching, suggesting that neither of these two 

358 minerals were dissolved or changed preferentially to the other. Analysis of the bioleached 

359 residue supported the low recovery rates for iron obtained from L4 leachates. It is interesting 

360 to note that, although the redox potential in L4 leachates by the end of the experiment were 

361 similar to those reached with samples L3 and L5, the decrease in Eh values was far more 

362 protracted with L4. There were significant amounts of soluble iron (III) present in leachates for 

363 a large part of the experiment, and less manganese was also solubilised than from L3 and L5. 

364 This suggests a partial inhibition of the iron-reducing bacteria present, which would have in 

365 turn limited the rate of goethite dissolution by limiting the disequilibrium between soluble iron 

366 (III) and iron (II), which is thought to be the major driver in promoting the continued abiotic 

367 dissolution of iron (III) minerals in anaerobic conditions (Johnson and du Plessis, 2015). 

368 Concentrations of chromium and vanadium in L4 were greater than in samples L3 and L5. 

369 Both of these transition metals can occur as oxy-anions, which are, in general, far more toxic 

370 to bioleaching microorganisms than cationic transition metals, such as cobalt and nickel 

371 (Dopson et al., 2014). Encouragingly, the relatively small amount of iron dissolved from L4 did 

372 not seemingly impact yields of the chief target metal (cobalt), though less nickel was extracted 
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373 from this limonite than the other two samples. The much lower acid consumption and amount 

374 of iron solubilised would both have economic benefits to a full-scale process. Iron 

375 (hydroxy)oxides in the Larco laterite samples contained relatively small amounts (~0.9 wt%) 

376 of nickel, and, in these samples, this metal was, like cobalt, more concentrated in the 

377 manganese oxide phases and in addition also in some silicates (>2 wt% in serpentine in 

378 sample L3).

379 Concentrations of both cobalt and nickel in the slag (L2) were the lowest of the 

380 materials tested in this study, and large amounts of acid was consumed during reductive 

381 dissolution, generating PLS that contained 5.5 mg L-1 cobalt and ~390 mg L-1 nickel. In 

382 contrast, PLS generated from the dust sample (L1), contained the largest concentrations of 

383 both of these metals of all five samples tested, though again had a large acid-demand (seven-

384 fold more than limonite L4) and generated PLS with similar cobalt but much greater nickel 

385 concentrations. Despite the need for acid, results demonstrate that the filter dust, a waste 

386 material in the processing plant, can be successfully processed via reductive dissolution, and 

387 may be an attractive alternative source of cobalt and nickel at the Larymna processing plant.

388 The decrease in the microbial community diversity observed in all five experiments 

389 could be due to different reasons, including: (i) some of the bacteria out competing others 

390 during the oxidative phase of sulfur oxidation, (ii) lack of CO2 provision during the bioleaching 

391 stage, (iii) the consortium not being adapted to the different materials prior to bioprocessing 

392 and (iv) the increase in concentration of potentially toxic metal oxyanions in the leachates.

393

394 5. Conclusions

395

396 This work has demonstrated the feasibility of bioleaching base metals from European 

397 limonitic laterite ores and waste materials from their processing under acidic, relatively low 

398 temperature, reducing conditions, using bacteria that couple the oxidation of zero-valent sulfur 

399 to the reduction of iron (III). High acid demand is one of the more significant OPEX associated 

400 with reductive mineral bioprocessing, and varied greatly between the five samples tested in 



16

401 the present study. The comprehensive mineralogical analysis of the three limonitic laterite 

402 samples revealed significant variations between the ores, and demonstrated that elemental 

403 and mineralogical variabilities can impact their amenability for bioleaching.
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Figure 1. Changes in concentrations of soluble metals during bioprocessing of cobalt-bearing 

materials. Key: L1 (■); L2 (▲); L3 (●); L4 (▼); L5 (♦).
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Figure 2.  Changes in (a) concentrations of total soluble iron as a percentage of iron (II) and 

(b) redox potential values during reductive bioleaching of Co-bearing materials. Key: L1 (■); 

L2 (▲); L3 (●); L4 (▼) and L5 (♦).

(a) (b)



0 5 10 15 20 25 30 35
0

200

400

600

800

Time (days)

H
2S

O
4 

co
ns

um
ed

 (m
m

ol
es

)

Figure 3. Cumulative amounts of sulfuric acid required to maintain bioreactors at pH 1.5 during 

bioprocessing of each Co-bearing material. Key: L1 (■); L2 (▲); L3 (●); L4 (▼) and L5 (♦).
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Figure 4.  XRD patterns of the Larco samples before (upper pattern) and after (lower pattern) 

bioleaching. All leached residues had a lower intensity background indicating a reduction in 

total Fe concentration in the samples. Only the most prominent peaks on the patterns are 

labelled.  Key: Qz-quartz; Mgn-magnetite; Gth-goethite; Mgh-maghemite; Hem-hematite; Cal-

calcite; Gyp-gypsum; S-ZVS, Srp-serpentine.



Table 1. Summary of Co-bearing materials used in reductive bioleaching experiments.

Sample Type of material Location

L1 Filter dust Larymna processing plant, Central Greece

L2 Processed slag Larymna processing plant, Central Greece

L3 Limonite ore Kastoria mine, Northern Greece

L4 Limonite ore Agios Ioannis mine, Central Greece

L5 Limonite ore Evia mine, Central Greece



Table 2. Mineral phases identified in bulk samples. 

Sample Mineral phases

L1 Quartz, hematite, magnetite, olivine, enstatite, calcite, serpentine, smectite, illite

L2 XRD-amorphous glassy material, maghemite, olivine

L3 Quartz, goethite, hematite, calcite, serpentine, talc, smectite, sepiolite

L4 Quartz, goethite, hematite, serpentine, chlorite, talc, smectite

L5 Quartz, hematite, calcite, ankerite, serpentine, chlorite, talc, smectite



Table 3. Concentration of selected elements in the cobalt-bearing materials. Filter dust (L1), 

slag (L2), limonite ore from Kastoria mine (L3), limonite ore from Agios Ioannis mine (L4) and 

limonite ore from Evia mine (L5).

L1 L2 L3 L4 L5

Si* 169 192 143 126 169

Al* 38 34 5.2 29 21

Fe* 182 281 160 346 215

Ca* 36 32 42 2.3 57

Mg* 57 46 105 21 42

Cr* 14 21 6.8 18 10

Mn* 2.6 2.6 2.3 2.2 2.2

Ni* 11 1.1 10 8.2 5.6

Zn** 220 61 115 168 118

Cu** 44 18 17 38 23

V** 152 209 66 197 122

Li** 40 30 <10 10 40

Pb** 22 3 4 5 9

Sc**  34 44 19 47 24

Ba** 151 67 14 23 93

Co** 602 97 334 516 274

*g kg-1; ** mg kg-1



Table 4. Extraction of metals from limonite ores and processing residues (%) based on the 

chemical composition of the PLS.

Sample Co Ni Mn Fe

L1 41 53 15 48

L2 43 54 48 43

L3 39 73 44 17

L4 40 37 28 2

L5 49 68 52 12



Supplementary Table S1. Extraction of metals from limonite ores and processing residues (%) 

based on the chemical composition of the bioleached residues.

Sample Co Ni Mn Fe

L1 49 57 62 52

L2 25 10 48 43

L3 52 63 57 22

L4 47 38 39 4

L5 60 68 79 27



Supplementary Figure S1. SEM-EDX montaged maps showing distribution of manganese 

(red), iron (blue), chromium (green) and silicon (yellow) in Larco samples L1 (top), L3 (middle) 

and L4 (bottom) before (left panel) and after (right panel) bioleaching. Manganese oxy-

hydroxides (in L1 and L4) and manganese carbonate (in L3) were identified in the samples 

before leaching as confirmed by EDX spectra extracted from all manganese-rich areas indicated 

on the maps of the unleached samples. Manganese was not detected in the samples after 

leaching. 


