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Abstract: Accurate fault diagnosis and prognosis can significantly increase the safety and reliability of 
engineering systems and also reduce the maintenance costs. There is very limited relative research 
reported on the fault diagnosis of a complex system with multi-component degradation. The Complex 
Systems (CS) problem, which features multiple components simultaneously and nonlinearly interacting 
with each other and corresponding environment on multiple levels, has become an essential challenge in 
system engineering. In CS, even a single component degradation could cause misidentification of the 
fault severity level and lead to serious consequences. This paper introduces a new test rig to simulate 
multi-component degradations of the aircraft fuel system. A data analysis approach based on machine 
learning classification of both the time and frequency domain features is then proposed to detect and 
identify the fault severity level of CS with multi-component degradation. Results show that a) the fault 
can be sensitively detected with an accuracy > 99%; b) the severity of fault can be identified with an 
accuracy of 100%. 

Keywords: Fast Fourier Transform; Clustering analysis; K-means clustering; Fault Diagnosis 



1. INTRODUCTION 

In the past few decades, engineering systems have become 
increasingly complex. At the same time, the demands on the 
reduction in life cycle costs of the engineering systems are 
increasing. These make MRO (Maintenance, Repair and 
Overhaul) a more challenging task in the industry. For 
example, in the aviation market, the MRO cost is expected to 
rise to $116 billion by 2029, up from $81.9 billion in 2019 
(Cooper et al. 2019). How to reduce this magnitude of cost 
and increase the safety and availability of the aircraft systems 
at the same time is a crucial issue faced by the aviation 
industry. 

Current maintenance strategy can be categorised into two 

types, Preventive (or Scheduled) Maintenance (PM) and 
Condition-Based Maintenance (CBM). As a traditional 
manner, PM is regularly conducted on the whole system and 
components to avoid failure. While CBM is widely carried 
out when certain indicators show fault signs or degradation of 
the system. For highly critical or very important assets with 
high costs, compared with PM, CBM includes both fault 
diagnosis and prognosis, which significantly increase the 
safety and reliability of the system and also reduce the 
maintenance costs. Fault diagnosis is one of the main parts of 
CBM aiming to shut down the system and schedule a 
maintenance task when an abnormality is detected.  

Fault diagnosis is a relatively mature subject when applied at 
the component level. However, in terms of the effective 
maintenance on system level, it is still challenging to 
diagnose faults in a complex engineering system. For 

instance, quickly identifying a specific LRU (Line-
Replaceable Unit) in an aircraft is still a tough task. This 
paper focuses on diagnosing faults on the system level. In an 
engineering system, degradation occurs on every component 
and varies in diverse pace through the whole service life. It is 
a practical challenge attracting attentions, while previous 
researches focus on the scenario that only part of the faulty 
component is considered. 

Current fault identification methods can be divided into two 
categories: qualitative and quantitative (Venkatasubramanian, 
Rengaswamy, & Kavuri, 2003; Rogers, Guo & Rasmussen, 
2019; Li, de Oliveira & Cerrada, 2019). Qualitative methods 
include two subcategories: graph theory such as fault tree 
methods (Johnson & Gormley, 2011) and signed digraph 
(SDG) methods, and expert systems such as conventional 
expert system, fuzzy expert system and belief rule-based 
method (Yang, Wang, Dong, & Liu, 2012). Quantitative 
methods include two subcategories: model-based and data-
driven methods (Rogers, Guo & Rasmussen, 2019). Model-
based methods such as observer/filter-based methods (Zhang 
& Pisu, 2014), parameter estimation methods and parity 
relation methods (Ríos, Davila & Fridman, 2014). Data-
driven methods such as signal processing methods, machine 
learning methods (Saimurugan & Nithesh, 2016), statistical 
and hybrid methods (Muralidharan & Sugumaran, 2012). 
Considering identifying a single fault in a system with multi-
component degradation, the single method mentioned above 
is incompetent due to respective limits. A combination of 
both qualitative and quantitative methods will be promising 
to fit this scenario. Lin et al. (Lin, Zakwan, & Jennions, 
2017) proposed a probabilistic framework to combine multi-
component degradation information when diagnosing a fault 
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CBM aiming to shut down the system and schedule a 
maintenance task when an abnormality is detected.  

Fault diagnosis is a relatively mature subject when applied at 
the component level. However, in terms of the effective 
maintenance on system level, it is still challenging to 
diagnose faults in a complex engineering system. For 

instance, quickly identifying a specific LRU (Line-
Replaceable Unit) in an aircraft is still a tough task. This 
paper focuses on diagnosing faults on the system level. In an 
engineering system, degradation occurs on every component 
and varies in diverse pace through the whole service life. It is 
a practical challenge attracting attentions, while previous 
researches focus on the scenario that only part of the faulty 
component is considered. 

Current fault identification methods can be divided into two 
categories: qualitative and quantitative (Venkatasubramanian, 
Rengaswamy, & Kavuri, 2003; Rogers, Guo & Rasmussen, 
2019; Li, de Oliveira & Cerrada, 2019). Qualitative methods 
include two subcategories: graph theory such as fault tree 
methods (Johnson & Gormley, 2011) and signed digraph 
(SDG) methods, and expert systems such as conventional 
expert system, fuzzy expert system and belief rule-based 
method (Yang, Wang, Dong, & Liu, 2012). Quantitative 
methods include two subcategories: model-based and data-
driven methods (Rogers, Guo & Rasmussen, 2019). Model-
based methods such as observer/filter-based methods (Zhang 
& Pisu, 2014), parameter estimation methods and parity 
relation methods (Ríos, Davila & Fridman, 2014). Data-
driven methods such as signal processing methods, machine 
learning methods (Saimurugan & Nithesh, 2016), statistical 
and hybrid methods (Muralidharan & Sugumaran, 2012). 
Considering identifying a single fault in a system with multi-
component degradation, the single method mentioned above 
is incompetent due to respective limits. A combination of 
both qualitative and quantitative methods will be promising 
to fit this scenario. Lin et al. (Lin, Zakwan, & Jennions, 
2017) proposed a probabilistic framework to combine multi-
component degradation information when diagnosing a fault 
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increasingly complex. At the same time, the demands on the 
reduction in life cycle costs of the engineering systems are 
increasing. These make MRO (Maintenance, Repair and 
Overhaul) a more challenging task in the industry. For 
example, in the aviation market, the MRO cost is expected to 
rise to $116 billion by 2029, up from $81.9 billion in 2019 
(Cooper et al. 2019). How to reduce this magnitude of cost 
and increase the safety and availability of the aircraft systems 
at the same time is a crucial issue faced by the aviation 
industry. 

Current maintenance strategy can be categorised into two 

types, Preventive (or Scheduled) Maintenance (PM) and 
Condition-Based Maintenance (CBM). As a traditional 
manner, PM is regularly conducted on the whole system and 
components to avoid failure. While CBM is widely carried 
out when certain indicators show fault signs or degradation of 
the system. For highly critical or very important assets with 
high costs, compared with PM, CBM includes both fault 
diagnosis and prognosis, which significantly increase the 
safety and reliability of the system and also reduce the 
maintenance costs. Fault diagnosis is one of the main parts of 
CBM aiming to shut down the system and schedule a 
maintenance task when an abnormality is detected.  

Fault diagnosis is a relatively mature subject when applied at 
the component level. However, in terms of the effective 
maintenance on system level, it is still challenging to 
diagnose faults in a complex engineering system. For 

instance, quickly identifying a specific LRU (Line-
Replaceable Unit) in an aircraft is still a tough task. This 
paper focuses on diagnosing faults on the system level. In an 
engineering system, degradation occurs on every component 
and varies in diverse pace through the whole service life. It is 
a practical challenge attracting attentions, while previous 
researches focus on the scenario that only part of the faulty 
component is considered. 

Current fault identification methods can be divided into two 
categories: qualitative and quantitative (Venkatasubramanian, 
Rengaswamy, & Kavuri, 2003; Rogers, Guo & Rasmussen, 
2019; Li, de Oliveira & Cerrada, 2019). Qualitative methods 
include two subcategories: graph theory such as fault tree 
methods (Johnson & Gormley, 2011) and signed digraph 
(SDG) methods, and expert systems such as conventional 
expert system, fuzzy expert system and belief rule-based 
method (Yang, Wang, Dong, & Liu, 2012). Quantitative 
methods include two subcategories: model-based and data-
driven methods (Rogers, Guo & Rasmussen, 2019). Model-
based methods such as observer/filter-based methods (Zhang 
& Pisu, 2014), parameter estimation methods and parity 
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in a system, however, the identification of degradation has 
not been addressed. 

The data-driven methods (Lin et al., 2017) is a powerful 
alternative to diagnose a fault on system level, but a large 
amount of historical data captured is inevitable. In practical 
cases, it is always difficult to capture a long time historic data 
of all degraded state information of the target system, 
especially for those advanced and large systems that contain 
several hundred of degraded components. In addition, this 
research only considers the faults that are already known by 
previous experience or knowledge (i.e., the historic data). 
The method cannot deal with an unknown fault in the system. 
In addition, the framework in Lin et al., 2017 is incapable to 
take the severity of multi-component degradation 
identification into account. 

In the case of the systems with multi-component 
degradations, it is a huge challenge to adequately and quickly 
identify the location and severity of each degradation because 
it is a typical Complex System (CS), which features multiple 
components simultaneously and nonlinearly interacting with 
each other and corresponding environment on multiple levels. 
Even a single component degradation could cause 
misidentification of the fault severity level and lead to serious 
consequences (Lin et al., 2017). In this case, distinguish 
different faults in the system is a problematic but crucial task. 
Current fault diagnostic methods usually employ information 
from nearby sensors as reinforcement. However, the 
assumption of reinforcement information captured from 
healthy nearby components is commonly made in the 
previous report. Without approach improvements, it would be 
a huge inaccuracy in diagnosed results when all sensory 
information considered are from degraded components. And 
serious mistakes and failure would occur in the identification 
of the fault severity level. Therefore, an approach which is 
suitable for a system with multi-component degradation is 
meaningful and urgent. 

Addressing the above challenges, this paper initially 
introduces a laboratory scale of the aircraft fuel system to 
replicate failure and degradation modes of real flight-worthy 
components. A novel data-driven approach based on 
clustering and classification for two features from time and 
frequency domains respectively is then proposed to detect 
and identify the severity level of fault. 

2. METHODS 

2.1 Experiment setup 

The aircraft fuel system has a great impact on flight safety 
and most of the accidents associated with fuel system have 
led to hazardous and even catastrophic events. The fault 
diagnosis for the fuel system can improve aircraft safety and 
reliability and finally increase the aircraft’s availability and 

efficiency. 

This section provides a comprehensive description of the 

experimental fuel rig which includes the hydraulic system, 

the control and measuring system, and the fault injection 
mechanism. 

A. Hydraulic System 

 

Fig. 1. The layout of the fuel rig system 

Fig. 1 illustrates the layout of the fuel rig, which consists of 
three fuel tanks, three gear pumps, five shut-off valves, ten 
pressure sensors (marked P1-P10), and six direct proportional 
valves (DPVs). All the components are connected with pipes 
and mounted on an aluminium optical breadboard (1.8m x 
1.1m x 5cm) which is above a drip tray to catch any 
unintended leak in the system. Two main tanks act as the left-
wing tank and right-wing tank of an aircraft respectively, and 
a sump tank representing the engine that receives the fuel 
from the aircraft fuel system. Each gear pumps is driven by 
an external motor drive and has a pressure-relief valve inside 
to prevent the gears overstressing. Specifically, the fuel test 
rig can be divided into three lines: 

 As illustrated in Fig. 1, the engine fuel feed line consists 
of the Shut-off valve 1, a non-return valve (emulated by 
the DPV1), two gear pumps ( Gear pump 1 and Gear 
pump 2), a pressure-relief valve (a shut-off valve), a 
filter (emulated by the DPV3), a flow meter (emulated 
by the DPV4) and a nozzle (emulated by the DPV5). 
The two gear pumps serve as the low-pressure pump 
and high-pressure pump, respectively. The pressure-
relief valve opens when the overpressure condition 
happens. 

 The cross-feed line includes the shut-off valve 2, a 
cross-feed valve (a shut-off valve), and Gear pump 3 
which transfers the fuel from the right-wing tank to the 
left-wing tank to help to maintain the central gravity of 
the aircraft during flight. 

 The spill line includes a spill valve (a shut-off valve) 
which returns the fuel when the engine fueling is 
adequate. An engine throttle valve (emulated by the 
DPV6) generates the backpressure when the spill valve 
is opened. 
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B. Fault Types 

For an aircraft fuel system, the common faults can be 
classified into three different types, namely process faults, 
actuator faults and sensor faults. Process faults mainly affect 
the operational ability of the system such as a leaking pipe or 
cracked joint. Actuator faults affect the actuated parts of the 
system such as pump malfunction or a sticking valve, and 
sensor faults mainly impact the sensor operation. In the 
aircraft fuel system, fouling, erosion, or corrosion are the 
main reasons for components degradation. Table 1 defines 
the faults simulated corresponding to the designed test rig.  

Table 1.  The faults injected into the test rig 

Fault type Fault 

Process fault Leaking pipe 

Actuator fault 

Sticking valve 

Clogged filter 

Clogged nozzle 

Sensor fault Blocked flow meter 

 

To inject various faults, with different degrees of severity 
into the fuel test rig, five DPVs were used. The failure of the 
shut-off valve (being stuck in amid range position) is 
implemented by using DPV1 and set to be fully open at the 
beginning. The fully opened DPV1 represents a healthy valve 
status while the partially closed DPV1 represents a sticking 
valve with a certain degree of fault severity. Different 
degrees of severity can be emulated by varying the opening 
percentage of the DPV which is controlled through the 
developed software and can be varied from 0% to 100%. 
DPV2 emulates a leaking pipe fault into the system and set to 
be initially fully closed. The fully closed DPV2 represents a 
healthy pipe while the partially opened DPV2 represents a 
leaking pipe with a certain degree of severity. DPV3 injects a 
clogged filter fault into the system. The fully opened DPV3 
represents a healthy filter while the partially closed DPV3 
represents a clogged filter with a certain degree of severity. 
DPV4 injects a blocked flow meter fault into the system. The 
fully opened DPV4 represents a healthy flow meter while the 
partially closed DPV 4 represents a blocked flow meter with 
a certain degree of severity. DPV5 injects a clogged nozzle 
fault into the system. The fully opened DPV5 represents a 
healthy nozzle while the partially closed DPV5 represents a 
clogged nozzle with a certain degree of severity. 

2.2 Experiment design 

In this study, DPV2 simulated the leaking pipe, as a system 
fault, through varying the opening percentage of this valve 
with values of 0% (healthy), 30%, 40%, and 50%. For each 
opening percentage of DPV2, the leaking percentage of four 
valves (Sticking valve, Clogged filter, Blocked flow meter, 
Clogged nozzle shown in Fig. 1) was changed from 0%, 10% 
to 20%, respectively, to simulate a multi-component 
degradation. In other words, for each of these four valves, 
there were 3 possible states. There were 34=81 possible 

combinations for each fault severity level. The combination 
index, expressed as ∑ai3i (ai indicates the state of the ith 
valve), presents an exclusive location and severity of this 
multi-component degradation. Therefore, the identification of 
this complex degradation problem was simplified to the 
estimation of the combination index. Firstly, this study aims 
to detect and identify the fault when the severity level was 
just above the threshold (30%) of  fault and degradation, 
which allowed preventing further damage propagation at the 
earliest possible stage. Additionally, faults with a severity 
level exceeding 50% were significantly easier to be detected 
and identified than the lower ones. 

2.3 Data analysis 

Due to the complexity of this system, applying a model-based 
approach to monitor the system condition is difficult because 
an analytical or numerical model cannot represent the 
complex interaction of the whole system,  although each 
individual component can be modelled successfully. 
Additionally, any change of system design will require the 
model to be re-estimated, which limits the universality of 
such an approach. This paper proposes a model-free 
clustering method based on two features extracted from the 
time and frequency domains respectively for fault detection, 
classification and identification. 

The proposed method has three objectives including a) fault 
detection: determining if the system is faulty or healthy, b) 
fault classification: dividing the sampled data into a number 
of groups using an unsupervised machine learning approach, 
which mainly evaluates the performance of selected features 
identifying different severity levels of fault, and c) fault 
identification: determining the severity level of fault. 
Initially, all pressure sensors are considered, and then 
unnecessary sensors are gradually screened to identify an 
optimal channel eventually. The details of each process are 
described below. 

A. Feature extraction 

Assuming that the system is stationary under a specific 

severity level of fault and degradation combination, the mean 
amplitude of each channel or each pressure sensor (P1, P2, 
…, P8 in Fig. 1) is regarded as the first feature. The channels 
P9 and P10 are not considered because they are in a different 
branch with the components that have fault and degradation. 
It has been observed that the amplitude of pressure in the 
time domain is a good feature due to its sensitivity to 
different severity levels of fault. On the other hand, the 
frequency response or Power Spectrum Density (PSD) of 
each channel is regarded as the second feature. 

B. Fault detection and classification 

In the clustering analysis, grouping a set of objects into 
multiple categories is the main task. The most common 
method is the k-means clustering. It is an unsupervised 
analysis based on the theory of the maximising similarity 
inside a class while the minimising similarity outside the 

class. Given a set of observations (x1,x2,⋯,xn), where each 
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observation is a d-dimensional real vector, the k-means 

clustering aims to partition the n observations into k(≤n) sets 

S={S1,S2,⋯,Sk} so as to minimise the within-cluster sum of 
squares. In this study, the observation is a 2-dimensional 

vector  ,l lP f  and sampled number n is 4×81=324 which 

include four fault severity levels (0%, 30%, 40%, and 50%) 
and each level includes 81 combinations of degradation. 

For the task of fault detection, assuming a Gaussian 
distribution of features, an 95% confidence ellipse in the 2-
dimensional feature space is calculated based on the healthy 
data. An ellipse can be written as Eq. (1) 
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where (cx ,cy) is the centre, and a and b are two radiuses of 
horizontal and vertical directions. To extend the equation to a 
more general case where the ellipses could be rotated, the 
Principle Component Analysis is applied to calculate the 2 by 
2 coefficients PC. If a feature vector (v1 ,v2)  is located inside 
the ellipse or determined as healthy, the following condition 
shown in Eq. (2) must be satisfied or this vector is located 
outside the ellipse or determined as faulty.    
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For the task of fault classification, the number of group k is 
chosen as 4 and the unsupervised k-means method is applied. 
Given the knowledge of the ground truth of classes, the 
performance of classification can be evaluated by Adjusted 
Rand Index, Mutual Information, Silhouette Coefficient.  

For the task of fault identification, one approach is to 
establish the 95% confidence ellipse for each level of fault 
(healthy, 30%, 40% and 50%). Another approach is to use the 
supervised learning approaches, such as K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), Complex Tree and 
Boosted Tree. The confusion matrix is used to measure the 
identification results and helps select the optimal channels for 
monitoring regarding the experiments conducted in this paper. 
Typical derivations from a confusion matrix include true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN). The accuracy of classification is given 
by Eq. (10) to describe the percentage of the correctly 
classified samples. 
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3. RESULTS 

In order to demonstrate the feasibility of the proposed 
framework, the leaking pipe case study has been tested. The 
threshold for fault decision is set as 30% of degradation level 
(i.e. the opening percentage of DPV2). 

3.1 Fault detection 

The clustering results using the mean amplitude and peak 
frequency are shown in Fig. 2, where different colours 
indicate different severity level of fault, and each level of 
fault includes 81 cases. It is suggested from visual inspection 
that P1, P3, P7 and P8 have good performance to separate 
these four groups (healthy, 30%, 40% and 50%). Considering 
P3 for example, the mean amplitude can separate them into 4 
groups but the groups of 30%, 40% and 50% are not very 
well separated. The peak frequency can separate 30%, 40% 
and 50%, but healthy and 50% are overlapped. The clustering 
performance is significantly improved if both features are 
considered. 

 

Fig. 2. Clustering visualisation for all 8 considered channels, 
where each faulty case has 81 combinations of degradation. 

Based on the above observation, the channel P3 was selected 
for fault detection. The 95% confidence ellipse for the 
healthy group was calculated and illustrated by Fig. 3. If a 
tested vector locates inside this ellipse, the system is 
determined as healthy, otherwise, the system is faulty. The 
similar approach can be applied to other 7 channels and the 
fault detection results are shown in Table 2. All 8 channels 
produce a sound performance with the false positive number 
of less than 5 of 324 (1.54%). 

 

 

Fig. 3. An example of fault detection based on the channels 

P3, where the eclipse represents the 95% confidence level of 
healthy behaviour. 
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Table 2.  Performance quantification of fault detection 

Fault type Fault Accuracy 

P1 4 97.86% 

P2 2 99.38% 

P3 2 99.38% 

P4 2 99.38% 

P5 2 99.38% 

P6 3 99.07% 

P7 3 99.07% 

P8 4 97.86% 

3.2 Fault classification 

Base on the above results, the channels P1, P3, P7 and P8 
were selected for the fault classification and identification. 
The k-mean approach was applied to cluster the data shown 
in Fig. 2, where k was chosen as 4. The classification results 
are shown in Fig. 4. Since it is an unsupervised approach, the 
corresponding between the colour and severity level is still 
unknown. Comparison of Fig. 2 (ground truth) and Fig. 4 
(classification results) suggests that P3 produce a 100% 
classification result while the other three channels produce 
sound results. To quantify the performance, Table 3 shows 
the Adjusted Rank Index (ARI), Mutual Information (MI) 
and Silhouette Coefficient (SC) between the true tags and the 
produced tags from the k-means methods for these four 
channels. If two features are used, all three criteria suggest 
that P3 has the best performance. P8 has the second-best 
performance and P1 and P7 have slightly worse performance. 
Table 3 also compares the clustered performance between the 
single feature and two featured. For P3, the amplitude itself 
produces satisfactory results. While for the other three 
channels, the performance is significantly improved when 
two features are used rather than a single feature.  

 

Fig. 4. Classification results of fault severity level using the 
k-means approach (k=4). 

Table 3.  Performance quantification of fault 

classification 

Channel 
Amplitude + PSD Amplitude PSD 

ARI MI SC ARI MI SC ARI MI SC 

P2 0.960 1.892 0.765 0.482 1.086 0.823 0.680 1.471 0.770 

P3 1.000 2.000 0.955 1.000 2.000 0.959 0.603 1.407 0.868 

P4 0.960 1.915 0.870 0.573 1.318 0.892 0.686 1.485 0.701 

P5 0.984 1.958 0.893 0.511 1.271 0.804 0.594 1.411 0.822 

3.3 Fault identification 

To identify the severity level of fault, the 95% confidence 
ellipses were estimated for each group in P1, P3, P7 and P8, 
and the results are shown in Fig. 5. It can be observed that P3 
produces the best result where there is no overlap between 
ellipses. For P1, there is a small region of overlap between 
40% and 50%. For P7 and P8, there is a small region of 
overlap between 30% and 40%. The detailed performance of 
this approach can be described by the confusion matrixes 
shown in Table 4. The total accuracy for each considered 
channel is shown in Table 5, which again proves that P3 
produces the best performance of fault identification. 

Other learning-based classification approaches, namely KNN, 
SVM, Complex Tree and Boosted Tree, have also been 
applied to identify the fault level and results are shown in 
Table 6. The channels P3 still has the best performance. It 
should be noted that although the performance of some of 
these methods is better than the 95% confidence ellipse, the 
models are lack of transparency and cannot be really written 
down. 

 

Fig. 5. The result of fault identification using the 95% 
confidence ellipse. 
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Table 4. The confusion matrix of the fault severity level 

identification using the 95% confidence ellipse 

 
Predicted  

Healthy 30% 40% 50% Unknown Total 

P
1

 A
ct

u
a

l Healthy 77 0 0 0 4 81 

30% 0 78 0 0 3 81 

40% 0 0 79 2 0 81 

50% 0 0 0 80 1 81 

Total 77 78 79 82 8  

P
3

 A
ct

u
a

l Healthy 79 0 0 0 2 81 

30% 0 76 0 0 5 81 

40% 0 0 79 0 2 81 

50% 0 0 0 81 0 81 

Total 79 76 79 81 9  

P
7

 A
ct

u
a

l Healthy 78 0 0 0 3 81 

30% 0 78 18 0 3 99 

40% 0 25 79 0 2 106 

50% 0 0 0 78 3 81 

Total 78 103 97 78 11  

P
8

 A
ct

u
a

l Healthy 77 0 0 0 4 81 

30% 0 76 5 0 5 86 

40% 0 16 78 0 3 97 

50% 0 0 0 78 3 81 

Total 77 92 83 78 15  

Table 5. The accuracy of the fault severity level 

identification using 95% CI ellipse 

Channel Accuracy 

P1 96.9% 

P3 97.2% 

P7 85.3% 

P8 89.6% 

 

Table 6. The accuracy of the fault severity level 

identification using selected supervised learning-based 

approaches. 

Channel KNN 
Linear 

SVM 

Complex 

Tree 

Boosted 

Tree 

P1 99.1% 99.1% 96.0% 87.3% 

P3 100% 100% 100% 100% 

P7 97.5% 98.1% 97.8% 69.4% 

P8 98.8% 99.1% 98.5% 74.7% 

4. CONCLUSIONS 

To address the challenge of faulty and degradation diagnosis 
of a complex engineering system where the multi-component 
degradations are presented, this paper has presented a test rig 
and corresponding data analytical approach for three tasks: 
fault detection, fault classification and fault identification. 
The results allow the following conclusions: 

 The discrepancy of the pressure amplitude between 
healthy and faulty scenario depends on the fault 
location. The P3-P5 have more than 40% amplitude 
discrepancy while other sensors have less than 6% 
amplitude discrepancy when the fault is emulated 
between P3 and P4.  The change of amplitude of certain 
channels is capable to detect, classify and identify the 
fault. 

 For the cases where the severity level of fault is the 
same while the degradation level increases, there is no 
regular pattern of amplitude change, which suggests the 
amplitude cannot be used for degradation identification. 
The shift of the frequency peak, showing a linear trend 
of decrease following the increment degradation level, 
is an effective feature to identify the degradation level. 

 By clustering analysis using two features of time-
domain amplitude and frequency-domain peak, the fault 
can be detected with an accuracy > 97%; the severity of 
fault can be identified with an accuracy > 99%. 

A limitation of this approach is that it only works on 
stationary systems where the fault or degradation severity 
level does not change when shifted in time. To widen its 
applications, future studies will focus on its extension on 
dynamical systems and real aircraft components.  
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