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Abstract

Traditional fracture theories infer damage at cracks (local field) by surveying

loading conditions away from cracks (far field). This approach has been suc-

cessful in predicting ductile fracture, but it normally assumes isotropic and

homogeneous materials. However, myriads of manufacturing procedures

induce heterogeneous microstructural gradients that can affect the accuracy of

traditional fracture models. This work presents a microstructure-sensitive

finite element approach to explore the shielding effects of grain size and crys-

tallographic orientation gradients on crack tip microplasticity and blunting. A

dislocation density-based crystal plasticity model conveys texture evolution,

grain size effects, and directional hardening by computing the constraint from

dislocation structures. The results demonstrate that the microstructure can act

as a buffer between the local and far fields that affects the crack tip

microplasticity variability. For nominal opening loading, grain size and texture

affect the local ductility and induce a non-negligible multiaxial plastic defor-

mation. Furthermore, driving forces based on measuring displacements away

from the crack tip are less affected by the microstructure, which suggests that

traditional experimental methods smear out important crack tip variability.
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1 | INTRODUCTION

Ductile failure in metals is an intrinsic multiscale
problem: forces applied far from a crack translate
into crack blunting, growth, and failure, which are
controlled by atom decohesion and defect aggregation
(e.g., dislocations and vacancies). In between, microstruc-
tural attributes such as grain morphology, lattice orienta-
tion, material phases, and heterogeneous defect densities
regulate the fracture driving force at the crack tip. As a
result, fracture mechanics driving forces—e.g., crack tip

opening displacement (CTOD), stress intensity factor (K),
and J-integral1—depend on the microstructure in
between the local and the far field.

Traditional fracture approaches assume homogeneous
and isotropic materials with self-similar crack tip stress
and strain fields,2 which may not be representative of
heterogeneous materials. Indeed, the J-integral becomes
path-dependent3,4 for a crack growing towards an
interface (Figure 1) with different material properties
(e.g., welded material or a grain boundary). The J-integral
in the neighborhood of the crack tip (Jtip)
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represent the crack growth driving force, but its value dif-
fers from the J-integral measured far from the crack (Jfar).
In consequence, standardized K and J-integral (e.g., ASTM
E18206 and BS 74487) may not yield accurate predictions
of the driving force that controls the fracture process.

The decisive role of the microstructure on fracture
has been extensively demonstrated experimentally, and it
is well established in the literature.8,9 For example, frac-
ture toughness in metals with moderate ductility often
increases upon grain size refinement.10–12 However, frac-
ture mechanics theories cannot predict the role of the
microstructure on fracture driving forces,13 and they rely
on microstructure-sensitive coefficients that are cali-
brated empirically. This approach results in limited phys-
ical understanding and large epistemic uncertainty.14,15

Physics-based computational models can contribute
to fracture theories16 with predictive approaches that
identify toughening mechanisms at the micro- and meso-
scales.17–19 Recent research20–24 quantified the role of
microstructure on fatigue and fracture by integrating
multiscale physics-based modeling. Other researchers25,26

employed continuum models to engineer crack paths by
controlling the distribution of second phases. Parallel
efforts explored the anomalous fracture of nanocrystals
by theorizing various toughening mechanisms.23,27,28

However, limited work has focuses on understanding the
effects of microstructure gradients on crack tip deforma-
tion, even when these gradients are common in
manufacturing processes (e.g., welding, electrodeposition,
and additive manufacturing).

This work employs microstructure-sensitive finite ele-
ment models to quantify the effects of microstructural
gradients on crack tip microplasticity and blunting. We
adopt a physics-based crystal plasticity model for FCC
metals that explicitly represents the grain morphology
and crystallographic texture for stationary cracks with

different microstructural gradients. The comparison of
displacement-based fracture driving forces (e.g., CTOD)
provides a simple and unambiguous basis for evaluating
microstructures that can mitigate the onset of ductile
fracture.

2 | FINITE ELEMENT MODELING

We employ a crystal plasticity formulation to quantify
the effects of microstucture on crack tip deformation
prior to crack growth. We focus on understanding the
transition from elastic to incipient plastic blunting, but
prior to profuse void growth and coalescence
(e.g., maximum plastic strain in any element is less than
10%). Such a regime is marked by anisotropic plastic
deformation and strong sensitivity to microstructure,
which precondition the final fracture failure (being either
fully ductile or quasi-brittle).

2.1 | Constitutive model

Crystal plasticity formulations29,30 are among the sim-
plest continuum models that quantify plastic anisotropy,
and they have advanced substantially in the last
decades.31,32 Heterogeneous grain-level deformation is
extremely difficult to describe with higher length scale
models such as isotropic J2 plasticity theory. Other
approaches have described microstructure size effects in
plastic deformation by means of homogenized phenome-
nological strain gradient theories,33,34 but neither this nor
J2 theories track slip system activity or its crystallographic
orientation dependence.

Recent advances in crystal plasticity have formulated
physics-based approaches that describe deformation

FIGURE 1 Crack-tip shielding or

amplification of plastic zones that are indicated

by the shaded areas. (left) crack-tip shielding

Jtip< Jfar; (right) crack-tip amplification Jtip>Jfar
[Colour figure can be viewed at

wileyonlinelibrary.com]
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mechanisms at multiple scales.35 For example, the under-
standing of atomistic-scale response has informed phe-
nomenological parametrizations36 of dislocation glide
activation37–39 or dislocation-dislocation interactions.40,41

However, bottom-up approaches fall short in rep-
resenting dislocation patterning and heterogeneous
deformation, which have a strong effect on the mechani-
cal response.42–45 Some efforts have informed continuum
with mesoscale dislocation structures from dislocation
dynamics models,46,47 but their applicability is usually
limited to specific crystal orientations, reduced domain
size, and small plastic strains.

Castelluccio and McDowell48 proposed a crystal plas-
ticity approach that describes commonalities of disloca-
tion structures following transmission electron
microscopy and the similitude principle.49,50 This model,
which was originally proposed and calibrated for cyclic
deformation of nickel, is extended here to monotonic
loading. The calculations are implemented as an Abaqus
user subroutine (UMAT)51 and convey the physics of dis-
location interactions at multiple length scales. The for-
mulation and parameters are identical to those presented
earlier,48 except for the evolution of the dislocation struc-
tures, which are assumed to be cells from the beginning.

At the atomic scale unit process, the shear rate of the
α-th slip system follows the approach proposed by
Busso,52 which relies on the Arrhenius thermal activation
formulation by Kocks et al.36,53
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Here, ⟨ ⟩ corresponds to the Macaulay brackets, ραm is the
mobile dislocation density for slip system α, and lstruct is
the mean dislocation path. Furthermore, T¼ 300K is
the temperature, kb ¼ 8:314JK�1 mol�1 is the Boltzmann
constant, b¼ 2:5�10�10 μm is the Burgers vector, and
νG ¼ 1012 s�1 corresponds to the lattice vibration fre-
quency. Dislocation mobility is controlled by the glide
activation energy under zero effective shear stress F0 ¼
0:93 eV, the thermal slip resistance at 0K s0t ¼ 90MPa ,
and the profile parameters p¼ 1,q¼ 1:5 . Finally, C11 ¼
249GPa, C12 ¼ 155GPa, and C44 ¼ 114GPa correspond
to the elastic constants with cubic symmetry at room
temperature and at 0K C0

44 ¼ 128GPa.
Dislocation glide is controlled by the effective stress

ðταef f Þ , which corresponds to the macroscopic shear
stress less the internal back stress (Bα),

ταef f ¼ τα�Bα: ð2Þ

The athermal or threshold stress (Sα) depends on
three contributions:

Sα ¼ Sα0 þαLE
μb
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α
m
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Here, the first term corresponds to the lattice thermal
friction (Sα0 ¼ 4MPa ), which is negligible in FCC metals
compared to the contributions from dislocation interac-
tions. The second term corresponds to the bow-out stress
and assumes irreversible deformation will not occur
before a bow-out reaches a critical length (dstruct). This
term depends on b, the shear modulus ðμ¼ 80:6GPaÞ,
and the line energy factor (αLE ¼ 0:5). The third term cor-
responds to the dislocation-dislocation interaction
strength for dislocations on the same slip system and
depends on μ, and Aαα ¼ 0:122.

The mean dislocation path corresponds to the typical
dislocation substructure size, which follows the principle
of similitude:54

dstruct ¼ lstruct ¼Kμb
τα

, ð4Þ

in which K ¼ 8 corresponds to the with a proportionality
constant.49

The mobile dislocation density is computed following
the balance rate:
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The first term corresponds to dislocation multiplication
and annihilation, while the second term corresponds to
the probability of cross slip of mobile dislocations from
plane α to ζ. In addition, ye ¼ 2 nm corresponds to the
edge dislocation annihilation distance, ys ¼ 13 nm is
the screw dislocation annihilation distance, and d0 ¼ 1
μm, t0 ¼ 1 s, ϕcs ¼ 0:5 are the cross slip reference dis-
tance, time, and efficiency, respectively.

During plastic deformation, the generation, glide, and
annihilation of dislocations control the mechanical
responses of metallic materials. In metals, immobile dis-
locations localize and form mesoscale structures with
high dislocation densities.55,56 Regions of high dislocation
densities are significantly stiffer, which induce a local
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back stress and constrain deformation on low dislocation
density areas. In the cases of cyclic loading, these struc-
tures organize after a few hundred cycles and are respon-
sible for the development of a back stress upon
unloading. For monotonic loading, cell structures
become well organized at the onset of Stage II.57

The back stress, responsible for directional (kine-
matic) hardening, depends on the constraint imposed by
high density of immobile dislocations58 and is computed
as,

_B
α ¼ f w

1� f w

2μ 1�2S1212ð Þ
1þ4μS1212f Hillð Þγ

α: ð6Þ

The wall fraction (fw) decreases with the accumulated
plastic shear strain according to59

f w¼ f inf þ f 0� f inf
� �
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�γp
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and the accommodation factor fHill
60 is defined as

f Hill ¼ 1� f wð Þ 1�dstruct
dgr
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S1212 corresponds to the shear component of the
Eshelby tensor for a sphere61

S1212 ¼
4�5νp
� �
15 1�νp
� � ð9Þ

with

νp ¼
νþ 2

3μ 1þνð Þf Hill

1þ 4
3μ 1þνð Þf Hill

, ð10Þ

in which ν¼ 0:3 corresponds to the Poisson modulus.
Formulations akin to Equations 6 and 7 were shown62 to
result in hardening-recovery response (also known as
Frederick-Armstrong).

We highlight that the accommodation factor
(Equation 8) conveys the influence from the grain size
(dgr). Such a dependence is indeed expected from the
mean-field approach behind Equation 6 since the domain
in which a dislocation structure sits (e.g., a cell) is not
infinite, as assumed by Eshelby.63 Therefore, for grain
sizes about the size of dislocation structures, fHill is
reduced, which increases the macroscopic stress. As the
grain size increases with respect to the dislocation struc-
ture length scale, the strengthening dilutes, and the

infinite domain becomes a good approximation. This
mechanisms is able to reproduce the observed grain size
sensitivity, which peaks at intermediate strains and
reduces upon further deformation due to the refinement
of dislocation structures.64

We note that our approach is generic for FCC metals
with medium to high stacking fault energies, but we use
material properties previously identified for pure
nickel48; the reader is referred to the original work for
further details about the determination of parameters.
Furthermore, initial parameters used in this model are the
initial density of mobile dislocations, ρsm0 ¼ 1010 m�2, and
the initial structural distance dstruc� 10 μm. Although
these initial conditions are likely to depend on the grain
size, texture, and microstructure morphology, we make
the simplifying assumption that the same initial values
apply for all cases.

To demonstrate the response of the constitutive
model, we performed finite element simulation using the
polycrystalline prismatic mesh in Figure 2, which con-
tains 500 randomly oriented grains. We applied quasi-
static displacement-control deformation along the X axis,
and the results for different grain sizes are reproduced in
Figure 3 (left and center). Comparing these results with
experiments, Figure 3 (right), simulations reproduce the
increase in stress upon a reduction in grain size and
the saturation of the grain size effects above a few hun-
dred microns. We acknowledge that a perfect fit to exper-
iments is beyond the scope of this work, but it is most
likely unnecessary to identify generalities across FCC
metals. We also note that the model has limited grain size
sensitivity at yield (i.e., Hall-Petch effect), which is likely
due to identical initial conditions for all models.

FIGURE 2 Finite element model employed for modeling the

macroscopic stress-strain response. Colors correspond to different

grains [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2 | Finite element meshes with cracks

We consider finite element meshes with a “long crack” of
length to width ratio of a=w¼ 0:5 and a semi-circular tip
formed by 16 elements (Figure 4), typical of elasto-plastic
fracture mechanics models. The initial crack opening is
10% of the specimen side, which limits the need for mesh
refinements and therefore the total number of elements.
The finite element model is made of 9,646 3D hexahedral
(“brick”) elements with a single element through the
thickness. There is no out-of-plane constraint in order to
represents a plane stress condition, typical of thin sheets.

To mitigate mesh sensitivity, we consider driving
forces that avoid measuring internal state variables at
highly strained elements (which are sensitive to mesh
refinement). Instead, we estimate the fracture driving
force based on the crack mouth displacement (CMD), the
crack tip displacement (CTD), and the displacement at a
distance of one crack tip radius ahead of the crack (δA),
which resembles the δ5 proposed by Schwalbe.65 Figure 4
details the exact nodes at which these displacements
were computed. Note that CTD usually has little sensitiv-
ity to mesh refinement and crack tip morphology66 com-
pared to the most strained elements at the crack tip.
Appendix A presents a brief mesh convergence study that
justifies the choice of discretization. More detailed mesh
convergence studies in crystal plasticity finite element
simulations can be found elsewhere.67,68

Uniaxial loading is applied via quasi-static force or
displacement increments at the right side of the mesh,
and in the X-axis direction (Figure 4), while the left side
is constrained in the X axis. Upon reaching the maximum
load or displacement in 2 s, the opening (X) and sliding
(Y) components of the CTD, CMD, and δA are computed.
Under displacement control, we apply a nominal defor-
mation of 2% and under force control, the maximum load
yields crack tip openings similar to those under displace-
ment control with a grain size of 100 μm. All other

boundaries are free of constraint, and nodes along those
boundaries are free to displace.

2.3 | Microstructure arrangements

We consider four microstructure arrangements, each
with approximately 1,000 equiaxed grains as shown in
Figure 5: (a) isotropic equiaxed grains, (b) decreasing
grain size towards X direction, (c) decreasing grain size
towards Y direction, and (d) radially increasing grain
size towards the crack tip. These gradients correspond to
a grain size reduction by a factor of 4 between extremes.
These polycrystalline microstructures were generated
from the kinetic Monte Carlo (kMC) Potts grain growth
model69,70 and finite element mesh using three-
dimensional hexahedral elements. Random initial crystal
orientations are assigned to each grain.

FIGURE 3 Engineering stress-strain curves for various grain sizes from crystal plasticity models (left and center) and experiments64

(right) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Finite element mesh composed of 3D hexahedral

element; thickness is one element. Loading and constraint along X

direction are presented. The highlighted nodes correspond to those

used for measuring displacements at the mouth of the crack

(CMD), at the tip of the crack (CTD), and at a distance of one crack

tip radius ahead of the crack (δA) [Colour figure can be viewed at

wileyonlinelibrary.com]
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For each grain, we computed a nominal grain diame-
ter based on the total volume of an equivalent spherical
grain. In addition, we consider synthetic gradients in
crystallographic orientation along X, Y, and radial direc-
tion (see the axis in Figure 4). These microstructures con-
sider a linear gradient in grain orientations starting from
a perfect single crystal to random orientations. Figure 6
depicts grains colored with IPF value with respect to the
X direction and demonstrates the gradient in crystallo-
graphic orientation from a single value (single crystal) to
random orientation (non-textured polycrystal).

3 | SIMULATION RESULTS

Next, we present the results from microstructure-
sensitive models, isotropic elastic models, and isotropic
elasto-plastic models constructed with the piece-wise
stress-strain curve in Figure 3 and von Mises yield surface
criteria.51

3.1 | Opening and sliding results for
homogeneous equiaxed grains

We first evaluate ten equiaxed microstructures
(Figure 5A) with mean grain size 5 or 100 μm under dis-
placement control. All simulations are equivalent except
for the random allocation of grain dimensions, locations,
and orientations. Furthermore, we consider the change
in the displacement (Δ) rather than the total displace-
ment since the latter has an artificial opening contribu-
tion from the initial crack morphology. Hence, the range
is appropriate for representing the sensitivity of micro-
splasticity on microstructure.

Figure 7 depicts the change in crack mouth displace-
ment (ΔCMD), crack tip displacement (ΔCTD), and dis-
placement ahead of the crack tip (ΔδA) upon loading.
These results demonstrate that under displacement con-
trol, the ΔCMOD is insensitive to the microstructure
while ΔCTOD and ΔδA can be affected by the microstruc-
ture. Furthermore, microstructure-sensitive models

FIGURE 5 Finite element meshes of polycrystalline microstructures: (A) Isotropic equiaxed grains, (B) Decreasing grain size towards X

direction, (C) decreasing grain size towards Y direction, and (D) radially increasing grain size towards the crack tip. Colors indicate different

grain orientations [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Crystallographic orientation: (A) random, (B) X-axis gradient, (C) Y-axis gradient, and (D) radial gradient. Colors indicate

IPF value with respect ot the X direction. The linear gradients correspond to gradients from [001] oriented to random. The radial gradient

corresponds to [011] oriented at the crack tip to [111] oriented at the boundary [Colour figure can be viewed at wileyonlinelibrary.com]
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present non-negligible sliding displacements (Mode II
deformation) even though isotropic plastic models pre-
dict no shear.

Figure 8 presents opening and sliding displacements
results under force control for the same microstructures
in Figure 7. The maximum applied force is such that the
CTD for 100 μm grain size is similar to that computed
under displacement control. As a result, the crack dis-
placements under force and displacement control are
similar for a 100 μm grain size. However, under force
control, displacements are different for both grain sizes.
Again, all microstucture-sensitive results present signifi-
cant variability that deviates from the isotropic elasto-
plastic model.

Figure 9 compares the stress and strain fields from
one microstructure realization with different mean grain
size (note the same color scale was used for both
grain sizes). Upon deforming with a nominal strain of
2%, the strain fields are similar for both grain sizes
(Figure 9A,B), but the stress fields differ in magnitude
(Figure 9C,D); hence, the elastic strains are significantly
different. Above a nominal strain of 0.1%, elastics strains
are negligible, and the total and plastic strains are similar.
When the total strain fields are similar for both grain
sizes, the CTODs are indistinguishable. When the same
force is applied to both grain sizes, the stress (Figure 10A,B)
and the elastic strains fields are similar. However, the
total strains are significantly different due to the

FIGURE 7 Opening (left) and sliding (right) components of the ΔCMD, ΔCTD, and ΔδA under displacement control. Colors correspond

to 10 equiaxed microstructural realizations, while black corresponds to homogeneous isotropic plastic model. The use of the change in the

displacement (Δ) mitigates the arbitrary choice for the initial crack opening [Colour figure can be viewed at wileyonlinelibrary.com]
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strengthening effects of the smaller grain size; this differ-
ence results in CTODs with a marked difference.

Figure 11 summarizes the normalized distributions of
ΔCMD, ΔCTD, and ΔδA at peak load under force control.
Multiple equiaxed microstructural realizations are con-
sidered with two grain sizes (elastic results are not
included). The normalization factor is the average open-
ing displacement for the corresponding grain size. The
results show some clear trends:

• The normalized variability of ΔδA is higher than that
for ΔCTD, which is still higher than that for ΔCMD.
Thus, the closer we measure the displacement from
the crack tip, the larger variability.

• The variability is significantly lower for ΔCMSD than
for ΔCMOD. On the contrary, opening and sliding
components of ΔδA have similar variability. Such a dif-
ference suggests that far field measurements of the
fracture driving force smear out the Mode II compo-
nent compared to Mode I.

• The normalized displacements are consistently lower
for the largest grain size, which is the result of the sat-
uration of grain size effects towards large grains.

Figures 7 and 8 demonstrate that the microstructure
has an important effect on the variability of the fracture
driving force. Furthermore, force control models are sen-
sitive to the grain size, which justifies that we proceeded

FIGURE 8 Opening (left) and sliding (right) components of the ΔCMD, ΔCTD, and ΔδA under force control. Colors correspond to

10 equiaxed microstructural realizations, while black corresponds to homogeneous isotropic plastic model [Colour figure can be viewed at

wileyonlinelibrary.com]
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by focusing on force control simulations. Displacement
controlled models would yield similar results to those
presented next upon loads that lead to the same nominal
displacements; these load would be depend on the mean
grain size.

3.2 | Opening and sliding results for
domains with grain size gradients

Figure 12 presents the peak normalized opening and slid-
ing displacements under force control from models with
a linear decrease in grain size along the X axis
(i.e., parallel to the loading direction, Figure 5B). The
normalization factor corresponds to the average opening
displacement from equiaxed microstructure loading
under identical conditions. We also consider simulations
with average grain sizes of 5 or 100 μm.

Compared to equiaxed isotropic microstructures
(Figure 11), microstructure gradients along the X axis in
Figure 12 have a notable effect on the mean value and
variability of ΔCMD and ΔCTD. In addition, the

microstructure gradient induces an evident shear dis-
placement towards one direction. The results further
show that the microstructure with a larger average grain
size has a smaller bias and variability. We attribute this
to the saturation of the grain size effect for large grains
(greater than 100 μm). Thus, gradients and size effects
are intrinsically coupled.

Figure 13 presents the normalized displacements at
peak load under force control for microstructure gradi-
ents along the Y axis (i.e., perpendicular to the loading
direction, Figure 5C). Again, displacements were normal-
ized by the corresponding opening values from equiaxed
microstructure. Compared to Figure 11, gradients along
Y axis induce larger opening displacements (note normal-
ized values are over 1), which is due to the presence of
larger grains that present lower resistance. Shear dis-
placements have a slightly larger variability compared to
equiaxed microstructures, and they are biased from zero
(i.e., there is a driving force to turn the crack). Micro-
structures with 100 μm average grain size again have
smaller variability and bias from zero due to grain size
effect saturation.

FIGURE 9 Example of the strain and stress fields for one realization with equiaxed grains under displacement control. (A and B) total

engineering strain and (C and D) von Mises stress for 5 and 100 μm grain sizes, respectively. Note the same color scale used for both grain

sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 14 summarizes the opening and sliding dis-
placements for radial microstructural gradients
(Figure 5D) at peak load under force control. In addition
to an increase in the displacements due to the larger
grains, there is a significant increase in variability. Con-
trary to the previous analysis with gradients, there is no
shear preferential direction, which suggest that the crack
would grow in Mode I. Again, results from larger grain
size average show lower bias from zero and variability.

3.3 | Opening and sliding results for
crystallographic orientation gradients

We now consider the effects of three different crystallo-
graphic orientation gradients (Figure 6) under force con-
trol for 10 equiaxed microstructures with 5 μm mean
grain size. The orientation change linearly from random
orientation (no texture) at the center to single crystal ori-
entations such that the lattice vectors [001], [011], or
[111] are oriented along the loading axis (X axis). These
orientations were chosen to investigate the role of the

high elastic anisotropy of nickel. The Young's modulus
varies from 130 GPa for crystals oriented along [001]
direction to about 220 GPa for crystals deformed along
[011] and 290 GPa for [111] orientation.

Figures 15 and 16 present the normalized opening
and sliding displacement at peak load for crystallographic
gradients along X axis and Y axis, (Figure 6B,C, respec-
tively); the normalization factor is the corresponding
opening displacement for [001] orientation. The results
demonstrate that X-axis grain orientation gradients can
bias ΔCMSD and ΔCTSD from zero and result in local
shear. The results for ΔδA do not present a clear trend,
which would suggest that the orientation of the grain at
the crack tip dominates this displacement measure.

Finally, Figure 17 presents the normalized displace-
ments for equiaxed microstructures with radial crystallo-
graphic orientation gradients (Figure 6D). In these
simulations, grain orientation shifts from [001]
being aligned along the X axis at the crack tip to [111]
alignment with X axis at the outer boundary, and vice-
versa. Furthermore, the normalization factor is the
corresponding opening displacement for [001]

FIGURE 10 Example of the strain and stress fields for one realization with equiaxed grains under force control. (A and B) total

engineering strain and (C and D) von Mises stress for 5 and 100 μm grain sizes, respectively. Note the same color scale used for both grain

sizes [Colour figure can be viewed at wileyonlinelibrary.com]
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orientation. Overall, the results demonstrate that the
crystallographic orientation at the crack tip dominates
the opening displacement components. On the contrary,

shear components are influenced by the neighborhood
away from the crack tip. Furthermore, the results for sim-
ulations with single crystals (not shown) present similar

FIGURE 11 Boxplots summarizing normalized distributions

of maximum ΔCMD, ΔCTD, and ΔδA values for multiple equiaxed

microstructural realizations under force control. Red lines

represent mean values, blue boxes represent 25th and 75th

percentiles, and black lines correspond to outliers. The

normalization factor corresponds to the average opening

displacement for each grain size [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Boxplots summarizing normalized distributions

of peak ΔCMD, ΔCTD, and ΔδA values for multiple microstructural

X-axis gradients realizations under force control. Red lines

represent mean values, blue boxes represent 25th and 75th

percentiles, and black lines correspond to outliers. The

normalization factor corresponds to the average opening

displacement from equiaxed microstructure for each grain size

[Colour figure can be viewed at wileyonlinelibrary.com]
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opening and sliding trends: whereas the [001] orientation
presents almost no shear, the [111] presents strong shear.
Hence, the orientation of the grain at the crack tip does

not fully explain the displacement variability and the
entire microstructure between the local and far fields
affect the results.

FIGURE 13 Boxplots summarizing normalized distributions

of maximum ΔCMD, ΔCTD, and ΔδA values for multiple

microstructural Y-axis gradients realizations under force control.

Red lines represent mean values, blue boxes represent 25th and

75th percentiles, and black lines correspond to outliers. The

normalization factor corresponds to the average opening

displacement from equiaxed microstructure for each grain size

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Boxplots summarizing normalized distributions

of peak ΔCMD, ΔCTD, and ΔδA values for multiple microstructural

R-axis gradients realizations under force control. Red lines

represent mean values, blue boxes represent 25th and 75th

percentiles, and black lines correspond to outliers. The

normalization factor corresponds to the average opening

displacement from equiaxed microstructure for each grain size

[Colour figure can be viewed at wileyonlinelibrary.com]

2348 CASTELLUCCIO ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


4 | DISCUSSION

This work demonstrate that the interaction among ductile
strengthening mechanisms and microstructural attributes

affects the crack tip response. We employed a crystal plas-
ticity constitutive model to describe mesoscale heterogene-
ity, and we quantified the effects of microstructure
gradients on crack tip microplasticity. In addition, our

FIGURE 15 Boxplots summarizing normalized distributions

of maximum ΔCMD, ΔCTD, and ΔδA values for multiple texture

gradients along X axis and mean grain size of 5 μm under force

control. The normalization factor is the corresponding opening

displacement for [001] orientation [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 16 Boxplots summarizing normalized distributions

of peak ΔCMD, ΔCTD, and ΔδA values for multiple texture

gradients along Y axis and mean grain size of 5 μm under force

control. The normalization factor is the corresponding opening

displacement for [001] orientation [Colour figure can be viewed at

wileyonlinelibrary.com]
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calculations estimated the intrinsic variability of crack
blunting induced by microstructural attributes.

Microstructures-sensitive models resulted in negligi-
ble CMOD variability, which agrees with homogeneous

isotropic plastic models (Figure 11). On the contrary,
CTOD is significantly influenced by the microstructure,
and the effects are more significant close to the crack tip.
These results would suggest that the plastic hinge
model71 used to infer CTOD from CMOD measurements
can smear out the local variability. Hence, the plastic
hinge model may be suboptimal for understanding and
characterizing stochastic failures from moderate fracture
toughness materials such as welded, additive man-
ufactured, or materials with brittle to ductile transition.72

The results further showed that microstructure can
induce significant Mode II displacements at the crack tip
while being loaded nominally under Mode I (Figure 11).
The shear deformation only occurs in microstructure-
sensitive models and depends on the microstructural
neighborhood of the crack tip, not just a single grain at
the crack tip. Multiple microstructures presented shear
displacements equally distributed in both directions,
which suggests that cracks would grow normal to the
loading direction at the macroscopic scale. However, we
infer that microstructures with larger crack tip shear dis-
placements would likely result in a more serrated frac-
ture surfaces and better fracture resistance.

We also demonstrated that grain size and orientation
gradients influence the crack tip microplasticity and
affect local fracture driving forces by modifying their
mean value and increasing their variability. Furthermore,
we demonstrated that both grain size gradient and grain
size average have a role. As a result, some microstruc-
tures result in crack tip shear predominantely occurring
towards one directions (e.g., Figure 12), which has the
potential to improve fracture toughness by turning
the crack from Mode I growth. These microstructures
could effectively be use to divert crack paths.

The microstructure in the neighborhood of the crack
tip explains much of the variability as demonstrated by
the results for microstructures with radial gradients
(Figures 14 and 17). Since the CTOD changes as a func-
tion of the loading level, such a neighborhood is also a
function of the applied load. Hence, sensitivity to micro-
structure should peak at intermediate plastic strains and
prior to void formation, which is the regime studied in
this work. The exact loading condition that would pre-
sent maximum sensitivity depends on the CTOD dimen-
sion relative to the grain size and the evolution of
internal state variables, e.g., dislocation densities and
mesoscale structures. These results highlight the impor-
tance of considering models that reproduce grain size
effects at a wide range of plastic strains, including satura-
tion at large strains.

One limitation of our simulations is the one-element
thickness mesh, which could somewhat magnify the sen-
sitivity to microstructure compared to thicker models.

FIGURE 17 Box plots summarizing normalized distributions

of maximum ΔCMD, ΔCTD, and ΔδA values for radial

crystallographic gradients and mean grain size of 5 μm under force

control. The normalization factor is the corresponding opening

displacement for [001] orientation [Colour figure can be viewed at

wileyonlinelibrary.com]
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Although a more constrained specimen could potentially
help to homogenize the displacements along the crack
front, the weakest link that controls failure still depends
on a neighborhood much smaller than the crack front.
Hence, our results are still relevant for understanding the
most significant effects induced by microstructure gradi-
ents on crack blunting.

Finally, crystal plasticity models rely on plastic shear
and do not include any provision for void formation,
growth, and coalescence. We mitigated this limitation
by applying loads that results in maximum local plastic
strains below 10%. As a result, our analysis does not
consider ductile crack propagation, for which appropri-
ate sensitivity to hydrostatic stresses and damage should
be included. Nevertheless, our conclusions are relevant
in general since we describe the intermediary of
microstructure gradients, which undergo relatively low
strains in between the local process zone and the far
field load.

5 | CONCLUSIONS

This work studied the role of microstructural attributes
on crack tip microplasticity. We implemented a system-
atic microstructure-sensitive approach to compare the
effects of grain size and orientation gradients on crack tip
microplasticity. The deformation driving forces were sur-
veyed by quantifying the opening and shear displace-
ments at the crack mouth, crack tip, and ahead of the
crack. We further compared the results with homoge-
neous microstructures and isotropic elastic and elasto-
plastic models.

First, we demonstrated that microstructural variabil-
ity has a significant effect on crack tip microplasticity.
These results can be employed to quantify the resistance
against cracking of different microstructures. For exam-
ple, we would expect that a larger variability would likely
result in a more serrated fracture and better fracture
resistance. Similarly, a bias in shear displacement has the
potential to turn the crack from Mode I growth and
divert crack paths.

Second, we showed that the orientation of grains
adjacent to the crack tip cannot explain the entire vari-
ability and the microstructure arrangements in between
the local and far fields affect the results. Indeed, the crys-
tallographic orientation in the neighborhood of the crack
tip can bias the opening and sliding displacements, and
the size of this neighborhood depends on the amount of
deformation.

Finally, we demonstrated that microstructural hetero-
geneity affects each driving force differently. We showed
that conventional method that rely on far-field

parameters (e.g., CMOD) may be unsuitable to estimate
the local driving force since they smear out much of the
microstructural variability. As a results, local measure-
ments are more appropriate to quantify the role of micro-
structure on stochastic fracture.
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APPENDIX A

This section presents a mesh sensitivity analysis by con-
sidering equiaxed microstructure meshes with same dis-
tribution of grains but different number of elements:
(a) 1,048, (b) 2,286, (c) 5,341, (d) 9,646, and (e) 21,367 as
shown in Figure A1. As mentioned earlier, the previous
analysis used meshes with 9,646 elements.

We reconstructed these meshes by the coarsening the
mesh (see Castelluccio & McDowell73), which results in
limited changes in the microstructure due to the loss of
grains that are smaller that the element size. Also, we
consider the results for ΔCMD and ΔCTD, since we can
confidently identify the location of the nodes upon mesh

refinement. On the contrary, remeshing can affect the
ΔδA by a changing nodes location ahead of the crack and
the eliminating grains upon remeshing. This has not been
a problem in previously since all realizations use the
same mesh with elements allocated to different grains.

The results shown in Figure A2 demonstrate only
some limited mesh sensitivity for ΔCTSD, but the vari-
ability shown from refining from 9,646 to 21,367 ele-
ments is significantly lower than the microstructural
variability shown previously. On the contrary, the results
ΔCMOD, ΔCMSD, and ΔCTOD from meshes with 9,646
elements are insensitive to further mesh refinements.
Hence, these results demonstrate a limited mesh sensitiv-
ity and support the conclusions.

FIGURE A1 Finite element meshes of polycrystalline microstructures with increasing mesh refinement. The models consider the same

distribution of grains, but increasing number of elements: (A) 1,048, (B) 2,286, (C) 5,341, (D) 9,646, and (E) 21,367. Colors indicate different

grain orientations [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A2 Opening (left) and sliding (right)

components of the ΔCMD and ΔCTD under

displacement control for five meshes with different

refinement. The label and color correspond to the

number of elements in the simulation [Colour figure can

be viewed at wileyonlinelibrary.com]
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