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Abstract: Increasing demand for producing large-scale metal components via additive manufac-
turing requires relatively high building rate processes, such as wire + arc additive manufacturing
(WAAM). For the industrial implementation of this technology, a throughout understanding of
material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel
fabricated by means of WAAM were investigated and compared with respect to their mechanical
and microstructural properties, in particular under compression loading. The microstructure of
WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction,
and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic
crystal planes in normal direction lead to an anisotropic behaviour under compression. Although
AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an
anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic
mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure.
Microhardness is related to grain morphology variations, where higher hardness near the inter-layer
grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is
observed. In summary, this study analyzes and compares the behaviour of three different materials
fabricated by WAAM under compression loading, an important loading condition in mechanical
post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be
utilized for future modelling activities in this direction.

Keywords: AA2319; compression test; EBSD; S355JR steel; Ti-6Al-4V

1. Introduction

Wire + arc additive manufacturing (WAAM) has gained attention from industry due
to its ability to produce large near-net-shape products at low cost and high deposition
rates [1]. The process uses an electric arc as heat source to deposit a metal wire as feedstock
in a layer-by-layer manner. A Large Additive Subtractive Integrated Modular Machine
(LASIMM) has been developed in the European project LASIMM [2]. This project is using
the high deposition rate capability of WAAM to produce large scale engineering structures,
combined with machining, and with inter-layer cold working, such as rolling, to provide
materials with properties beyond those of forged or wrought materials [3,4]. Through
the rolling process, the material is deformed under compression; this has several benefits,
such as improvement in mechanical properties [4–6], microstructural refinement [3,6],
elimination of porosity [5,6], and reduction/control of residual stresses [7–9]. Hence,
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understanding how the materials that are deposited by WAAM behave under compression
is crucial. In this regard, this study investigates the mechanical behaviour of WAAM-
fabricated materials under compression loading.

Structural alloys such as titanium [10], steel [11], aluminum [5], or nickel-based [12]
ones are the most typical materials that have been successfully processed by WAAM. In
case of titanium alloys, Ti-6Al-4V is the most used alloy in the aerospace industry [13,14]
due to its high strength-to-weight ratio, good fatigue properties and excellent corrosion
resistance [15]. Steel has maintained its position as the predominant material for auto-
motive and construction industries, owing to its good formability, ease of welding, and
relatively low cost [16]. The unique combination of low-cost, low density, and high
strength [17] has made aluminum alloys the preferred materials for applications where
weight reduction is vital, such as in the automotive and aerospace industries [18].

During the WAAM process, the material undergoes complex thermal cycles with a
directional heat extraction [19]. This typically causes the formation of columnar grains
resulting in anisotropic and heterogeneous microstructures [20–22]. Furthermore, porosity
formation and its non-uniform distribution [23] might also cause anisotropy in WAAM-
fabricated aluminum alloys [24]. Anisotropic tensile mechanical properties have been
extensively reported in the literature for WAAM-fabricated structures [4,25,26], as well as
other additive manufactured (AM) parts [20,21]. The anisotropy of mechanical properties
in AM Ti-6Al-4V, such as in the ultimate tensile strength, is explained by the presence of
columnar grains in the as-fabricated structures [27], whilst the anisotropy in ductility is
associated with grain boundary regions that are prone to damage accumulation [20,28,29].
The mechanical properties of WAAM-fabricated aluminum alloys during tensile testing
are typically described as nearly isotropic [25,26]. Zhang et al. [24] found that the WAAM-
fabricated Al-6Mg alloy shows an anisotropic behaviour in terms of tensile strength,
ranging from 8% to 27%. The anisotropic behaviour is explained by the presence of pores
that are formed in the inter-layer regions [23,24]. From this short literature review, it is
seen that the presence of columnar grains and porosity is one of the main sources for the
observed anisotropy in WAAM-processed materials.

To minimize the appearance of welding defects such as pores or hot cracks, as well as
to suppress the formation of coarse-grained as-cast microstructures of WAAM-fabricated
structures, different advanced variants of the technology have been recently developed.
One way is to combine an in situ hot forging technique to WAAM to refine the grain
structure and to reduce porosity and therefore to improve the mechanical properties
of the deposited layers [30]. The formation of fine-grained macrostructure with reduced
anisotropy can also be controlled by the use of advanced WAAM processes combined
with an active cooling technique [31,32] or to reduce the thermal impact during the pro-
cess, such as in the case of the new variant defined as Ultracold-wire + arc additive
manufacturing (UC-WAAM) [33]. Next to using advanced process variants, the process
optimization in general is a challenging task, as typically a large number of process param-
eters influence the resulting microstructure and properties. In this regard, to predict the
process–microstructure-property relationship in additive manufacturing or other processes,
in order to optimize the process in an efficient way, machine learning approaches are very
promising [34,35]. However, the appearance of manufacturing defects such as porosity or
hot cracks cannot be completely eliminated in most cases [36]. Therefore, WAAM fabricated
parts in general require post-process treatment that can also improve material properties,
reduce surface roughness, and remove residual stress and distortions [36].

There are several post-processing treatment technologies that are employed to elim-
inate the defects in WAAM-fabricated parts, e.g., heat treatment [37], inter-pass cold
rolling [38], and inter-pass cooling [39]. The tensile mechanical behaviour of AM structures
has been frequently reported in the literature [25,26,40–44]. However, in the context of
mechanical treatments, such as rolling [7], machine hammer peening [45] and laser shock
peening [46], the mechanical behaviour of materials under compressive load is important.
There are only a few studies in the literature that investigate the mechanical behaviour
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of AM structures during compression in detail [47,48]. Improving this understanding
will enable the optimisation of cold-work processes in terms of their application strategy.
Consequently, one aim of this study is the investigation of the mechanical properties of
WAAM-fabricated Ti-6Al-4V, S355JR steel, and AA2319 during compression.

The manuscript is structured as follows: In Section 2, the experimental techniques
used for the manufacturing of the additive structures as well as for microstructural and
mechanical characterisation are briefly described. The mechanical behaviour of WAAM-
fabricated Ti-6Al-4V, AA2319 and S355JR steel during compression for three orthogonal
loading directions is studied in Section 3 to investigate possible anisotropy. First, the
stress–strain response of each of the three materials during compression testing is analyzed,
followed by a discussion of the obtained mechanical behaviour in correlation with the
present microstructural features. The main conclusions of the study are briefly summarized
in Section 4.

2. Experimental Procedure
2.1. WAAM Process

The WAAM specimens of the three different materials—Ti-6Al-4V, AA2319 and S355JR
steel—were built using a robotic system with integrated welding process equipment. The
chemical compositions of the used wires are given in Table 1.

Table 1. Wire composition of Ti-6Al-4V, AA2319 and S355JR steel.

Ti-6Al-4V AA2319 S355JR Steel
Element wt.% Element wt.% Element wt.%

Ti Balance Al Balance Fe Balance
Al 6.14–6.15 Cu 5.80 C 0.060
V 3.91–3.94 Mn 0.25 Si 0.940
Fe 0.17–0.18 Fe 0.21 Mn 1.640
O 0.15 Ti 0.10 P 0.013
C 0.021 Zr 0.10 S 0.016
N 0.007–0.008 Si 0.08 Cr 0.020

Others 0.0172 V 0.07 Ni 0.020
Mg 0.01 Mo 0.005
Zn 0.01 Cu 0.020

Others <0.2 Ti 0.004
Zr 0.002

Ti-6Al-4V structure was deposited on a 12 mm thick plate of the same alloy using
wire and an EWM T552 Tetrix plasma power source (EWM AG, Mündersbach, Germany).
To prevent oxidation of the specimens, these were deposited in a tent chamber with all
pure-shield argon (99.99%) that guaranteed a residual oxygen content between 200 and
600 ppm. The shielding gas flow is comparably low (see Table 2) because it was done
with the aid of an additional local shielding device based on [49]. After deposition, the
specimens were removed from the substrate and a stress-relieving heat treatment was
applied for 4 h at 650 ◦C in an inert argon atmosphere.

A Fronius Cold Metal Transfer (CMT) advanced 4000R power source (Fronius Inter-
national GmbH, Pettenbach, Austria) was used for the deposition of both AA2319 and
S355JR steel. The pulsed CMT mode (CMT-P) and standard CMT mode (continuous cur-
rent) were used for AA2319 and S355JR steel, respectively. The specimens were built on
12.6 mm thick substrates of compatible alloy grades—AA2219-T6 and S355JR steel—and
pure-shield argon (99.99%) was employed as shielding gas. No heat treatment was applied
after deposition of AA2319 and S355JR steel. The full list of the deposition parameters for
each material is summarized in Table 2.
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Table 2. Welding parameters for WAAM-fabricated specimens.

Deposition Parameter Ti-6Al-4V AA2319 S355JR

Process DC Plasma CMT-P CMT
Current [A] 180 Not Measured Not Measured
Wire Feed Speed [mm/s] 40 100 100
Travel Speed [mm/s] 6 10 10
Wire diameter [mm] 1.2 1.2 1.2
Work Piece Distance [mm] 8 13 13
Dwelling time [s] Not Measured 120 90
Plasma Gas Flow [l/min] 0.8 N/A N/A
Shielding Gas Flow [l/min] 8 25 25

As the final dimensions of the specimens required a width of 20 mm, 4 overlapping
beads were deposited in parallel with a determined spacing between them to guarantee
no fusion defects. For Ti-6Al-4V and AA2319 samples, this spacing was 4 mm, while for
S355JR a spacing of 5 mm was used. When starting the deposition of a subsequent layer,
the deposition direction was reversed and the end of the previous layer was the starting
point of the new one.

2.2. Microstructural Investigation

The microstructures of the WAAM-fabricated materials in the as-deposited state were
investigated using optical microscope (OM) Leica DMI5000 M (Leica Microsystems GmbH,
Wetzlar, Germany) as well as a scanning electron microscope (SEM) (JEOL JSM-6490LV, Jeol
Ltd., Tokyo, Japan) combined with electron back scattering diffraction (EBSD) (DigiView
3 camera, TSL OIM Data Collection 5.31, OIM Analysis 5.31) to describe microstructural
morphology and to determine local micro-texture at different areas. For this purpose,
samples were extracted from the WAAM-fabricated blocks, fixed, finely ground with SiC
sandpaper in several stages, polished, and etched. Etched samples were used for optical
microscopic examinations, and EBSD analyses were performed on polished specimens.
Preliminary EBSD investigations revealed that the microstructure of the WAAM samples
of Ti-6Al-4V, AA2139, and S355JR are characterized by a weak micro-texture and do not
exhibit any preferential orientations. Furthermore, the absence of orthorhombic sample
symmetry is evident. For this reason, the micro-texture of the WAAM samples was
determined using inverse pole figures (IPF), and calculation of IPF was conducted based
on the generalized spherical harmonic expansion (GSHE) method, whereas triclinic sample
symmetry was assumed. The EBSD measurements were performed covering a specimen
area of 950 µm × 950 µm, at 30 kV, beam current of 3.5 nA, emission current of 71 µA
−74 µA, magnification of 100×, working distance of 14 mm, step size of 2.00 µm, and
sample tilt of 70◦. The EBSD analyses were carried out at several positions in such a way
that the respective examined microstructural areas overlap and are merged into an overall
picture. Thus, a statistically relevant number of single orientations was measured. The
fixed directions of [001], [010] and [100] are parallel to the transverse (TD), normal (ND)
and longitudinal (LD) directions, respectively, as defined in Figure 1.
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Figure 1. Schematic of the direction of compression test coupons, extracted from the WAAM-
fabricated blocks of Ti-6Al-4V, AA2319, and S355JR steel. Directions of [001], [010], and [100] are
fixed parallel to the transverse (TD), normal (ND) and longitudinal (LD) directions, respectively, for
EBSD analyses.

2.3. Compression Test

For the compression tests, three cylindrical specimens in each direction with a diame-
ter of 10 mm and a height of 15 mm were extracted from the WAAM-produced wall-like
structures. In Figure 1, the schematic of the direction of the specimens is shown. The longi-
tudinal and normal directions represent the deposition and building directions, respectively,
and the transverse direction is perpendicular to the longitudinal-normal plane.

The titanium specimens were tested in a servo-hydraulic testing machine from Schenck-
Instron (Instron GmbH, Darmstadt, Germany) with a maximum loading capacity of
1000 kN. Due to the expected lower load necessary to test the aluminum and steel speci-
mens, the Zwick 1484 universal testing machine (Zwick Roell Group, Ulm, Germany) with
a maximum load of 200 kN was used. The deformation velocities were 0.1 mm/min and
0.5 mm/min in case of Ti-6Al-4V and 0.5 mm/min in case of AA2319 and S355JR steel.
Teflon spray was used to minimize friction between the surface of the samples and the com-
pression die. Deformation of the specimens was measured in the servo-hydraulic testing
machine via MTS clips for displacement measurements (Model 632.03C-31, MTS Sensor
Technologie GmbH & Co. KG, Lüdenscheid, Germany) and on the Zwick 1484 universal
testing machine by the laser scanner system Fiedler WS180 (Fiedler Optoelektronik GmbH,
Lützen, Germany). All tests were carried out at room temperature, and at least five samples
were tested of each material.

2.4. Microhardness Test

The microhardness tests were performed along the normal and transverse directions
in the normal-transverse cross-sections for all three materials using the automated Vick-
ers hardness testing machine FALCON 5000 (INNOVATEST Europe BV, Maastricht, The
Netherlands). In each direction, at least three measurements were conducted in repre-
sentative areas of the WAAM-fabricated materials, such as in the layer bands as well as
inter-layer boundaries. It should be mentioned that different indentation distances were
chosen for different materials. The indentation was carried out with a load of 0.3 kg for
Ti-6Al-4V as well as S355JR steel and 0.2 kg for AA2319.
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3. Results and Discussion
3.1. Ti-6Al-4V

In Figure 2, the stress–strain response of WAAM-fabricated Ti-6Al-4V during compres-
sive loading in three orthogonal directions (longitudinal, transverse and normal) is shown,
and the key properties are summarized in Table 3. As can be seen from Figure 2, WAAM-
fabricated Ti-6Al-4V shows approximately the same behaviour during compression in
longitudinal and transverse directions, but the behaviour obtained in normal direction is
different. Similar observations regarding the orientation-dependent mechanical properties
of AM Ti-6Al-4V parts during tensile testing have been reported in the literature [42–44].
The reason has been explained by the loading direction with respect to the direction of
elongated prior β-grains and microstructural texture.

Figure 2. Stress-strain response of WAAM-fabricated Ti-6Al-4V in three orthogonal directions during
compression test at 0.1 mm/min.

Table 3. Compressive mechanical properties of WAAM-fabricated Ti-6Al-4V in three orthogonal
directions. σu and σy are ultimate compressive strength and compressive yield strength, respectively.
Specimens loaded in normal direction show the highest ultimate compressive strength. The compres-
sive Young’s modulus of the WAAM-fabricated Ti-6Al-4V is determined as constant of Ec = 120 GPa
in all three different directions.

LD TD ND

σu [MPa] 1891± 112 1816± 51 1918± 18
σy [MPa] 971± 10 995± 9 960± 12

Therefore, the detected direction-dependent mechanical behaviour is attributed to
the microstructure of WAAM-fabricated Ti-6Al-4V. The Ti-6Al-4V microstructure consists
of several layers and is characterized by a domain structure containing α lamellae; see
Figure 3. Grain boundary α phase is also observed within the prior β-grains. It should be
mentioned that similar microstructures have been reported by [10,22] for WAAM-fabricated
Ti-6Al-4V. The color coding in the crystal orientation map shows that the crystal directions
of the α lamellae are very different in relation to the transverse sample direction [001]; see
Figure 4. The present representation shows a manifold of orientations, which is typical
for solidification structures in Ti-6Al-4V. From this, it can be deduced that there were no
pronounced preferential directions for both heat conduction and crystal growth in the
microstructure region shown. The statistical determination of lamella width and lamella
length was carried out on the basis of Figure 4. At the build-up height, the lamella length
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varied in a range between 16.4 µm and 20.7 µm, and the lamella width in a range between
4.1 µm and 5.5 µm. This resulted in aspect ratios of the lamella from 0.31 to 0.35.

Figure 3. WAAM-fabricated Ti-6Al-4V; (a) layered structure of WAAM-fabricated Ti-6Al-4V,
(b) domains represent prior β-grains, (c) domains contain short-lamellar grains.

Figure 4. Crystal orientation map ([001] = ND, [010] = TD, [100] = RD) of WAAM-fabricated Ti-6Al-4V,
according to the local coordinate system for the EBSD analysis; the colour coding shows that the
α lamellae are oriented differently within the respective domains, resulting in low micro-texture
sharpness; calculation of Taylor factors based on at least 78,000 grains; aspect ratio dmin/dmaj of the
different grains is between 0.31± 0.16 and 0.35± 0.16, the long side is between dmaj = 16.4± 4.7 µm
and dmaj = 20.7± 5.8 µm, the short side is between dmin = 4.1± 1.0 µm and dmin = 5.5± 1.1 µm.

The inverse [001] pole figure (transverse direction) shows the occurrence of axial
intensities at 〈2110〉with a spread angle to 〈0001〉 as well as 〈1010〉 and 〈2125〉; see Figure 5.
The Taylor factor is M[001] = 4.19± 0.59.

Figure 5. Inverse [001], [010] and [100] pole figures of WAAM-fabricated Ti-6Al-4V with an intensity
maximum of Hmax = 3.754 mrd. The directions of [001], [010], and [100] are parallel to the transverse,
normal and longitudinal directions of the specimen, respectively.
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The inverse [100] pole figure (longitudinal direction) shows an orientation band
between 〈2112〉 and 〈1017〉 as well as between 〈1012〉 and 〈6335〉. Furthermore, a spread at
〈2021〉 is present. The spreading angles with respect to the axial intensities of the inverse
pole figures are correspondingly pronounced. Another typical feature is the formation of
domains in which the fine lamellae are grouped together.

The Taylor factor is M[100] = 4.23± 0.72, which is slightly higher than the one obtained
in the transverse direction. In the longitudinal direction [100], crystal directions appear
that are closer to the 〈0001〉 corner or 〈1010〉 corner of the inverse [100] pole figure. It can
therefore be assumed that shear stresses on the basal and prismatic planes are lower than
in the transverse direction [001]. Correspondingly higher compressive forces are required
to activate dislocations with the Burgers vector 〈c + a〉.

The inverse [010] pole figure (normal direction) shows axial intensities at 〈0001〉,
〈1010〉, and 〈0001〉 corner or 〈7079〉 crystal directions; see Figure 5. The Taylor factor
M[010] = 4.32± 0.74 is slightly higher compared to other two loading directions. In the case
of crystal directions 〈0001〉//[010] and 〈1010〉//[010], the test direction is perpendicular
to the basal plane (0001) or prismatic plane (1010). In this orientation, the Burgers vectors
〈a〉 and 〈c〉 cannot be activated because these Burgers vectors are parallel to the basal
or prismatic plane, and the respective shear stresses are zero. The determined Taylor
factor for direction [010] indicates that dislocations with a Burgers vector 〈c + a〉 must
be activated. Higher compressive forces compared to the [100] direction are required to
mobilize dislocations with a Burgers vector 〈c + a〉. The crystal direction 〈7079〉//[010] is
between 〈0001〉 and 〈1010〉 at about 45◦. In this direction, 〈a〉 sliding on the basal plane is
easier to activate.

According to Taylor’s theory [50], at least five independent slip systems are required
for homogeneous deformation. To ensure the compatibility of the polycrystalline defor-
mation, it is necessary to additionally activate the 〈c + a〉-slip systems, if the test direction
is perpendicular to the basal plane or prismatic plane. As already mentioned, higher
compressive forces are required for the activation of the 〈c + a〉 sliding. Therefore, it is
assumed here that 〈c + a〉-sliding has to be activated when compressive loading is applied
in normal and longitudinal directions, and consequently the compressive strength values
are higher in these directions than in the transverse direction. The difference between
the Taylor factors is not significant, which is also reflected in the small differences in the
yield strength for all three loading directions. Significant differences are also not expected
because the texture sharpness of the WAAM structure of Ti-6Al-4V is low. The standard
deviations are due to the average grain sizes of the alpha lamellae in combination with
the magnification of 100 times on the SEM. The crystallographic orientation differences
between normal, longitudinal, and transverse sample directions are clear and are correlated
to the Taylor factors.

In Figure 6, the hardness results for WAAM-fabricated Ti-6Al-4V are shown. The
hardness is 332± 12.55 HV0.3 and 337± 11.31 HV0.3 in the normal and transverse direction,
respectively, which is lower than the hardness level of Ti-6Al-4V according to the ASTM
international standard, which is 365 HV [51]. The hardness variations in normal direction
are due to the layer-like structure of the WAAM Ti-6Al-4V microstructure. In transverse
direction, the hardness decreases by increasing the height of structure at 5 mm, which
indicates that the cooling rates were lower, which may result in coarsening of the grains.
As already discussed in the literature [3,22], the thickness of the α lamellae changes with
the height of a deposited layer, resulting in a change in hardness of the material along the
layer height, with higher value of the hardness near the interfaces between the different
deposited layers, i.e., the so-called layer bands [22].
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Figure 6. Hardness measurements in WAAM-processed Ti-6Al-4V in (a) normal and (b) transverse
directions. The hardness is slightly changing due to the microstructure changes within the layer
transition zones.

3.2. AA2319

The compressive stress–strain responses of WAAM-fabricated AA2319 for three or-
thogonal directions are displayed in Figure 7, while the determined mechanical properties
are summarized in Table 4. The results indicate that the elastic modulus is slightly varying
in all three loading directions. The reason is attributed to the level of porosity that is
contained in the WAAM specimens. During compressive loading, porosity furthermore
leads to the reduction in effective load-bearing cross-sectional area and single pores might
act as a stress concentration sites for strain localization that results in a decrease in ductility
overall [52].

Figure 7. Stress–strain response of WAAM-fabricated AA2319 in the longitudinal, transverse, and
normal directions.

Table 4. Mechanical properties of WAAM-fabricated AA2319 in LD, ND, and TD directions obtained
by compression test results, shown in Figure 7. σd30, σy and Ec are strength at compressive strain of
30%, compressive yield strength, and compressive Young’s modulus, respectively.

LD TD ND

σd30 [MPa] 512± 32 549± 27 598± 32
σy [MPa] 121± 7 133± 5 134± 9
Ec [GPa] 48± 10 51± 5 50± 7
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The porosity distribution in a WAAM processed AA2319 specimen is shown in
Figure 8 for the relevant cross-sections. Selected representative inter-layer boundaries are
highlighted for the reader’s convenience. The presence of porosity in WAAM-fabricated
AA2319 is typically attributed either to not-fully-optimized process conditions, which
is classified as process-induced porosity [53], or the wire quality, which is classified as
material-induced porosity [54]. The moisture, grease, and hydrocarbon contaminations
present on the wire surface are vaporized by arc heat and absorbed in the molten pool as
atomic hydrogen [55]. The directional formation of the pores in WAAM-fabricated AA2319
can clearly be seen in Figure 8.

Figure 8. Porosity in WAAM-fabricated AA2319 in three orthogonal cross-sections (a–c). Some
inter-layer boundaries are exemplarily highlighted in red.

The mechanical behaviour of WAAM-fabricated AA2319 is nearly isotropic in the
early stages of the plastic deformation; see Figure 7. The isotropy of tensile mechanical
properties of AM aluminum alloys has been widely reported in the literature [25,26,40].
For instance, Bai et al. [26] reported 1% anisotropy of ultimate tensile strength for AA2219
produced by AM with tungsten inert gas.

The crystal orientation map within a layer of WAAM-fabricated AA2319 is shown in
Figure 9. As seen in this figure, grain morphology varies from large columnar grains in the
inner layer part to very fine equiaxed grains in the inter-layer boundaries. Randomized
grain shape in the compression samples implies that the grain morphology has no effect
on the mechanical properties of the WAAM-fabricated AA2319. Furthermore, no crystal-
lographic preferential orientations are recognizable, so in the case of the WAAM AA2319
structure, there is also a weak texture.

Figure 9. Crystal orientation map ([001] = ND, [010] = TD, [100] = RD) of WAAM-fabricated AA2319,
according to the local coordinate system for the EBSD analysis; the colour coding shows that the
grains are oriented randomly, resulting in low micro-texture sharpness; calculation of Taylor factors
based on at least 8100 grains.



Metals 2021, 11, 877 11 of 18

The IPF for all three loading directions are shown in Figure 10. The inverse [001]
pole figure shows that the majority of crystals are oriented in 〈101〉 direction with slight
distribution in 〈334〉, as well as 〈111〉. The inverse [010] pole figure shows local distribution
of crystal orientations in 〈101〉, 〈334〉, and 〈111〉, whilst an orientation band between 〈111〉
and 〈101〉 is observed in the inverse [100] pole figure. Although the preferred crystal
orientations are varying for the different directions, WAAM AA2319 shows approximately
isotropic behaviour in different directions during the compression tests; see Figure 7. The
reason is that the compressive force mainly interacts with the (111) and (110) planes in all
sample directions. Therefore, the calculated Taylor factors regarding the different sample
directions show approximately similar values of M[001] = 3.15± 0.39, M[010] = 3.09± 0.39,
and M[100] = 3.12± 0.40. This can explain the similar onset of the yielding of WAAM
AA2319 in the three different orthogonal loading directions (see Table 4), where the slight
differences, as in case of the Young’s modulus, are mainly porosity-related.

Figure 10. Inverse pole figures of WAAM AA2319 with an intensity maximum of Hmax = 1.604 mrd.

The mechanical behaviour of WAAM AA2319 shows an anisotropic behaviour for
increased deformation; in particular, the response in normal direction deviates from the
other loading directions. This is most likely due to the directional distribution of pores. As
discussed earlier, the pores are mostly located in the inter-layer boundaries, which can be
referred to as linear porosity [56]; see Figure 8. The compressive samples extracted from the
longitudinal direction contains a bundle of linear porosity aligned in this direction. During
compressive loading in the longitudinal direction, this linear porosity acts as weak linear
sites where damage is preferentially accumulated. As a result, layers can slide on each
other during loading. In contrast, during the deformation in the transverse and normal
directions, layers are compressed on each other, resulting in higher compressive strengths
compared to the longitudinal direction.

The microhardness test results of WAAM AA2319 in both normal and transverse
directions are shown in Figure 11. The microhardness is determined to be 76.2± 21.42
HV0.2 and 86.02± 12.52 HV0.2 in normal and transverse directions, respectively. These
values make it appear that the microhardness is higher in transverse direction. However,
the microhardness values drop at some locations in normal direction due to the presence
of pores around the indent. This consequently affects the mean value of the hardness
in normal direction. It can be seen that the hardness is changing along the normal and
transverse directions. As discussed before, the grain morphology as well as grain size is
changing within the layer of WAAM AA2319; see Figure 9. Finer grains lead to more grain
boundaries, which results in higher microhardness by enhancing the material’s ability to
resist deformation. In the normal direction, hardness drops with gaining height of the
structure. In the beginning of the process, heat dissipates into the base plate, and smaller
grains are formed. After a stable heat conduction up to 18 mm, hardness drops, which is a
sign that the weld cooled more slowly, forming larger grains.



Metals 2021, 11, 877 12 of 18

Figure 11. Microhardness distribution of WAAM AA2319 in (a) normal and (b) transverse direction.

3.3. S355JR Steel

In Figure 12, the stress–strain responses of WAAM S355JR steel for loading in longitu-
dinal, normal, and transverse directions during compression are shown. As summarized
in Table 5, the mechanical properties of WAAM S355JR steel are nearly isotropic due
to the presence of a relatively homogeneous microstructure. The grain size distribution
and orientation maps of WAAM S355JR steel are shown in Figure 13. The microstruc-
ture contains refined and non-refined regions where it has been stated by Colegrove et
al. [7] that the refined region represents the majority of the microstructure in the case of
WAAM S355JR steel. This is also the typical microstructure of ASTM international standard
S355JR steel [57]. The grains are nearly equiaxed in both refined and non-refined regions.
Shassere et al. [41] found that the mechanical properties of WAAM low carbon steel are
isotropic in the middle of the build, where the microstructure is fairly homogeneous. Small
deviations in compressive mechanical properties can be rationalized by the presence of
different amounts of non-refined regions in different samples. In Figure 14, the inverse
pole figures of the WAAM S355JR steel for the three loading directions are shown. The
WAAM S355JR steel is characterized by a pronounced (111)//[111] fiber texture. The com-
parison of the Taylor factors shows approximately similar values of M[001] = 3.13± 0.39,
M[010] = 3.09± 0.39, M[100] = 3.10± 0.38 in the corresponding testing directions. This also
explains the approximately equal yield strength for all directions as listed in Table 5.

In Figure 15, the microhardness distribution for WAAM-fabricated S355JR steel is
shown for the transverse and normal direction. The hardness is 152.4 ± 5.82 HV0.3 and
150.51 ± 4.95 HV0.3 in normal and transverse directions, respectively, which is lower than
the hardness level of S355JR UNI EN 10025 low carbon steel [58], which is about 167 HV.
The microhardness changes slightly in both transverse and normal directions. This is
attributed to the change of the microstructure from refined grains in inner-layer parts to
the non-refined region in layer bands; see Figure 13. As discussed earlier, finer grains result
in higher hardness due to the presence of higher number of grain boundaries that increase
the ability of the material to resist the deformation.

Table 5. Mechanical properties of WAAM-fabricated S355JR steel in LD, ND, and TD directions
obtained by compression test results, shown in Figure 12. σd35, σy, and Ec are strength at compressive
strain of 35%, compressive yield strength and compressive Young’s modulus, respectively.

LD TD ND

σd35 [MPa] 1321± 13 1385± 12 1338± 11
σy [MPa] 377± 11 373± 10 382± 8
Ec [GPa] 212± 8 213± 12 217± 10
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Figure 12. Stress–strain response of WAAM S355JR steel extracted from a compression test in three
orthogonal directions. The mechanical properties appear to be nearly isotropic.

Figure 13. Crystal orientation map ([001] = ND, [010] = TD, [100] = RD) of WAAM-fabricated
S355JR steel, according to the local coordinate system for the EBSD analysis; the colour coding
implies that 〈111〉/[001] is the dominating crystal direction; aspect ratio dmin/dmaj within the refined
microstructure is between 0.51± 0.12 and 0.52± 0.11, long side is between dmaj = 8± 2.8 µm and
dmaj = 9.9± 3.6 µm, the short side is between dmin = 4.1± 1.3 µm and dmin = 4.8± 1.6 µm; aspect
ratio dmin/dmaj within the non-refined microstructure is 0.48± 0.13, long side is dmaj = 13.3± 4.8 µm,
the short side is dmin = 6.1± 2.1 µm; calculation of Taylor factors based on at least 10,600 grains.

Figure 14. Inverse pole figures of WAAM-fabricated S355JR steel in relevant testing directions with
an intensity maximum of Hmax = 1.876 mrd.
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Figure 15. Microhardness distribution of WAAM-fabricated S355JR steel in (a) normal direction and
(b) transverse direction.

4. Conclusion Remarks

The relationship between the microstructural features, i.e., grain morphology as
well as crystallographic orientation and compressive mechanical properties as well as
microhardness of WAAM-fabricated Ti-6Al-4V, AA2319, and S355JR steel were investigated.

It is well-known that the material’s mechanical properties are controlled by their
deformation mechanism, which are the result of microstructure and crystal orientation.
On the other hand, the microstructural features such as grain morphology and crystallo-
graphic orientation are the result of processing of the material. The WAAM-fabricated
Ti-6Al-4V contains very fine lamellae grains where no dominant orientation exists in the
microstructure. For WAAM-fabricated AA2319, the morphological features of the grains
such as grain size and shape are locally changing within the layer. However, in the scale
of the compression samples in this study, all types of grain morphologies are present.
WAAM-fabricated S355JR steel contains non-refined and refined regions, where the refined
microstructure is the major one.

The restricted number of available slip systems in HCP metals, such as Ti-6Al-4V,
usually makes the accommodation of homogeneously strains through dislocation slip
difficult. In case of aluminum and steel with FCC and BCC crystal structures, respectively,
there are several slip systems that possess the required five independent slip systems that
permit their grains to deform homogeneously. The results of this study are summarized
as follows:

• In case of WAAM-fabricated Ti-6Al-4V, due to the presence of basal and prismatic
crystal planes in normal direction, the 〈a〉-slip on basal and 〈c〉-slip on prismatic planes
cannot be activated during compression, which leads to the highest compressive
strength and lowest deformation when loaded in the normal direction.

• WAAM-fabricated AA2319 and S355JR steel exhibit isotropic mechanical behaviour
in all directions. However, directional formation of the porosity in AA2319 causes
anisotropic behaviour in the last stages of the deformation during compression. The
porosity also results in a slight anisotropy of the elastic modulus.

• Microhardness changes in the normal and transverse direction of all three materials
are mainly the result of grain morphology variations. The layer-like structure of the
WAAM-fabricated Ti-6Al-4V, AA2319, and S355JR steel leads to different grain mor-
phologies in inner-layer regions and inter-layer boundaries. The microhardness has
higher value near the inter-layer boundaries of WAAM Ti-6Al-4V and AA2319 as well
as refined regions in WAAM S355JR steel. Crystallographic orientation distribution
does not seem to affect the microhardness.
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The following abbreviations are used in this manuscript:

A0 initial specimen cross section
E Young’s modulus
Ec compressive Young’s modulus
F force
l specimen length
l0 initial specimen length
σd30, σd35 strength at compressive strain of 30% and 35%, respectively
σu ultimate compressive strength
σy compressive yield strength
AM additive manufacturing
BCC body-centered cubic
CMT cold metal transfer
CMT-P pulsed CMT mode
DC direct current
EBSD electron back scattering diffraction
FCC face-centered cubic
GSHE generalized spherical harmonic expansion
HCP hexagonal close packed
IPF inverse pole figure
LASIMM Large Additive Subtractive Modular Machine
LD longitudinal direction
ND normal direction
OM optical microscope
RD rolling direction
SEM scanning electron microscope
TD transverse direction
UC-WAAM ultracold-wire + arc additive manufacturing
WAAM wire + arc additive manufacturing
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