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Abstract 
 

Synthesis of A-type carbonated hydroxyapatite (CHA) materials has typically involved heating of a 

hydroxyapatite composition for 24 hours or greater.  In this study, a hydroxyapatite powder was 

heated at 800, 900 or 1000°C for 1, 8 or 16 hours in dry CO2.  Samples heated for 8 and 16 hours 

at 900/1000°C were fully-carbonated A-type CHAs.  After only one hour at 1000°C, the carbonate 

content approached 95% of the theoretical maximum.  Preparing compositions with more than 95% 

of the theoretical maximum with reduced thermal energy (1000°C for 1 hour, or 900°C for 8 hours) 

results in powders with higher surface areas and a reduced level of sintering, compared to powders 

prepared with typical thermal treatments reported for A-type CHAs, such as 1000°C for 16 hours. As 

far as the authors are aware, these are the shortest heating times reported for the preparation of 

fully-carbonated A-type CHAs which is significant for future applications of such powders, particularly 

in applications beyond medical devices such as chromatography, remediation and carbon capture. 

 

 



 

1. Introduction 
 

Hydroxyapatite (HA, Ca10(PO4)6(OH)2) has been a cornerstone of biomaterials research for several 

decades.  Part of the reason for this is that the HA crystal structure can accommodate a wide range 

of ionic substitutions, allowing for the preparation of synthetic materials with chemical compositions 

close to that of biological apatite (a carbonated apatite with several other trace elements also present 

[1,2]). 

This ability for hydroxyapatite to incorporate a wide range of ionic substitutions within its structure 

has also led to the study of ion-substituted HA as photocatalysts [3,4]. Ion substitution of 

hydroxyapatites can also enhance the sorption capacity of hydroxyapatite to remove toxic species 

from groundwaters, for example copper-substituted HA for removal of arsenates [5]. Carbonate-

substitution in HA has even been shown to result in a bifunctional catalyst with a mixture of acid and 

basic surface sites, and this was effective at catalysing the conversion of ethanol to hydrocarbon 

fuels [6].  Recently, we explored the feasibility of controlling the synthesis parameters of carbonate-

substituted apatites as a method to maximise carbonate incorporation [7]. 

Three kinds of carbonated hydroxyapatites (CHAs) are known, with these classified according to the 

substitutional site of the incorporated CO32- ions: A-type (where carbonate ions situate on OH- sites), 

B-type (where carbonate ions occupy PO43- sites) and AB-type (where carbonate ions 

simultaneously occupy both OH- and PO43- sites) [8,9].  

It is widely known that A-type CHAs can be prepared by heating HA at high temperature in a CO2 

atmosphere.  The reaction involved is shown in Eqn. 1, where 0 < 𝑥𝑥 ≤ 1: 

 

𝐶𝐶𝐶𝐶10(𝑃𝑃𝑃𝑃4)6(𝑂𝑂𝑂𝑂)2 + 𝑥𝑥𝐶𝐶𝐶𝐶2 ⟶ 𝐶𝐶𝐶𝐶10(𝑃𝑃𝑃𝑃4)6(𝑂𝑂𝑂𝑂)2−2𝑥𝑥(𝐶𝐶𝐶𝐶3)𝑥𝑥 + 𝑥𝑥𝐻𝐻2𝑂𝑂 Eqn. 1 

 

Here, two hydroxyl groups are replaced by a single carbonate ion to allow overall charge balance to 

be maintained.  Ito et al. [10] prepared A-type CHAs by heating hydroxyapatite with a Ca/P molar 

ratio of 1.67 at 800-1000°C for 24-144 hours under a stream of CO2 gas.  The carbonate content of 

these materials, which ranged from 0-5.46 wt%, was determined by decomposing the synthesised 

apatites in an O2 gas flow using hydrochloric acid and then measuring if this gas flow brought about 

a change in the pH of a solution of barium chlorate (Ba(ClO4)2) due to the precipitation of barium 

carbonate (BaCO3).  Peaks appeared in the IR spectra of the prepared materials at 1549, 1461 and 

881 cm-1, with none present at or near 1455, 1430 and 864 cm-1, and so it was concluded that CO32- 

ions had substituted onto the A-sites of the lattice alone.  Tonegawa et al. [11] successfully 

synthesised an A-type carbonated hydroxyapatite in which the hydroxyl ions had been fully replaced 

with carbonate groups.  This CHA was prepared by heating stoichiometric HA (previously 

synthesised by aqueous precipitation reaction using calcium hydroxide and phosphoric acid) at 

1000°C for 24 hours under a dry CO2 gas flow rate of 500 ml/min.  The temperature was increased 

at 5°C/min and the carbon dioxide gas was thrice passed over active alumina to ensure it was dry.  



 

The prepared apatite had a Ca/P molar ratio of 1.67 and a CO32- content of 5.33 wt%, measured by 

thermogravimetry, which was close to the theoretical maximum of 5.82 wt% (i.e. when 𝑥𝑥 = 1.0 in 

Eqn. 1).  These ions situated exclusively on the A-sites, evidenced by the fact that vibrations 

corresponding to CO32- ions appeared in the IR spectrum of the material at 1539, 1467 and 879 cm-1 

only.  Also, no bands attributable to the vibrational modes of hydroxyl ions were observed.  Extra 

reflections were present in the X-ray diffraction pattern of the material at 12.86, 23.2, 26.8, 29.6, 29.9 

and 35.5° 2θ, which were attributed to the carbonated HA structure having monoclinic symmetry in 

the space group Pb with unit cell constants a = 9.5671(2), b = 19.063(3), c = 6.8678(1) Å and β = 

119.82(1)°, a doubled superstructure of the hexagonal form.  This group also prepared a similar A-

type CHA using another high-temperature synthesis route [12].  Synthetic HA with a Ca/P molar ratio 

of 1.65 was heated for 64 hours at 900°C in a CO2 flow of 500 ml/min.  The crystal structure of the 

carbonated hydroxyapatite was again monoclinic (space group Pb), with lattice constants a = 

9.571(1), b = 19.085(2), c = 6.8755(3) Å and β = 119.847(7)°.  Thermogravimetry revealed that the 

prepared material contained 5.45 wt% carbonate and the researchers concluded that these ions 

situated exclusively on the A-sites as vibrations corresponding to carbonate ions were observed in 

the FTIR spectrum of the apatite at 879, 1467 and 1539 cm-1 only.  Additionally, no vibrations 

corresponding to hydroxyl ions were observed.   

Until now the reported synthesis of these A-type CHA materials has required that HA be heated for 

timescales in the range of 15-144 hours [10-14].  Consequently, the aim of this study was to 

investigate whether fully carbonated A-type CHA powders can be prepared by heating 

hydroxyapatite for significantly shorter periods of time. It is important to be able to efficiently produce 

the end member of the composition Ca10(PO4)6(OH)2-2x(CO3)x (i.e. x = 1) as it is then convenient to 

refine the conditions to produce a given composition within the range of x = 0-1 as may be required 

for a specific application. Reducing the time the samples are held at high temperatures would be 

beneficial in terms of minimising grain/crystallite growth within the powder particles, reducing energy 

requirements to synthesise these materials, and in the case of potential CO2 capture applications 

using calcium phosphates, would provide a rapid system of maximising the amount of CO2 captured 

in the A-type CHA structure in a time-scale that is feasible in terms of use. 

 



 

2. Materials and methods 
2.1. Sample Preparation 

Stoichiometric HA was first synthesised at room temperature in ambient atmosphere by aqueous 

precipitation reaction.  This reaction was based on an established precipitation route [15] and 

involved adding a phosphoric acid (H3PO4) solution dropwise to an aqueous suspension of calcium 

hydroxide (Ca(OH)2).  The quantity of each reactant used was calculated such that the Ca/P molar 

ratio of the reactants was equal to 1.67.  The Ca(OH)2 suspension was prepared by dispersing 0.11 

moles of calcium hydroxide (98% assay, VWR, UK) in approximately 150 ml of distilled water.  30 

ml of concentrated ammonium hydroxide solution was added to ensure that the pH of the suspension 

did not fall out with a desired range (9-11) upon the introduction of the H3PO4 solution and thus avoid 

the formation of calcium-deficient impurity phases [16,17].  The H3PO4 solution was then prepared 

by diluting 0.066 moles of phosphoric acid (Merck, 85% solution in water) with 150 ml of distilled 

water.  This solution was added dropwise to the continuously stirred Ca(OH)2 suspension over a 

period of about 2 hours.  The reaction mixture was stirred for a further two hours and then left to age 

unstirred overnight.  The aged reaction mixture was filtered, thoroughly rinsed with distilled water 

and the resultant filter-cake dried in air in an oven at 90°C overnight.  The dried filter-cake was then 

ground to a fine powder using a mortar and pestle.  Subsequently, the power was subjected to a 

heat treatment at 300°C in air to remove synthesis residuals such as absorbed water, using a muffle 

furnace (Carbolite Gero Ltd., UK) with a heating and cooling rate of 5 °C/min, and a hold for one 

hour.  Finally, aliquots (c. 0.5 g) of this ‘as-prepared’ powder were subjected to a heat treatment in 

a tube furnace (Carbolite Gero Ltd., UK) under a dry CO2 gas flow rate of approximately 0.5 dm3 per 

minute.  The temperature in the furnace was ramped from ambient up to 800, 900 or 1000°C at a 

rate of 5 °C/min, held there for either one, eight or sixteen hours and then cooled back to room 

temperature at the same rate. 

 

2.2. Sample Characterisation 

Powder X-ray diffraction (XRD) was used to assess the phase composition of samples using an 

X'Pert Pro diffractometer (PANalytical Ltd., UK) with Cu Kα radiation (λ = 1.5418 Å), and operated 

at 45 kV and 40 mA.  Data were collected from either 10-40 or 15-65 °2θ with a step size of 0.013 ° 

and a count time per step of 900 or 96 s respectively.  Crystalline phases present were identified by 

comparing obtained patterns with PDF files from the ICDD database.  The unit cell parameters of 

the synthesised apatites were determined by minimised Rietveld refinement with collected XRD data 

using the PANalytical software package ‘HighScore Plus’ [18].  Whereas the refinement of the as-

prepared apatite was carried out in the hexagonal space group P63/m using HA structural data 

reported by Sudarsanan and Young [19], the refinements of the apatites heated in CO2 were required 

to be carried out in the monoclinic space group Pb using A-type CHA (Ca9.9(PO4)6(CO3)0.9) structural 

data reported by Tonegawa et al. [12] as the initial model.  In each case, only the background 

function, scale factor, lattice parameters and peak shape functions were refined.  The Ca/P molar 



 

ratio of the as-prepared powder was analysed by energy-dispersive X-ray spectroscopy (EDX) using 

a Gemini SEM 300 field emission SEM (Zeiss, Germany) equipped with an X-ray detector (Oxford 

Instruments, UK) operating at an accelerating voltage of 15 kV.  A powder compact of the powder 

was coated with carbon prior to analysis.  Three measurements were taken and the results reported 

as an average alongside the standard deviation.  The carbonate contents of the samples were 

determined by combustion analysis using a LECO CS744 carbon/sulphur analyser (LECO 

Instruments UK Ltd., UK).  For each sample, duplicate measurements were made and the mean 

value reported alongside the standard deviation.  It was assumed that all of the carbon detected by 

the equipment existed as CO2, which was reasonable as the equipment flooded the combustion 

chamber with oxygen and also passed the combustion products through an oxidation catalyst.  FTIR 

spectra of the samples were obtained using a Diamond/ZnSe ATR attached to a Spectrum Two™ 

spectrometer (Perkin-Elmer, UK).  Absorbance spectra were collected at a 2 cm-1 resolution, 

averaging 7 scans, between 4000 and 400 cm-1. 

The specific surface areas, SSA (m2/g) of the powders obtained by heating at various 

temperature/times in dry CO2 were determined from nitrogen adsorption isotherms collected at liquid 

nitrogen temperature using a Micromeritics TriStar 3000 gas adsorption analyzer (Micromeritics 

Instrument Corp., USA). The SSA was determined from the data using the BET method with 

MicroActive software (Micromeritics Instrument Corp. 2012). Powder was accurately weighed out, 

degassed in nitrogen at 250oC for 5 hours, prior to nitrogen adsorption measurements.    

The effect of thermal treatment (temperature/time) on the microstructure of powder particles (in the 

range 30-300 µm diameter) was determined using scanning electron microscopy using an EVO MA 

10 SEM (Zeiss, Germany). Powders heated under various conditions were fixed to an aluminium 

stub using adhesive carbon tape, coated with Pd/Au and imaged with an accelerating voltage of 

20 kV. 

 



 

3. Results and Discussion 
 
3.1. X-Ray Diffraction (XRD) Analysis 

3.1.1. Phase composition of heated samples 
XRD analysis of the synthesised powder as-prepared and after being heated in CO2 at 900 or 1000°C 

in dry CO2 is presented in Figure 1.  XRD patterns of the powder after undergoing similar heat 

treatments at 800°C are shown in Figure S1.  The position of the diffraction peaks in the pattern of 

the as-prepared powder all matched those of the ICDD standard for hydroxyapatite [20], with no 

reflections attributable to any crystalline impurity phase such as calcium hydroxide (Ca(OH)2), 

calcium carbonate (CaCO3) or calcium oxide (CaO) present.  Reflections corresponding to impurity 

phases were also not visible in the patterns of the heated apatites and so it appeared that the heat 

treatment did not cause any phase decomposition, even after the apatite had been heated for 16 

hours at 1000°C. 

 

Even so, the patterns of the heated samples were very different to that of the as-prepared apatite.  

Extra diffraction peaks were detected in these patterns at approximately 12.9, 26.9, 29.7, 30.0, 35.4 

and 35.6 °2θ after the HA material had been heated for 16 hours at 800°C and one hour at 

900/1000°C. This is shown in more detail in Figure 2, which displays the XRD pattern between 10 

and 40 °2θ of the apatite after it had been heated in CO2 at 1000°C for 8 hours.  These diffraction 

peaks have been observed in other studies of A-type CHAs [12,21,22] and are indicative of these 

substituted HA compositions exhibiting monoclinic symmetry (space group Pb) as a result of the 

complete replacement of linear hydroxyl groups by triangular carbonate ions.  Conversely, these 

additional reflections were not observed when the as-prepared material was heated at 1000°C in 

static air for 16 hours (Figure S2).  At 900 or 1000°C, the intensity of these extra reflections was 

positively related to the dwell time at temperature, which may have indicated that not all of the HA 

underwent this transition from hexagonal symmetry simultaneously.  Note that the reflection at 23.2 

°2θ that was observed by Tonegawa et al. [11] was not seen in any of these patterns, perhaps 

because this diffraction peak was reported to be quite weak and so may have been undetectable 

without XRD analysis over a smaller range.  Additionally, several diffraction peaks shifted to lower 

angles after the material was heated, with the magnitude of these shifts increasing alongside the 

hold time.  As such behaviour was not observed in all the reflections, these shifts indicated changes 

in the lattice parameters (i.e. an increase in the size of the HA unit cell) and not some experimental 

error such as sample displacement or instrumental misalignment. 

 

  



 

3.1.2. Crystallite sizes 
The diffraction peaks of the as-prepared apatite were quite broad, consistent with the sample being 

composed of very small crystallites [23].  Reflections of the heated samples were much narrower 

than their equivalents in the pattern of the as-prepared apatite.  The mean size of these primary 

particles were calculated using Scherrer’s equation with K=0.9 and the (002) reflection at 

approximately 25.8 °2θ (Table 1), confirming increasing temperature increased crystallite size.  The 

results also demonstrated that the size of these primary particles was positively correlated to the 

dwell time at each temperature.  For comparison, the apatite was also heated in air at 1000°C for 1, 

8 or 16 hours, and similar calculation of crystallite sizes from the XRD data gave mean sizes  of 

approximately 82, 86 and 93 nm for 1, 8 and 16 hours respectively, suggesting that the CO2 

atmosphere retarded crystallite/grain growth. This is consistent with findings for carbonate-

substituted HA heated in dry or wet CO2 atmospheres, with the densification delayed to higher 

temperatures in a dry CO2 atmosphere [24]. The absence of water vapour in the heating/sintering 

atmosphere, and therefore the gradual loss of hydroxyl groups in the lattice, will affect the migration 

rate of ions during crystallite/grain growth and densification. 

 

Table 1.  The average crystallite size (in nm), calculated using Scherrer’s 
equation and the (002) reflection at approximately 25.8 °2θ, of the HA 
material as-prepared and after being heated for 1, 8 or 16 hours in CO2 at 
each temperature. 

Temperature (°C) Hold time τ (nm) 

AP N/A 29 ± 1 

800 1 hour 33 ± 1 

 8 hours 38 ± 1 

 16 hours 41 ± 1 

900 1 hour 47 ± 1 

 8 hours 54 ± 1 

 16 hours 58 ± 2 

1000 1 hour 65 ± 1 

 8 hours 71 ± 4 

 16 hours 75 ± 2 

 

3.1.3. Unit Cell Determination 
The unit cell parameters of the apatite material as-prepared and after being heated at 900 or 1000°C 

in dry CO2 are shown in Table 2.  The XRD patterns of the samples prepared at 800°C did not refine 

well in the monoclinic space group Pb (i.e better fits were achieved in the hexagonal space group 

P63/m) and so those materials were excluded here as they were not fully substituted A-type CHAs.  

Also shown are the lattice parameters of the apatite material after it had been heated at 1000°C in 

air for 16 hours, which was also refined in the P63/m space group. 



 

 

The a-axis of the as-prepared apatite was slightly smaller, and the c-axis slightly larger, than 

literature reported values of stoichiometric HA (a = 9.4184 Å; c = 6.8800 Å) [25]).  Comparing with 

the literature, these small changes suggested that there was a small degree of B-type or labile 

carbonate substitution present in the as-prepared material [8], which would be expected as the 

synthesis was performed in air and not in an inert atmosphere.  In contrast, the lattice parameters of 

the material after a 16-hour heat treatment in air at 1000°C were very similar to the literature values 

of stoichiometric hydroxyapatite.  After the apatite had been heated for eight hours in CO2 at 

900/1000°C, the unit cell constants of the material were very similar to those of the A-type CHAs 

prepared by Tonegawa et al., which suggested that the hydroxyl ions had been completely 

substituted with carbonate ions.  As a ‘check’, it was decided to refine the XRD data of the ‘8 hour’ 

samples using structural data of another A-type CHA.  Fleet and Liu previously prepared a partially 

carbonated A-type CHA with chemical composition Ca10(PO4)6(CO3)0.75(OH)0.25 by a high pressure 

method and reported that this material formed with trigonal symmetry in the space group 𝑃𝑃3� [26].  

However, the fits achieved using this model were of a significantly lower quality than those realised 

using the monoclinic model (weighted-profile R-value, Rwp = 6.9% compared to 4.6% for the sample 

heated at 1000°C), which added further weight to support that fully carbonated A-type CHAs had 

been prepared. 

 

 



 

 

 

 

 

 

 

 

 

Table 2  Lattice parameters and unit cell volume of the HA material as-prepared (AP) and after being subjected to heat treatments at 900/1000°C 
in dry CO2 for 1, 8 or 16 hours.  Respective e.s.d values are presented in brackets. 
Temperature (°C) Hold time a (Å) b (Å) c (Å) β (°) Volume (Å3) Rwp (%) 

AP N/A 9.4072(5) N/A 6.8903(5) N/A 528.05 4.13 

1000 (AIR) 16 hours 9.4218(1) N/A 6.8810(1) N/A 528.98 4.08 

900 1 hour 9.5320(1) 19.0490(1) 6.8732(1) 119.831(1) 1083.29 6.90 

 8 hours 9.5608(2) 19.0881(5) 6.8704(2) 119.822(2) 1088.45 6.68 

 16 hours 9.5741(5) 19.0769(6) 6.8696(2) 119.787(4) 1089.58 4.32 

1000 1 hour 9.5546(4) 19.0693(5) 6.8692(1) 119.846(3) 1086.23 4.08 

 8 hours 9.5731(4) 19.0760(5) 6.8685(1) 119.800(3) 1089.10 4.60 

 16 hours 9.5726(4) 19.0749(5) 6.8680(1) 119.804(3) 1088.86 4.64 



 

3.2. Chemical Analysis 
The Ca/P molar ratio of the as-prepared apatite was determined to be 1.64 ± 0.02 using EDX.  This 

was lower than the designed value of 1.67 that is characteristic of stoichiometric HA and so this 

analysis suggested that the synthesised material was slightly calcium-deficient.  To try and 

substantiate this result, the as-prepared material was heated at 1250°C in air for two hours.  At this 

temperature, a calcium-deficient apatite would be expected to decompose and produce a secondary 

phase of tricalcium phosphate [27].  However, no such phase (or any other secondary phase for that 

matter) was detected by XRD (Figure S3) after this heat treatment, which suggested that the Ca/P 

molar ratio of the material was actually closer to the stoichiometric value of 1.67.  This apparent 

underestimation of the Ca/P molar ratio of the apatite may be a result of the analysis being performed 

on a simple compacted disc rather than a highly polished surface, as the accuracy of EDX analysis 

is inversely proportional to the surface roughness of the specimen under examination [28]. 

From combustion analysis a significant quantity of carbonate ions were present in the as-prepared 

apatite, even though carbonate-free reagents were used and the Ca/P molar ratio was calculated 

such that no carbonate ions should have substituted onto phosphate sites, Figure 3.  Such 

contamination is one of the major disadvantages associated with using aqueous precipitation 

reactions to prepare hydroxyapatite materials [29].  These ions were likely to have been incorporated 

into the apatite during the precipitation reaction, as this reaction (as well as the subsequent ageing 

and filtering steps) was performed in air rather than a controlled inert atmosphere.  This presented 

ample opportunity for atmospheric CO2 to dissolve into the reaction mixture and for the resultant 

CO32- ions to substitute into the apatite structure or exist as labile (non-apatitic) carbonate. 

 

The carbonate content of the apatite samples heated in CO2 reached 5.75 and 5.65 wt% after 8 

hours at 900 and 1000°C respectively, which is very close to the theoretical maximum of 5.82 wt%.  

This was considerably less time to reach this degree of carbonation than each of the materials 

prepared by Tonegawa et al [11,12].  Conversely, the apatite had to be heated for 16 hours to reach 

this carbonate content when the heat treatment was carried out at 800°C.  Another significant result 

was the fact that 95% of the maximum carbonate content was achieved after heating in CO2 for only 

one hour at 1000°C.  The results of the combustion analysis overall suggested that the carbonation 

of the apatite at 1000°C proceeded via two distinct stages.  In the first stage, the CO32- content of 

the apatite increased rapidly over a short period of time; this was followed by a second stage in 

which the rate of carbonation was much slower and little additional CO2 was taken up by the material.  

The transition between these two stages seemed to occur once the carbonate content had exceeded 

approximately 90% of the maximum that was achieved (i.e. 5.09 wt%), although more data points 

would be needed to confirm this. 

 

 

 



 

3.3. Fourier-Transform Infrared Spectroscopy (FTIR) 

FTIR spectra of the apatites are shown in Figure 4 & Figure 5.  The spectrum of the as-prepared 

apatite (Figure 4) was typical of hydroxyapatite prepared using an aqueous precipitation reaction 

[17,30].  Each of the four IR-active phosphate vibrations that are characteristic of HA were visible.  

The presence of hydroxyl ions in the lattice was confirmed by bands attributable to the librational 

and stretching vibrations of OH- ions at approximately 630 and 3570 cm-1, respectively.  In addition, 

a broad band attributed to the presence of absorbed water [31] was observed at approximately 1640 

cm-1.  This band indicated that neither the oven drying nor the heat treatment in air at 300°C had 

fully dried the precipitated apatite.  Bands corresponding to the ν2 and ν3 vibrational modes of 

carbonate ions were also present in this spectrum between 900-850 and 1550-1350 cm-1 

respectively, Figure 4(B,C). This is not surprising as the aqueous precipitation reaction was carried 

out under ambient conditions, so atmospheric CO2 would be dissolved in the reactant solutions and 

the reactant mixture. Synthesis of HA has been described in the literature with a method that 

removes the presence of atmospheric CO2 from affecting the reaction by using degassed solutions 

and a blanket of an inert gas over the synthesis [32], but our approach was to follow more readily 

used and practical reaction conditions.  Although these bands were broad, distinct peaks were seen 

in these regions at 878, 1415 and 1450 cm-1.  Additionally, it appeared that a contribution was also 

present at approximately 873 cm-1.  Comparing the frequencies of these vibrations to the literature 

suggested that carbonate ions had substituted onto both hydroxyl and phosphate sites [8].  A 

relatively weaker contribution was also observed in the ν3 region at 1495 cm-1 but this peak was not 

assigned to any particular vibration.  It is known that a somewhat accurate estimate of the relative 

distribution of carbonate ions over A and B sites can be obtained by comparing the intensities of the 

carbonate peaks of the ν2 region (873 and 880 cm-1) [33].  No attempt was made to do so, however, 

due to the broad nature of this band. 

 

The heat treatments at 800, 900 or 1000°C in CO2 altered the FTIR spectrum of the material 

considerably, Figure 5.  Whilst the four phosphate vibrations remained visible, the appearance of 

these bands changed markedly.  The heat treatment caused the ν1 vibration at approximately 960 

cm-1 to become more intense and also caused the ν2 vibration that appeared in the spectrum of the 

as-prepared apatite at approximately 560 cm-1 to shift to relatively higher frequencies.  Additionally, 

after the material had been heated for sixteen hours at 800°C, eight hours at 900°C and one hour at 

1000°C, the ν3 phosphate band split into three distinct contributions at approximately 1000, 1050 

and 1128 cm-1, with the peak at 1000 cm-1 also shifting to relatively lower frequencies.  The splitting 

of this band has been related to a lower crystal symmetry associated with a monoclinic unit cell [22].  

The OH- stretch and libration bands disappeared after the material had been heated for eight hours 

at 800 or 900°C and after one hour at 1000°C, a consequence of hydroxyl ions being replaced in the 

lattice with carbonate. 

 



 

All of the heated apatites produced intense peaks attributable to A-type carbonate substitution [34] 

at approximately 878, 1465 and 1530 cm-1.  These were accompanied by the disappearance of the 

contributions assigned to B-type carbonate [8] that were present in the spectrum of the as-prepared 

apatite at 873, 1415 and 1450 cm-1.  From these observations, it could be deduced that the heat 

treatment increased the degree of A-type carbonate substitution in the material whilst simultaneously 

driving from the lattice carbonate ions that had substituted onto phosphate sites or labile sites during 

the precipitation reaction.  After the material had been heated for eight hours at 900 or 1000°C, it 

appeared that the substituted carbonate ions had situated exclusively on the hydroxyl sites, whereas 

contributions corresponding to B-type carbonate substitution were still apparent (particularly at 1415 

cm-1) even after the apatite had been heated for sixteen hours at 800°C.  This confirmed that none 

of the materials prepared at 800°C were fully substituted A-type CHAs but were rather AB-type 

carbonated hydroxyapatites.  In addition, a very weak peak corresponding to the ν4 vibrational mode 

of carbonate ions appeared in the FTIR spectrum of the material at approximately 760 cm-1 after the 

apatite had been heated for eight hours at 900°C and one hour at 1000°C. A selection of samples 

were subjected to a subsequent heat treatment (1 hour at 1000°C) in an N2/H2O atmosphere. 

Carbonate bands were absent from the FTIR spectrum of the 900°C ‘1 hour’ sample and appeared 

only weakly in the spectrum of the 1000°C ’16 hours’ sample, Figure 6. In addition, hydroxyl 

vibrations also appeared after this treatment at approximately 630 and 3570 cm-1. These differences, 

corresponding to a reversal of the A-type carbonate for hydroxyl groups, is clear when compared 

with the data in Figure 5 of the A-type CHAs.  Additionally, the XRD patterns of these twice-heated 

materials were almost identical to that shown in Figure S2 (i.e. they were single-phase apatites and 

arranged in the hexagonal space group P63/m).  This meant that the A-type carbonation of these 

samples could be reversed, at least partially, without compromising the apatite crystal structure. 

When the FTIR data is taken together with the data from XRD analysis and also carbonate 

quantification, it is clear that fully carbonated A-type CHAs could be prepared using shorter heating 

times than have previously been reported (15-144 hours [10,13,14]). 

 

3.5. Specific surface area (SSA) measurements 
The specific surface areas of powders heated at 900 or 1000°C in dry CO2 for between 1 and 16 

hours were determined by the BET method and are displayed in Figure 7.  Consistent with studies 

on undoped hydroxyapatite the surface area decreases with increased thermal treatment [35]. 

Prolonged dwell times at a given temperature results in a decrease in surface area, and as shown 

in Figure 3 the gain in A-type carbonate substitution with prolonged dwell time, particularly by 

increasing from 8 to 16 hours, is negligible. 

 

3.6. Scanning electron microscopy (SEM). 
The effect of the various thermal heat treatments in dry CO2 on the microstructure of the apatite 

powders was studied using SEM. Representative microstructures of the surface of powder particles 



 

heated at 900 or 1000°C for 1 hour in dry CO2 are shown in Figure 8(A&B). Although chemical 

analysis showed a small increase in carbonate content when the powder was heated to 1000°C 

compared to 900°C for 1 hour (Figure 3), the microstructure of samples showed an increased 

coarsening of the primary particles as the temperature was increased. Increasing the dwell time at 

900 and 1000°C to 8 (Figure 8(C&D) or 16 hours (Figure 8(E&F)) resulted in further coarsening of 

the microstructure with progression through early stages of sintering/densification. Although these 

powder particles have not undergone e.g. uniaxial compaction, they are progressing towards the 

formation of a typical sintered microstructure of hydroxyapatite ceramics [24,36]. The changes in 

microstructure, in particular the increase in primary particle/grain size is consistent with the changes 

in surface area described in Figure 7. A-type carbonate substitution is known to inhibit sintering of 

hydroxyapatite [37], so although relatively high temperatures of 900-1000°C were used here, the A-

type carbonate substitution level can be used to inhibit sintering/grain growth in applications where 

maintaining a high surface area/small particle size/high porosity may be important, such as catalysis 

or remediation. 

 

4. Conclusions 
The synthesis of A-type CHA materials under different thermal treatments in dry CO2 was motivated 

by a desire to investigate if fully carbonated A-type CHA powders could be prepared using shorter 

heating times than have previously been reported (15-144 hours).  There was substantial evidence 

to support that the samples obtained after HA was heated for 8 hours at 900/1000°C in CO2 were A-

type carbonated hydroxyapatites in which all of the hydroxyl groups had been replaced with 

carbonate ions.  The CO32- content of these materials were very close to the theoretical maximum of 

5.82 wt% (i.e. the carbonate content of an A-type CHA of chemical composition Ca10(PO4)6CO3). As 

far as the authors are aware, these are the shortest heating times that have been reported to date 

for the preparation of fully-carbonated A-type CHAs by high temperature reaction. Importantly, 

heating for only 1 hour at 1000°C resulted in approximately 95% of the theoretical carbonate 

substitution. The findings may be of interest to a number of research fields, where controlling the 

type and amount of carbonate substitution can change the properties of the resulting material, such 

as solubility for medical applications, or the concentration of acid surface sites for catalytic 

applications or for chromatography applications. Rapid A-type carbonate substitution as described 

here provides a method of controlling the influence of OH- for CO32- ion substitution on the properties 

of hydroxyapatite, particularly in emerging applications beyond the field of biomaterials. Although the 

amount of carbonate incorporated into the HA lattice is relatively low (less than 6 wt% carbonate, or 

4.4 wt% CO2), an interesting observation here is that the A-type substitution is reversible, with only 

a 1 hour heat treatment in an N2/H2O atmosphere resulting in the loss of carbonate groups and the 

appearance of hydroxyl groups, by FTIR analysis. This rapid carbonation/decarbonation may have 

potential interest in the utilisation of calcium phosphate apatites recovered from biological waste 

sources for applications outside medical applications.  
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Figure 1  Normalised (Imax = 100) XRD patterns between 15-65 °2θ of the hydroxyapatite 
material as-prepared (AP) and after being heated in CO2 for 1, 8 or 16 hours at 900 (A) 
or 1000°C (B). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2  X-ray diffraction pattern between 10-40 °2θ of the HA material after it had been 
heated for 8 hours at 1000°C in CO2.  Extra reflections corresponding to monoclinic 
symmetry (space group Pb) are marked by asterisks. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3  The carbonate content of the apatite as-prepared (i.e. when hold time = 0) and 
after being subjected to heat treatment in CO2 for hold times of 1, 8 or 16 hours.  The 
dashed line corresponds to the CO32- content of an A-type CHA with chemical 
composition Ca10(PO4)6CO3 i.e. the theoretical maximum of 5.82 wt%. The lines between 
data points are added as a guide to the reader. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4  FTIR absorbance spectrum between 4000-400 cm-1 of the as-prepared apatite 
(A).  The ν2 and ν3 carbonate regions are shown in detail in (B) and (C) respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5  Normalised (Amax = 100) FTIR absorbance spectra between 2000-400 and 
3800-3400 cm-1 of the apatite material as-prepared (AP) and after being heated for 1, 8 
or 16 hours in dry CO2 at 800 (A,B), 900 (C,D) and 1000°C (E,F). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6  FTIR spectra of the 900°C ‘1 hour’ sample (A) and the 1000°C ’16 hour’ sample 
(B) after a 1-hour heat treatment at 1000°C in an N2/H2O atmosphere.  The ν2 and ν3 
carbonate regions are outlined. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7  Specific surface area (SSA) determined by the BET method of powders heated 
at various times/temperatures in dry CO2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8  Scanning electron micrographs of the surfaces of powder particles of the apatite 
material after being heated in dry CO2 at 900°C and 1000°C for 1 hour (A&B), 8 hours 
(C&D) and 16 hours (E&F)  (magnification of x20k, operating voltage of 20 kV, scale bar 
represents 1 µm). 
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Figure S1:  Normalised (Imax = 100) XRD patterns between 15-65 °2θ of the 
hydroxyapatite material as-prepared (AP) and after being heated for 1, 8 or 16 hours 
at 800°C in CO2. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure S2  XRD pattern between 15-65 °2θ of the hydroxyapatite material after being heated in static 
air for 16 hours at 1000°C. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3  XRD pattern between 15-65 °2θ of the hydroxyapatite material after being heated in static 
air for two hours at 1250°C. 
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