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21 ABSTRACT

22 Because telomere length and dynamics relate to individual growth, reproductive investment 

23 and survival, telomeres have emerged as possible markers of individual quality. Here, we 

24 tested the hypothesis that, in species with parental care, parental telomere length can be a 

25 marker of parental quality that predicts offspring phenotype and survival. In king penguins, 

26 we experimentally swapped the single egg of 66 breeding pairs just after egg laying to 

27 disentangle the contribution of pre-laying parental quality (e.g. genetics, investment in the 

28 egg) and/or post-laying parental quality (e.g. incubation, postnatal feeding rate) on offspring 

29 growth, telomere length and survival. Parental quality was estimated through the joint effects 

30 of biological and foster parent telomere length on offspring traits, both soon after hatching 

31 (day 10) and at the end of the pre-winter growth period (day 105). We expected that offspring 

32 traits would be mostly related to the telomere lengths (i.e. quality) of biological parents at day 

33 10 and to the telomere lengths of foster parents at day 105. Results show that chick survival 

34 up to 10 days was negatively related to biological fathers’ telomere length whereas survival 

35 up to 105 days was positively related to foster fathers’ telomere lengths. Chick growth was 

36 neither related to biological nor to foster parents’ telomere length. Chick telomere length was 

37 positively related to foster mothers’ telomere length at both 10 and 105 days. Overall, our 

38 study shows that, in a species with bi-parental care, parents’ telomere length is foremost a 

39 proxy of post-laying parental care quality, supporting the “telomere – parental quality 

40 hypothesis”.

41
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42 1 | INTRODUCTION

43 Telomeres are repeated DNA sequences at the end of chromosomes that play a key role in 

44 maintaining genome integrity (Gomes, Shay, & Wright, 2010). Telomere length can shorten 

45 over time in response both to cell division and stressors (including environmental stressors, 

46 psychosocial stressors, or poor early life conditions) (Levy, Allsopp, Futcher, Greider, & 

47 Harley, 1992; Tomiyama et al. 2012; Boonekamp et al. 2014; Hanssen et al. 2017; Chatelin et 

48 al. 2019; Noguera et al. 2019; Saulnier et al. 2020; but see Cerchiara et al. 2017). As a 

49 consequence, telomere lengths and their dynamics have been related to individual health and 

50 stress at a proximate level (Verhulst et al., 2016) and to fitness-outcomes at various life 

51 history stages (Bauch et al. 2013; Bize et al. 2009; Heidinger et al., 2012; Salomons et al., 

52 2009). Therefore, telomeres are increasingly considered as a cellular proxy of multiple 

53 correlated phenotypic traits that define individual quality (Angelier el al., 2019). This 

54 ‘telomere - individual quality hypothesis’ predicts that individuals with longer telomeres may 

55 benefit from both higher survival and reproductive rates (Angelier el al., 2019). For species 

56 with parental care, an extrapolation of this ‘telomere - individual quality hypothesis’ is that 

57 parental telomere length may reflect parental quality, parents with longer telomeres being 

58 better at raising a large number of high quality offspring with high survival rates (i.e. 

59 ‘telomere - parental quality hypothesis’). Remarkably, because telomeres are genetic material 

60 passed on from parents to offspring, one topical question is the extent to which parent-

61 offspring resemblance in telomere length is explained by genetic additive variance 

62 (heritability) and/or by other environmental effects caused by variation in the quality of pre- 

63 and post-hatching parental care (Belmaker et al. 2019).

64 Early studies suggested that telomere length is fixed in the zygote (i.e. inherited from 

65 the gametes in a sex- and age-dependent way; Eisenberg, 2019), remaining unchanged for life 

66 relative to others individuals from the same cohort (Graakjaer et al., 2004). However, 
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67 estimates of telomere length heritability appear to be largely variable across species (Asghar 

68 et al. 2014; Atema et al., 2015; Becker et al., 2015; Stier et al., 2015; Belmaker et al., 2019), 

69 suggesting that both genetics and environmental factors (including parental care) may 

70 influence offspring telomere length. Assessing the effects of parental care quality on telomere 

71 length is however complex, since it requires disentangling the contribution of additive genetic 

72 effects (i.e. heritability) from parental care per se on offspring telomeres. In fact, individual 

73 telomere length within its cohort appears not to be fully established at the embryonic stage but 

74 changes rapidly in early-life (Fairlie et al., 2016), mostly during growth when cell division 

75 rates are high (Monaghan & Ozanne, 2018). A large number of non-exclusive mechanisms 

76 can account for inter-individual variability in telomere length early in life. In birds for 

77 instance, telomere length may vary according to embryo exposure to maternal corticosterone 

78 in the egg (Haussman et al. 2012), incubation temperature (Stier et al., 2019), and/or variation 

79 in post-hatching environmental conditions (Nettle et al., 2015; Reichert et al., 2015; Soler et 

80 al., 2017). Those post-hatching factors include the quality of parental care and/or parental 

81 effort (as suggested by positive links between parental telomere length and breeding 

82 performance; Le Vaillant et al., 2015; Angelier et al., 2019, but see Bauch et al., 2013; Young 

83 et al., 2016). In this context, the use of cross-fostering designs combined with longitudinal 

84 measurements of offspring growth trajectories, telomere length dynamics, and survival 

85 (Boonekamp et al. 2014; Bauch, et al. 2019; Criscuolo et al., 2017; Dugdale & Richardson, 

86 2018; McCarty, 2017) may prove particularly powerful in gaining new insights on the 

87 proximate genetic and post-laying environmental determinants of telomere length variability 

88 in the next generation. 

89 We applied such an approach to study the growth trajectories and telomere length 

90 dynamics of king penguin chicks (Aptenodytes patagonicus) during the first 3 months of their 

91 development. King penguins are slow-breeding seabirds where bi-parental care is required to 
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92 successfully rear a single chick over a 14-month period. Parental quality is therefore of critical 

93 importance in this species (Stonehouse 1960). In this study, we exchanged eggs between 

94 breeding pairs soon after egg laying, and we measured both adult telomere length shortly after 

95 mating and their chick phenotype at 10 and 105 days after hatching (shortly after hatching and 

96 towards the end of their pre-winter growth period, respectively). During the winter period, 

97 chicks gather into “crèches” with almost no parental care (Stonehouse 1960; Geiger et al., 

98 2012; Saraux et al., 2012). This experimental cross-fostering design allowed us to disentangle 

99 the contribution of biological (mostly investment in eggs and genetics) vs. foster (mostly 

100 incubation and chick rearing) parental quality assessed as parental telomere length (i.e. 

101 telomere length is positively associated with breeding success in adults; Le Vaillant et al., 

102 2015) on chick structural size, body condition, telomere length and survival in early life (i.e. 

103 at 10 and 105 days). In the king penguin, chick body condition and telomere length soon after 

104 hatching (day 10) are good predictors of survival (Geiger et al., 2012; Stier et al., 2014). 

105 Telomere length also shortens with age during chick growth (Geiger et al., 2012; Stier et al., 

106 2014), but does not appear to be related with age in adults (aged 5 to 9 years old; Le Vaillant 

107 et al., 2015). If chick phenotype and telomere length soon after hatching are mostly 

108 determined through genetic and/or early maternal effects (i.e. investment in eggs), we 

109 expected chick phenotypes, including chick telomere length, to be positively related to the 

110 telomere lengths of their biological parents. However, because post-laying parental quality, 

111 measured through telomere length of foster parents, is likely to become apparent as chicks 

112 grow and receive increasing amounts of parental care, we predicted foster parental telomere 

113 lengths to be positively related to chick structural size, body condition and survival at 105 

114 days. Telomere inheritance was previously found to be moderate (h2 ~ 0.2), being stronger 

115 early in development (day 10 after hatching) and fading during development (up to day 300 

116 after hatching) in this species (Reichert et al., 2015). Hence, in this study we also tested 
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117 whether the resemblance between biological parent and offspring telomere length (i.e. genetic 

118 effects) diminished during offspring development and was replaced by post-hatching 

119 environmental influences measured through a positive resemblance between foster parent-

120 offspring telomeres, as offspring aged. 

121 When investigating the effects of parental quality on offspring phenotype and survival, 

122 it is essential to keep in mind that parental quality typically increases with age as individuals 

123 gain experience over successive breeding seasons (Forslund & Pärt, 1995; Lecomte et al., 

124 2010). Interestingly, the ‘age – parental quality’ and ‘telomere – parental quality’ hypotheses 

125 lead to opposite predictions. On one hand the ‘age – parental quality hypothesis’ predicts that 

126 older parents should be of higher quality. On the other hand, older parents are expected to 

127 have shorter telomeres and therefore to be of lower quality according to the ‘telomere – 

128 parental quality hypothesis’.

129

130 2 | MATERIAL AND METHODS

131 2.1 | Study species and breeding pair monitoring

132 This study was conducted in the king penguin colony of “La Baie du Marin” (Possession 

133 Island, Crozet Archipelago, 46°26’ S – 51°52’E), home to some 24,000 pairs of breeding 

134 birds. In 2012-2013, we monitored 66 breeding pairs of unknown age from courtship (early 

135 November) up to the onset of the Austral winter (early April). In king penguins, the breeding 

136 cycle is long and complex, starting by a courtship period of  ~15 days during which pairs will 

137 form, select a breeding territory, and females lay their single egg (Stonehouse, 1960). 

138 Following egg-laying, males and females alternate between periods on land, incubating the 

139 egg or caring for the chick, and periods foraging at sea for the rest of the summer 

140 (Weimerskirch et al., 1992). The female is the first to leave for sea, the male taking charge of 

141 the first incubation shift (Weimerskirch et al., 1992). Incubation lasts for ~53 days 
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142 (Stonehouse, 1960), the egg typically hatching during incubation shift 4 (the female’s second 

143 incubation shift). The chick’s growth period extends over 10-11 months, including an energy-

144 constraining winter period (April to September) during which it is seldom fed and loses 

145 substantial body weight (Cherel et al., 1985; Weimerskirch et al., 1992). Chick feeding and 

146 growth resume the following summer (Weimerskirch et al., 1992). Following chick fledging, 

147 parents have to moult and replenish their energy stores before they are ready for a subsequent 

148 breeding season (Weimerskirch et al., 1992). Divorce rates between breeding seasons are high 

149 (ca. 80%; Olsson, 1998), however, within a season cooperation between partners is critical to 

150 successfully raise the chick, i.e. a single parent can not succeed. Parental quality is key and 

151 mutual mate choice for high quality partners is high in this species (Jouventin & Dobson 

152 2017). 

153 We first marked both male and female pair members on the chest from a 1-m distance 

154 using animal spray dye (Porcimark®, Kruuse, Lageskov; Denmark) when they were settling 

155 on their final breeding territory. The pair was monitored daily at a distance, using binoculars, 

156 until a single bird was observed incubating the egg. This bird was identified as the male at day 

157 1 of incubation and, 3 days after egg-laying (to minimize disturbance until the bird was 

158 motivated to incubate), was flipper-banded with semi-rigid PVC Darvic bands (25.8mm wide, 

159 1.9mm thick, 7.4g), allowing its identification and subsequent monitoring during the study. 

160 The female was caught and flipper-banded when she returned from her first foraging trip at 

161 sea. All flipper-bands were removed from birds at the end of the study.

162

163 2.2 | Cross-fostering design, blood sampling and bird monitoring

164 Three days after the egg was laid (first incubation shift of the male), we cross-fostered (i.e. 

165 swapped) eggs between penguin pairs that had laid their egg on the same day. In total, we 

166 swapped eggs between 66 breeding pairs grouped in 33 dyads. This required 3 persons. First, 
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167 two males were immobilized while incubating in the colony and rapidly hooded to minimize 

168 stress. Their respective egg was carefully removed from the brood pouch and replaced by a 

169 warm dummy plaster egg during the exchange. Eggs were weighed to the nearest 1-g using a 

170 Pesola® spring-slide scale. One person then proceeded to exchange the eggs while the 2 other 

171 persons remained by the birds in the breeding colony at all times to ensure the procedure went 

172 smoothly. Once the eggs were swapped and individuals released, we monitored bird 

173 behaviour to ensure they settled down once again on their breeding territory. We never 

174 witnessed breeding abandonment by the birds at this stage.

175

176 Adult monitoring

177 For males and females, blood samples (2 mL) were collected from the marginal flipper vein 

178 using a G22-1½ needle fitted to a 2.5 mL heparinized syringe. Males were sampled at the 

179 time cross-fostering occurred (day 3, incubation shift 1). Females were sampled during their 

180 first incubation shift (day 2). The bird’s head was covered with a hood to minimize stress and 

181 agitation during blood sampling, and samples were kept on crushed ice in the field until 

182 further processing, usually within 15 min. After centrifugation (3000g for 10 min), plasma 

183 and blood cells were separated and kept frozen dried at -20°C until the end of the day, before 

184 being moved to -80°C until assayed. Penguin pairs were monitored twice daily until hatching 

185 (confirmed by the presence of a newly hatched chick and the presence of broken egg shells). 

186 That day was marked as hatching day. Ten days later, we caught the adults as described 

187 above, and temporarily replaced the chick with a warm dummy plaster egg. 

188

189 Chick monitoring

190 On day 10 post-hatching (i.e. early during development), chicks were measured for flipper 

191 length, beak length and tarsus length to closest 1-mm using a solid metal ruler. They were 
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192 weighed (closest 5g) using a spring-slide Pesola® scale, and a small blood sample (~100 μL) 

193 was obtained from the marginal flipper vein using a G27-1½ needle and 75 μL heparinized 

194 capillary tubes. Chicks were then individually identified using color-coded fish tags (Floy Tag 

195 and MFG, Inc. Seattle, WA, USA) attached subcutaneously to their upper-back (Stier et al., 

196 2014). On day 105 post-hatching, the same procedure was repeated, when chicks had been 

197 emancipated for approximately two months and had gathered in crèches in anticipation of the 

198 austral winter period. We then collected 1 mL of blood from the marginal flipper vein, and 

199 measured flipper length, beak length and tarsus length as described above. 

200 From these data, we calculated chick structural size as the first principal component of 

201 separate PCA analyses on flipper length, beak length and tarsus length both at 10 and 105 

202 days (SSz10 = -28.44 + 0.29 beak + 0.12 flipper + 0.11 tarsus; SSz105 = -33.80 + 0.12 beak + 

203 0.03 flipper + 0.08 tarsus; ΔSSz = -21.16 + 0.12 beak + 0.04 flipper + 0.08 tarsus). Because 

204 chick body mass and structural size indices were highly correlated (at day 10: Pearson’s r = 

205 0.87, t = 12.72, df = 52, P < 0.0001; at day 105: r = 0.76, t = 7.42, df = 41, P < 0.0001), we 

206 calculated chick body condition at day 10 and day 105 by regressing body mass on structural 

207 size at those different time points (Schulte-Hostedde et al. 2005). Chick structural size and 

208 body condition were then used as uncorrelated dependent variables in subsequent analyses 

209 (see below).

210 Chicks were monitored up until the subsequent summer (November-December), when 

211 they departed from the colony for their first trip at sea. Of the 66 eggs produced by the 

212 monitored breeding pairs 54 chicks survived up to 10 days and 44 chicks survived up to 105 

213 days.

214

215 2.3 | Measurement of telomere length in adult and chick king penguins
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216 King penguin relative telomere length (RTL) was measured using a protocol specifically 

217 developed and routinely used on king penguins (Geiger et al., 2012; Reichert et al., 2015; Le 

218 Vaillant et al., 2015; Stier et al., 2014; Schull et al., 2018). DNA was extracted from 

219 nucleated red blood cells (Nucleospin Blood QuickPure, Macherey-Nagel, Düren, Germany) 

220 and checked for quality using gel-migration and a NanoDrop 1000 (Thermo Scientific) 

221 spectrophotometer (absorbance ratio A260/280; A260/230.). Extracted DNA was then used to 

222 amplify both the telomere and a control gene (non-variable in copy numbers within our 

223 population, Smith, Turbill & Penn, 2011) by quantitative real-time amplification (qPCR) 

224 based on Cawthon’s original development (Cawthon, 2002). Control gene (Aptenodytes 

225 patagonicus zinc finger) and primer sequences were identical to those used in previous 

226 penguin telomere studies, as well as the conditions of qPCR amplifications (see Stier et al., 

227 2014 for details). We used 2.5 ng DNA per reaction and the BRYT Green fluorescent probe 

228 (GoTaq_qPCR Master Mix; Promega, Charbonniere, France). The samples were amplified on 

229 a 384 wells thermocycler (CFX-384, Biorad Hercules), in duplicates over three runs, the 

230 telomere sequence and the control gene sequence being amplified using the same conditions. 

231 Samples were distributed over 3 plates and individual birds randomly distributed on each 

232 plate. Intra-plate repeatability based on duplicate runs was of 0.785 for the final calculated 

233 relative telomere length value (T/S ratio based on Cq values). Inter-plate repeatability based 

234 on 13 samples (i.e. 13 different individuals) repeated over all plates was of 0.894 for final 

235 calculated relative telomere length value (T/S ratio). Mean amplification efficiencies of 

236 telomere sequence and control gene were of 100% and 99.9% (plate 1), of 100.2% and 99.8% 

237 (plate 2) and of 100% and 100.3% (plate 3), respectively. Relative telomere lengths were 

238 calculated following (Pfaffl, 2001) and using the plate efficiencies amplification values 

239 corresponding specifically to each sample. No apparent well-position bias was observed 
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240 (Eisenberg, Kuzawa, & Hayes, 2015) (see Online Supporting Information). We obtained 

241 telomere data for 61 adult breeding pairs and 42 chicks throughout growth. 

242

243 2.4 | Statistical analyses

244 All analyses were run using R v.3.5.1. Forest plots and marginal effects plot with 95% CI 

245 were obtained using the ‘sjPlot’ package in R (Lüdecke, 2017). In all models presented 

246 below, Relative Telomere Length (RTL) was systematically log-transformed and standardized 

247 (z scores) prior to analyses (see Verhulst et al. 2019). Other continuous variables were 

248 standardized so that model coefficients could be directly comparable in their magnitude. 

249 Where appropriate, we ensured residuals were normally distributed by visual inspection of 

250 density distributions, Q-Q plots, cumulative distribution functions and P-P plots using the 

251 ‘fitdistrplus’ package in R (Delignette-Muller & Dutang, 2015). We also ensured that no 

252 substantial collinearity occurred between independent variables (Variance Inflation Factors 

253 ranged 1.05 < VIF < 2.05; suggested cut-off at 3; Zuur, Ieno, & Elphick, 2010). For each 

254 model, sample sizes are reported in the tables. Sample sizes can vary across models due to 

255 variation in egg and chick mortality and/or due to difficulties at sampling blood from some 

256 chicks or amplifying DNA (telomeres) from some blood samples.

257

258 Chick telomere dynamics during growth 

259 We investigated chick RTL dynamics in early life using linear mixed models (LMMs) with 

260 RTL as the dependent variable, chick age (categorical: 10 or 105 days after hatching) as an 

261 independent variable, and chick ID as a random factor. Hence, the model was specified as: 

262 z-RTL~ Chick age10 or 105  + (1|chick ID)

263 From this model, we computed repeatability in chick RTL during early life as the ratio 

264 of among-individual variance (VG) over the total phenotypic variance (VP) equal to VG + VR 
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265 (the within-individual or residual variance in RTL) (see Nakagawa & Schielzeth 2010; Stoffel 

266 et al. 2017). Hence, repeatability = . This LMM-based repeatability estimate 𝑅 =
𝑉𝐺 
 𝑉𝑃

=  
𝑉𝐺

𝑉𝐺 +  𝑉𝑅

267 allowed to control for the confounding effects of age (see Nakagawa & Schielzeth 2010) since 

268 chick RTL shortened with time. Repeatability was calculated using the ‘rptR’ R cran package; 

269 Stoffel et al., 2017). Confidence intervals around the repeatability estimate were computed by 

270 parametric bootstrapping (10,000 iterations). This repeatability allowed us to assess whether 

271 chicks starting their post-hatching growth period with long telomeres also entered the winter 

272 period with long telomeres, which informs on the importance of ‘starting’ telomere length in 

273 determining later life telomere length and potentially life histories. 

274

275 Chick survival and phenotype in relation to parental RTL 

276 Chick survival: We tested for influences of parental (both biological and foster) RTL on chick 

277 survival up to day 10, or up to day 105, using separate Generalized Linear Mixed Models 

278 (GLMMs: binomial, logit-link). These were specified as: 

279 Survival (0 =failure, 1 = success)10 (or 105) ~ z-RTLbiological♂ + z-RTLbiological♀ + z-

280 RTLfoster♂ + z-RTLfoster♀ + z-egg mass + (1|dyad)

281 Here, we included cross-fostering dyad identity as a random factor in the model and 

282 accounted for egg mass as a covariate to test for potential effects occurring from early 

283 maternal investments in the egg (Bize et al. 2002; Krist 2011). From these models, odd ratios 

284 were calculated to illustrate the relative influence of the different fixed factors (mainly in our 

285 case biological and foster parental telomere lengths) on offspring survival. The odd-ratio can 

286 be interpreted for a given predictor in terms of increasing (>1) or decreasing (<1) the 

287 likelihood to survive for a one unit increase in that predictor, holding all other variables 

288 constant. For instance, holding all other variables constant, an odds ratio of 2 for a given 
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289 predictor would imply that the odds of surviving increase by a factor 2 for each unit increase 

290 in the considered predictor.

291

292 Chick phenotype: The influence of biological and foster parent RTL on chick phenotypic 

293 traits (structural size, body condition and RTL) both early (10 days post-hatching) and later 

294 (105 days post-hatching) in life were tested using separate LMMs. Here also, we accounted 

295 for egg mass as a covariate in the models, and controlled for cross-fostering dyad identity as a 

296 random factor. These were thus specified as:

297 z-Phenotypic trait ~ z-RTLbiological♂ + z-RTLbiological♀ + z-RTLfoster♂ + z-RTLfoster♀ + z-

298 egg mass + (1|dyad)

299  

300 Finally, we tested the influences of both biological and foster parent RTL on the 

301 change in chick RTL between days 10 and 105 (RTL105 – RTL10) using a Linear Mixed 

302 Model (LMM). We specifically chose not to control for chick initial telomere length in this 

303 model (RTL10), since this may lead to biased estimated of rate of attrition even when 

304 correcting for regression to the mean (Bateson et al. 2019). We included cross-fostering dyad 

305 identity as a random factor in the model to account for potential temporal effects associated 

306 with the cross-fostering design (eggs being swapped on the same date between dyads of 

307 penguin pairs). The model was thus specified as:

308 z-(RTL105 – RTL10)~ z-RTLbiological♂ + z-RTLbiological♀ + z-RTLfoster♂ + z-RTLfoster♀ + 

309 (1|dyad)

310

311 3 | RESULTS

312 3.1 | Chick telomere dynamics in early life
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313 On average, chick telomere length decreased over time (LMM; z RTL105vs10 = -0.40 ± 0.14, t = 

314 -2.78, CI = [-0.68; -0.12], P = 0.008; Fig. 1). Using the variance explained by chick ID in this 

315 model (var = 0.55), we found that chick telomere length was repeatable (LMM; r = 0.56 ± 

316 0.11, CI = [0.33; 0.74], P < 0.001): chicks starting their post-hatching growth period with 

317 longer telomeres also entered the winter period with longer telomeres (see Figs. 1a and 1b). 

318

319 3.2 | Chick survival and phenotype at 10 days

320 Chick survival up to 10 days was weakly and negatively related to the RTL of the biological 

321 male, but not to the RTL of the biological mother, the RTL of foster parents, or egg mass 

322 (Table 1, Fig. 2a and 3a). At 10 days, neither chick structural size or body condition were 

323 significantly related to biological or foster parental RTL telomere length, or egg mass (Table 

324 1, Figs. 2b and 2c). In contrast, chick RTL was positively associated with the RTL of foster 

325 mothers (Table 1, Figs. 2d and 3b), and positively (though not significantly, P = 0.071) with 

326 the RTL of foster fathers, but not with the RTL of genetic parents or egg mass (Table 1).

327

328 3.3 | Chick survival and phenotype at 105 days

329 At 105 days, chick survival was significantly and positively related to foster male RTL, but 

330 not to the RTL of the foster mother, the RTL of biological parents, or egg mass (Table 2, Fig. 

331 4a and 5a). At 105 days, neither was chick’s structural size or body condition significantly 

332 related to biological or foster parental RTL telomere length, or egg mass (Table 2, Figs. 4b 

333 and 4c). In contrast, chick RTL was significantly and positively associated with the RTL of 

334 foster mothers (Table 2, Fig. 4d and 5b). The change in chick telomere length between days 

335 10 and 105 was not significantly associated with parental RTL when both biological and 

336 foster parents were included in the same model (Table 3).

337
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338

339 4 | DISCUSSION

340 Using an experimental cross-fostering approach in the king penguin, our study aimed at 

341 identifying the contributions of pre-laying (genetics and egg mass) and post-laying 

342 (incubation, brooding and feeding) parental quality on offspring phenotype and survival. We 

343 hypothesised that parents with longer telomeres were of higher quality. We tested whether 

344 offspring phenotype either soon after hatching (day 10) or at the end of the pre-winter growth 

345 period (day 105) were best explained by pre-laying and post-laying parental quality measured 

346 via, respectively, the measures of telomere length of their biological and foster parents. Our 

347 results highlight an overall larger effect of foster parental RTL on chick survival over the 

348 growth period, as well as concomitant effect on chick RTL. This supports the idea that 

349 telomere length is a measure of parental quality that can (i) predict post-laying parental 

350 investment into their offspring and (ii) modulate next generation telomere length.

351

352 4.1 | Parental telomere length effects on chick survival 

353 Because of their susceptibility to environmental stress, telomeres have been proposed as 

354 integrative markers that can be used to reflect an individual’s life stress and by extension 

355 stress coping mechanisms, thus perhaps allowing to gauge individual quality (Angelier et al., 

356 2019). From an evolutionary perspective, high quality individuals are expected to perform 

357 well in a suite of correlated phenotypic traits, including investment in parental care (Wilson & 

358 Nussey, 2010). Hence, one of the aims of this study was to test the ‘telomere – parental 

359 quality hypothesis’ hypothesizing that parents with long telomeres were of higher quality, and 

360 therefore predicting that they should produce heavier and larger chicks more likely to survive 

361 early in life. Accordingly, previous studies have reported positive links between telomere 

362 length and reproductive success in seabirds, including king penguin (Le Vaillant et al. 2015, 
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363 Angelier et al. 2019; but see Bauch et al. 2013 for a negative association, and Olsson et al. 

364 2011a for a quadratic association in a reptile).

365 Surprisingly, after controlling for egg mass (i.e. maternal effects; Krist 2011), we 

366 found a negative effect of biological father telomere length on chick survival at 10 days, but 

367 no significant effect of foster parent telomere length (i.e. early post-hatching environmental 

368 effects). Contrary to our expectation based on the ‘telomere – parental quality hypothesis’, 

369 this result suggests that fathers with longer telomeres (expected to be of good quality) 

370 somehow reduced the chances of survival of their chicks in the first days after hatching. This 

371 negative effect was rather marginal (Table 3) and the mechanism explaining such an 

372 association remains unclear. It seems unlikely this result was explained by the ‘age – parental 

373 quality hypothesis’ (Forslund & Pärt, 1995; Lecomte et al., 2010), given a lack of association 

374 between telomere length and chronological age in king penguins (Le Vaillant et al., 2015; 

375 note however that birds in this study were aged 5 to 9 and king penguins have been reported 

376 to live up to 26 year old in captivity, Flower 1938). Furthermore, if father’s age and 

377 experience were important determinants of chick survival in penguins, we would have 

378 expected to detect a negative impact of foster father telomere length on chick survival at 105 

379 days.

380 In contrast, chick survival at 105 days increased with foster male telomere length, 

381 even when controlling for egg mass. This is predicted by the ‘telomere – parental quality 

382 hypothesis’ if indeed telomere length acts as a proxy of individual quality and positively 

383 correlates with post-hatching paternal care. Interestingly, this effect was apparently 

384 independent of any effect of paternal telomere length on chick body mass or growth, 

385 suggesting other benefits than those purely related to energy investments in the offspring. 

386 Telomere length has been positively associated to foraging efficiency, but not to parental 

387 investment, in other seabird species (Young et al., 2015, 2016). In king penguins, if parental 
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388 foraging efficiency was also related to telomere length, we might expect parents with longer 

389 telomeres to be better at provisioning their chicks during development, ultimately affecting 

390 chick body mass or structural size. We found however no support for such mechanism. 

391 Remarkably, in king penguins on-land predation of brooded chicks is high (i.e. 51 % of 

392 crèching chicks in a given reproductive season; Descamps et al., 2005), and an important 

393 source of extrinsic mortality. Hence, an alternative mechanism could be that foster males with 

394 long telomeres are more territorial and aggressive birds and therefore better at coping with 

395 predators during their brooding shifts. This alternative mechanism remains to be tested.

396

397 4.2 | Parental telomere length effects on chick telomere length

398 Individual variation in telomere length in early life may come from (i) how zygote telomere 

399 length is determined and (ii) what inherited and environmental factors are going to change the 

400 way offspring lose and repair their telomeres. Disentangling those genetic and pre/post-laying 

401 influences is far from being an easy task because telomere length is a complex structure 

402 underpinned by the expression of multiple genes, by epigenetic modulation (Bauch et al., 

403 2019), as well as by a wide number of environmental factors (Dugdale & Richardson, 2018). 

404 In addition, any modulation of development, of genetic (i.e. parental age, Bauch et al. 2019) 

405 or environmental origins (Metcalfe & Monaghan, 2003), may have pervasive impact on the 

406 future phenotype of offspring, including telomere length (Metcalfe & Monaghan, 2003; 

407 Tarry-Adkins et al., 2009). In this study, we swapped eggs soon after laying to investigate 

408 whether offspring telomere length were more alike the telomere length of their biological 

409 (genetic effect) or foster parents (pre/post-hatching parental effect).

410 Our results show that chick telomere lengths at 10 and 105 days were both related to 

411 foster maternal telomere length. At day 105, offspring telomere length was also positively 

412 related to biological mother and foster father telomere length, though not significantly. 
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413 Previous data based on biological mother-offspring regressions have reported significant 

414 maternal heritability for telomere length in king penguin (around h2 = 0.2), which weakened 

415 over the period of chick growth (Reichert et al., 2015). Thus, although telomere length in king 

416 penguin chicks may be determined in part before egg-laying (e.g. Olsson et al. 2011a; Bauch 

417 et al., 2019), our data suggest a stronger effect of the post-laying environment on chick 

418 telomere length (see Becker et al., 2015 for similar findings in another bird species). King 

419 penguin chicks are raised in an unpredictable environment (high predation risk, socially 

420 aggressive adults, inclement weather conditions), and are subject to periods of intermittent to 

421 prolonged fasting early in life (Cherel & Le Maho, 1985). Thus, variation in parental care and 

422 ability to efficiently provision and defend their offspring will have critical consequences on 

423 offspring phenotype. Our results in king penguins suggests that selection on telomere length 

424 might be sex-specific (see also Olsson et al. 2011b for similar finding in a lizard species). 

425 However, why this should occur is unclear. We do know that feeding strategies differ 

426 somewhat between male and female adult king penguins during chick rearing (Le Vaillant et 

427 al. 2013; see also Saraux et al., 2012 for sex-related differences over winter). Females for 

428 instance, appear to perform more prey pursuits than males during chick care (Le Vaillant et al. 

429 2013), which might result in subtle sex-related differences in offspring feeding strategies, 

430 leading mothers to display a larger effect on chick telomere length during early growth. 

431 Focusing on food elements known to buffer deleterious effect on telomeres (e.g. dietary 

432 antioxidants, Reichert & Stier, 2017), and the quality of the diet provided by mothers and 

433 fathers, may provide new insights into this question. In king penguin chicks, telomeres seem 

434 to erode faster in rapidly growing individuals (Geiger et al., 2012). This suggests that 

435 variation in maternal provisioning patterns early in life is likely another important factor 

436 affecting chick telomere length. Adequate or more regular rates of food provisioning by high 

437 quality adults may allow chicks to better balance out the allocation of energy towards growth 
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438 and other somatic compartments, without affecting body mass per se, allowing higher 

439 telomere maintenance. Additionally, development does not only concern cell multiplication 

440 and an increase in body mass but also physiological maturation. A recent study in birds 

441 suggested that maturation may be done at a cost of telomere loss (Criscuolo et al., 2019). 

442 Whether early maternal care may enable chicks to mature in a way that allows to better 

443 preserve telomere ends afterwards is intriguing and a call for further research. Finally, it is 

444 worth keeping in mind that, in this study, parental age was unknown. Because parental age 

445 can explain substantial variation in offspring telomere length (e.g. Criscuolo et al. 2017; 

446 Bauch et al. 2019; but see Le Vaillant et al., 2015 for a lack of relationship in adult king 

447 penguins aged 5 to 9 years of age), the reported association between foster and biological 

448 parental might be an underestimation of any true association between parental and offspring 

449 telomere length.

450 Overall, our study provides experimental evidence that the quality of environmental 

451 rearing conditions mediated by the parents partly influence variation in offspring telomere 

452 length and survival in a long-lived seabird, and adds to the growing evidence that telomeres 

453 may be a useful proxy of individual (parental) quality in wild animals. Such an approach 

454 opens perspectives as to the finer characterization of the nature and timing of environmental 

455 effects conditioning individual survival chances in the wild.

456
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464 TABLES

465 Table 1. Standardized model estimates for the relationship between parental relative telomere 

466 length (RTL) and chick survival (binary 0 = failure / 1 = success) and phenotype (structural 

467 size, body condition and telomere length) early in the development (day 10 post-hatching). 

468 Significant effects have CI95 not overlapping 1 for the binomial model, and not overlapping 0 

469 for linear models. All parents were included in the same model. Variance inflation factors 

470 (VIFs) are provided. The number of chicks (n) and dyads (N) are given. Sample sizes vary 

471 across models due to variation in chick mortality and/or difficulties at sampling blood from 

472 some chicks or amplifying DNA (telomeres) from some blood samples.

473
474

Chick survival and phenotype early during development (day 10)
(A) Survival (binary 1/0) Odds ratio ± SE CI z P VIF R2 n (N)
Intercept 19.99 ± 0.80 4.16 – 96.00 3.74 <0.001*
z egg mass 2.18 ± 0.58 0.70 – 6.78 1.35 0.178 1.30
z RTLbiological♂ 0.15 ± 0.87 0.03 – 0.82 -2.18 0.029* 2.05
z RTLbiological♀  1.68 ± 0.65 0.47 – 6.00 0.80 0.422 1.88
z RTLfoster♂ 3.21 ± 0.73 0.77 – 13.37 1.61 0.108 1.96
z RTLfoster♀ 3.25 ± 0.89 0.57 – 18.61 1.33 0.185 1.93

0.549 56 (28)

(B) z Structural size Estimate ± SE CI t P VIF R2 n (N)
Intercept -0.17 ± 0.22 -0.39 – 0.17 -0.77 0.444
z egg mass 0.14 ± 0.23 -0.31 – 0.59 0.61 0.548 1.12
z RTLbiological♂ 0.21 ± 0.29 -0.36 – 0.77 0.71 0.481 1.46
z RTLbiological♀ -0.03 ± 0.26 -0.53 – 0.48 -0.10 0.921 1.33
z RTLfoster♂ 0.32 ± 0.29 -0.25 – 0.88 1.10 0.271 1.32
z RTLfoster♀ 0.02 ± 0.28 -0.53 – 0.56 0.06 0.956 1.40

0.084 49 (28)

(C) z Body condition Estimate ± SE CI t P VIF R2 n (N)
Intercept 0.06 ± 0.15 -0.25 – 0.36 0.39 0.696
z egg mass 0.13 ± 0.16 -0.18 – 0.44 0.83 0.409 1.12
z RTLbiological♂ 0.30 ± 0.20 -0.09 – 0.68 1.51 0.139 1.47
z RTLbiological♀ -0.20 ± 0.18 -0.54 – 0.15 -1.13 0.267 1.33
z RTLfoster♂ -0.03 ± 0.20 -0.41 – 0.36 -0.15 0.885 1.32
z RTLfoster♀ -0.20 ± 0.19 -0.57 – 0.17 -1.05 0.301 1.40

0.078 49 (28)

(D) z RTL Estimate ± SE CI t P VIF R2 n (N)
Intercept -0.17 ± 0.13 -0.43 – 0.10 -1.24 0.222
z egg mass -0.01 ± 0.15 -0.31 – 0.29 -0.04 0.968 1.21
z RTLbiological♂ 0.14 ± 0.18 -0.20 – 0.49 0.81 0.423 1.54
z RTLbiological♀ 0.22 ± 0.17 -0.12 – 0.56 1.26 0.216 1.12
z RTLfoster♂ 0.34 ± 0.18 -0.02 – 0.70 1.86 0.071 1.38
z RTLfoster♀ 0.42 ± 0.17 0.08 – 0.76 2.42 0.021* 1.16

0.335 40 (26)

475

476

Page 20 of 33Molecular Ecology



For Review Only

477 Table 2. Standardized model estimates for the relationship between parental relative telomere 

478 length (RTL) and chick survival (binary 0 = failure / 1 = success) and phenotype (structural 

479 size, body condition and telomere length) late in the development (day 105 post-hatching; the 

480 end of the pre-winter growth phase). Significant effects have CI95 not overlapping 1 for the 

481 binomial model, and not overlapping 0 for linear models. All parents were included in the 

482 same model. Variance inflation factors (VIFs) are provided. The number of chicks (n) and 

483 dyads (N) are given. Sample sizes vary across models due to variation in chick mortality 

484 and/or difficulties at sampling blood from some chicks or amplifying DNA (telomeres) from 

485 some blood samples.

486
Chick survival and phenotype late in development (day 105)

(A) Survival (binary 1/0) Odds ratio ± SE CI z P VIF R2 n (N)
Intercept 3.35 ± 0.36 1.66 – 6.74 3.38 0.001*
z egg mass 1.38 ± 0.37 0.67 – 2.86 0.88 0.378 1.13
z RTLbiological♂ 0.57 ± 0.45 0.24 – 1.37 -1.25 0.210 1.32
z RTLbiological♀  1.00 ± 0.41 0.45 – 2.21 -0.00 0.999 1.25
z RTLfoster♂ 2.99 ± 0.44 1.26 – 7.08 2.49 0.013* 1.30
z RTLfoster♀ 1.15 ± 0.42 0.50 – 2.64 0.33 0.745 1.29

0.238 56 (28)

(B) z Structural size Estimate ± SE CI t P VIF R2 n (N)
Intercept 0.01 ± 0.17 -0.32 – 0.34 0.07 0.944
z egg mass 0.00 ± 0.16 -0.30 – 0.31 0.08 0.978 1.05
z RTLbiological♂ 0.15 ± 0.18 -0.20 – 0.50 0.91 0.412 1.30
z RTLbiological♀ 0.10 ± 0.19 -0.27 – 0.47 0.60 0.592 1.32
z RTLfoster♂ -0.15 ± 0.20 -0.54– 0.25 -0.63 0.474 1.19
z RTLfoster♀ -0.21 ± 0.20 -0.60 – 0.19 -1.09 0.308 1.38

0.050 41 (27)

(C) z Body condition Estimate ± SE CI t P VIF R2 n (N)
Intercept -0.04 ± 0.19 -0.42 – 0.34 -0.22 0.825
z egg mass 0.08 ± 0.18 -0.27 – 0.42 0.44 0.665 1.05
z RTLbiological♂ 0.06 ± 0.20 -0.32 – 0.45 0.31 0.757 1.26
z RTLbiological♀ -0.08 ± 0.21 -0.50 – 0.34 -0.37 0.716 1.46
z RTLfoster♂ 0.25 ± 0.22 -0.19 – 0.68 1.11 0.274 1.15
z RTLfoster♀ -0.32 ± 0.23 -0.76 – 0.13 -1.39 0.174 1.53

0.078 41 (27)

(D) z RTL Estimate ± SE CI t P R2 n (N)
Intercept -0.16 ± 0.15 -0.45 – 0.13 -1.09 0.288
z egg mass 0.01 ± 0.16 -0.31 – 0.33 0.09 0.932 1.19
z RTLbiological♂ 0.08 ± 0.18 -0.28 – 0.43 0.44 0.664 1.40
z RTLbiological♀ 0.31 ± 0.19 -0.05 – 0.67 1.67 0.104 1.23
z RTLfoster♂ 0.28 ± 0.19 -0.09 – 0.65 1.48 0.148 1.25
z RTLfoster♀ 0.54 ± 0.19 0.18 – 0.91 2.90 0.007* 1.28

0.330 40 (26)

487

488

Page 21 of 33 Molecular Ecology



For Review Only

489 Table 3. Standardized linear mixed model estimates for the relationship between parental 

490 relative telomere lengths (RTL) and chick change in relative telomere length over growth (i.e. 

491 between days 10 and 105 post-hatching). All parents were included in the same model. 

492 Variance inflation factors (VIFs) are provided. The number of chicks (n) and dyads (N) are 

493 given.

494
Chick RTL change over growth (RTLchick105 – RTLchick10)

z RTL change Estimate ± SE CI t P VIF R2 n (N)
Intercept 0.02 ± 0.17 -0.31 – 0.34 0.10 0.924
z RTLbiological♂ -0.11 ± 0.21 -0.53 – 0.30 -0.53 0.597 1.41
z RTLbiological♀ 0.04 ± 0.21 -0.38 – 0.46 0.20 0.844 1.09
z RTLfoster♂ -0.08 ± 0.23 -0.54 – 0.37 -0.37 0.717 1.38
z RTLfoster♀ 0.05 ± 0.22 -0.38 – 0.47 0.21 0.831 1.14

0.019 40 (26)

495
496
497

498
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499

500

501

502 Fig. 1. King penguin chick relative telomere length (RTL, T/S ratio) dynamics in early life. 

503 RTL was log transformed, and all values were standardized (z-scores). (a) Individual 

504 trajectories in RTL between days 10 and 105, i.e. the pre-winter growth period. (b) 

505 Relationship between RTL values at day 10 and 105. Different colours indicate different 

506 birds.

507

508

509

510

511

512
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513  

514

515 Fig. 2. Relationships between king penguin parental telomere length (RTL) and chick survival 

516 and phenotype early in development (day 10 post-hatching). All parents were included in the 

517 same model, and different mixed models were run for (a) chick survival (binary 0/1); (b) 

518 chick structural size (principal components axis, see Methods); (c) chick body condition (see 

519 Methods); and (d) chick RTL. Standardized mixed model estimates are given with 95% CI. 

520 Significant effects have CI95 not overlapping 1 for the binomial model, and not overlapping 0 

521 for linear models. Positive and negative effects fall to the right and left of the vertical line, 

522 respectively. RTL is expressed as log (T/S ratio), and all variables were standardized (z-

523 scores) priori to analyses.
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524

525

526 Fig. 3. (a) Predicted probability and 95% CI of chick survival at 10 days as a function of 

527 biological male relative telomere length (RTL). (b) Relationship between foster female RTL 

528 and chick RTL at 10 days. RTL is expressed as log (T/S ratio), and was standardized (z-

529 scores) priori to analyses.

530

531

532

533
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534  

535

536 Fig. 4. Relationships between king penguin parental telomere length (RTL) and chick survival 

537 and phenotype late in the development (day 105 post-hatching, the end of the pre-winter 

538 growth phase). All parents were included in the same model, and different mixed models were 

539 run (a) chick survival (binary 0/1); (b) chick structural size (principal components axis, see 

540 Methods); (c) chick body condition (see Methods); and (d) chick RTL. Standardized mixed 

541 model estimates are given with 95% CI. Significant effects have CI95 not overlapping 1 for the 

542 binomial model, and not overlapping 0 for linear models. Positive and negative effects fall to 

543 the right and left of the vertical line, respectively. RTL is expressed as log (T/S ratio), and all 

544 variables were standardized (z-scores) priori to analyses.
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545  

546

547 Fig. 5. (a) Predicted effect and 95% CI of chick survival at 105 days as a function of foster 

548 male relative telomere length (RTL). (b) Relationship between foster female RTL and chick 

549 RTL at 105 days. RTL is expressed as log (T/S ratio), and was standardized (z-scores) priori 

550 to analyses.

551

552

553

554  
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