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Abstract 21 

Reward enhances stimulus processing in the visual cortex, but the mechanisms through which this 22 

effect occurs remain unclear. Reward prospect can both increase the deployment of voluntary 23 

attention and increase the salience of previously neutral stimuli. In this study we orthogonally 24 

manipulated reward and voluntary attention while human participants performed a global motion 25 

detection task. We recorded steady-state visual evoked potentials (SSVEPs) to simultaneously 26 

measure the processing of attended and unattended stimuli linked to different reward probabilities, 27 

as they compete for attentional resources. The processing of the high rewarded feature was 28 

enhanced independently of voluntary attention, but this gain diminished once rewards were no 29 

longer available. Neither the voluntary attention nor the salience account alone can fully explain 30 

these results. Instead, we propose how these two accounts can be integrated to allow for the flexible 31 

balance between reward-driven increase in salience and voluntary attention. 32 

 33 

Keywords: voluntary attention; attentional control; reward; motivation; EEG; feature-based 34 

attention; steady-state visual evoked potentials; frequency tagging; Bayesian multilevel modeling    35 
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Introduction 36 

Maximizing rewards and avoiding punishments are among the main determinants of human 37 

behavior. In order to increase the probability of obtaining a reward, reward-related information 38 

needs to be prioritized. Selective attention is crucial for adaptive behavior as it facilitates the 39 

processing of relevant over irrelevant information in the environment (Chun, Golomb, & Turk-40 

Browne, 2011; Desimone & Duncan, 1995). This process depends on our current goals (e.g., 41 

looking for car keys in the living room) and salience of stimuli (e.g., a loud noise; Corbetta & 42 

Shulman, 2002; Posner, 1980; Theeuwes, 2010). Recent research has indicated that motivation can 43 

influence selective attention by impacting both of these factors. Reward expectation can enhance 44 

voluntary selective attention, and reward associations can change the salience of previously neutral 45 

stimuli. In most situations, attention is guided by the combination of both voluntary allocation of 46 

attention and reward history of stimuli (Awh, Belopolsky, & Theeuwes, 2012). For example, while 47 

we are searching for keys (goal-relevant target) our attention can be captured by a cake (goal-48 

irrelevant distractor). These two ways in which rewards influence selective attention have been 49 

commonly studied in isolation and the neural mechanisms through which they jointly guide 50 

attention remain unclear. Specifically, it remains unclear how voluntary selective attention and 51 

reward history interact to determine the processing of goal-relevant and irrelevant stimuli in the 52 

visual cortex.  53 

Voluntary selective attention is enhanced when individuals anticipate that they can earn 54 

rewards for good task performance (Botvinick & Braver, 2015; Krebs & Woldorff, 2017; Pessoa, 55 

2015). A number of fMRI and EEG studies found reward-based increases in attention in 56 

preparation for upcoming target stimuli. These studies have shown that such increases are driven 57 

by enhanced activity in frontoparietal regions involved in attentional control (Krebs, Boehler, 58 

Roberts, Song, & Woldorff, 2012; Pessoa & Engelmann, 2010; Schevernels, Krebs, Santens, 59 

Woldorff, & Boehler, 2014) and by enhanced task-set representations in these regions (Etzel, Cole, 60 
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Zacks, Kay, & Braver, 2016; Wisniewski, Reverberi, Momennejad, Kahnt, & Haynes, 2015). 61 

While these studies suggest that reward influences attentional control via neuronal modulations in 62 

the frontoparietal network, it remains unclear how such modulations translate to affect the 63 

processing of attended and unattended stimuli in visual cortex.  64 

Within a largely independent research line, a set of studies has focused on the processing 65 

of stimuli associated with earning rewards. These studies have demonstrated that stimuli currently 66 

or previously associated with rewards capture attention in an automatic fashion, even when this 67 

conflicts with current goals (Anderson, 2016; Awh, Belopolsky, & Theeuwes, 2012; Chelazzi, 68 

Perlato, Santandrea, & Della Libera, 2013; Failing & Theeuwes, 2017). Behavioral studies have 69 

demonstrated that stimuli predictive of rewards capture attention, and that they can do so in 70 

subsequent trials when rewards are no longer present (Anderson, Laurent, & Yantis, 2011; Della 71 

Libera & Chelazzi, 2009; Failing & Theeuwes, 2014). Event-related potential (ERP) studies have 72 

shown that stimuli related to rewards receive increased sensory processing, and attentional capture 73 

by rewarding stimuli can be related to changes in the early processing of such stimuli in the visual 74 

cortex (i.e., increase in the P1 ERP component; Donohue et al., 2016; Hickey, Chelazzi, & 75 

Theeuwes, 2010; Luque et al., 2017; MacLean & Giesbrecht, 2015). However, other studies have 76 

not found evidence for such early modulations in the visual cortex, and instead reported changes 77 

at later stages of stimulus processing (increased N2pc ERP component and improved decoding in 78 

later processing stages; Qi et al., 2013; Tankelevitch et al., 2020). Similarly, fMRI studies have 79 

also shown reward-related increases in sensory processing (Serences, 2008). More specifically, one 80 

study (Hickey & Peelen, 2015) provided evidence for the simultaneous enhancement in 81 

representation of reward-related stimuli and suppression of stimuli devoid of a specific 82 

motivational value. Using multivoxel pattern analysis and decoding technique, these authors found 83 

a gain increase in object-selective visual cortex for stimuli paired with rewards, while those not 84 

associated with this incentive were suppressed. 85 
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The reviewed findings thus point toward two mechanisms through which rewards influence 86 

selective attention. First, the prospect of earning rewards increases the voluntary allocation of 87 

attention. Second, rewards can increase the salience of previously neutral stimuli leading them to 88 

capture attention in a more automatic fashion. Importantly, the effects of reward history and 89 

voluntary attention are often difficult to disentangle, and they are often confounded in cognitive 90 

tasks (Maunsell, 2004). For example, common paradigms for studying both reward processing and 91 

attention include the association between allocating attention in a specific way (e.g. toward a 92 

location and a feature) and receiving a reward (e.g. a monetary reward, or the intrinsic reward of 93 

following the task instructions and solving the trial correctly). Further, both increases in voluntary 94 

attention and stimulus salience can lead to increased sensory gain in the visual cortex. Thus, it 95 

remains unclear which reward-related changes in stimulus processing in visual cortex occur as a 96 

consequence of voluntary selective attention, and which changes result from alterations in stimulus 97 

salience. Most importantly, reward-driven dynamic interactions between voluntary attention and 98 

changes in stimulus salience remain underexplored.  99 

Theoretical models that focus on the relationship between incentives and attention 100 

commonly focus on either the voluntary attention or the salience aspect of their interaction. 101 

Although not mutually exclusive, these models make different predictions about the way in which 102 

rewards influence attention. One option is that rewards influence stimulus processing by increasing 103 

the amount of voluntary attention deployed toward these stimuli. This hypothesis can be derived 104 

from models that focus on the role of motivation in the allocation of attention and cognitive control 105 

(Brown & Alexander, 2017; Holroyd & McClure, 2015; Shenhav, Botvinick, & Cohen, 2013; 106 

Verguts, Vassena, & Silvetti, 2015). These models propose that the amount of attention allocated 107 

toward stimuli is dependent on the amount of rewards which are expected for doing so. Another 108 

possibility is that rewards increase stimulus salience and thus capture attention automatically, 109 

independently of voluntary attention. This view can be derived from theoretical models 110 
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highlighting the role of reward history in guiding selective attention (Anderson, 2016; Awh et al., 111 

2012; Chelazzi et al., 2013; Failing & Theeuwes, 2017). These models propose that the processing 112 

of stimuli linked to high rewards is facilitated while the processing of other stimuli is suppressed, 113 

and that this effect is long lasting, even when rewards are no longer available. Importantly, although 114 

not explicitly incorporated into the current theoretical frameworks, motivation influences both 115 

voluntary attention and changes stimulus salience. Here we sought to assess the effects of both of 116 

these mechanisms on stimulus processing in visual cortex, and in that way investigate how these 117 

two mechanisms interact to guide stimulus processing and optimize behavior.   118 

In this study, we orthogonally manipulated voluntary attention and reward probability in 119 

order to assess how they interact within a single paradigm. To this end, we adopted an established 120 

feature-based attention paradigm (e.g., Andersen, Müller, & Hillyard, 2009; Andersen & Müller, 121 

2010). On each trial, two superimposed random dot kinematograms (RDKs) of different color (red 122 

and blue) were presented concurrently and participants were instructed, on a trial-by-trial basis, to 123 

attend to one of them in order to detect infrequent coherent motion targets. Thus, these two RDKs 124 

served as goal-relevant (attended) and goal-irrelevant (unattended) stimuli, respectively1. 125 

Critically, after a baseline period used as control condition, these two colors were associated (via 126 

explicit instruction upon completion of the baseline phase) with a low or high probability of earning 127 

a reward in a training phase. We subsequently examined the influence of the previous reward 128 

history in the test phase, in which rewards were no longer available. The two RDKs flickered at 129 

different frequencies, thereby driving separate steady-state visual evoked potentials (SSVEPs). 130 

SSVEPs offer the unique advantage of simultaneously tracking the processing of multiple stimuli 131 

as the specific oscillatory response of each stimulus can be extracted (frequency tagging), and the 132 

two resulting signals can be compared to each other (Andersen & Müller, 2010; Kashiwase, 133 

 

1 Throughout this manuscript we use the terms ‘attended’ and ‘unattended’ to refer to the explicit instructions which 

participants received prior to each trial. 
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Matsumiya, Kuriki, & Shioiri, 2012; Müller, Teder-Sälejärvi, & Hillyard, 1998). Voluntary 134 

attention is known to increase SSVEP amplitudes of attended stimuli (Morgan, Hansen, & Hillyard, 135 

1996). Further, SSVEP amplitudes are highly sensitive to changes in the physical salience of 136 

stimuli and are increased for more salient stimuli (Andersen, Müller, & Martinovic, 2012). Thus, 137 

the SSVEP amplitudes capture the changes in sensory gain resulting from either the top-down 138 

influences of voluntary attention, or the bottom up changes in salience. Hence, analyzing SSVEPs 139 

in this design provided us with the ability to simultaneously track the visual processing of attended 140 

and unattended stimuli related to high or low rewards respectively. This design thus enabled us to 141 

experimentally dissociate between the effects of voluntary attention (instructions about which color 142 

to attend to) and reward probability (stimulus-reward pairings).  143 

We tested predictions arising from the theoretical models developed to account for the 144 

effects of rewards on cognitive control (Brown & Alexander, 2017; Holroyd & McClure, 2015; 145 

Shenhav et al., 2013; Verguts et al., 2015) and the effects of reward history on attention (Anderson, 146 

2016; Awh et al., 2012; Chelazzi et al., 2013; Failing & Theeuwes, 2017), respectively. The first 147 

class of models predict that reward influences sensory processing through voluntary attention, and 148 

the second class of models predict that rewards directly modulate stimulus salience. Both groups 149 

of models predict better behavioral performance and enhanced processing (higher SSVEP 150 

amplitudes) of the stimuli related to high rewards. However, the strict reward history view would 151 

predict that the processing of the high reward stimuli will be enhanced irrespective of voluntary 152 

attention (i.e., equally when they are unattended or attended), while the strict voluntary attention 153 

view would predict that the processing of the high reward stimuli will be enhanced only when they 154 

are attended. Finally, the reward history view predicts that these effects will persist when rewards 155 

are no longer available (in our paradigm, during the test phase), while the voluntary attention view 156 

predicts that the processing of both high and low reward stimuli will return to baseline levels. Here 157 

we tested these predictions by independently manipulating voluntary attention and reward, which 158 
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allowed us to assess the contribution of each of these factors and possible interactions. Most 159 

importantly, this design allowed us to investigate how reward-driven changes in voluntary attention 160 

and reward-driven stimulus salience jointly determine stimulus processing in visual cortex leading 161 

to behavioral adaptations and increasing the amount of earned rewards.   162 

Methods 163 

Participants 164 

We tested 48 participants with normal or corrected-to-normal vision and no history of 165 

psychiatric or neurological disorders. Four participants were excluded due to technical problems 166 

during EEG recording and one person was excluded due to noisy EEG data. Thus, the final data 167 

set consisted of 43 participants (29 females, 14 males; median age = 22). Participants received a 168 

fixed payoff of 20 €, plus up to 6 € depending on task performance (on average 25.5 €). The study 169 

was approved by the ethics committee of Ghent University. 170 

Stimuli and task 171 

We used a coherent motion detection task (Andersen & Müller, 2010; Figure 1A), in which 172 

participants were presented with two overlapping circular RDKs of isoluminant colors (red and 173 

blue) on a grey background. Viewing distance was fixed with a chinrest at 55 cm from the 21-inch 174 

CRT screen (resolution of 1024 x 768 pixels, 120 Hz refresh rate). At the beginning of each trial, 175 

participants were instructed which of the two RDKs to attend by a verbal audio cue: “red” (241 176 

ms) or “blue” (266 ms). The two RDKs had a diameter corresponding to 20.61 degrees of visual 177 

angle and consisted of 125 randomly and independently moving dots each (0.52 degrees of visual 178 

angle per dot). The two RDKs flickered at different frequencies: 10 Hz (6 frames on / 6 frames off) 179 

and 12 Hz (5 frames on / 5 frames off). 40% of trials contained no coherent motion intervals. The 180 

other 60% of trials contained one, two, or three coherent motion intervals, occurring with equal 181 

probability in the attended and unattended color RDK. This was done to ensure that participants 182 
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maintained attention throughout the trial. During these intervals, dots in one of the RDKs moved 183 

with 75% coherence in one of four cardinal directions (up, down, left, or right) for 300 ms. The 184 

earliest onset of coherent motions was 750ms after onset of the RDKs and subsequent coherent 185 

motions within the same trial were separated by at least 600ms to allow for an unambiguous 186 

assignment of detection responses to preceding coherent motions. Participants had to detect the 187 

occurrence of coherent motion in the attended RDK as fast as possible by pressing the space key 188 

on a standard AZERTY USB keyboard while ignoring such coherent motion in the unattended 189 

RDK. Responses occurring between 275 ms and 875 ms after coherent motion onset of the attended 190 

or unattended dots were counted as hits or false alarms, respectively. Correct responses were 191 

followed by a tone (200 ms sine wave of either 800 or 1,200 Hz, counterbalanced across 192 

participants). Late or incorrect responses were followed by an error sound (200 ms square wave 193 

tone of 400 Hz). 194 

The experiment started with 4 practice blocks of 60 trials in each block. After each block, 195 

participants received feedback on their performance (percentage of correctly identified motions). 196 

During the practice blocks, participants performed the same task as in the main experiment (without 197 

rewards). After finishing the practice phase, participants completed 12 blocks (each consisting of 198 

50 trials) divided into 3 phases (baseline, training, and test; Figure 1B) of 4 blocks each. Each 199 

phase contained 100 trials in which participants were instructed to attend to the red color and 100 200 

trials in which they were instructed to attend to the blue color. Out of those 100 trials, 40 trials 201 

contained no dot motion, while 60 trials contained one, two, or three dot motions. The trials in 202 

which participants attended to one or the other color as well as the trials with different number of 203 

motions were randomly intermixed. Participants executed the coherent motion detection task, as 204 

described above, throughout all three phases (baseline, training, and test). In the training phase, 205 

participants could earn additional monetary rewards (up to 6 €) based on their actual performance. 206 

After completing the baseline phase, they were instructed that one of the colors would be paired 207 
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with high probability (80%) and the other color with low probability (20%) of earning 10 extra 208 

cents for each correct motion detection. The mapping between color and reward probability was 209 

counterbalanced across participants. Receipt of the reward was signaled by a new tone that replaced 210 

the usual correct tone. If the correct tone was a sine wave of 800 Hz, the reward tone was a sine 211 

wave of 1,200 Hz (counterbalanced across participants). At the end of each of 4 training blocks, 212 

participants received feedback regarding both their performance and the amount of reward earned 213 

within the block (on average 5.5 € out of the maximal 6 € across all 4 blocks). The third phase 214 

(test) was identical to baseline and participants were explicitly informed that they would not be 215 

able to earn any more rewards. The entire task lasted for approximately 50 minutes, including short 216 

breaks in between blocks. Afterwards, participants completed two questionnaires aimed at 217 

assessing reward sensitivity (BIS-BAS; Franken et al., 2005) and depression levels (BDI-II; Van 218 

der Does, 2002). The collection of the questionnaire data is not reported here as it was collected 219 

for exploratory purposes in order to form a larger database of neural and self-report measures of 220 

reward processing. The experiment was implemented using Cogent Graphics developed by John 221 

Romaya at the LON at the Wellcome Department of Imaging Neuroscience.  222 
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 223 

 224 

EEG recording and preprocessing 225 

Electroencephalographic activity (EEG) was recorded with an ActiveTwo amplifier (BioSemi, 226 

Inc., The Netherlands) at a sampling rate of 512 Hz. Sixty-four Ag/AgCl electrodes were fitted into 227 

an elastic cap, following the international 10/10 system (Chatrian, Lettich, & Nelson, 1985). The 228 

common mode sense (CMS) active electrode and the driven right leg (DRL) passive electrode were 229 

used as reference and ground electrodes, respectively. Additional external electrodes were applied 230 

to the left and right mastoids, as well as on the outer canthi of each eye and in the inferior and 231 

superior areas of the left orbit (to record horizontal and vertical electrooculogram, EOG). 232 

Data preprocessing was performed offline with custom MATLAB scripts and functions included 233 

in EEGLAB v14.1.1b (Delorme & Makeig, 2004). After subtracting the mean value of the signal 234 

(DC offset), the continuous EEG data were epoched between 0 and 3,250 ms, corresponding to the 235 

beginning and end of the trial, respectively. After referencing to Cz, FASTER v1.2.3b (Nolan, 236 

Figure 1. Depiction of a single trial and the phases of the experiment. A. Each trial started with an audio cue 

(”Blue” or ”Red”) which instructed participants which color to attend to in that trial. The trial lasted for 3.25 seconds 

during which dots of either of the colors could move from 0 to 3 times in total. If the participants were instructed to 

attend to the blue dots and the blue dots moved coherently, they had to press the response button. In that case they 

would hear the auditory feedback signaling the correct detection of the motions. B. The experiment started with a 

practice and a baseline block in which the participants heard an audio cue at the beginning of the trial and two types 

of feedback sounds (incorrect or correct). In the training block a third sound was introduced to signal that the 

participants were both correct and received a reward for that response. They would still at times hear the old correct 

feedback which would signal that they were correct, but not rewarded. The test phase was the same as the baseline 

phase.  
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Whelan, & Reilly, 2010) was used for artifact identification and rejection using the following 237 

settings: (i) over the whole normalized EEG signal, channels with variance, mean correlation, and 238 

Hurst exponent exceeding z = ±3 were interpolated via a spherical spline procedure (Perrin, Pernier, 239 

Bertrand, & Echallier, 1989); (ii) the mean across channels was computed for each epoch and, if 240 

amplitude range, variance, and channel deviation exceeded z = ±3, the whole epoch was removed; 241 

(iii) within each epoch, channels with variance, median gradient, amplitude range, and channel 242 

deviation exceeding z = ±3 were interpolated; (iv) grand-averages with amplitude range, variance, 243 

channel deviation, and maximum EOG value exceeding z = ±3 were removed; (v) epochs 244 

containing more than 12 interpolated channels were discarded. Subsequently, automated routines 245 

were used to reject all trials with blinks or horizontal eye-movements exceeding 25 microvolts. For 246 

details, see our commented code at https://osf.io/kjds3/. After preprocessing, the average number 247 

of interpolated channels was 3.61 (SD = 1.23, range 1 – 6) and the mean percentage of rejected 248 

epochs was 8.77% (SD = 6.71, range 0 – 27.78). After re-referencing to averaged mastoids, trials 249 

in each condition were averaged separately for each participant, resulting in the following 250 

conditions: (i) baseline, red attended; (ii) baseline, blue attended; (iii) training, red attended; (iv) 251 

training, blue attended; (v) test, red attended; (vi) test, blue attended. 252 

After removing linear trends, SSVEP amplitudes were computed as the absolute of the complex 253 

Fourier coefficients of the trial-averaged EEG in a time-window from 500 ms (to exclude the 254 

typically strong phasic visual evoked response to picture onset) to 3,250 ms after stimulus onset. 255 

Electrodes with maximum SSVEP amplitudes were identified by calculating isocontour voltage 256 

maps based on grand-averaged data collapsed across all conditions. This procedure identified a 257 

cluster consisting of the four electrodes Oz, O2, POz, and Iz, which were chosen for further 258 

analysis. SSVEP amplitudes were normalized (rescaled) for each participant and frequency (10 and 259 

12 Hz) separately by dividing amplitudes by the average amplitude of the two conditions in the 260 

baseline.  261 

https://osf.io/kjds3/
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Statistical analyses 262 

Behavioral and EEG data were analyzed using Bayesian multilevel regressions. We fitted and 263 

compared multiple models of varying complexity to predict observer sensitivity, reaction times for 264 

correct responses, and SSVEP amplitudes. For the behavioral data, mean reaction times of correct 265 

detections (hits) and sensitivity (d′) were analyzed. Sensitivity index d′ (Macmillan & Creelman, 266 

2004) was calculated with adjustments for extreme values (Hautus, 1995) using the psycho R 267 

package (for the method see: Pallier, 2002). When calculating d′, responses to the coherent motion 268 

of the attended color were considered as hits, while responses to the coherent motion of the 269 

unattended color were considered as false alarms.  270 

Each fitted model included both constant and varying effects (also known as fixed and random). 271 

Participant-specific characteristics are known to affect both behavioral performance (e.g., response 272 

speed) and EEG signal (e.g., skull thickness, skin conductance, hair); therefore, we accounted for 273 

this variability by adding varying intercepts in our models. Additionally, the studied effects (i.e., 274 

selective attention and reward sensitivity) are known to vary in magnitude over participants, so we 275 

opted for including varying slopes in our models2.  276 

Models were fitted in R using the brms package (Bürkner, 2016) which employs the 277 

probabilistic programming language Stan (Carpenter et al., 2016) to implement Markov Chain 278 

Monte Carlo (MCMC) algorithms in order to estimate posterior distributions of the parameters of 279 

interest (details about the fitted models can be found in the data analysis scripts at 280 

https://osf.io/kjds3/). Each model was fitted using weakly informative prior distributions 281 

(described below) and Gaussian likelihood. Four MCMC simulations (“chains”) with 6,000 282 

iterations (3,000 warmup) and no thinning were run to estimate parameters in each of the fitted 283 

 

2 Due to the simultaneous estimation of group-level and participant-level parameters, multilevel models display a 

property called shrinkage. In brief, estimates that strongly deviate from the mean (e.g., a participant performing the 

task much worse than the average of the total sample) will be pulled toward the group mean (McElreath, 2016). This 

advantageous property prevents extreme values from having large effects on the results. 

https://osf.io/kjds3/
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models. Further analyses were done following the recommendations for Bayesian multilevel 284 

modeling using brms (Bürkner, 2016, 2017; Nalborczyk & Bürkner, 2019). We confirmed that all 285 

models converged by examining trace plots, autocorrelation, and variance between chains 286 

(Gelman-Rubin statistic; Gelman & Rubin, 1992). We compared models based on their fit to the 287 

actual data using the Bayesian R2 (Gelman, Goodrich, Gabry, & Ali, 2017), and their out-of-sample 288 

predictive performance using the Widely Applicable Information Criterion (WAIC; Watanabe, 289 

2010). The best model was selected and the posterior distributions of conditions of interest were 290 

examined. Differences between conditions were assessed by computing the mean and the 95% 291 

highest density interval (HDI) of the difference between posterior distributions of the respective 292 

conditions (Kruschke, 2014). Additionally, we calculated the evidence ratios (ERs) for our 293 

hypotheses as the ratios between the percentage of posterior samples on each side of the zero of 294 

the difference distribution between two conditions. ERs represent the ratio between the probability 295 

of a hypothesis (e.g. “Condition A is larger than condition B”) against its alternative (“Condition 296 

B is larger than condition A”). As a rule of thumb, we interpreted our results as providing 297 

“inconclusive” evidence when 1 < ER < 3, “anecdotal” evidence when 3 < ER < 10, and “strong” 298 

evidence when ER > 10. When ER > 12000 (the maximum number of posterior samples), the 299 

posterior distribution was completely on one side of zero, thus providing “very strong” evidence. 300 

Behavioral data 301 

 302 

We fitted three models to predict sensitivity (d′) and reaction times (in milliseconds) separately 303 

(see Figure 2 for the raw data and Supplementary Table 1 for the descriptive statistics). First, we 304 

fitted the Null model with a constant and varying intercepts across participants. This model was 305 

fitted in order to explore the possibility that the data would be best explained by simple random 306 

variation between participants. To investigate the effect of reward phase (baseline, training, test), 307 

we fitted the Reward phase model which included only reward phase as the constant predictor, as 308 
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well as varying intercepts and slopes across participants for this effect. To investigate the possible 309 

interaction between reward phase and reward, we fitted the Reward phase × Reward Probability 310 

model including the intercepts and slopes of these two effects and their interaction as both constant 311 

and varying effects. All models had a Gaussian distribution as the prior for the intercept (for 312 

sensitivity: centered at 1.8 with a standard deviation of 1; for reaction times: centered at 500 with 313 

a standard deviation of 200). The models with slopes also included a Gaussian distribution as prior 314 

for the slopes (for sensitivity: centered at 0 with a standard deviation of 2; for reaction times: 315 

centered at 0 with a standard deviation of 200). The means for the priors for the intercepts were 316 

selected based on a previous study with a similar task (Andersen & Müller, 2010). The standard 317 

deviations of all of the prior distributions were chosen so that the distributions are very wide and 318 

thus only weakly informative. Note that there are two additional models that, although possible to 319 

fit, are not plausible in the context of our experiment. Specifically, the model including only the 320 

effect of reward probability overlooks the fact that this effect would necessarily be most 321 

pronounced in the training phase, thus interacting with the effect of reward phase. The same logic 322 

applies to the model with additive effects of reward phase and probability (i.e., these effects could 323 

not act independently in our experimental design). 324 

SSVEP amplitudes 325 

We fitted seven models to predict the trial-averaged SSVEP amplitudes (in a.u. due to the 326 

normalization) across conditions (see Figure 2C, Figure 2D, and Supplementary Table 2). The Null 327 

model included one constant and varying intercepts across participants. The Attention model 328 

included attention as predictor; the Reward Phase model included the effect of reward phase; the 329 

Reward Phase + Attention model included the additive effects of reward phase and attention; and 330 

the Reward Phase × Attention model also included the interaction between reward phase and 331 

attention. The Reward probability × Reward phase + Attention model consisted of the effects of 332 
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reward and phase, their interaction, and the independent effect of attention. The last model was the 333 

Reward probability × Reward phase × Attention model which included all predictors and their 334 

interaction. All models, except for the Null model, included varying intercepts and slopes across 335 

participants for all effects. All models included a Gaussian distribution as the prior for the intercept 336 

(centered at 1 with a standard deviation of 1). The mean across both attended and unattended 337 

conditions is approximately 1 in this paradigm (Andersen & Müller, 2010), while the normalized 338 

amplitudes are in the 0-2 range (the normalized amplitude of 2 for the attended stimulus would 339 

equal the physical removal of the unattended stimulus), which is why we opted for the standard 340 

deviation of 1 for the prior distributions. In addition, the models with slopes included a Gaussian 341 

distribution as the prior for the slopes (centered at 0 with a standard deviation of 1). As was the 342 

case for the behavioral data, several models were not fitted because they were not plausible in the 343 

context of our experiment (i.e., models that include both reward phase and probability, but not their 344 

interaction, are implausible because reward probability could not affect the baseline phase as the 345 

reward mapping information was provided upon completion of the baseline). 346 

Results 347 

Behavioral results 348 

Sensitivity d′ 349 

 350 

The analyses of sensitivity revealed that participants successfully performed the task, as d′ was 351 

well above chance level across all conditions. Of all the tested models, the Reward phase × Reward 352 

probability model best predicted sensitivity (Table 1). The posterior distributions of the interaction 353 

model (Figure 2A and Table 2) revealed that sensitivity improved in the training phase compared 354 

to the baseline for low reward (M = 0.14; 95% HDI [0.01, 0.27]; ER = 57.82), while the 355 

improvement for the high reward color was in the same direction, but not statistically robust (M = 356 

0.04; 95% HDI [-0.08, 0.17]; ER = 3.10). This improvement was slightly more pronounced for low 357 
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compared to high reward (M = 0.10; 95% HDI [-0.08, 0.27]; ER = 6.25). Conversely, there was no 358 

evidence for a difference between training and test phases in the low reward condition (M = 0.00; 359 

95% HDI [-0.13, 0.13]; ER = 1.09), while there was a reduction in sensitivity in the high reward 360 

condition (M = -0.08; 95% HDI [-0.20, 0.05]; ER = 8.52). These results suggest higher sensitivity 361 

for coherent motion detection in the training phase compared to baseline, which was more 362 

pronounced for the low relative to the high reward color. This somewhat counterintuitive effect 363 

could be explained by the faster reaction times to the high compared to the low reward color, which 364 

we focus on in the following section. Finally, we found very little evidence of a change in 365 

sensitivity from the training to the test phase. Importantly we found a baseline difference between 366 

the high and low reward conditions (Table 2). This result is likely due to random fluctuations 367 

because in the baseline phase participants are not aware of any reward contingencies. While this 368 

result does not affect our interpretation because we analyze the change in each of the two colors 369 

separately across the phases of the experiment, the magnitude of the baseline difference suggests 370 

that the effects of reward on sensitivity are rather small. This is in line with previous work on value-371 

driven attention in which the reward-driven effects are more commonly reflected in reaction times 372 

rather than changes in accuracy (Anderson, 2016; Awh et al., 2012; Chelazzi et al., 2013; Failing 373 

& Theeuwes, 2017).  374 
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 375 

Table 1 

Mean and standard errors (in parenthesis) of WAIC and Bayesian R2 for each model predicting 

sensitivity and reaction times. 

Model WAIC (SE) Bayesian R2 (SE) 

Sensitivity 

Null 533.3 (26.5)  0.27 (0.05) 

Reward phase 541.0 (26.5)  0.27 (0.05) 

Reward phase × Reward probability 202.7 (19.1)  0.84 (0.01) 

Reaction times     

Null 2,500.2 (31.6)  0.50 (0.04) 

Reward phase 2,483.0 (35.3)  0.56 (0.04) 

Reward phase × Reward probability 2,322.5 (30.0)  0.82 (0.02) 

 

Table 2 

Means and 95% HDIs of the posterior distributions of reaction times and sensitivity in each condition. 

Reward phase Reward probability Sensitivity (d′) Reaction times (milliseconds) 

Baseline High 1.64 [1.39, 1.87] 546.54 [534.33, 559.30] 

Baseline Low 1.48 [1.25, 1.69] 551.13 [539.34, 563.50] 

Training High 1.69 [1.44, 1.93] 524.91 [512.94, 536.30] 

Training Low 1.62 [1.41, 1.84] 537.99 [526.48, 550.32] 

Test High 1.61 [1.36, 1.84] 528.97 [515.90, 541.99] 

Test Low 1.62 [1.41, 1.84] 539.85 [525.63, 554.34] 
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Reaction times 376 

The Reward phase × Reward probability model best predicted reaction times (Figure 2B and 377 

Table 1). In the training, compared to the baseline phase, participants were reliably faster in 378 

detecting the motions of both the high (M = -21.60 ms; 95% HDI [-29.90, -12.80]; ER > 12,000, 379 

i.e., the whole posterior distribution was below zero thus the ER is larger than the total number of 380 

posterior samples) and the low reward colors (M = -13.10 ms; 95% HDI [-21.70, -4.69]; ER = 381 

999). Moreover, this difference between baseline and training was larger for detecting motions of 382 

high relative to low reward color (M = -8.49 ms; 95% HDI [-18.60, 2.06]; ER = 17.18). We found 383 

weak evidence for changes in reaction times between the training and the test phase. There was a 384 

very small, but not statistically robust, increase in reaction times in the test compared to training 385 

Figure 2. Raw and modelled data. Violin plots displaying raw data for each participant (grey dots), separately for 

each condition. Results from the winning models are presented in blue (dark blue – 50% HDIs and light blue – 95% 

HDIs). A. Sensitivity (d′) B. Reaction times (ms) C. SSVEP amplitudes (arbitrary units) in response to the color related 

to high reward on trials in which it is attended or unattended. D. SSVEP amplitudes for the color linked to low reward 

on trials when it was attended or unattended. 
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phase for the high reward color (M = 4.07 ms; 95% HDI [-4.52, 13.10]; ER = 4.40), and no 386 

difference for the low reward color (M = 1.87 ms; 95% HDI [-6.93, 10.70]; ER = 1.98). We 387 

confirmed that the reward-induced changes persisted even after rewards were no longer available 388 

by comparing the reaction times in the baseline phase to the test phase. These analyses revealed 389 

that participants responded faster in the test phase relative to the baseline phase to both high (M = 390 

-17.60 ms; 95% HDI [-28.40, -6.23]; ER = 999) and low reward stimuli (M = -11.30 ms; 95% HDI 391 

[-22.60, -0.72]; ER = 44.45). Further, this speeding up was more pronounced for the stimuli 392 

previously related to high compared to low reward probability (M = -6.29 ms; 95% HDI [-16.30, 393 

4.44]; ER = 7.70). These results indicate that participants were faster in detecting coherent motions 394 

in the condition in which they could earn rewards (training), and more so for high than low reward 395 

color. Also, there was a small increase in reaction times for the high reward condition and no 396 

difference in the low reward condition when the rewards were no longer available (test). Crucially, 397 

this increase was limited, and participants were still faster to respond in the test compared to the 398 

baseline phase, and more so for the stimuli related to high compared to low reward probability. 399 

Supplementary analyses carried out to assess possible training effects indicated some evidence for 400 

the presence of training effects in sensitivity and scant evidence for such effects in reaction times 401 

(Supplementary materials). 402 
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SSVEP amplitudes 403 

As shown in Figure 3, SSVEP amplitudes averaged over conditions peaked at central occipital 404 

channels (i.e., Oz, POz, O2, Iz). Also, the amplitude spectra showed the expected pronounced 405 

peaks at the frequencies of 10 and 12 Hz. 406 

The Reward probability × Reward phase + Attention model best predicted SSVEP amplitudes 407 

across conditions (Table 3). However, the Reward probability × Reward phase × Attention had 408 

Figure 3. A) Grand average amplitude spectra (only for visualization purposes, 1 Hz high-pass  FIR filter and zero-

padded to 8 times the length of the data) derived from EEG signals at best four-electrode cluster plotted for the 

different experimental conditions (blue: attended; red: unattended; solid: baseline phase; dotted: rewarded phase; 

dashed: non-rewarded phase). The shaded areas around the means indicate 95% confidence intervals. B) Individual 

and average amplitudes (with 95% confidence intervals) for blue (10 Hz) and red (12 Hz) across task conditions. 

C) Topographies of SSVEP amplitudes, averaged across all participants and conditions, at 10 Hz and 12 Hz. 

Electrodes selected for the analysis are highlighted in white. 
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only slightly lower explanatory power relative to the winning model. Here we draw inferences from 409 

the winning model, but note that the conclusions do not substantially change when analyzing the 410 

model which includes the three-way interaction. The analysis of the posterior distributions of the 411 

winning model (Figure 2 and Table 3) revealed a very strong effect of voluntary selective attention, 412 

indicating that participants were following the instructions and attending the dots of the cued color. 413 

Across all conditions, SSVEP amplitudes were higher when the eliciting stimulus was attended 414 

compared to when it was unattended. In the winning model, this effect did not interact with the 415 

other factors in the model, i.e., the magnitude of selective attention was unaffected by reward 416 

probability and reward phase. The posterior distribution of the difference between attended and 417 

unattended stimuli did not include zero, revealing a very strong effect of voluntary attention. 418 

Namely, the attended stimuli very reliably elicited higher SSVEP amplitudes compared to the 419 

unattended ones (M = 0.24; 95% HDI [0.20, 0.29]; ER > 12,000). These results reveal a very robust 420 

effect of voluntary selective attention across all experimental conditions: the SSVEP response was 421 

systematically larger when the driving stimulus was attended. 422 

Table 3 

Model comparison indices for EEG results 

Model WAIC (SE)  Bayesian R2 (SE) 

Null -22.3 (56.2)  0.01 (0.01) 

Reward phase -31.8 (55.0)  0.05 (0.01) 

Attention -436.5 (66.4)  0.37 (0.02) 

Reward phase + Attention -464.7 (64.9)  0.40 (0.02) 

Reward phase × Attention -461.3 (65.2)  0.41 (0.02) 

Reward probability × Reward phase + Attention -696.1 (71.9)  0.55 (0.02) 

Reward probability × Reward phase × Attention -690.4 (71.9)  0.55 (0.02) 
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 423 

The winning model also included the interaction between reward phase and reward 424 

probability, but this interaction remained the same for both attended and unattended stimuli. 425 

SSVEP amplitudes were higher in the training phase than at baseline for the high reward color (M 426 

= 0.02; 95% HDI [-0.01, 0.06]; ER = 9.53), both when it was attended and unattended. However, 427 

there was no evidence of difference for the change in SSVEP amplitudes from baseline to 428 

training for the low reward color (M = 0.01; 95% HDI [-0.03, 0.05]; ER = 2.58). Comparing the 429 

training to the test phase, the amplitudes of the high reward color were reduced (M = -0.03; 95% 430 

HDI [-0.07, 0.01]; ER = 13.71), while the amplitudes of the low reward color did not 431 

substantially change (M = -0.02; 95% HDI [-0.06, 0.02]; ER = 3.72).  432 

Table 4 

Means and 95% HDIs of the posterior distributions of the SSVEP amplitudes for each condition. 

Attention Reward phase Reward probability Amplitudes (a.u.) 

Attended Baseline High 1.12 [1.08, 1.16] 

Attended Baseline Low 1.12 [1.07, 1.17] 

Attended Training High 1.15 [1.10, 1.19] 

Attended Training Low 1.11 [1.07, 1.16] 

Attended Test High 1.11 [1.06 ,1.17] 

Attended Test Low 1.13 [1.07, 1.19] 

Unattended Baseline High 0.88 [0.83, 0.92] 

Unattended Baseline Low 0.88 [0.84, 0.92] 

Unattended Training High 0.90 [0.85, 0.95] 

Unattended Training Low 0.87 [0.82, 0.91] 

Unattended Test High 0.87 [0.82, 0.92] 

Unattended Test Low 0.88 [0.83, 0.94] 
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To summarize, visual processing of the high reward color stimulus was enhanced in the 433 

phase in which the participants could earn monetary rewards. This gain in neural processing  434 

returned to baseline in the subsequent test phase in which the rewards were no longer available. 435 

Importantly, the reward-dependent modulation of the visual cortex activity occurred irrespective 436 

of whether that color was attended or not, i.e., it did not affect voluntary allocation of attention to 437 

the cued color. Finally, visual processing of the low reward color remained constant across the 438 

three phases of the experiment.  439 

Discussion 440 

In this study we investigated the neural mechanisms through which voluntary selective 441 

attention and reward history jointly guide visual processing. We compared the processing of 442 

attended and unattended stimuli of different reward probabilities on a continuous global motion 443 

discrimination task. Compared to baseline, the introduction of rewards sped up task performance, 444 

especially for the higher reward stimuli, which was accompanied by enhanced processing of these 445 

stimuli in the visual cortex (as suggested by higher SSVEP amplitude values). This sensory gain 446 

was present both when the high reward stimulus was attended and unattended, thus indicating that 447 

rewards influenced visual processing independently of voluntary selective attention. When rewards 448 

were no longer available, sensory processing of high reward stimuli returned to baseline levels, but 449 

participants were still faster to detect coherent motion of high vs. low reward stimuli relative to the 450 

baseline.  451 

The introduction of rewards improved behavioral performance on the task and facilitated 452 

the visual processing of stimuli associated with high rewards. This effect on SSVEP amplitudes is 453 

likely localized in the V1-V3 areas of the visual cortex, as reported in previous studies using the 454 

same task that conducted formal source analysis of the SSVEP (Andersen et al., 2009; Andersen 455 

& Müller, 2010; Andersen, Hillyard, & Müller, 2008). This effect was the same both when the high 456 
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reward stimulus was attended and unattended. Thus, this effect was independent of the effect of 457 

voluntary selective attention as reflected in the enhanced processing of the attended compared to 458 

unattended stimuli (Andersen & Müller, 2010). This pattern of results suggests that the effect of 459 

reward acted independently of voluntary attention, which is in line with previous work showing 460 

the independent influence of reward and task-relevance on stimulus processing in the extrastriate 461 

visual cortex (Buschschulte et al., 2014; Garcia-Lazaro et al., 2019). This finding supports the 462 

predictions of the models which propose that the effect of reward history on visual processing is 463 

independent from voluntary attention (Anderson, 2016; Awh et al., 2012; Chelazzi et al., 2013; 464 

Failing & Theeuwes, 2017). Further, this finding can help refine models highlighting the role of 465 

rewards in the allocation of cognitive control. These models (Brown & Alexander, 2017; Holroyd 466 

& McClure, 2015; Shenhav et al., 2013; Verguts et al., 2015) are largely focused on activity in the 467 

frontoparietal regions, for example the dorsolateral prefrontal cortex and the anterior cingulate 468 

cortex, which are known to increase their activation in anticipation of rewards (Krebs, Boehler, 469 

Roberts, Song, & Woldorff, 2012; Pessoa & Engelmann, 2010; Schevernels, Krebs, Santens, 470 

Woldorff, & Boehler, 2014). However, these models are not explicit about their predictions of how 471 

top-down signals from these areas modulate the processing of stimuli at the level of the visual 472 

cortex. Our findings suggest that increased rewards act to enhance the processing of the stimuli 473 

related to high rewards independently of other top-down voluntary attention effects, which is 474 

similar to the way in which physical salience of stimuli (i.e., contrast) acts in the same paradigm 475 

(Andersen et al., 2012).  Interestingly, this is at odds with recent finding showing that a flagship 476 

cognitive control effect, post-error adjustments, operates through enhancement of voluntary 477 

selective attention as measured by SSVEPs using an adapted version of the task used here 478 

(Steinhauser & Andersen, 2019). This indicates a possible dissociation between the effects of 479 

reward and other cognitive control effects on selective attention. Dissociations between cognitive 480 

control and reward effects should be further addressed, both theoretically and empirically.  481 
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In the test phase, behavioral performance displayed similar patterns as in the training phase. 482 

Individuals were faster to detect motions of the dots in color related to high compared to low 483 

reward. This finding follows the reward-history effects reported in several paradigms (Anderson, 484 

Laurent, & Yantis, 2011; Della Libera & Chelazzi, 2009; Failing & Theeuwes, 2014). However, 485 

our SSVEP results show that the visual processing of high reward stimuli returned to baseline 486 

levels, diverging from the behavioral pattern of results. This may indicate that the longer lasting 487 

effect of reward history was not mediated by the prolonged gain enhancement in sensory processing 488 

as measured by the SSVEPs, contrary to the predictions of the models accounting for the effects of 489 

reward history on attention (Anderson, 2016; Awh et al., 2012; Chelazzi et al., 2013; Failing & 490 

Theeuwes, 2017). This result is predicted by models which relate cognitive control and reward, as 491 

they predict that reward-related enhancements should return to baseline levels when rewards are 492 

no longer available (Brown & Alexander, 2017; Holroyd & McClure, 2015; Shenhav et al., 2013; 493 

Verguts et al., 2015). This finding suggest that visual processing can be adapted in a much more 494 

flexible way than predicted by the models focused on the reward-history effects on attention. Of 495 

note, it is possible that our SSVEP measure captures more sustained processing of features in visual 496 

cortex, while the effects of reward history could be specifically locked to the onset of the rewarded 497 

stimulus (Donohue et al., 2016; Hickey et al., 2010; Luque et al., 2017; MacLean & Giesbrecht, 498 

2015). However, there are at least two studies which have not found evidence for the effects of 499 

reward history on early visual processing (Qi et al., 2013; Tankelevitch et al., 2020). This leaves 500 

open the possibility that effects of reward history are not necessarily driven purely by gains in 501 

sensory processing. One interesting possibility, which should be explored in future studies, is that 502 

rewards initially improve performance by enhancing stimulus salience, but later rely on more direct 503 

stimulus-response mappings. Finally, it is important to note that our paradigm involves a cue on 504 

every trial which induces a direct goal, at odds with most studies assessing the influence of reward-505 
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history on attention. Further research using SSVEPs ought to be conducted in order to explicitly 506 

address effects of reward history on SSVEP amplitudes. 507 

Our paradigm allowed us to simultaneously measure the processing of stimuli linked to 508 

both high and low value. Some initial evidence for attentional suppression of stimuli linked to low 509 

compared to high rewards has been found at the behavioral and neural level (Hickey & Peelen, 510 

2015; Padmala & Pessoa, 2011). Suppression of visual features linked to low or no rewards has 511 

also been proposed as one of the potential mechanisms through which incentives impact attention 512 

(Chelazzi et al., 2013; Anderson, 2016; Failing & Theeuwes, 2018). On the contrary, in this study 513 

we found no evidence for this proposal. Suppression was neither observed when the low value 514 

color was attended, nor when it was unattended. Visual processing of the low reward color, as 515 

indexed by SSVEP amplitudes, was strongly affected by attention, but remained unchanged by 516 

reward throughout the experiment. There are three features of our experiment that may explain this 517 

finding. First, in our experiment both colors were related to rewards, but they differed in reward 518 

value. Conversely, Hickey and Peelen (2015) showed evidence for the suppression of the non-519 

rewarded feature for objects which were never rewarded. In our paradigm, it could be beneficial 520 

for participants not to suppress the low value color because correct responses to the motions of this 521 

color would still earn them a reward on 20% of trials. Second, in our experiment the attended color 522 

changed on a trial-by-trial basis, whereas the experiment of Hickey and Peelen (2015) consisted 523 

out of small blocks of 16 trials in which the attended object was always the same (e.g., searching 524 

for a car in a complex picture). When searching for one object or feature across a number of future 525 

trials, it is possible that the optimal solution for the visual system is to suppress the processing of 526 

the other features or objects (i.e., goal-irrelevant stimuli). However, if the attended feature is likely 527 

to change on each trial, as in our experiment, the suppression of the low rewarded feature could be 528 

maladaptive as it would carry a cost of reconfiguring the control signals on every trial (for a 529 

computational implementation of a reconfiguration cost see: Musslick, Shenhav, Botvinick, & 530 
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Cohen, 2015). Third, our experiment included a shorter training phase compared to some of the 531 

previous experiments which demonstrated reliable behavioral effects of the value-driven 532 

attentional bias (Anderson, Laurent, & Yantis, 2011; Della Libera & Chelazzi, 2009; Failing & 533 

Theeuwes, 2014). While the lower number of reward-stimulus pairings (120 for high and low 534 

reward colors each here) could lead to weaker effects, we were still able to conceptually replicate 535 

the previous behavioral findings, indicating that we were successful at inducing a reward-driven 536 

bias. However, we cannot fully exclude the possibility that sustained effect of rewards at the neural 537 

level would have been observed with a longer training phase.   538 

The design of this study and the use of the SSVEPs allowed us to independently assess the 539 

influence of voluntary attention and reward on sensory processing in the visual cortex. This enabled 540 

us to directly compare the magnitude of these two factors on sensory processing. While both 541 

modulated visual processing, it is important to note that the effect of voluntary attention on visual 542 

processing (30% increase for the attended vs. the unattended stimuli; based on the regression 543 

weights from the fitted models) was an order of magnitude stronger than the effect of reward (3% 544 

increase from baseline to training for the high reward stimuli). Thus, even though reward 545 

associations can influence processing in opposition to voluntary attention, our results suggest that 546 

the magnitude of this effect is very small compared to the effect of voluntary attention. Most 547 

theoretical models to date have focused on how top-down and reward-driven attention jointly guide 548 

stimulus processing (Awh et al., 2012), but how much each of these processes contribute to 549 

stimulus processing still has to be incorporated into these theoretical models. This finding is 550 

especially important in the light of recent studies investigating the relevance of reward-driven 551 

automatic biases in attention in clinical disorders such as addiction (Anderson, 2016) and 552 

depression (Anderson, Leal, Hall, Yassa, & Yantis, 2014). While it is possible that more automatic 553 

biases in attention play a role in these disorders, it is also important to focus on the influence of 554 
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more goal-directed processes which are likely to have a bigger impact on cognition in clinical 555 

disorders (Grahek, Shenhav, Musslick, Krebs, & Koster, 2019).    556 

In conclusion, in this study we directly assessed how voluntary attention and reward jointly 557 

guide attention. Our findings provide a novel insight into the flexible dynamics of visual processing 558 

by demonstrating that rewards can act independently of voluntary attention to enhance sensory 559 

processing in the visual cortex. However, sensory processing is flexibly readjusted when rewards 560 

are no longer available. This result suggests that top-down and reward effects independently affect 561 

sensory gain in the visual cortex which needs to be accounted for in theoretical models of 562 

motivation-cognition interactions. The effect can be flexibly removed as soon as the reward 563 

structure in the environment changes.   564 

  565 
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Supplementary materials 566 

Means of the raw behavioral and SSVEP data 567 

  568 

Supplementary Table 1 

Means and 95% HDIs (in square brackets) of the raw data for sensitivity and reaction times 

Reward phase Value Sensitivity (d′) Reaction times (milliseconds) 

Baseline High 1.64 [-0.04, 2.68] 546.59 [485.64, 619.34] 

Baseline Low 1.47 [ 0.04, 2.30] 551.10 [490.50, 631.36] 

Training High 1.69 [ 0.29, 2.73] 524.99 [467.12, 599.49] 

Training Low 1.62 [ 0.46, 2.68] 537.94 [465.32, 584.63] 

Test High 1.60 [-0.20, 2.73] 528.98 [457.08, 599.83] 

Test Low 1.62 [ 0.74, 2.88] 539.75 [455.80, 623.21] 
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 569 

Additional analyses to assess possible training effects 570 

In order to assess potential training effects on behavioral performance, we split each reward 571 

phase into two halves (Supplementary Figure 1 and Supplementary Table 3). If training effects 572 

were influencing the behavioral outcome, we could expect performance improvement through 573 

baseline and training. To investigate this possibility, we fitted the Reward phase × Value model 574 

that was identical to the one described in the results section. We then compared behavioral 575 

performance between the first and the second part of the baseline phase, and between the second 576 

part of baseline and the first part of training phase. 577 

  578 

Supplementary Table 2 

Means and 95% HDIs of the raw data for the recorded SSVEP amplitudes in each condition 

Attention Reward phase Value Amplitudes (a.u.) 

Attended Baseline High 1.13 [0.92, 1.52] 

Attended Baseline Low 1.13 [0.86, 1.52] 

Attended Training High 1.16 [0.80, 1.60] 

Attended Training Low 1.13 [0.76, 1.71] 

Attended Test High 1.13 [0.61, 1.61] 

Attended Test Low 1.13 [0.59, 1.84 

Unattended Baseline High 0.87 [0.47, 1.17] 

Unattended Baseline Low 0.87 [0.49, 1.11] 

Unattended Training High 0.91 [0.54, 1.38] 

Unattended Training Low 0.89 [0.50, 1.28] 

Unattended Test High 0.88 [0.48, 1.23] 

Unattended Test Low 0.91 [0.44, 1.42] 
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 579 

The posterior distributions for sensitivity (Supplementary Figure 1A and Supplementary Table 580 

4) revealed performance improvement from the first to the second part of the baseline for both high 581 

(M = 0.12; 95% HDI [-0.05, 0.28]; ER = 11.05) and low (M = 0.15; 95% HDI [0.01, 0.32]; ER = 582 

36.04) value conditions. When comparing the second part of baseline to the first part of training, 583 

there was only a very small improvement in sensitivity in the high value condition (M = 0.06; 95% 584 

HDI [-0.11, 0.22]; ER = 2.94), and a much bigger one in the low value condition (M = 0.11; 95% 585 

HDI [-0.04, 0.28]; ER = 10.90). These results indicate that participants improved not only 586 

throughout the baseline phase, but also from the end of baseline to the first part of the training 587 

(albeit for low rewarded color only). This might indicate some presence of training effects in the 588 

sensitivity data. 589 

The posterior distributions of reaction times (Supplementary Figure 1B and Supplementary 590 

Table 2) revealed only a very small difference between the first and the second part of baseline for 591 

Supplementary Table 3 

Means and 95% HDIs of the raw data for sensitivity and reaction times across six phases of the experiment 

Reward phase Value Sensitivity (d′) Reaction times (milliseconds) 

Baseline1 High 1.48 [-0.36, 2.62] 548.84 [479.43, 613.76] 

Baseline1 Low 1.32 [ 0.09, 2.35] 548.43 [458.26, 610.63] 

Baseline2 High 1.60 [-0.27, 2.56] 544.34 [454.56, 620.36] 

Baseline2 Low 1.47 [ 0.08, 2.33] 554.01 [479.48, 632.80] 

Training1 High 1.54 [-0.08, 2.65] 521.40 [437.90, 587.57] 

Training1 Low 1.59 [ 0.47, 2.45] 542.34 [463.65, 593.47] 

Training2 High 1.59 [ 0.08, 2.56] 528.74 [462.00, 598.58] 

Training2 Low 1.48 [ 0.00, 2.62] 533.94 [479.38, 618.25] 

Test1 High 1.48 [-0.07, 2.47 528.58 [457.88, 596.17] 

Test1 Low 1.50 [ 0.36, 2.50] 536.54 [444.89, 621.00] 

Test2 High 1.49 [-0.38, 2.49] 529.30 [448.24, 606.00] 

Test2 Low 1.55 [ 0.65, 2.55] 543.01 [450.11, 617.44] 
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high (M = -4.52; 95% HDI [-15.0,0 5.77]; ER = 4.21) value condition, while the low value 592 

condition was slightly slower in the second part of the baseline (M = 5.60 95% HDI [-4.76, 16.20]; 593 

ER = 5.71). The comparison between the second part of baseline and the first part of training 594 

revealed a very reliable speeding in both high (M = 22.90; 95% HDI [12.60, 33.80]; ER > 6000) 595 

and low (M = 11.60; 95% HDI [0.70, 22.10]; ER = 57.82) value conditions. These results clearly 596 

point to the absence of large training effects in the reaction time data. 597 

Taken together, these results indicate that our effects were not driven by the improved 598 

performance over the course of the task. Although there is some evidence that sensitivity was 599 

improving during the baseline phase, reaction times clearly indicate that the main shift in 600 

performance happens in the beginning of training, when rewards are introduced. Importantly, the 601 

strongest behavioral effects in our study were found on reaction time data, as indicated in the 602 

Results section of the main text.  603 

Similar analyses could not be performed for the EEG data, because splitting the number of trials 604 

in each phase would significantly affect the signal-to-noise ratio. However, our EEG results point 605 

to changes in SSVEP amplitudes in only one of the value conditions. If amplitude changes were 606 

mainly driven by training effects, the differences across reward phases would be expected for both 607 

value conditions. This observation, combined with the lack of strong training effects in behavior, 608 

suggests that our EEG results are not driven by training effects. 609 

  610 
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 611 

  612 

Supplementary Figure 1. Raw and modelled behavioral data in each half of each phase of the experiment. On 

both plots raw participant data is represented with grey dots and their distribution. The winning model is presented in 

blue (dark blue – 50% HDIs and light blue – 95% HDIs). A. Sensitivity (d′) across the phases of the experiment for 

the conditions in which the attended color is linked to either high or low value. B) Reaction times (ms) in the six phases 

when the attended stimulus is related to high or low reward probability.   
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Supplementary Table 4 

Means and 95% HDIs of sensitivity and reaction times across six phases of the experiment 

Reward phase Value Sensitivity (d′) 
Reaction times 

(milliseconds) 

Baseline 1 High 1.48 [1.24, 1.71] 548.86 [535.97, 561.35] 

Baseline 1 Low 1.32 [1.09, 1.53] 548.38 [535.83, 560.97] 

Baseline 2 High 1.60 [1.38, 1.84] 544.34 [531.22, 558.49] 

Baseline 2 Low 1.47 [1.25, 1.69] 553.98 [540.67, 567.69] 

Training 1 High 1.54 [1.30, 1.78] 521.42 [508.48, 533.66] 

Training 1 Low 1.59 [1.37, 1.81 542.35 [530.05, 555.45] 

Training 2 High 1.60 [1.35, 1.83] 528.74 [515.92, 541.36] 

Training 2 Low 1.48 [1.26, 1.70] 533.91 [521.41, 547.24] 

Test 1 High 1.49 [1.24, 1.72] 528.64 [514.39, 542.24] 

Test 1 Low 1.50 [1.28, 1.71] 536.51 [520.49, 551.37] 

Test 2 High 1.49 [1.25, 1.74] 529.32 [516.53, 543.70] 

Test 2 Low 1.55 [1.33, 1.76] 543.01 [528.56, 557.28] 



SELECTIVE ATTENTION AND REWARD  36 

Acknowledgements 615 

This work was supported by the Special Research Fund (BOF) of Ghent University [grant 616 

#01D02415 awarded to IG; grant # BOF14/PDO/123 awarded to AS], the Concerted Research 617 

Action Grant of Ghent University [grant number BOF16/GOA/017 awarded to EHWK], and the 618 

Biotechnology and Biological Sciences Research Council [BB/P002404/1 awarded to SKA]. The 619 

funding sources were not involved in the study design; collection, analysis, and interpretation of 620 

data; writing of the report; and decision to submit the article for publication. 621 

We would like to thank Prof. Gilles Pourtois for his help with conceiving the study and for the very 622 

useful discussions of the results. Further, we thank Gilles for all of the materials he provided for 623 

this study. We would also like to thank Dr. Ladislas Nalborczyk for discussions about statistical 624 

analyses of the data, Prof. Ruth Krebs for her comments on a previous version of the manuscript, 625 

and Dr. Inez Greven for help with data collection. 626 

Author contributions 627 

Author contributions are coded according to the CRediT taxonomy (Allen, Scott, Brand, Hlava, & 628 

Altman, 2014).  629 

Conceptualization: IG, AS, EHWK, SKA. Data curation: IG, AS. Formal analysis: IG, AS. 630 

Funding acquisition: IG, AS, EHWK, SKA. Investigation: IG, AS. Methodology: IG, AS, SKA. 631 

Project administration: IG, AS. Resources: EHWK, SKA. Software: SKA, IG, AS. 632 

Supervision: AS, SKA. Validation: IG, AS. Visualization: IG, AS. Writing – original draft: IG, 633 

AS. Writing – review & editing: IG, AS, EHWK, SKA.  634 

Competing interests 635 

The authors have no competing interests to report.  636 



SELECTIVE ATTENTION AND REWARD  37 

Data availability 637 

Raw and pre-processed data, materials, and analysis scripts are available at: https://osf.io/kjds3/. 638 

Software for data visualization and analysis 639 

Visualization and statistical analyses were performed using R v3.4.4 (R Core Team, 2017) via 640 

RStudio v1.1.453 (RStudio Team, 2015). We used the following packages (and their respective 641 

dependencies): 642 

• data manipulation: tidyverse v1.2.1 (Wickham, 2017); 643 

• statistical analyses: Rmisc v1.5 (Hope, 2013), brms v2.3.1 (Bürkner, 2016);  644 

• visualization: cowplot v0.9.2 (Wilke, 2016), yarrr v0.1.5 (Phillips, 2016), viridis v0.5.1 645 

(Garnier, 2018), eegUtils v0.2.0 (Craddock, 2018), BEST (Kruschke & Meredith, 2017); 646 

• report generation: pacman v0.4.6 (Rinker & Kurkiewicz, n.d.), knitr v1.20 (Xie, 2018);  647 

References 648 

Allen, L., Scott, J., Brand, A., Hlava, M., & Altman, M. (2014). Publishing: Credit where credit 649 

is due. Nature, 508(7496), 312–313. https://doi.org/10.1038/508312a 650 

Andersen, S. K., Müller, M. M., & Hillyard, S. A. (2009). Color-selective attention need not be 651 

mediated by spatial attention. Journal of Vision, 9(6), 2–2. https://doi.org/10.1167/9.6.2 652 

Andersen, S. K., Müller, M. M., & Martinovic, J. (2012). Bottom-Up Biases in Feature-Selective 653 

Attention. Journal of Neuroscience, 32(47), 16953–16958. 654 

https://doi.org/10.1523/JNEUROSCI.1767-12.2012 655 

Andersen, S K, & Müller, M. M. (2010). Behavioral performance follows the time course of 656 

neural facilitation and suppression during cued shifts of feature-selective attention. 657 

Proceedings of the National Academy of Sciences of the United States of America, 107(31), 658 

13878–13882. https://doi.org/10.1073/pnas.1002436107 659 

https://osf.io/kjds3/


SELECTIVE ATTENTION AND REWARD  38 

Andersen, Søren K., Hillyard, S. A., & Müller, M. M. (2008). Attention Facilitates Multiple 660 

Stimulus Features in Parallel in Human Visual Cortex. Current Biology, 18(13), 1006–1009. 661 

https://doi.org/10.1016/j.cub.2008.06.030 662 

Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. 663 

Annals of the New York Academy of Sciences, 1369(1), 24–39. 664 

https://doi.org/10.1111/nyas.12957 665 

Anderson, B. a, Laurent, P. a, & Yantis, S. (2011). Value-driven attentional capture. Proceedings 666 

of the National Academy of Sciences, 108(25), 10367–10371. 667 

https://doi.org/10.1073/pnas.1104047108 668 

Anderson, Brian A. (2016). What is abnormal about addiction-related attentional biases? Drug 669 

and Alcohol Dependence, 167, 8–14. https://doi.org/10.1016/j.drugalcdep.2016.08.002 670 

Anderson, Brian A, Leal, S. L., Hall, M. G., Yassa, M. A., & Yantis, S. (2014). The attribution of 671 

value-based attentional priority in individuals with depressive symptoms. Cognitive, 672 

Affective & Behavioral Neuroscience, 14(4), 1221–1227. https://doi.org/10.3758/s13415-673 

014-0301-z 674 

Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional 675 

control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. 676 

https://doi.org/10.1016/j.tics.2012.06.010 677 

Botvinick, M. M., & Braver, T. S. (2015). Motivation and Cognitive Control : From Behavior to 678 

Neural Mechanism. Annual Review of Psychology, (September 2014), 1–31. 679 

https://doi.org/10.1146/annurev-psych-010814-015044 680 

Brown, J. W., & Alexander, W. H. (2017). Foraging Value, Risk Avoidance, and Multiple 681 

Control Signals: How the Anterior Cingulate Cortex Controls Value-based Decision-682 

making. Journal of Cognitive Neuroscience, 29(10), 1656–1673. 683 

https://doi.org/10.1162/jocn_a_01140 684 



SELECTIVE ATTENTION AND REWARD  39 

Bürkner, P.-C. (2016). brms: An R package for Bayesian multilevel models using Stan. Journal 685 

of Statistical Software, 80(1), 1–28. 686 

Bürkner, P.-C. (2017). Advanced Bayesian Multilevel Modeling with the R Package brms. 687 

ArXiv:1705.11123. 688 

Buschschulte, A., Boehler, C. N., Strumpf, H., Stoppel, C., Heinze, H.-J., Schoenfeld, M. A., & 689 

Hopf, J.-M. (2014). Reward- and Attention-related Biasing of Sensory Selection in Visual 690 

Cortex. Journal of Cognitive Neuroscience, 26(5), 1049–1065. 691 

https://doi.org/10.1162/jocn_a_00539 692 

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. 693 

(2016). Stan: A probabilistic programming language. Journal of Statistical Software, 2(20), 694 

1–37. 695 

Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for topographic 696 

studies of spontaneous and evoked EEG activities. American Journal of EEG Technology, 697 

25(2). 698 

Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual 699 

selective attention. Vision Research, 85, 58–62. https://doi.org/10.1016/j.visres.2012.12.005 700 

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of External and 701 

Internal Attention. Annual Review of Psychology, 62(1), 73–101. 702 

https://doi.org/10.1146/annurev.psych.093008.100427 703 

Corbetta, M., & Shulman, G. L. (2002). Control of Goal-Directed and Stimulus-Driven Attention 704 

in the Brain. Nature Reviews Neuroscience, 3(3), 215–229. https://doi.org/10.1038/nrn755 705 

Craddock, M. (2018). craddm/eegUtils: eegUtils (Version v0.2.0). Zenodo. 706 

Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and 707 

losses. Psychological Science, 20(6), 778–784. https://doi.org/10.1111/j.1467-708 

9280.2009.02360.x 709 



SELECTIVE ATTENTION AND REWARD  40 

Delorme, A., & Makeig, S. (2004). EEGLAB: an open sorce toolbox for analysis of single-trail 710 

EEG dynamics including independent component anlaysis. Journal of Neuroscience 711 

Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 712 

Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual. Annual Review of 713 

Neuroscience, 18(1), 193–222. https://doi.org/10.1146/annurev.ne.18.030195.001205 714 

Donohue, S. E., Hopf, J.-M., Bartsch, M. V., Schoenfeld, M. A., Heinze, H.-J., & Woldorff, M. 715 

G. (2016). The Rapid Capture of Attention by Rewarded Objects. Journal of Cognitive 716 

Neuroscience, 28(4), 529–541. https://doi.org/10.1162/jocn_a_00917 717 

Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N., & Braver, T. S. (2016). Reward Motivation 718 

Enhances Task Coding in Frontoparietal Cortex. Cerebral Cortex, 26(4), 1647–1659. 719 

https://doi.org/10.1093/cercor/bhu327 720 

Failing, M. F., & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 721 

14(2014), 1–9. https://doi.org/10.1167/14.5.6.doi 722 

Failing, M., & Theeuwes, J. (2017). Selection history: How reward modulates selectivity of 723 

visual attention. Psychonomic Bulletin and Review, 1–25. https://doi.org/10.3758/s13423-724 

017-1380-y 725 

Franken, I. H. A., Muris, P., & Rassin, E. (2005). Psychometric properties of the Dutch BIS/BAS 726 

scales. Journal of Psychopathology and Behavioral Assessment, 27(1), 25–30. 727 

https://doi.org/10.1007/s10862-005-3262-2 728 

Garcia-Lazaro, H. G., Bartsch, M. V., Boehler, C. N., Krebs, R. M., Donohue, S. E., Harris, J. A., 729 

… Hopf, J.-M. (2019). Dissociating Reward- and Attention-driven Biasing of Global 730 

Feature-based Selection in Human Visual Cortex. Journal of Cognitive Neuroscience, 31(4), 731 

469–481. https://doi.org/10.1162/jocn_a_01356 732 

Garnier, S. (2018). viridis: Default Color Maps from ‘matplotlib.’ R package version 0.3. 733 

Gelman, A., Goodrich, B., Gabry, J., & Ali, I. (2017). R-squared for Bayesian regression models. 734 



SELECTIVE ATTENTION AND REWARD  41 

Unpublished via Http://Www. Stat. Columbia. Edu/~ Gelman/Research/Unpublished. 735 

Retrieved from http://www.stat.columbia.edu/~gelman/research/unpublished/bayes_R2.pdf 736 

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple 737 

Sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136 738 

Grahek, I., Shenhav, A., Musslick, S., Krebs, R. M., & Koster, E. H. W. (2019). Motivation and 739 

cognitive control in depression. Neuroscience & Biobehavioral Reviews, 102(March), 371–740 

381. https://doi.org/10.1016/j.neubiorev.2019.04.011 741 

Hautus, M. J. (1995). Corrections for extreme proportions and their biasing effects on estimated 742 

values of d′. Behavior Research Methods, Instruments, & Computers, 27(1), 46–51. 743 

https://doi.org/10.3758/BF03203619 744 

Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward Changes Salience in Human Vision via 745 

the Anterior Cingulate. Journal of Neuroscience, 30(33), 11096–11103. 746 

https://doi.org/10.1523/JNEUROSCI.1026-10.2010 747 

Hickey, C., & Peelen, M. V. (2015). Neural mechanisms of incentive salience in naturalistic 748 

human vision. Neuron, 85(3), 512–518. https://doi.org/10.1016/j.neuron.2014.12.049 749 

Holroyd, C. B., & McClure, S. M. (2015). Hierarchical control over effortful behavior by rodent 750 

medial frontal cortex: A computational model. Psychological Review, 122(1), 54–83. 751 

https://doi.org/10.1037/a0038339 752 

Hope, R. M. (2013). Rmisc: Ryan miscellaneous. R package version, 1(5). 753 

Kashiwase, Y., Matsumiya, K., Kuriki, I., & Shioiri, S. (2012). Time courses of attentional 754 

modulation in neural amplification and synchronization measured with steady-state visual-755 

evoked potentials. Journal of Cognitive Neuroscience, 24(8), 1779–1793. 756 

https://doi.org/10.1162/jocn_a_00212 757 

Krebs, R M, & Woldorff, M. G. (2017). Cognitive control and reward. In T. Egner (Ed.), Wiley 758 

Handbook of Cognitive Control (pp. 422–439). Wiley-Blackwell. 759 



SELECTIVE ATTENTION AND REWARD  42 

Krebs, Ruth M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The 760 

involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the 761 

integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607–762 

615. https://doi.org/10.1093/cercor/bhr134 763 

Kruschke, J. K., & Meredith, M. (2017). BEST: Bayesian Estimation Supersedes the t-Test. 764 

Kruschke, John K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan, 765 

second edition. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second 766 

Edition (2nd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-405888-0.09999-2 767 

Luque, D., Beesley, T., Morris, R. W., Jack, B. N., Griffiths, O., Whitford, T. J., & Le Pelley, M. 768 

E. (2017). Goal-Directed and Habit-Like Modulations of Stimulus Processing during 769 

Reinforcement Learning. The Journal of Neuroscience, 37(11), 3009–3017. 770 

https://doi.org/10.1523/jneurosci.3205-16.2017 771 

MacLean, M. H., & Giesbrecht, B. (2015). Neural evidence reveals the rapid effects of reward 772 

history on selective attention. Brain Research, 1606, 86–94. 773 

https://doi.org/10.1016/j.brainres.2015.02.016 774 

Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. Psychology 775 

press. 776 

Maunsell, J. H. R. (2004). Neuronal representations of cognitive state: Reward or attention? 777 

Trends in Cognitive Sciences, 8(6), 261–265. https://doi.org/10.1016/j.tics.2004.04.003 778 

McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. 779 

Chapman Hall - CRC. 780 

Morgan, S. T., Hansen, J. C., & Hillyard, S. A. (1996). Selective attention to stimulus location 781 

modulates the steady-state visual evoked potential, 93(10), 4770–4774. 782 

Müller, M. M., Teder-Sälejärvi, W., & Hillyard, S. A. (1998). The time course of cortical 783 

facilitation during cued shifts of spatial attention. Nature Neuroscience, 1(7), 631–634. 784 



SELECTIVE ATTENTION AND REWARD  43 

Musslick, S., Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2015). A computational model of 785 

control allocation based on the Expected Value of Control. Reinforcement Learning and 786 

Decision Making Conference, 59(1978), 2014. 787 

Nalborczyk, L., & Bürkner, P.-C. (2019). An Introduction to Bayesian Multilevel Models Using 788 

brms: A Case Study of Gender Effects on Vowel Variability in Standard Indonesian. 789 

Journal of Speech, Language, and Hearing Research. 790 

Nolan, H., Whelan, R., & Reilly, R. B. (2010). FASTER: Fully Automated Statistical 791 

Thresholding for EEG artifact Rejection. Journal of Neuroscience Methods, 192(1), 152–792 

162. https://doi.org/10.1016/j.jneumeth.2010.07.015 793 

Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and 794 

biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432. 795 

https://doi.org/10.1162/jocn_a_00011 796 

Pallier, C. (2002). Computing discriminability and bias with the R software. Retrieved July 25, 797 

2019, from http://www.pallier.org/pdfs/aprime.pdf 798 

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential 799 

and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 800 

184–187. https://doi.org/10.1016/0013-4694(89)90180-6 801 

Pessoa, L. (2015). Multiple influences of reward on perception and attention. Visual Cognition, 802 

23(1–2), 272–290. https://doi.org/10.1080/13506285.2014.974729 803 

Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. 804 

Frontiers in Neuroscience, 4(September), 1–8. https://doi.org/10.3389/fnins.2010.00017 805 

Phillips, N. (2016). Yarrr: A companion to the e-book YaRrr!: The Pirate’s Guide to R. R 806 

package version 0.1. 807 

Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 808 

32(1), 3–25. https://doi.org/10.1080/00335558008248231 809 



SELECTIVE ATTENTION AND REWARD  44 

Posner, MI I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 810 

32(1), 3–25. https://doi.org/10.1080/00335558008248231 811 

Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture 812 

in visual search. Brain Research, 1532, 32–43. 813 

https://doi.org/10.1016/j.brainres.2013.07.044 814 

R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation 815 

for Statistical Computing. 816 

Rinker, T., & Kurkiewicz, D. (n.d.). pacman: Package Management for R. 817 

Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on 818 

reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64–71. 819 

https://doi.org/10.1016/j.tics.2009.11.005 820 

RStudio Team. (2015). Integrated Development for R. RStudio, Inc. 821 

Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task 822 

preparation processes related to reward prediction precede those related to task-difficulty 823 

expectation. NeuroImage, 84, 639–647. https://doi.org/10.1016/j.neuroimage.2013.09.039 824 

Serences, J. T. (2008). Value-Based Modulations in Human Visual Cortex. Neuron, 60(6), 1169–825 

1181. https://doi.org/10.1016/j.neuron.2008.10.051 826 

Shenhav, A., Botvinick, M., & Cohen, J. (2013). The expected value of control: An integrative 827 

theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. 828 

https://doi.org/10.1016/j.neuron.2013.07.007 829 

Steinhauser, M., & Andersen, S. K. (2019). Rapid adaptive adjustments of selective attention 830 

following errors revealed by the time course of steady-state visual evoked potentials. 831 

NeuroImage, 186(July 2018), 83–92. https://doi.org/10.1016/j.neuroimage.2018.10.059 832 

Tankelevitch, L., Spaak, E., Rushworth, M. F. S., & Stokes, M. G. (2020). Previously Reward-833 

Associated Stimuli Capture Spatial Attention in the Absence of Changes in the 834 



SELECTIVE ATTENTION AND REWARD  45 

Corresponding Sensory Representations as Measured with MEG. Journal of Neuroscience, 835 

40(26), 5033–5050. https://doi.org/10.1523/JNEUROSCI.1172-19.2020 836 

Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 837 

135(2), 77–99. https://doi.org/10.1016/j.actpsy.2010.02.006 838 

Van der Does, A. J. W. (2002). Handleiding bij de Nederlandse versie van beck depression 839 

inventory—second edition (BDI-II-NL). [The Dutch version of the Beck depression 840 

inventory]. Amsterdam: Harcourt. 841 

Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and 842 

physical tasks: a neurocomputational model. Frontiers in Behavioral Neuroscience, 843 

9(March). https://doi.org/10.3389/fnbeh.2015.00057 844 

Watanabe, S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable 845 

Information Criterion in Singular Learning Theory, 11, 3571–3594. Retrieved from 846 

http://arxiv.org/abs/1004.2316 847 

Wickham, H. (2017). Tidyverse: Easily install and load ’tidyverse’ packages. R package version, 848 

1(1). 849 

Wilke, C. O. (2016). cowplot: streamlined plot theme and plot annotations for ‘ggplot2.’ CRAN 850 

Repos. 851 

Wisniewski, D., Reverberi, C., Momennejad, I., Kahnt, T., & Haynes, J.-D. (2015). The Role of 852 

the Parietal Cortex in the Representation of Task-Reward Associations. Journal of 853 

Neuroscience, 35(36), 12355–12365. https://doi.org/10.1523/jneurosci.4882-14.2015 854 

Xie, Y. (2018). knitr: A General-Purpose Package for Dynamic Report Generation in R. 855 

 856 


