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Abstract 

Context:  Accurate methods for early gestational diabetes mellitus (GDM) (during the 
first trimester of pregnancy) prediction in Chinese and other populations are lacking.
Objectives: This work aimed to establish effective models to predict early GDM.
Methods:  Pregnancy data for 73 variables during the first trimester were extracted 
from the electronic medical record system. Based on a machine learning (ML)-driven 
feature selection method, 17  variables were selected for early GDM prediction. To 
facilitate clinical application, 7 variables were selected from the 17-variable panel. 
Advanced ML approaches were then employed using the 7-variable data set and the 
73-variable data set to build models predicting early GDM for different situations, 
respectively.
Results:  A total of 16 819 and 14 992 cases were included in the training and testing 
sets, respectively. Using 73 variables, the deep neural network model achieved high 
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discriminative power, with area under the curve (AUC) values of 0.80. The 7-variable 
logistic regression (LR) model also achieved effective discriminate power (AUC = 0.77). 
Low body mass index (BMI) (≤ 17) was related to an increased risk of GDM, compared 
to a BMI in the range of 17 to 18 (minimum risk interval) (11.8% vs 8.7%, P = .09). Total 
3,3,5′-triiodothyronine (T3) and total thyroxin (T4) were superior to free T3 and free 
T4 in predicting GDM. Lipoprotein(a) was demonstrated a promising predictive value 
(AUC = 0.66).
Conclusions: We employed ML models that achieved high accuracy in predicting GDM 
in early pregnancy. A clinically cost-effective 7-variable LR model was simultaneously 
developed. The relationship of GDM with thyroxine and BMI was investigated in the 
Chinese population.

Key Words: GDM, early prediction, machine learning models, early pregnancy, BMI, thyroxine

Gestational diabetes mellitus (GDM) is a common compli-
cation during pregnancy (1) that affects up to 15% of preg-
nant women worldwide (2). Hyperglycemia is not, by itself, 
life-threatening for pregnant women, but can be harmful to 
the fetus, leading to complications, including stillbirth, pre-
mature delivery, macrosomia, fetal hyperinsulinemia, and 
clinical neonatal hypoglycemia (1). The American Diabetes 
Association (ADA) and the International Association of 
Diabetes and Pregnancy Study Groups (IADPSG) recom-
mend diagnosing GDM via a 2-hour, 75-g oral glucose tol-
erance test (OGTT) at 24 to 28 weeks of pregnancy (3, 
4). There is accumulating evidence indicating that the ex-
posure of embryos or fetuses to a hyperglycemic environ-
ment in the uterus can lead to chronic health problems later 
in life (5), including obesity, diabetes, and cardiovascular 
diseases (6-8). Theoretically, GDM patients could have 
hyperglycemia for a long or short period of time before 
the GDM diagnosis, so the fetus will be more or less ex-
posed to an intrauterine hyperglycemic environment in the 
second trimester (from 13 weeks of pregnancy to the day 
of the OGTT). Previous studies confirmed that fetal growth 
can already be abnormal preceding the diagnosis of GDM, 
including smaller fetuses at 24 weeks of gestation (9) and 
increased abdominal circumference growth rates compared 
with the non-GDM group (10). Our previous study indi-
cated that insulin therapy after GDM diagnosis cannot 
fully protect offspring from diet-related metabolic dis-
orders in adulthood (11). Therefore, a hysteretic diagnosis 
of GDM at 24 to 28 weeks of gestation might be too late 
for intervention and cannot completely reverse the adverse 
effects (including changes in epigenetics and abnormal fetal 
growth that occurred before 24 weeks of gestation) of the 
intrauterine hyperglycemia exposure on the offspring. It is 
thus essential to establish a prediction model to identify the 
high-risk group of GDM in the first trimester and provide 
an opportunity for interventions prior to diagnosis in the 
third trimester.

In GDM prediction, prior research has sought to find 
a threshold value of fasting plasma glucose (FPG) in the 
first trimester through large sample studies (12). Although 
elevating diagnostic criteria from an FPG greater than or 
equal to 5.1 mM to an FPG greater than or equal to 6.1 mM 
can obtain nearly 100% specificity, the corresponding low 
sensitivity (1%) greatly limits the feasibility (12). In recent 
years, some novel biomarkers have been reported as poten-
tial GDM predictors, including angiopoietin-like protein 8, 
plasma fatty acid-binding protein 4, and various adipokines 
(13-15), but the low availability of these biomarkers in 
clinical practice limits their application. The exploration of 
prediction models based on multiple common risk factors, 
such as advanced maternal age, body mass index (BMI), 
and family history of diabetes, provides a new perspective 
in solving the problem (16). Recently, artificial intelligence 
technology, particularly supervised machine learning (ML) 
methods, has been reported to demonstrate a powerful self-
learning ability with improved GDM prediction accuracy 
(17). However, GDM predictions are often made during 
the second trimester (20th week of gestation), creating a 
limited time frame for doctors to intervene (17). Therefore, 
in this study, we generated ML algorithms to predict GDM 
in the first trimester of pregnancy.

Materials and Methods

Data source

The training data set included patients that were re-
cruited from the 2017 obstetrical electronic medical record 
data from the International Peace Maternal and Child 
Health Hospital, Shanghai Jiao Tong University School 
of Medicine. Women with pre-GDM (FPG ≥ 7.0 mM or 
glycated hemoglobin [HbA1c]  ≥  6.5%) were excluded. 
Samples that had a missing observation of greater than 
20% were excluded from the data set. Candidate vari-
ables including sociodemographic characteristics, clinical 
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variables, and laboratory indexes in the first trimester 
were collected. Following this, the 2018 obstetrical elec-
tronic medical record data were collected and curated, 
which served as the testing group to evaluate the pre-
diction models. The details of the research subject selec-
tion are presented in Supplementary Fig. S1 (18). The 
GDM diagnostic criteria followed the IADPSG guidelines 
(FPG ≥ 5.1 mM, 1-h ≥ 10 mM, and/or 2-h ≥ 8.5 mM). This 
study was approved by the medical ethical committee of 
International Peace Maternity and Child Health Hospital, 
School of Medicine, Shanghai Jiao Tong University (No. 
GKLW2019-05).

Variable selection

To ensure better model discrimination and create an effi-
cient approach for clinical practice with fewer redundant 
variables, variable selection was conducted to select a panel 
of biomarkers with the most discriminative power for our 
outcome. All of the variables were sorted based on their ab-
solute Spearman correlation coefficients and Pearson cor-
relation coefficients with respect to the GDM and control 
groups, as demonstrated in Fig. 1A and Supplementary Fig. 
S2A (18). Fig. 1A shows that the indicators related to glu-
cose and lipid metabolism have the strongest correlation 
with GDM, including FPG, HbA1c, lipoprotein(a), trigly-
ceride (TG), and apolipoprotein-B. Total 3,3,5′-triiodothyr-
onine (TT3) and GDM are also significantly correlated. 
Initial analyses using Spearman or Pearson correlation 
showed that several variables were highly correlated to each 
other and formed small clusters, as shown in Fig. 1B and 
1C and Supplementary Fig. S2B and S2C (18). Correlation 
coefficient values are presented in Supplementary Fig. S5 
(18). This indicated that a representative small cluster of 
variables may provide enough discriminative power for 
a simplified model. The rationale for conducting correl-
ation coefficient analyses before applying the model-free 
sequential forward variable selection is that in situations 
when many features exhibit at least a weak correlation (eg, 
|corr| > 0.05) with the outcome vector and when the fea-
tures belong to multiple clusters, the sequential forward 
feature selection method tends to select representative fea-
tures from each orthogonal cluster, spanning a more di-
verse feature space while excluding redundant information.

We applied a variable selection strategy that was previ-
ously successfully used in gene selection (19, 20). In short, 
variable selection was completed using a cross-validation 
(CV) framework of 10-fold 100-repeat CV and leave-one-
out (LOO) CV. The details of the CV method are shown 
in the Supplementary text (18). The variables were sorted 
using absolute correlation coefficients (both Pearson and 
Spearman correlation were tested and Spearman was 

chosen) with respect to the GDM and control group, and 
an iterative approach of variable inclusion was used to as-
sess the predictive power of each individual variable, using 
the average prediction accuracy or the area under the re-
ceiver operating characteristic (ROC) curve (AUC) as the 
indicator of model improvement. Fig. 2A, 2B, 2E, and 2F 
demonstrate the selected variable in each iteration. Fig. 2C, 
2D, 2G, and 2H show the incremental trajectory of ac-
curacy or AUC when including a contributing variable that 
remained in the selected variable pool in the 10-fold and 
LOO CV, respectively.

Prediction methods

Using the selected variable panel, 4 ML methods were 
tested: logistic regression (LR) (21), k-nearest neighbor 
(KNN) (22), support vector machine (SVM) (23, 24), and 
deep neural network (DNN) (25, 26). For the DNN clas-
sifier, a sequential model with 2 densely connected hidden 
layers and a single continuous output layer was devised 
(more details are shown in the Supplementary text [18]). 
The LR classifier involved a linear combination of variables 
using a sigmoid function. The SVM can identify classes by 
creating a hyperplane of decision within a higher feature 
space in a nonlinear fashion (27). For the SVM classifier, a 
radial basis function (Gaussian) support vector model was 
used after considering the linear kernel, polynomial kernel, 
and radial basis function kernels, for which the default 
parameters were set as per the LIBSVM package (23). For 
the KNN classifier, the hyperparameter k = 20 was chosen 
after testing k = 1, 5, 10, 15, 20, 50, and 100, so that the 
KNN’s majority voting was adopted as the prediction value.

Model evaluation

The discrimination of the models was assessed using the 
ROC curves and the AUC. The Hosmer-Lemeshow (HL) 
test was used to evaluate the calibration of each model. 
Finally, decision curve analysis (DCA) was introduced to 
evaluate the clinical application of each of the models. DCA 
is a useful method for evaluating the clinical net benefit of 
prediction models by comparing it to scenarios where all or 
none of the patients are treated.

Results

Sample size

In total, 16 819 cases were included in the training data 
set, and 15 371 cases were included in the testing data set. 
Sociodemographic characteristics are presented in Tables 1–3. 
The incidence of GDM between the training data set and 
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Figure 1.  Variable selection results. A, Spearman correlation coefficients between each variable and the gestational diabetes mellitus (GDM)/non-
GDM label vector, over all the samples. The bar plots from left to right represent absolute values from high to low. B, Spearman correlation coeffi-
cients between all the variables over vectors of all the samples. Detailed correlation coefficient values can be found in Supplementary Table S5 (18). 
C, Variable-way hierarchical clustering results using distance metrics based on Spearman correlation coefficients.
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the testing data set had no statistical difference (16.0% vs 
14.4%, P = .07). The difference of multipara rates between 
the training data set and the testing data set showed stat-
istically significance (P  =  .004). However, the difference in 
multipara rates between the 2 cohorts is very small (32.9% 
and 31.4%). A plausible explanation for this is that the large 
sample size magnifies the small difference between the 2 co-
horts. Generally, the sociodemographic characteristics of the 
2 groups are very similar. Good consistency in the data be-
tween the training data set and the testing data set is very im-
portant, because (i) this is in line with the real clinical setting 
(cohort data from the same hospital in adjacent years should 
be similar) and (ii) if the sociodemographic characteristics of 
the training data set and the testing data set are too different, 
this will jeopardize the calibration of the model.

Variable setting

The 73 alternative variables, including sociodemographic 
characteristics, clinical variables, and laboratory indexes 

in the first trimester, are provided in Tables 1 and 2 and 
Supplementary Table S1 (18). Six variables, namely, 
age, BMI, FPG, HbA1c, high-density lipoprotein (HDL), 
and TG, were set as categorical variables apart from 
continuous variables. Previously, the ADA developed 
screening standards for women at high risk for gesta-
tional diabetes (28), which included BMI greater than 
25 (> 23 if Asian American) and one or more of the fol-
lowing risk factors: HDL less than 35 mg/dL (0.9 mM); 
TG greater than 250 mg/dL (2.8 mM); and HbA1c greater 
than 5.7%. Therefore, in this study, the BMI, HDL, TG, 
and HbA1c binary classification threshold standards were 
adopted per ADA recommendations. The testing data 
set was used to perform the optimal scaling regression 
analysis between age and gestational diabetes. With the 
increase of age, the risk of GDM gradually increases, 
but the increase is not linear; after age 38 years, the risk 
of GDM increases faster with age (Supplementary Fig. 
A  [18]). Therefore, we set the categorical age cutoff at 
age 38 years. The IADPSG uses 5.1 mM as the diagnostic 

Figure 2.  A and B, Ten-fold cross-validation (CV)-based detailed prediction outcomes of each variable selection iteration. The yellow and blue elem-
ents represent predicted gestational diabetes mellitus (GDM) cases and predicted non-GDM cases, respectively. A, Seeking optimal accuracy. B, 
Seeking optimal area under the curve (AUC). C and D, Variable selection trajectory guided by classification accuracy and AUC, respectively, under a 
10-fold CV framework. E and F, Leave-one-out CV-based detailed prediction outcomes of each variable selection iteration. The yellow and blue elem-
ents represent predicted GDM cases and predicted non-GDM cases, respectively. E, Seeking optimal accuracy. F, Seeking optimal AUC. G and H, 
Variable selection trajectory guided by classification accuracy and AUC, respectively, under a leave-one-out CV framework.
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Table 2.  Sociodemographic characteristics of gestational diabetes mellitus (GDM) and non-GDM cases

Characteristic 2017 training group P 2018 testing group P

GDM cases Controls GDM cases Controls

n = 2696 n = 14 123 n = 2216 n = 13 155
n (%) n (%) n (%) n (%)

Age, y, median (IQR) 32 (29-36) 30 (28-34) < .001 33 (30-36) 30 (28-33) < .001
  < 38 2340 (86.8) 13240 (93.7) < .00 1933 (87.2) 12324 (93.7) < .00
  ≥ 38 356 (13.2) 883 (6.3) 1 283 (12.8) 831 (6.3) 1
Weight, kg, before  

pregnancy,  
median (IQR)

56.0 (52.0-62.0) 54.5 (50.0-59.0) < .001 58.0 (52.0-64.0) 55.0 (50.0-59.0) < .001

Height, cm,  
median (IQR)

161.0 (158.0-165.0) 162.0 (159.0-165.0) < .001 161.0 (158.0-165.0) 162.0 (160.0-165.0) < .001

BMI before  
pregnancy (kg/m2),  
median (IQR)

21.6 (20.1-23.6) 20.7 (19.3-22.3) < .001 22.1 (20.1-24.4) 20.8 (19.5-22.1) < .001

  ≤ 23 1620 (60.1) 9926 (70.2) < .00 1386 (62.5) 11 064 (84.1) < .00
  > 23 1076 (39.9) 4197 (29.7) 1 830 (37.5) 2091 (15.9) 1
Drinking 7 (0.3) 39 (0.3) 1.00 35 (1.6) 218 (1.7) 0.79
Smoking 14 (0.5) 81 (0.6) .89 13 (0.6) 61 (0.5) 0.44
Educational  

background
Primary school  

degree
5 (0.2) 10 (0.1) < .001 3 (0.1) 6 (0.05) < .001

Junior high  
school degree

102 (3.8) 286 (2) 65 (2.9) 295 (2.2)

High school degree 162 (6) 727 (5.1) 142 (6.4) 647 (4.9)
University degree  

and above
2427 (90.0) 13 100 (92.8)  2006 (90.5) 12 207 (92.8)  

Family history of  
diabetes in a  
first-degree relative

439 (16.3) 763 (5.4) < .001 341 (15.4) 705 (5.4) < .001

Abbreviations: BMI, body mass index; GDM, gestational diabetes mellitus; IQR, interquartile range.

Table 1.  Sociodemographic characteristics of the training group and testing group

Characteristic 2017 training group n = 16 819 2018 testing group n = 15 371 P

Age, y, median (IQR) 31 (28-34) 31 (28-34) .68
BMI before pregnancy (kg/m2), median (IQR) 20.8 (19.3-22.6) 20.5 (19.5-22.5) .51
Smoking 95 (0.6) 74 (0.5) .30
Educational background  
Primary school degree 15 (0.1) 9 (0.1) .70
Junior high school degree 388 (2.3) 360 (2.3)
High school degree 889 (5.3) 789 (5.1)
University degree and above 15 527 (92.3) 14 213 (92.5)
Family history of diabetes in a first-degree relative 1202 (7.1) 1046 (6.8) .23
GDM 2696 (16.0) 2216 (14.4) .07
Personal history of GDM 176 (1.0) 138 (0.9) .18
Natural pregnancy 14 504 (86.2) 13 258 (86.3) .96
Multiple pregnancy 489 (2.9) 466 (3.0) .51
Multipara 5539 (32.9) 4833 (31.4) .004

Abbreviations: BMI, body mass index; GDM, gestational diabetes mellitus; IQR, interquartile range.
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criterion for early pregnancy gestational diabetes, but 
this has not been adopted in China because of high false-
positive rates. However, pregnant women with fasting 
blood glucose exceeding 5.1 mM in early pregnancy will 
receive nutrition and exercise intervention, and thus, the 
FPG classification standard was set at 5.1  mM herein 
(12). The criteria by category are discussed in detail in 
the Supplementary text (18).

Variable selection

To use as much as possible of the data, we considered 
2-by-2 combinations of (10-fold CV or LOO CV) and 

(accuracy or AUC) to select feature sets. Specifically, when 
using the 10-fold CV to seek the optimal accuracy for 
predicting GDM (accuracy = sensitivity + specificity − 1) 
in the training data set, 5 variables were selected and the 
accuracy was 0.9456. When using the LOO CV to seek 
the optimal accuracy, 9 variables were selected and the 
accuracy was 0.9356. When using the 10-fold CV to seek 
the optimal AUC, 14 variables were selected and the AUC 
was 0.8503. For the combination of the LOO CV and op-
timal AUC, 13 variables were selected and the AUC was 
0.8503. Details are shown in Table 4. We merged all of the 
selected variables to obtain a 17-feature panel, namely, 

Table 3.  Clinical features of gestational diabetes mellitus (GDM) and non-GDM cases in the first trimester

Characteristic 2017 training group P 2018 testing group P

GDM cases Controls GDM cases Controls

n = 2696 n = 14 123  n = 2216 n = 13 155  
 n (%) n (%)  n (%) n (%)  
SBP, mm Hg, median (IQR) 114 (10-122) 110 (102-117) < .001 115 (106-124) 110 (102-117) < .001
DBP, mm Hg, median (IQR) 71 (65-77) 68 (62-73) < .001 71 (64-79) 68 (62-74) < .001
PCOS 13 (0.5) 30 (0.2) .02 30 (1.4) 65 (0.5) < .001
Personal history of GDM 132 (4.9) 44 (0.3) < .001 94 (4.2) 44 (0.3) < .001
Natural pregnancy 2180 (80.9) 12 324 (87.3) < .001 1796 (81.0) 11 462 (87.1) < .001
Multiple pregnancy 110 (4.1) 379 (2.7) < .001 80 (3.6) 386 (2.9) < .001
Multipara 1053 (39.1) 4486 (31.8) < .001 825 (37.2) 4008 (30.5) < .001

Abbreviations: DBP, diastolic blood pressure; GDM, gestational diabetes mellitus; IQR, interquartile range; PCOS, polycystic ovary syndrome; SBP, systolic blood 
pressure.

Table 4.  Selecting variables by k-nearest neighbor

10-fold (accuracy) LOO (accuracy) 10-fold (AUC) LOO (AUC)

Selected variables FPGa FPG FPB FPG
Lipoprotein(a) FPGa FPGa HbA1c

Total 3,5,3′-triio-
dothyronine

Lipoprotein(a) Lipoprotein(a) Family history of diabetes in 
a first-degree relative

Agea Total 3,5,3′-triio-
dothyronine

Total 3,5,3′-triio-
dothyronine

Triglyceride

Multiple pregnancy Age Triglyceride Age
 Total thyroxin Age Total 3,5,3′-triiodothyronine
 ApoA HbA1c

a Lipoprotein(a)
 Multipara Total thyroxin Agea

 Multiple pregnancy Agea Total thyroxin
  ApoB Multipara
  Multipara ApoA
  Previous GDM Multiple pregnancy
  Multiple pregnancy Previous GDM
  Smoking  

Using the 10-fold method, 5 variables were selected to obtain optimal accuracy; using the LOO method, 9 variables were selected to obtain optimal accuracy; using 
the 10-fold method, 14 variables were selected to obtain the optimal ROC area; using the LOO method, 13 variables were selected to obtain the optimal ROC area.
Abbreviations: ApoA, apolipoprotein A; ApoB, apolipoprotein B; AUC, area under the curve; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; 
HBA1c, glycated hemoglobin; LOO, leave-one-out; ROC, receiver operating characteristic.
aCategorical variable: age younger than 38 years: 0, age 38 years or older: 1; FPG less than 5.1 mmol/L: 0, FPG 5.1 or greater and less than 7.0 mmol/L: 1; HbA1c 
5.7 or less: 0, HbA1c greater than 5.7 and less than 6.5: 1.
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age, agea, FPG, FPGa, HbA1c, HbA1c
a, lipoprotein(a), 

apolipoprotein  A, apolipoprotein  B, TG, TT3, total 
thyroxin (TT4), multiple pregnancy, multipara, smoking, 
family history of diabetes in a first-degree relative, and 
GDM history (categorical variables are denoted by a). 
BMI was not selected by our variable selection model. 
The statistics of these 17  variables in the GDM group 
and the control group are shown in Table 5. Compared 
with the control group, the GDM group is older and has 
higher FPG, HbA1c, apolipoprotein A, apolipoprotein B, 
TG, multiple pregnancy rate, multipara rate, and TT3 
and lower TT4 (P < .001). The incidence of previous his-
tory of GDM and family history of diabetes in the GDM 
group was significantly higher than that in the control 
group. The obvious difference in these variables between 
the 2 groups indicates that these variables have strong 
predictive potentials. There was no significant difference 
in smoking rate between the GDM group and the con-
trol group (0.5% vs 0.6% in the 2017 cohort, P =  .89; 
0.6% vs 0.5% in the 2018 cohort, P = .44). Interestingly, 

smoking was still being screened out by ML as a po-
tential GDM predictor. This agrees with a recent study 
that indicates smoking is an independent risk factor for 
GDM (29). Based on prior clinical experience and a close 
examination of each variable, the selected variables were 
further narrowed to 7 variables, practically useful for 
clinical implementation. To validate the selected 7 fea-
tures are of high discriminatory power, we performed 
a simulation test comparing the selected 7 features and 
7 randomly selected features. We first enumerated all 
of the 7-feature combinations out of the 17 features 
using the nchoosek function in MATLAB. Specifically, 
the command “nchoosek ([1:17], 7)” generated 19 448 
combinations. Then, to randomly select combinations, 
we sequentially drew every tenth combination to obtain 
1945 combinations (as detailed in Supplementary Table 
S6 [18]). Based on each randomly generated feature set, 
we performed SVM, KNN, and LR prediction using the 
same parameters we used for the selected 7-feature–based 
predictions. As demonstrated in Supplementary Fig. S3 

Table 5.  Selected 17 variables in the training group and testing group

Characteristic 2017 training group P 2018 testing group P

GDM cases Controls GDM cases Control

n = 2696 n (%) n = 14 123 n (%) n = 2216 n (%) n = 13 155 n (%)

Age, y, median (IQR) 32 (29-36) 30 (28-34) < .001 33 (30-36) 30 (28-33) < .001
Agea, ≥ 38 y 356 (13.2) 883 (6.3) < .001 283 (12.8) 831 (6.3) < .001
Smoking 14 (0.5) 81 (0.6) .89 13 (0.6) 61 (0.5) .44
Family history of  

diabetes in a 
first-degree  
relative

439 (16.3) 763 (5.4) < .001 341 (15.4) 705 (5.4) < .001

Personal history of 
GDM

132 (4.9) 44 (0.3) < .001 94 (4.2) 44 (0.3) < .001

Multiple pregnancy 110 (4.1) 379 (2.7) < .001 80 (3.6) 386 (2.9) < .001
Multipara 1053 (39.1) 4486 (31.8) < .001 825 (37.2) 4008 (30.5) < .001
ApoA 2.01 (1.93-2.08) 1.98 (1.94-2.02) < .001 2.15 (2.01-2.29) 2.14 (2.01-2.27) .17
ApoB 0.89 (0.84-0.94) 0.85 (0.84-0.88) < .001 0.79 (0.70-0.91) 0.74 (0.65-0.85) < .001
Triglyceride 1.47 (1.15-1.89) 1.22 (0.97-1.52) < .001 1.49 (1.16-1.93) 1.24 (0.98-1.57) < .001
Lipoprotein(a) 157.8 (101.5-185.9) 191.2 (173.3-210.9) < .001 103.0 (46.0-216.3) 123.0 (57.0-232.0) < .001
FPG, mM 4.77 (4.49-5.13) 4.50 (4.30-4.70) < .001 4.78 (4.50-5.14) 4.54 (4.33-4.73) < .001
FPGa, ≥ 5.1 and 

< 7.0 mM, n (%)
766 (28.4) 494 (3.5) < .001 614 (27.7) 400 (3.0) < .001

HbA1c, % 5.3 (5.1-5.5) 5.1 (5.0-5.3) < .001 5.4 (5.2-5.6) 5.2 (5.1-5.4) < .001
HbA1c

a, > 5.7 and 
< 6.5, n (%)

179 (6.6) 71 (0.5) < .001 241 (10.9) 131 (1.0) < .001

Total thyroxin, pM 114.2 (106.6-119.0) 116.0 (112.6-120.1) < .001 115.7 (99.4-132.9) 118.9 (102.8-134.2) < .001
Total 3,3,5′-triiodo-

thyronine, nM
2.10 (2.00-2.23) 2.02 (1.97-2.08) < .001 2.10 (1.90-2.40) 2.00 (1.80-2.30) < .001

Abbreviations: ApoA, apolipoprotein A; ApoB, apolipoprotein B; FPG, fasting plasma glucose; GDM, gestational diabetes mellitus; HBA1c, glycated hemoglobin.
aCategorical variable: age younger than 38 years: 0, age 38 years or older: 1; FPG less than 5.1 mmol/L: 0, FPG 5.1 or greater and less than 7.0 mmol/L: 1; HbA1c 
5.7 or less: 0, HbA1c greater than 5.7 and less than 6.5: 1.
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(18), the average AUCs based on randomly selected fea-
tures are significantly lower than the AUC computed 
based on the selected 7-feature–based predictions, and 
in the best LR prediction model, the AUC based on the 
selected 7 features is higher than the maximum AUC of 
all randomly drawn feature combinations (0.77 vs 0.70, 
P < .001).

Development of prediction models

Eight prediction models were developed: KNN, SVM, LR, 
and DNN models were developed for both 7-variable and 
all-variable sets. The adjusted odds ratios (ORs) and coef-
ficients from the LR model with 7 variables are shown in 
Table 6.

Discrimination of different models

The AUCs of different models are provided in Fig.  3A 
and Table 7. The all-variable DNN, SVM, KNN, and LR 
models had AUCs and 95% CIs of 0.80 (95% CI, 0.79-
0.81), 0.77 (95% CI, 0.76-0.78), 0.61 (95% CI, 0.59-
0.62), and 0.77 (95% CI, 0.76-0.78), respectively. The 
7-variable DNN, SVM, KNN, and LR models had AUCs 
and 95% CIs of 0.77 (95% CI, 0.76-0.78), 0.66 (95% 
CI, 0.65-0.67), 0.65 (95% CI, 0.63-0.66), and 0.77 (95% 
CI, 0.76-0.78), respectively. The discrimination effect of 
each model is shown visually using violin plots (Fig. 3B 
and 3C). The all-variable DNN demonstrated the best 
discrimination ability, and the traditional LR models pro-
duced higher AUCs than the KNN and SVM models. The 
optimal sensitivity and specificity of each model in certain 

threshold probability value ranges are given in Table  7. 
The accuracy of previous prediction models has also been 
summarized; existing models do not exceed 0.70 and our 
model achieved the highest discrimination (Supplementary 
Table S2 [18]).

Calibration of different models

The HL test was used to test the calibration of the LR, SVM, 
and DNN models (Fig. 4). The HL test was not applied to 
the KNN models because the model did not provide indi-
vidual risk probabilities. The P values of 6 different models 
were less than .001 in the HL test. The 7-variable models 
(Fig. 4A-4C) showed superior HL test performance com-
pared to the all-variable models (Fig. 4D-4F). The 7-vari-
able LR model provided the most accurate calibration 
among all the prediction models.

Clinical use

The DCA results of the models are presented in 
Supplementary Fig. S4 (18). Compared to treating all pa-
tients or none of the patients, our prediction models pro-
vide a net benefit.

Discussion

Our paper explores prediction models based on a large 
sample of the Chinese population using clinical data be-
fore 12 weeks of gestation, 2  months earlier than pre-
vious state-of-the-art ML models. We used ML variable 
selection methods to screen for risk factors for early de-
velopment of GDM. Of the 73 extracted variables, 17 
variables were selected for our models, which included 
sociodemographic data (age, agea, smoking, and family 
history of diabetes in a first-degree relative), clinical 
characteristics (multiple pregnancy, multipara, and pre-
vious GDM history), glucose metabolism (FPG, FPGa, 
HbA1c, and HbA1c

a), lipid metabolism (lipoprotein[a], 
apolipoprotein A, apolipoprotein B, TG), and thyroid 
function (TT3, TT4). Of these 17 variables, 7 were 
selected based on intravariable correlation and clinical 
importance for our parsimonious model: age, family his-
tory of diabetes in a first-degree relative, multiple preg-
nancy, previous GDM history, FPGa, HbA1c, and TG. 
Details of how the 7 variables were selected are discussed 
in the Supplementary text (18). As shown in Fig. 3, our 
all-variable DNN model achieved the highest accuracy 
in predicting GDM in early pregnancy, followed by SVM 
and KNN. Our parsimonious models using 7 variables 
performed similarly and with increased efficiency. The 

Table 6.  Multivariate analysis for the 7-variable logistic 

regression model

β Adjusted odds  
ratio (95% CI)

P

Intercept −14.2334 – < .001
Age .0681 1.070 (1.058-1.083) < .001
Previous GDM 2.6181 13.710 (9.532-19.718) < .001
Family history  

of diabetes in  
a first-degree  
relative

1.1062 3.023 (2.610-3.501) < .001

Multiple pregnancy .4349 1.545 (1.208-1.976) .001
FPGa 2.8165 16.718 (14.125-19.788) < .001
HBA1c 1.6925 5.433 (4.472-6.600) < .001
Triglyceride .5005 1.650 (1.528-1.781) < .001

Abbreviations: FPG, fasting plasma glucose; GDM, gestational diabetes mel-
litus; HBA1c, glycated hemoglobin.
aCategorical variable: FPG less than 5.1 mM: 0, FPG 5.1 mM or greater: 1.
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Figure 3.  Discriminative power comparison between different prediction models. A, Receiver operating characteristic (ROC) curves of different pre-
diction models based on the 7-variable panel (*) and all-variable panel (**). B and C, Violin plot comparisons of predicted score distribution using 
different prediction models with the 7-variable panel and the all-variable panel.
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DCA of the different models also showed similar results 
(Supplementary text; Supplementary Fig. S4 [18]).

Model comparisons

The advantage of DNN is its ability to capture subtle 
nonlinear relationships between variables and outcomes. 
However, DNNs have a risk of overfitting, and because 
DNN is a black box to end users, the individual weighted 
contribution of each variable can be difficult to explain 
(30). On the other hand, LR highlights a clear contri-
bution of each variable, making it useful for real-time 

clinical implementation. Our method of including only 
the important variables in each model resulted in a negli-
gible running time difference between prediction models.

The HL test was adopted to evaluate the calibration of 
prediction models (31). As KNN only results in a binary 
outcome rather than individual predicted probabilities, the 
HL test and DCA curve were not used to evaluate these 
models. The P values of all the models for the HL test were 
less than .001, which implied that the model calibrations 
were not optimal. This shows that although the models 
were to be able to distinguish high-risk status of GDM 
in early pregnancy, the specific risk probabilities provided 

Figure 4.  Calibration of different models. The P values of all prediction models in Hosmer-Lemeshow (HL) tests are less than .001. The 7-variable 
models, A to C, show superior HL test performance compared to D to F, the all-variable models. This is because if the model incorporates all of the 
variables without selection, it will inevitably overfit, which will significantly affect the model calibration.

Table 7.  Sensitivity and specificity of different models

Prediction model AUC (95% CI) Optimum threshold probability Sensitivity, % Specificity, % Youden index

LRa 0.77 (0.76-0.78) 0.13 59 82 0.41
LRb 0.77 (0.76-0.78) 0.02 58 86 0.44
KNNa 0.65 (0.63-0.66) – 31 98 0.29
KNNb 0.61 (0.59-0.62) – 23 99 0.22
SVMa 0.66 (0.65-0.67) 0.14 32 98 0.30
SVMb 0.77 (0.76-0.78) 0.15 32 98 0.30
DNNa 0.77 (0.76-0.78) 0.10 70 69 0.39
DNNb 0.80 (0.79-0.81) 0.15 63 82 0.45

Abbreviations: AUC, area under the curve; DNN, deep neural network; KNN, k-nearest neighbor; LR, logistic regression; SVM, support vector machine.
aSeven-variable model.
bAll-variable model.
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by these models can be further improved (32). However, 
the 7-variable LR model revealed slightly better calibra-
tion than the DNN model. This may be due to the poor 
correlation between threshold probability and risk prob-
ability in DNN and SVM, indicating the HL test is not 
optimal to measure calibration for complex ML models. 
Furthermore, compared to existing LR prediction models 
(Supplementary Table S2 [18]), our 7-variable LR and 
DNN models demonstrated very promising results in 
predicting GDM in early pregnancy.

There have been limited studies predicting GDM using 
ML algorithms. A retrospective electronic medical record 
study with 580 000 pregnancies in Israel reported an AUC 
of 0.85 using all variables and an AUC of 0.80 using only 
9 variables (17). However, the clinical data collected from 
studies in Israel were obtained at 20 weeks of pregnancy, 
unlike our prediction using variables extracted only from 
the first trimester. This allowed them to use variables that 
are useful only during the second and third trimesters to 
predict GDM, such as human placental growth hormone, 
human chorionic somatomammotropin, progesterone, and 
placental growth hormone (33).

Risk factor evaluation

The selected variables were found to be consistent with 
previous clinical studies. Advanced age, previous GDM 
history, family history of diabetes, and blood glucose are 
well-known risk factors of GDM (34). Women with twin 
pregnancies have an increased risk of GDM, and higher 
rates of adverse pregnancy outcomes occur in GDM twin 
pregnancies (35). HbA1c reflects the average blood glucose 
levels over the last 1 to 2 months (36, 37). Previous studies 
hypothesized that the link between higher parity and in-
sulin resistance could be explained by the decreasing β-cell 
reserve in consecutive pregnancies (38, 39). However, pre-
diction models showed that parity plays a more compli-
cated role, with multipara without previous GDM history 
reducing the risk of future GDM (OR = 0.5, P = .05), and 
multipara with previous GDM history increasing the risk 
of future GDM (OR = 1.6, P = .55) (40, 41). We therefore 
believe that parity, when used with other selected variables, 
is conditionally correlated to GDM, and that its predictive 
power can be increased through such a combination.

Lipoprotein(a) was one of the 17 predictors and dem-
onstrated high prediction power (AUC  =  0.66, 95% CI, 
0.65-0.68). Previous studies indicated that high levels of 
TGs and apolipoproteins are risk factors for GDM (42, 
43). However, lipoprotein(a) transports oxidized phospho-
lipids that have proinflammatory activity, so the possible 
association of higher lipoprotein(a) levels with GDM re-
mains controversial (44, 45). For our model, the predicted 

effect of lipoprotein was better than that of apolipoproteins 
(Supplementary Table S3 [18]). The reasons for this are 
not known.

Despite obesity being a well-known risk factor for GDM, 
our variable selection model did not choose BMI, instead 
highlighting biochemical indicators that reflect the level of 
lipid metabolism, such as TG. There are several explan-
ations for this. First, compared to Europeans, Asians have 
more subcutaneous fat and higher s-leptin levels in early 
pregnancy, despite having lower BMI (46). Second, the re-
lationship between BMI and GDM is complex, with high 
BMI individuals having an insulin resistance mechanism 
and low BMI individuals having a defective insulin secre-
tion mechanism in GDM (47, 48). Our study showed that 
both an increased BMI and a very low BMI (≤ 17) (n = 432) 
are related to an increased risk of GDM (Supplementary 
Fig. S5 [18]), compared to a BMI in the range of 17 to 
18 (minimum risk interval) (n = 915), but this association 
was not statistically significant (11.8% vs 8.7%, P = .09). 
Existing studies have not shown that extremely low BMI 
could increase the risk of GDM (17), but it has been found 
that BMI had J-shaped associations with overall mortality 
and diabetes mortality (48), supporting our findings.

A large portion of the selected variables were of a bio-
chemical nature (Supplementary Table S1 [18]). For ex-
ample, TT3 and TT4 were selected as predictors of GDM, 
strongly suggesting the existence of a close relationship be-
tween thyroid function and GDM. In our training group, the 
GDM group had higher levels of TT3 (median, 2.1 nM vs 
2.02 nM, P < .001) and free 3,5,3′-triiodothyronine (FT3) 
(median, 4.80 pM vs 4.60 pM, P < .001) and lower levels 
of TT4 (median, 114.2 nM vs 116.0 nM, P < .001) and free 
thyroxin (FT4) (median, 13.6 pM vs 14.0 pM, P <  .001) 
compared to the non-GDM group. This result was con-
sistent with previous studies (49, 50). Current research find-
ings remain divided with respect to the question whether 
high T3 or low T4 in early pregnancy is a risk factor for 
GDM, as this may be affected by variations between popu-
lations (49-51). A  study from a US cohort showed that 
FT4 was not associated with GDM, but high FT4-FT3 
conversion efficiency (increased FT3/FT4 ratio) increased 
the risk of GDM (51). Several studies noted that FT3 
levels were positively associated with insulin secretion and 
hyperinsulinemia (52). A  study of the Chinese population 
suggested that increasing FT4 levels functioned as a pro-
tective mechanism against GDM, in that higher FT4 levels 
were associated with a lower incidence of GDM (P < .001) 
(49). Most prior research has focused on the relationship 
between FT3 and FT4 and GDM, because FT3 and FT4 
have much higher biological activity than TT3 and TT4 and 
can directly reflect thyroid function (51). Interestingly, when 
we included thyroxine in the prediction model, the TT3 and 
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TT4 levels had better predictive power than FT3 and FT4 
(Supplementary Table S4 [18]). This suggests that the rela-
tionship between thyroxine and GDM is conditionally de-
pendent on factors such as TT3 and TT4. However, further 
research on the relationships among TT4, FT4, and the risk 
of GDM in the Chinese population is needed.

Limitations

The limitations of this study include the limited sample 
size, the fact that all the data were collected from a single 
center, and a lack of external verification. The prediction 
model is based on retrospective electronic medical data 
that many have inherent biases. However, electronic med-
ical records are easily available clinical data resources, and 
predicting GDM based on electronic medical records is 
often the most feasible option. The diversity of laboratory 
testing between different hospitals caused by different la-
boratory instruments may also influence the effects of pre-
diction and extrapolation. However, these shortcomings 
do not change the fact that the proposed variable selection 
and ML-based methodology itself are worthy of attention 
in early GDM prediction. In future work, we plan to col-
lect multicenter clinical data to verify the extrapolation of 
these prediction models.

Conclusions

This study established state-of-the-art prediction models 
in early pregnancy for the early intervention of GDM in 
Chinese women. Using an ML-based variable selection 
approach, 17 important GDM predictive variables were 
selected. These 17 indicators are worthy of in-depth study 
in the GDM field; in particular, lipoprotein(a) may be 
closely related to GDM. A  7-variable LR model was de-
veloped for more practical clinical applications. Further re-
search is required to clarify the relationship among TT4, 
FT4, and GDM and between excessively low BMI and 
GDM in the Chinese population.
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