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Rationale & Objective: There is limited evidence
to guide follow-up after acute kidney injury (AKI).
Knowledge gaps include which patients to
prioritize, at what time point, and for mitigation
of which outcomes. In this study, we sought to
compare the net benefit of risk model–based
clinical decisions following AKI.

Study Design: External validation of 2 risk models
of AKI outcomes: the Grampian -Aberdeen (United
Kingdom) AKI readmissions model and the Alberta
(Canada) kidney disease risk model of chronic
kidney disease (CKD) glomerular (G) filtration rate
categories 4 and 5 (CKD G4 and G5). Process
mining to delineate existing care pathways.

Setting & Participants: Validation was based on
data from adult hospital survivors of AKI from
Grampian, 2011-2013.

Predictors: KDIGO-basedmeasures of AKI severity
and comorbidities specified in the original models.

Outcomes: Deathor readmissionwithin 90days for
all hospital survivors. Progression to new CKD G4-
G5 for patients surviving at least 90 days after AKI.

Analytical Approach: Decision curve analysis to
assess the “net benefit” of use of risk models to
guide clinical care compared to alternative ap-
proaches (eg, prioritizing all AKI, severe AKI, or
only those without kidney recovery).
Editorial, p. 16
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Results: 26,575 of 105,461 hospital survivors in
Grampian (mean age, 60.9 ± 19.8 [SD] years)
were included for validation of the death or
readmission model, and 9,382 patients
(mean age, 60.9 ± 19.8 years) for the CKD G4-
G5 model. Both models discriminated well (area
under the curve [AUC], 0.77 and 0.86,
respectively). Decision curve analysis showed
greater net benefit for follow up of all AKI than
only severe AKI in most cases. Both original
and refitted models provided net benefit
superior to any other decision strategy. In
process mining of all hospital discharges, 41%
of readmissions and deaths occurred among
people recovering after AKI. 1,464 of 3,776
people (39%) readmitted after AKI had received
no intervening monitoring.

Limitations: Both original models overstated
risks, indicating a need for regular updating.

Conclusions: Follow up after AKI has potential
net benefit for preempting readmissions, death,
and subsequent CKD progression. Decisions
could be improved by using risk models and by
focusing on AKI across a full spectrum of
severity. The current lack of monitoring among
many with poor outcomes indicates possible
opportunities for implementation of decision
support.
Among the 1 in 7 people in hospital who develop
acute kidney injury (AKI),1 many continue to

experience poor health outcomes even after discharge,
including a 1 in 3 risk of unplanned readmissions
within 90 days (especially with heart failure),2-5 and
incomplete recovery of kidney function leading to new
or progressive chronic kidney disease (CKD) over the
first year.6,7 From this large and heterogeneous group
of people with AKI, it remains unclear which in-
dividuals should receive follow up after AKI and for
what reasons.

Current international guidelines recommend follow
up of all people with AKI after 90 days.8 Post-AKI return
clinics have been incorporated into some health systems,
but a single approach may not be appropriate or effi-
cient for all patients.9,10 Thus, for some, an early period
of heightened surveillance and care after AKI could be
beneficial; but for others, additional monitoring and
follow-up interventions may add little overall benefit to
their health and may even introduce unnecessary
costs.11

Risk prediction models can be used to assist complex
decision making. Decision models combine available in-
formation to help health professionals quantify an in-
dividual’s risk of adverse outcomes. Two recent risk models
have been developed to predict outcomes of AKI after hos-
pital discharge.2,6 The Aberdeen (United Kingdom) risk
tool predicts death or hospital readmission for all people
(with and without AKI) in the early postdischarge period.
The model, which includes AKI as a key predictor, could be
used by nonspecialists to target people who may benefit
from early surveillance (eg, in primary care) to preempt or
prevent recurrent acute illness.2 A complementary focused
risk prediction model from Alberta (Canada) has been
developed to predict the risk of progression to new CKD
glomerular filtration rate categories 4 and 5 (G4-G5) among
survivors of AKI and could be used to identify individuals
who may benefit from referral to a nephrologist for
specialized kidney care.6 To be of value, these risk models
must (1) distinguish well between high- and low-risk
people; (2) provide accurate absolute risk predictions; and
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PLAIN-LANGUAGE SUMMARY
Despite frequent poor outcomes, there is limited evi-
dence to guide the way in which we prioritize care after
acute kidney injury (AKI). This study validates 2 clinical
risk models for outcomes in hospital survivors and AKI
survivors. We used decision curve analysis to compare
which decision strategies provide more benefit than
harm. We found that risk models predicting death or
readmission and chronic kidney disease have the po-
tential to assist follow-up decisions after AKI and could
be superior to alternative strategies such as prioritizing
AKI severity or kidney recovery alone. We also found
that many patients currently receive little or no
postdischarge monitoring after AKI. This indicates
possible opportunities for the implementation of deci-
sion support to guide postdischarge care for people
hospitalized with AKI.
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(3) lead to decisions that will do more good than harm
compared with alternative decision strategies. This final
attribute is known as “net benefit.” Although statistical
metrics that show whether a model provides accurate pre-
dictions are frequently reported, the clinical usefulness of
the model or the “net benefit” of model-based clinical de-
cisions over alternative approaches is rarely reported12-17

and is the focus of this study.
In this study, we formally evaluated the statistical per-

formance and net benefit of these 2 complementary risk
models relevant to follow-up care after AKI, validating
them using new datasets. First, to support nonspecialists,
we used the Aberdeen risk model to examine whether,
from among all hospital admissions (with or without AKI),
the targeted follow-up of those people who have had AKI
(according to clinical guidelines) would have positive net
benefit to preempt early deaths and readmissions, whether
net benefit would be improved by using a risk model, and
whether net benefit could be improved by targeting only
those with the most severe AKI episodes. Next, to support
prioritization of specialist kidney care, we applied the
Alberta risk model to AKI survivors to assess whether the
net benefit for targeting kidney care follow-up would be
greatest by using the risk model, by targeting severe AKI,
or by targeting those without recovery.

Finally, to characterize the extent of existing post-AKI
care and the potential clinical need for decision support,
we examined the care processes and monitoring of people
with AKI discharged from hospital over a 4-year period.
Methods

We reported this prediction model validation study ac-
cording to the TRIPOD statement14. Permissions for this
study were provided by North of Scotland Research Ethics
Committee (18/NS/0051), Grampian Caldicott guardian,
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and NHS Research and Development. Routinely collected
health data were de-identified and analyzed within a secure
environment, and therefore permissions were provided
without a requirement for informed consent to be ob-
tained from the participants.

Populations: Original Models

The Aberdeen AKI readmissions model was derived from
people hospitalized in 2003 in Grampian, North Scotland,
using the Grampian Laboratory Outcomes Morbidity and
Mortality Study (GLOMMS).2 The derivation cohort included
people who survived a hospitalization with or without AKI (n
= 16,453; 3,065 outcomes; internal validation cohort C
statistic, 0.70). All people with baseline estimated glomerular
filtration rate (eGFR) <60 mL/min/1.73 m2 were included
and a 20% random sample of those with normal baseline
kidney function. People with a kidney transplant or receiving
maintenance dialysis were excluded.

The Alberta model was derived using the Alberta Kidney
Disease Network Database from all 3.5 million residents in
the province, 2004-2014.6 The derivation population
included adult residents of Alberta with a baseline
eGFR >45 ml/min1.73m2 who survived at least 90 days
after hospitalization with AKI (n = 9,973; 272 outcomes;
C statistic of 0.87 in internal validation and of 0.81 in
external validation cohort). People with a kidney transplant
or receiving maintenance dialysis were excluded.

Outcomes: Original Models

The Aberdeen readmission model predicts the risk of mor-
tality or unplanned readmission within 90 days of discharge
after a hospitalization. The purpose of the model was framed
to support nonspecialists with discharge planning, with a risk
threshold of 30% for targeting high-risk people.

The Alberta CKD G4-G5 model predicts the risk of
progression to CKD G4-G5 within 1 year after hospitali-
zation with AKI. A minimum of 2 outpatient assessments
of eGFR < 30 mL/min/1.73 m2 separated by at least 3
months was required to meet the eGFR component of the
definition. Estimation of GFR used the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI)18 equa-
tion. Risk thresholds of <1% and >10% have been pro-
posed to guide follow-up decisions after AKI, including
those who may benefit from specialist nephrology follow
up (ClinicalTrials.gov identifier NCT02915575).

Predictors: Original Models

In both development cohorts, AKI was determined and
staged for severity using KDIGO-based AKI criteria. The
Aberdeen readmissions model established AKI using a pre-
viously published and validated KDIGO-based algorithm.
Briefly AKI was present if there was (1) a creatinine increase
of >0.3 mg/dL within 48 hours; or (2) a 50% rise from the
lowest creatinine in the past 7 days; or (3) a 50% rise from
the median creatinine in the past 8-90 days, or 91-365 days
if no closer samples existed.1,19 The Alberta CKD G4-G5
model established AKI based on a rise in creatinine during
29
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hospitalization of >0.3 mg/dL or >50% of their most recent
outpatient prehospital baseline 7-365 days before admission.6

As previously described additional laboratory-derived
variables included kidney function at baseline and
discharge (creatinine and albuminuria within categories in
the Alberta CKD G4-G5 model, and eGFR in Aberdeen
readmissions model), admission circumstances (emer-
gency admission, admission from residential care, rural
home location) and comorbidities based on validated al-
gorithms using International Classification of Diseases 10th
revision (ICD-10) codes.20,21

Analysis: Original Models

Both risk models were developed using multivariable lo-
gistic regression with stepwise backward variable selection
and bootstrapping to identify consistent predictors
included in the final model.16

Validation Cohorts

Participants
Both models were validated in a separate cohort. To
maximize reproducibility, analysis code from the original
development of both models was shared to ensure that the
cohort formation, outcomes, and predictors were defined
consistently.

The Aberdeen readmissions model was temporally
validated in a cohort of all adult Grampian residents
admitted to hospital in Grampian in 2012 (with or
without AKI). The Alberta CKD G4-G5 model was
geographically validated using all adult Grampian residents
admitted to hospital with AKI between 2011-2013 who
had a baseline eGFR >45 mL/min1.73 m2 and survived at
least 90 days after hospitalization.

Statistical Analyses

Discrimination and Calibration
For both models the full logistic regression equation (all
regression coefficients and model intercept) was used to
calculate the predicted risks for each person in the external
validation cohorts. Model discrimination (the ability to
estimate higher risks for patients with the outcome and
lower risks for those without the outcome) was compared
based on the C statistic. Model calibration (how well
estimated probabilities agree with observed outcomes) was
assessed using calibration-in-the-large and the calibration
slope. Calibration-in-the-large is the difference between
the mean observed risk and the mean predicted risk and is
a measure of systematic overprediction (negative) or
underprediction (positive). The calibration slope is a
measure of model fit derived by comparing predicted
probabilities versus observed outcomes against a theoretic
line for perfect calibration in which a perfect intercept
equals 0 and a perfect slope has a gradient of 1. Calibration
was visualized by plotting the observed proportions of
outcomes versus mean predicted probability within tenths
of increasing predicted risk.16,17,22
30
We determined a priori to perform model recalibration
and refitting if there was any evidence of miscalibration
(slope not equal to 1 or intercept not equal to 0). We
recalibrated using logistic calibration23,24 and fitted a lo-
gistic regression model with the prognostic index (defined
as the weighted sum of the predictor values in the new
dataset, where the weights are the coefficients of the
original models) as the only covariate. We then used the
parameter estimate of the prognostic index (calibration
slope) and the intercept (calibration intercept) to recali-
brate the regression coefficients and the baseline risk of the
original model23. To refit, we used only the variables that
were in the original model and parameterized continuous
variables in the same way as the original models. This was
to avoid performance gains simply by saturating the
refitted model with additional variables.

Decision Curve Analysis
Decision curve analysis is a plot of the “net benefit” against
“threshold probabilities”, assessing the clinical usefulness
of different models at appropriate thresholds for clinical
use. It is described in detail elsewhere,13,25 and summa-
rized briefly here. Net benefit measures the trade-off be-
tween true positives and false positives in a prediction
model at different threshold probabilities. It is a sum of
true-positive minus false-positive predictions weighted by
the threshold probability as described in the following
equation25:

Net benefit =

�
true positive

total sample size

�
−

��
false positive

total sample size

�
�

threshold probability

1−threshold probability

��

The threshold is a clinically derived value that varies
depending on how risk averse the clinician is. It is a value
where the clinician would be satisfied with the tradeoff
between the harm (eg, death, readmission, or CKD pro-
gression) of delaying intervention (targeted follow-up)
and unnecessary intervention. In AKI, a clinical trial
chose a threshold of 0.1 for nephrology specialists’ follow
up for CKD G4-G5 (ClinicalTrials.gov identifier NCT02
915575). A threshold of 0.1 implies that for every 1
true-positive case identified by the decision strategy, fewer
than 9 false positives would be an acceptable tradeoff. This
means weighting the finding a high-risk patient as 9 times
more important than avoiding unnecessary follow-up.
Although the absolute value of net benefit is an abstract
concept, the higher the positive value of net benefit, the
greater the clinical value, allowing a comparison of
different strategies for clinical decision making.

We used decision curve analysis to compare the original
models, recalibrated models, refitted models, and also
strategies of targeting postdischarge care to all people
leaving the hospital with AKI, to all with AKI of stages 2 or
3, to all with a discharge eGFR <30 mL/min/1.73 m2, to
AJKD Vol 78 | Iss 1 | July 2021

https://clinicaltrials.gov/ct2/show/NCT02915575
https://clinicaltrials.gov/ct2/show/NCT02915575


Table 1. Characteristics of Derivation and Validation Cohorts for
Readmissions Model

Derivation:
Grampian 2003
(n = 16,453)

External Validation:
Grampian 2012
(n = 26,575)

Demographics
Age, y 66.1 ± 18.1 60.9 ± 19.8
Residential care 748 (4.5%) 413 (1.6%)
Rural home
location

4,455 (27.1%) 7,646 (28.8%)

Admissions in past
year
No admissions 12,357 (75.1%) 13,897 (52.3%)
1 admission 2,465 (15.0%) 6,380 (24.0%)
2 admissions 864 (5.3%) 3,057 (11.5%)
3+ admissions 767 (4.7%) 3,241 (12.2%

Emergency
admission

10,086 (61.3%) 18,940 (71.3%)

AKI status
No AKI 13,830 (84.1%) 23,255 (87.5%)
AKI stage 1 1,718 (10.4%) 2,299 (8.7%)
AKI stage 2 574 (3.5%) 611 (2.3%)
AKI stage 3 331 (2.0%) 410 (1.5%)
Baseline eGFR,
mL/min/1.73 m2

69.3 ± 25.2 86.3 ± 26.4

Comorbidities
Cancer 1,383 (8.4%) 3,733 (14.0%)
Cardiac failure 909 (5.5%) 2,149 (8.1%)
Diabetes 1,112 (6.8%) 3,467 (13.0%)
Pulmonary 1,050 (6.4%) 4,990 (18.8%)

Values for continuous variables given as mean ± standard devaition; for categorial
variables, as count (%). Abbreviations: AKI, acute kidney injury; eGFR, estimated
glomerular filtration rate.
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all in the cohort (regardless of AKI), and to no people in
the cohort. Recovery of kidney function after AKI may be
uncertain and incomplete at hospital discharge, but we
included discharge eGFR as a pragmatic decision strategy
that clinicians may consider using as a proxy for persistent
low GFR after AKI.

At the prespecified thresholds (1% and 10% for the
Alberta CKD progression model, and 30% for the Aberdeen
readmission model), we also reported classification of
people by decision strategy and outcome in 2 × 2 tables,
with the percentage correctly classified and net benefit.
These analyses were performed using Stata version SE 16
software (StataCorp).

Process Mining
Process mining is a method for describing the organiza-
tion, order, and timing within an event log. We used
process mining software (DISCO, Fluxion 2020) to visu-
alize the most common pathways for health care moni-
toring events of people leaving the hospital after AKI, and
their subsequent routes back into hospital within 30 and
90 days. We linked kidney function monitoring events
with paths depicted by arrows weighted by the number of
people who moved between events, from hospital
discharge to outpatient specialist clinics, primary care
general practice, or accident and emergency, and ending at
hospital readmission or the end of follow up (30 and 90
days in 2 respective analyses). We reported median time
between events for each path. We used data from people
with AKI who survived an acute hospital admission in
Grampian during 2011-2014.
Results

Participants

The validation cohort for the Aberdeen readmissions
model included 26,575 people and 2,927 events. The
validation cohort of the Alberta CKD G4-G5 model
included 9,382 people and 140 events.

Characteristics across all cohorts are reported in Tables 1
and 2. For the Aberdeen readmissions model, the valida-
tion cohort of all admissions in 2012 was larger than the
original derivation cohort sample of those admitted in
2003. The validation cohort was younger and had a higher
mean baseline eGFR. For the Alberta CKD G4-G5 model,
the validation cohort and Alberta derivation cohorts were
similar, but the validation cohort had a higher proportion
of people with unmeasured albuminuria.

Model Performance and Updating

Fig 1 shows calibration plots for external validation of the
original Aberdeen model for death or unplanned read-
missions (Fig 1A), after recalibration of the slope and
intercept (Fig 1B); and the original Alberta CKD G4-G5
model (Fig 1C), after recalibration of slope and intercept
(Fig 1D). As shown in Table 3, both models discriminated
well in the external validation cohorts (AUC of 0.77 for the
AJKD Vol 78 | Iss 1 | July 2021
death or readmissions model, and AUC of 0.86 for the
CKD G4-G5 model). Both models overpredicted risks,
which improved following recalibration. Tables 4 and 5
report the odds ratios and intercepts of the original and
refitted Aberdeen death or readmissions model (Table 4)
and refit Alberta CKD G4-G5 model (Table 5). The odds
ratios were similar for refitted models except for albu-
minuria in the CKD G4-G5 model, for which an unmea-
sured value of albuminuria had a protective effect in the
external validation cohort.

Net Benefit and Decision Curve Analysis

Figure 2 shows the results of decision curve analysis for
both the Aberdeen death or readmissions model for all
hospital survivors (Fig 2A) and the Alberta CKD G4-G5
model for AKI survivors (Fig 2B). For predicting death or
readmission among all hospital survivors, follow-up of
those with AKI was of positive net benefit, but a model-
guided approach led to the greatest net benefit at the
relevant risk thresholds. Fig S1 shows decision curve
analysis of the net benefit for predicting death or read-
mission where the analysis has been restricted only to
people with AKI. Again, the analysis shows that the
31



Table 2. Characteristics of Derivation and Validation Cohorts for CKD G4-G5 Model

Derivation: Alberta
(n = 9973)

Validation: Alberta
(n = 4,985)

External Validation:
Grampian 2011-2013
(n = 9,382)

Demographics
Age, y 65.7 ± 14.9 66 ± 15.0 67.2 ± 15.4
Female sex 4,258 (42.7%) 2,091 (41.9%) 4,297 (45.8%)

Laboratory results
Serum creatinine, mg/dL 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.3
Baseline eGFR, mL/min/1.73 m2 76 ± 20.0 76 ± 20.0 77 ± 23.0

Albuminuria
Normal 3,775 (37.8%) 1,881 (37.7%) 1,116 (11.9%)
Mild 1,373 (13.8%) 662 (13.3%) 598 (6.4%)
Heavy 494 (4.9%) 243 (4.9%) 321 (3.4%)
Unmeasured 4,331 (43.4%) 2,199 (44.1%) 7,347 (78.3%)

AKI status
AKI stage 1 7,686 (77.1%) 3,806 (76.4%) 7,361 (78.5%)
AKI stage 2 1,357 (13.6%) 699 (14.0%) 1,239 (13.2%)
AKI stage 3 930 (9.3%) 480 (9.6%) 782 (8.3%)

Discharge serum creatinine
<1.0 mg/dL 3,394 (34.0%) 1,721 (34.5%) 4,488 (47.8%)
1.0-<1.3 mg/dL 3,207 (32.2%) 1,542 (30.9%) 2,651 (28.3%)
1.3-<1.6 mg/dL 1,963 (19.7%) 1,012 (20.3%) 1,438 (15.3%)
1.6-<1.9 mg/dL 799 (8.0%) 383 (7.7%) 470 (5.0%)
>1.9 mg/dL 610 (6.1%) 327 (6.6%) 335 (3.6%)
Discharge eGFR, mL/min/1.73 m2 62.0 ± 23.0 62.0 ± 23.0 69.1 ± 25.0

Comorbidities
Diabetes 920 (9.2%) 498 (10.0%) 2,093 (22.3%)
Cancer 2,638 (26.4%) 1,329 (26.7%) 1,918 (20.4%)
Heart failure 2,422 (24.3%) 1,197 (24.0%) 1,354 (14.4%)
Metastatic cancer 451 (4.5%) 221 (4.4%) 410 (4.4%)
Myocardial infarction 1,796 (18.0%) 902 (18.1%) 1,531 (16.3%)
Mild liver disease 302 (4.7%) 150 (4.7%) 357 (3.8%)
Moderate to severe liver disease 189 (1.9%) 99 (2.0%) 180 (1.9%)
Peripheral vascular disease 1,079 (10.8%) 505 (10.1%) 931 (9.9%)
Rheumatic 404 (4.0%) 215 (4.3%) 414 (4.4%)
Hypertension 1,734 (17.4%) 861 (17.3%) 4,571 (48.7%)

Procedures
Cardiac catheterization 629 (6.3%) 316 (6.3%) 127 (1.4%)
Cardiac surgery 754 (7.6%) 301 (6.0%) 313 (3.3%)
Aortic aneurysm repair 139 (1.4%) 53 (1.1%) 43 (0.5%)
Ventilationa 1,752 (17.6%) 818 (16.4%) 147 (1.6%)
Dialysis 175 (1.8%) 83 (1.7%) 103 (1.1%)

Hospital LOS, d 9 [5-18] 9 [5-19] 9 [4-19]
Values for continuous variables given as mean ± standard deviation or median [interquartile range]; for categorical variables, as count (%). Abbreviations: AKI, acute kidney
injury; CKD G4-G5, chronic kidney disease glomerular filtration rate categories 4 and 5; eGFR, estimated glomerular filtration rate; LOS, length of stay.
aVentilation definition in Alberta dataset include mechanical ventilation, noninvasive ventilation and oxygen therapy. The Grampian dataset does not include oxygen therapy.

Sawhney et al
greatest net benefit occurs by following the risk model,
with limited benefit or potential net harm from following
only people with severe AKI. For predicting CKD G4-G5
progression at 1 year among AKI survivors (Fig 2B), a
model-guided approach had a small gain in net benefit that
remained superior to a strategy guided by discharge eGFR
<30 mL/min/1.73m2 at the prespecified 10% risk
threshold. Tables S1 and S2 provide net benefit calculations
at the 30% risk threshold for the Aberdeen readmissions
32
model, and at 1% and 10% risk thresholds for the Alberta
model. The superiority of a model-guided approach was
consistent for both models regardless of whether the
original, recalibrated, or refitted model was used.

Process Mining

Overall, of 105,461 people discharged from a hospital
admission in Grampian between 2011-2014, 9,220 (9%)
people died or were readmitted within 90 days, of which
AJKD Vol 78 | Iss 1 | July 2021
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Figure 1. Calibration of (A) the reported Aberdeen readmissions model, and (B) after recalibration, and of (C) the reported Alberta
chronic kidney disease glomerular filtration rate categories 4 and 5 model, and (D) after recalibration. The dashed line represents the
line of perfect agreement; circles represent tenths of increasing predicted risk.

Table 3. Prediction Model Performance

Aberdeen
Readmissions Model

Alberta CKD
G4-G5 Model

Original Refitted Original Refitted
AUC (95%
confidence
interval)

0.773
(0.765-
0.783)

0.786
(0.777-
0.795)

0.855
(0.824-
0.886)

0.866
(0.837-
0.895)
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3,776 (41%) were recovering after an AKI episode.
Figure 3 focuses on the care processes of those with AKI
over the 30 days (Fig 3A) and 90 days (Fig 3b) after
leaving the hospital. Of 13,232 people discharged after
AKI, 3,776 (29%) were readmitted or died within 90 days
(Fig 3B). Most of the kidney function monitoring that
occurred within 30 and 90 days was conducted in primary
care. A further 1,369 of 13,232 (10%) were assessed in an
outpatient specialty clinic within 90 days and 1,325 of
13,232 (10%) attended an emergency department. A lack
of any post-AKI monitoring between discharge and read-
mission was evident in 1,101 of 2,401 (42%) deaths/
readmissions within 30 days (Fig 3A), and 1,464 of 3,776
(39%) deaths or readmissions within 90 days (Fig 3B)
after AKI. The median times to these unmonitored poor
outcomes were 9 and 13 days.
Brier score 0.098 0.086 0.015 0.014
Predicted-to-
observed ratio

2.042 1.000 1.531 1.001

Calibration
intercepta

−0.928 0.000 −0.484 −0.001

Calibration slope 1.374 1.000 0.901 1.000
Abbreviations: AUC, area under the receiver operated curve; CKD G4-G5, chronic
kidney disease glomerular filtration rate categories 4 and 5.
aCalibration-in-the-large.
Discussion

Poor outcomes after hospitalization with AKI are increas-
ingly recognized, but how to perform optimal follow-up
care is uncertain. In this validation study of 2 risk pre-
diction models, both performed well in predicting indi-
vidualized risks of death or readmission (for all hospital
AJKD Vol 78 | Iss 1 | July 2021
survivors) and risks of progression to CKD G4-G5 (for AKI
survivors) and were superior to alternative strategies for
targeting people follow-up, including indiscriminate
follow-up of all people with AKI, or those with severe AKI.
We also showed that while poor outcomes are particularly
common after AKI, many people receive little or no
postdischarge monitoring, which suggests opportunities
33



Table 4. Original and Refitted Aberdeen Readmissions Model

Original Derivation
Model: Grampian
2003

Refitted Validation
Model: Grampian
2012

Admission details
Age, per year
older

1.17 (1.13-1.21) 1.29 (1.25-1.34)

Residential care 1.37 (1.42-1.98) 2.46 (1.95-3.10)
Rural home
location

0.86 (0.78-0.94) 0.95 (0.87-1.05)

Admissions in
previous year,
per admission

1.23 (1.18-1.27) 1.26 (1.23-1.29)

Emergency
admission

1.89 (1.72-2.08) 2.2 (1.97-2.45)

AKI status
No AKI 1.00 (reference) 1.00 (reference)
AKI stage 1 1.50 (1.33-1.70) 3.43 (3.08-3.82)
AKI stage 2 2.23 (1.85-2.68) 5.63 (4.70-6.75)
AKI stage 3 2.80 (2.22-3.53) 5.04 (4.05-6.27)

Baseline eGFR
Linear terma 0.87 (0.80-0.94) 0.65 (0.61-0.70)
Square terma 1.01 (1.01-1.02) 1.03 (1.03-1.04)

Comorbidities
Cancer 1.59 (1.37-1.82) 1.9 (1.71-2.12)
Cardiac failure 1.42 (1.21-1.66) 1.18 (1.04-1.34)
Diabetes 1.38 (1.19-1.60) 1.21 (1.09-1.35)
Pulmonary 1.47 (1.27-1.70) 1.46 (1.32-1.61)

Intercept for
linear predictor

−1.876 −2.196

Unless otherwise indicated, values are odds ratio (95% confidence interval) for
readmission or death within 90 days for all hospital survivors. Abbreviations: AKI,
acute kidney injury; eGFR, estimated glomerular filtration rate.
aBaseline eGFR modelled per 10 mL/min/1.73 m2 increase with a combination of
linear and quadratic terms.

Table 5. Original and Refitted Alberta CKD G4-G5 Model

Original
Derivation
Model
(Alberta)

Refitted Validation
Model (Grampian
2011-2013)

Admission details
Age, per year
older

1.02 (1.01-1.03) 1.02 (1.01-1.04)

Female sex 2.93 (2.16-3.97) 3.05 (2.04-4.56)
AKI stage
1 1.00 (reference) 1.00 (reference)
2 1.28 (0.88-1.87) 2.15 (1.33-3.47)
3 2.47 (1.73-3.52) 2.82 (1.70-4.67)

Baseline Scr,
per 0.1 mg/dL
greater

1.18 (1.10-1.18) 1.21 (1.14-1.30)

Discharge Scr
<0.1 mg/dL 1.00 (reference) 1.00 (reference)
1.0-<1.3
mg/dL

2.93 (1.55-5.56) 4.1 (2.04-8.24)

1.3-<1.6
mg/dL

7.78 (4.19-14.44) 7.92 (3.91-16.02)

1.6-<1.9
mg/dL

11.35 (5.86-
21.97)

11.31 (5.12-25.00)

>1.9 mg/dL 37.01 (19.46-
70.37)

21.74 (10.10-46.75)

Albuminuria
Normal 1.00 (reference) 1.00 (reference)
Mild 1.25 (0.81-1.92) 0.95 (0.47-1.93)
Heavy 3.13 (2.00-4.91) 2.00 (1.03-3.89)
Unmeasured 1.67 (1.21-2.29) 0.78 (0.47-1.29)

Intercept for linear
predictor

−9.246 −8.755

Unless otherwise indicated, values are odds ratio (95% confidence interval) for
progression to new CKD G4-G5, for patients surviving at least 90 days after AKI.
Abbreviations: AKI, acute kidney injury; CKD G4-G5, chronic kidney disease
glomerular filtration rate categories 4 and 5; Scr, serum creatinine.

Figure 2. Decision curve analysis for the net benefit of the (A) Aberdeen readmissions model and (B) Alberta CKD G4-G5 model
compared with alternative decision strategies. Net benefit represents the trade-off between true positives and false positives, with
false positives weighted by the threshold probability from 0 (no penalization for false positives) to 1 (infinite penalization for false pos-
itives). At a threshold of 0.1, 1 true positive would be balanced by 9 false positives. Abbreviations: AKI, acute kidney injury; CKD G4-
G5, chronic kidney disease glomerular filtration rate categories 4 and 5; GFR, glomerular filtration rate.
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exist to develop follow-up interventions to improve
postdischarge care.

While the current KDIGO AKI guideline suggests a post-
AKI clinical reassessment for all patients, emerging AKI re-
turn clinics are often limited to those with severe AKI epi-
sodes. Our findings do not support this approach. Among
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all people leaving hospital, either a model-guided approach
or follow-up of all people were the most beneficial ap-
proaches. By contrast, a strategy of targeted follow-up based
on AKI severity was not only inferior, but also had potential
for net harm at clinically relevant risk thresholds for death or
readmission. Targeting care based on recovery of kidney
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function at discharge was also inferior to a model-based
approach for death or readmission avoidance and at most
risk thresholds for progression to CKD G4-G5. Thus, our
analyses suggest that incorporating risk prediction models
into postdischarge and post-AKI care planning could
improve follow-up planning over alternative “one size fits
all” approaches that are currently being promoted in
guidelines and existing clinical practices.

Through process mining, our analysis shows that almost
half of those readmitted after AKI had received no inter-
vening monitoring over a median 2 weeks prior to their
readmission, with recurrent presentations frequently
occurring through emergency departments. A prior AKI
episode had also occurred in half of all people presenting
to hospital as an early readmission. This reinforces the
likelihood of there being missed opportunities to avoid
readmissions, and the need for early monitoring (within 2
weeks) for many people rather than waiting until 90 days,
which may be too late. Thus, clinical decision support
systems for post-AKI care should be evaluated to ensure
that care is appropriately timed as well as being targeted to
those with greatest need.2,9,26

Strengths of this analysis include the population-based
nature of our data sources, with capture of blood tests
from all clinical locations in Grampian, to ensure that all
people with AKI in the region can be identified and fol-
lowed throughout a complete illness course. Our assess-
ment of net benefit using decision curve analysis is another
strength, enabling us to evaluate the clinical consequences
of decisions made using a model and to compare whether
decisions based on models will do more harm than good
when compared with alternate decision-making strategies.

There are further methodological considerations to
highlight. Prior to updating, both models overpredicted
risks. This confirms the need for updating of risk models
for clinical use in new populations and over time.27 While
death, readmissions, and CKD are important outcomes, it
is also important to recognize that nephrologists and other
clinicians have a broader role in caring for people with
kidney disease, who may also have other comorbidities
that impact hospitalization, and diverse social backgrounds
and health needs that cannot be fully accounted for in a
risk tool. Moreover, even if an event is correctly predicted,
this does not mean that follow up or an intervention will
be beneficial. For instance, some people may be receiving
palliative care, and others will have reasons for poor out-
comes that are unavoidable. Other factors we have not
considered include barriers to health care access: health
literacy, education, cognitive function, physical disability,
geographic distance to clinics, and affordability to travel to
follow-up appointments.

Accurate prediction of postdischarge outcomes alone
does not make a model useful for clinical practice. This
analysis goes further by showing that model-guided de-
cisions are superior to alternative approaches for predicting
poor health outcomes after hospitalization, but neverthe-
36
less, those with the highest risks of poor outcomes may not
have the most to gain from an intervention. Without a
trial, our analysis cannot confirm which people leaving
hospital would have readmissions prevented by an early
nonspecialist review, nor can it confirm which AKI sur-
vivors would have CKD G4 complications prevented by
ongoing kidney care. We also recognize that the health
needs and reasons for readmission of people with AKI may
require a different approach to follow-up intervention to
those without AKI. For instance, clinical fluid assessment to
prevent incipient pulmonary edema will be particularly
important for those who have had medications stopped.

In conclusion, we have shown that risk prediction models
for death or readmission and CKD have the potential to assist
in prioritizing people who have had AKI within follow-up
care planning and may be superior to alternative strategies
such as prioritizing on AKI severity or kidney recovery alone.
Further, many people with poor outcomes after AKI receive
little or no postdischarge monitoring. A necessary next step is
to design and trial risk model–assisted decisions that triage
people into appropriate models of postdischarge care that
provide the most appropriate level of specialist/nonspecialist
input at the most appropriate timepoint.
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