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Abstract
Sustainable urban drainage systems are multi-functional nature-based solutions that
can facilitate flood management in urban catchments while improving stormwater
runoff quality. Traditionally, the evaluation of the performance of sustainable
drainage infrastructure has been limited to a narrow set of design objectives to
simplify their implementation and decision-making process. In this study, the spatial
design of sustainable urban drainage systems is optimized considering five objective
functions, including minimization of flood volume, flood duration, average peak
runoff, total suspended solids, and capital cost. This allows selecting an ensemble of
admissible portfolios that best trade-off capital costs and the other important urban
drainage services. The impact of the average surface slope of the urban catchment
on the optimal design solutions is discussed in terms of spatial distribution of
sustainable drainage types. Results show that different subcatchment slopes result
in non-uniform distributional designs of sustainable urban drainage systems, with
higher capital costs and larger surface areas of green assets associated with steeper
slopes. This has two implications. First, urban areas with different surface slopes
should not have a one-size-fits-all design policy. Second, spatial equality must be
taken into account when applying optimization models to urban subcatchments with
different surface slopes to avoid unequal distribution of environmental and human
health co-benefits associated with green drainage infrastructure.
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1 Introduction

Global climate change, rapid expansion of cities, and the aging of existing urban drainage
infrastructure raise new challenges for urban flood management (Raei et al. 2019; Arfa et al.
2021). The accelerated conversion of undeveloped areas into residential and commercial areas
has altered the natural water cycle, resulting in extreme flood events, groundwater shortages,
and pollution of receiving water bodies as stormwater runoff picks up pollutants from urban
surfaces (Abou Rjeily et al. 2017, 2018; Luodan et al. 2019; Zhang et al. 2020). Sustainable
urban drainage systems, also referred to as low impact developments, green infrastructure, and
best management practices (Fletcher et al. 2015), are multi-functional nature-based urban
drainage solutions, which can be used to mitigate the environmental impact of urbanization.
Conventional urban drainage systems are designed for rapid drainage of stormwater runoff.
However, sustainable drainage systems are designed to facilitate the detention, infiltration, and
evapotranspiration process of stormwater runoff while removing diffuse pollutants (Tang et al.
2021; Geberemariam 2021).

The design of sustainable urban drainage systems is a daunting task due to their inherent
hydrological and hydraulic complexity together with the conflicting stakeholder interests that
often characterize urban planning (Horgan and Dimitrijević 2019). Traditionally, drainage
systems have been designed using trial-and-error approaches resulting in poor project out-
comes that often fail to achieve an appropriate balance of community’s interests. To overcome
this problem, researchers have linked rainfall-runoff simulation models with multi-objective
optimization methods for multi-dimensionally efficient (‘Pareto-optimal’) urban drainage
system designs. By exploring discrete and continuous systems while satisfying problem
constraints, multi-objective evolutionary algorithms have proven effective in facilitating urban
drainage system design (Li et al. 2015, 2019; Riaño-Briceño et al. 2016; Martínez et al. 2018;
Xu et al. 2018; Banihabib et al. 2019). Several studies have applied evolutionary algorithms to
the optimization of sustainable drainage design taking into account up to three objectives,
including minimization of capital cost, flood volume, and total suspended solids as proxies for
flood damage and stormwater pollution, respectively (Ghodsi et al. 2016; Eckart et al. 2018;
Latifi et al. 2019; Xu et al. 2020). For example, Ghodsi et al. (2016) linked the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) with the Storm Water Management Model (SWMM)
to optimize the design of sustainable urban drainage systems. The combination was used along
with a bargaining approach to handle several stakeholders’ deliberations in the decision-
making process. Duan et al. (2016) linked the same hydrodynamic simulation model with
the particle swarm optimization algorithm and applied the framework to find a set of Pareto-
optimal locations of detention tanks and sustainable infrastructure facilities for a real case
study located in China. Giacomoni and Joseph (2017) applied the NSGA-II optimization
model to find an efficient spatial distribution of green roofs and permeable pavements in an
idealized case study. Later, Eckart et al. (2018) implemented the Borg multi-objective evolu-
tionary algorithm (Hadka and Reed 2013), to optimize surface areas of rain gardens, permeable
pavements, and infiltration trenches in an urban catchment in Windsor, Canada. Alves et al.
(2019) investigated benefits of synergetic use of green, blue, and grey drainage infrastructure
facilities for flood management designs. They showed that flood mitigation objectives and
environmental co-benefits of sustainable drainage infrastructure must be jointly taken into
account in optimization models to maximize efficiency of sustainable urban drainage systems.
This needs to consider the relative efficiency of grey and green drainage infrastructure in
reducing flood damage and stormwater pollution (Yang and Zhang 2021), in line with the
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findings by Leng et al. (2021) which demonstrate the benefits of synergistic implementation of
grey and green infrastructure as well as the superiority of the latter in providing environmental
benefits. Hou et al. (2019) used a combination of the p-median model and the ant colony
optimization algorithm based on amount of on-site harvested rainwater, to find an efficient
sustainable drainage design. Lu and Qin (2019) also proposed a combination of the genetic
algorithm and fuzzy simulation while considering uncertainties in reducing total flood volume
in urban catchments. Taking into account the impacts of climate change on rainfall intensities,
Ghodsi et al. (2020) considered the average peak runoff as an optimization objective in an
integrated framework to find efficient designs of sustainable drainage infrastructure. More
recently, Taghizadeh et al. (2021) linked the Storm Water Management Model with a multi-
objective particle swarm optimization model to find efficient spatial distributions of permeable
pavement, infiltration trenches, and bioretention cells to reduce pollutant concentrations in an
urban area north west of Tehran, Iran.

Despite the extensive literature on the subject, most of the simulation-optimization studies
address one to three design goals, which are insufficient to comprehensively assess the co-
benefits of sustainable drainage infrastructure. Moreover, there is still a paucity of insight into
the effect of the average surface slope on the spatial distribution of sustainable drainage system
components when this is determined using optimization models. The importance of this lies in
the fact that subcatchment slopes can affect the pattern of stormwater detention and infiltration
resulting in a biased distribution of floods in cities with various topographic features. Accord-
ingly, when using an optimization model on this subject, the search algorithm may find a
sustainable drainage system cost-effective where specific drainage system components are
allocated to particular subregions. Although the optimization solution may be efficient in terms
of flood management, it can raise concerns about social justice and spatial equality, one of the
pillars of the sustainable development goals, in urban drainage system design (Zheng et al.
2020; Taguchi et al. 2020).

This study shows how the average surface slope of urban catchments can impact equality in
the spatial distribution of sustainable drainage components in urban areas if an optimization
model is used to support design decisions. To this end, we apply a many-objective optimization
approach to a synthetic case study under different slope scenarios. We introduce parallel axis
plots laid alongside system design maps as a summary graphical representation of optimization
results for stakeholder deliberations. Results show that urban areas with varying slopes within
the same catchment should not have a one-size-fits-all sustainable drainage design. At the same
time, care should be taken in ensuring that differences in average surface slope do not result in
an unequal distribution of co-benefits associated with green drainage infrastructure.

2 Methods

2.1 Hydraulic Simulation Model

The simulation of an urban drainage system requires a rainfall-runoff and hydraulic routing
model. In this study, the simulations were carried out using the Storm Water Management
Model (SWMM) developed by the U.S. Environmental Protection Agency (Rossman 2017),
which can simulate rainfall, runoff, infiltration, pollution transport, and drainage process in
closed- and open-channel conduits (Rossman and Huber 2016). This numerical model can
perform flow routing simulations using the steady flow, kinematic wave, or dynamic wave
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method (Rossman 2017). In this study, the dynamic wave routing method was used, which
allows simulation of open-channel flows with backwater effects as well as pressurized flow in
drainage pipes. This routing model solves the full one-dimensional Saint-Venant equations
(Rossman 2017):

∂A
∂t

þ ∂Q
∂x

¼ 0 ð1Þ

∂Q
∂t

þ ∂ Q2=A
� �

∂x
þ gA

∂H
∂x

þ gAS f þ gAhL ¼ 0 ð2Þ

where t is time, x is the distance along the pipe, A is the flow cross-sectional area, Q is flow
discharge, g is gravitational acceleration,H is the hydraulic head, Sf is the friction slope, and hL
is the local energy loss per unit length of conduit.

2.2 Sustainable Drainage Assets

The sustainable drainage assets considered in this study include permeable pavements,
infiltration trenches, bio-retention cells, rain gardens, rain barrels, and green roofs. Since each
of these assets has different performance characteristics, their efficient combination can help
achieve an effective design for a specific urban drainage system (Leng et al. 2021; Yang and
Zhang 2021). For instance, conventional asphalt and concrete pavements may be replaced by
permeable paving materials, which are generally made of a pervious layer laid on a stone
reservoir, or interlocking pavers to enhance infiltration. This can reduce stormwater runoff by
enhancing infiltration and disposing of the excess runoff (Hu et al. 2018). Moreover, infiltra-
tion trenches may be employed as storage pits to reduce the runoff by improving water
retention and infiltration. Bio-retention cells and rain gardens may also be used to facilitate
the infiltration rate and boost groundwater recharge while enhancing stormwater quality
(Rossman 2017). Rain barrels and cisterns are useful to temporarily detain runoff and limit
its flow into gutters to reduce pressure imposed on the drainage system. Furthermore, green
roofs can slow down, absorb, retain runoff, reduce the energy use of buildings, increase the life
of roofing systems, and regulate building temperature (Bolliger and Silbernagel 2020). Given
their different properties and performance in terms of decreasing flood volume and stormwater
pollution, cost-effective combination and spatial distribution of these assets are desirable.

3 Model Application

3.1 Case Study

A 29-ha synthetic urban drainage system case study with 8 subcatchments, 13 junctions, and
13 conduits, was selected to demonstrate the design formulation described above and inves-
tigate the relationship between average surface slope and drainage element performance
(Fig. 1). We consider three average surface slopes: 0.01%, 3%, and 6%.

A synthetic 100-year, 2-h hyetograph with 5-min increments was defined using the
Alternating Block Method as an extreme rainfall event. The impervious surfaces were assumed
to be composed of rooftops and driveways with equal ratios of surface areas. Two land-use
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classifications were defined, including residential and undeveloped areas, and the Event Mean
Concentration method was applied to estimate wash-off load of total suspended solids. To
maximize efficiency of the sustainable drainage system, the decision variables consider
combinations of two sustainable drainage types and their surface areas, represented by four
integer values in each subcatchment. The surface area of the sustainable drainage components
was parameterized as a percentage of the impervious surfaces in each subcatchment. The
maximum allowable surface area was set to 15% of the impermeable area of each
subcatchment. The area of the subcatchments, land coverage and slope scenarios are summa-
rized in Table 1.

We link the Controlled NSGA-II (CNSGA-II) (Deb and Goel 2001; Deb et al. 2002)
optimization algorithm to the Storm Water Management Model. NSGA-II is a fast, elitist
multi-objective genetic algorithm, which is commonly used in different water engineering and
urban infrastructure problems (Khorshidi et al. 2018; Manocha and Babovic 2018; Alamdari
and Sample 2019). The CNSGA-II additionally controls the extent of elitism while favoring
individual vectors that can increase diversity of the population in the optimization process
(Deb and Goel 2001).
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Fig. 1 Schematic map of the synthetic case study

Table 1 Subcatchment settings for the case study

Subcatchment Surface area (ac) Coverage Average surface slope (%)

Residential Undeveloped Scenario 1 Scenario 2 Scenario 3

S1 10 100% – 0.01 3 6
S2 10 100% – 0.01 3 6
S3 5 100% – 0.01 3 6
S4 5 100% – 0.01 3 6
S5 15 75% 25% 0.01 3 6
S6 12 100% – 0.01 3 6
S7 4 100% – 0.01 3 6
S8 10 50% 50% 0.01 3 6
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3.2 Many-Objective Optimization Model Formulation

As mentioned, several simultaneous benefits may be sought in sustainable urban drainage
infrastructure design related to efficiency of a drainage system in reducing flood damages and
improving its environmental performance (CRC for Water Sensitive Cities 2016; Horton et al.
2016; Macro et al. 2019). For example, urbanization increases the impermeable surface area of
catchments and therefore increases the potential flood volume, flood duration, and peak runoff
rate, which requires a drainage system with a large capacity and therefore higher capital cost. A
higher average peak runoff rate can increase surface erosion and stormwater pollution by
washing sediments and pollutants off the catchment surface. To handle these design objectives,
a many-objective optimization model can be used to reach a set of efficient solutions while
satisfying various design objectives and constraints.

In this paper, the following five objective functions are considered:

Minimize F θð Þ ¼ FCost; FFloodV; FFloodD; FPeakR; FTSSð Þ ð3Þ
where θ is the vector of decision variables, FCost is capital cost, FFloodV is total flood volume,
FFloodD is flood duration, FPeakR is peak runoff, and FTSS is total suspended solids (TSS).

The capital cost was calculated for the urban catchment as follows:

FCost ¼ ∑
i¼1

ns

∑
l

j¼1
cij � aij
� � ð4Þ

where ns is the number of subcatchments, l is the number of sustainable drainage system types
in each subcatchment, and aij and cij are the surface area and capital cost of each drainage
component, respectively. The capital costs for the drainage assets were extracted from
databases published by Herrera Environmental Consultants (2012) and online vendors.

The total flood volume is defined as:

FFloodV ¼ ∑
n

i¼1
FVi ð5Þ

where n is the number of manholes and FVi is flood volume at the i-th manhole.
The average manhole flood duration in the urban catchment is defined as:

FFloodD ¼ ∑n f
i¼1FDi

nf
ð6Þ

in which FDi is flood duration at the i-th manhole and nf represents the number of flooded
nodes.

Peak runoff is defined as:

FPeakR ¼ ∑ns
i¼1Pi
s

ð7Þ

where Pi is the peak runoff in each subcatchment.
Finally, the overall total suspended solids (TSS) load was extracted from the numerical

results.
To represent the locations of sustainable drainage components, the crossover, mutation, and

reproduction operators in the genetic algorithm were adapted to produce integer-valued
individuals. Moreover, as an optimization constraint, solutions with two identical sustainable
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drainage types in each subcatchment were flagged as infeasible solutions. This, however, does
not prevent the model from finding solutions with just one type of sustainable drainage
systems or even a no-intervention option in a subcatchment, as these can be obtained by
selecting the no-intervention option or zero surface area for sustainable drainage assets. The
population size of 200 was selected based on a crowding spread study. A function tolerance of
10−3 for 100 consecutive iterations was used as the stopping criterion, which resulted in around
22,000 function evaluations before the optimization stopped.

4 Results and Discussion

Many-objective optimization allows analysts and their stakeholder clients to identify Pareto-
optimal engineered water system designs and their performance trade-offs considering multi-
ple metrics of performance. The term “many-objective” (Fleming et al. 2005), refers to an
optimization model with four or more objectives. This high dimensionality means effective
multi-criteria visualization techniques must be used to help identify designs that best satisfy
stakeholder design goals. The multi-objective optimization approach used here focuses on the
a posteriori optimization (Zatarain Salazar et al. 2017), i.e., weights do not have to be assigned
to objectives a priori (i.e., before seeing results). This means stakeholders can develop their
own views about the relative importance of design criteria by assessing the impact of favoring
one performance metric over another and seeing the impact these varying priorities have on
drainage design. This deliberative design process could be enhanced by using interactive
versions of the plots below.

To illustrate here how a range of high-value designs can be extracted from the Pareto-
optimal solution set provided by the many-objective optimization, we look at three example
design solutions that correspond to alternative sets of stakeholder priorities. The first set of
priorities selects the least-cost drainage system design that fits within a prescribed range of
acceptable flood volume and flood duration. Such a design might be sought if priority is given
to reducing flood damages and securing normal transportation traffic near flooded manholes.
The second design selects the least-cost option amongst designs that fit within a prescribed
range of flood volume and average peak runoff. Finally, a third design option is chosen which
corresponds to the least-cost option that meets a given constraint on the total suspended solids.

Figure 2 presents a five-dimensional plot of the Pareto front for 0.01%, 3%, and 6% average
surface slopes. Flood volume, total suspended solids, and flood duration are shown on the x, y,
z-axes, and capital cost and average peak runoff are represented by the color and the marker
size, respectively. The green-to-blue color scale represents low-to-high capital costs and larger
markers represent larger average peak runoff values. The five-dimensional plot in Fig. 2
provides an overview of the system performance with respect to the various performance
metrics. The figure shows that the variation in flood volume and flood duration for the 0.01%
slope is smaller than that of 3% and 6% slopes. The graphs also show that higher flood
volumes are not necessarily associated with higher flood durations.

Although these plots are accurate and complete, they do not lend themselves easily to
urban stakeholder learning and design deliberation. To enable this, we use parallel axis
plots (Inselberg 2009) and present them beside system design schematics. This allows
exploring trade-offs between the optimization objectives and their implications on spatial
design as illustrated in Figs. 3, 4, and 5 for the three surface slope scenarios. In these plots,
each axis represents a different objective function, and each line connecting the axes
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represents the performance of a particular non-dominated portfolio of interventions. This
visualization technique allows the user to interactively select the set of solutions that satisfy
given post-optimization constraints for each objective in the plot. Figures 3, 4, and 5 show
the performance of the non-dominated optimal solutions for the case of 0.01%, 3%, and 6%
average surface slopes, respectively. Here, preferred solutions lie at the bottom of the
graph. The solutions with the lowest capital cost among those in the prescribed ranges of
flood volume and duration were marked in red and singled out as final sustainable drainage
system designs. This corresponds to the first design preference described above. In this
study, the permissible range of flood duration and volume was selected to be one-third of
the range in the solution space.

Fig. 2 Five-dimensional representation of the Pareto-front for the selected case study considering three surface
slope scenarios including (a) 0.01% slope, (b) 3% slope, and (c) 6% slope (Table 1). The green-to-blue color
scale represents low-to-high capital costs and marker sizes are proportional to the average peak runoff values in
each scenario. The graphs show that higher flood volumes are not necessarily associated with higher flood
durations
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The results show the value of applying a many-objective optimization approach when there
are multiple design goals that facilitate the necessary functionality of sustainable urban drainage
systems. For example, in Fig. 5 it is shown that, with a $3.78 million investment in sustainable
urban drainage interventions, the total flood volume is decreased from 2,555,000 m3 to
582,000 m3 in regions with steeper surface slopes while the mean peak runoff and total
suspended solids are reduced by 57% and 70%, respectively. The results also imply that the
average surface slope can bias the search algorithm in favor of specific types of sustainable
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urban drainage components. For instance, larger surface areas of rain gardens are found to be
preferable in steeper slope scenarios compared to small slopes. However, no significant change
was observed in surface areas of green roofs in response to changes in the surface slope,
whereas the optimization suggests the use of rain barrels only for steeper surface slopes. Here,
the number of barrels can be obtained based on the surface area values of interventions allocated
to each subcatchment. For example, in Figs. 5 and 7, 647 rain barrels with the capacity of 100 l
and L32 ×W36 ×H95 cm dimensions may be installed on subcatchment S5 covering a surface
area of 1.55% of the subcatchment. Alternatively, underground cisterns may be used, provided
that the required overall storage capacity is preserved.

Using the same procedure described above, six portfolios were extracted from the set of
Pareto-optimal solutions according to the second and third set of preferences. Figure 6 depicts
bar chart plots of surface areas of sustainable drainage facilities against the spatial distribution,
types, and combinations of these assets in each subcatchment.

Figure 7 presents a summary sunburst diagram of the selected portfolios for different
average surface slopes and design preferences. The results show that the diversity of drainage
asset types is reduced as the average surface slope increases for the sets of design preferences.
For example, the optimization mainly suggests rain gardens on steeper slope catchments for all
preference sets. For the second preference set, Fig. 6a and Fig. 7 show that bio-retention cells
are more suited for reducing the average peak runoff in the urban catchment as well as flood
volume for all three slopes. Conversely, permeable pavements and rain gardens are mainly
associated with catchments with lower or average slopes. For the third preference set, where
the stormwater quality is prioritized, the results are biased towards green drainage facilities for
all surface slope scenarios. For this set of priorities, the optimization mainly suggests bio-
retention cells and rain gardens on steeper slope catchments. The bias towards particular types
of sustainable drainage components induced by the surface slope can potentially raise concerns
regarding fairness in the spatial distribution of green drainage co-benefits. These could be
mitigated by considering proper metrics of spatial equity in the optimization problem.

Capital Flood Mean Peak Runoff TSS
Solids ( )Costs (M$) Duration (h)

Flood
3Volume (m ) (m /s)3 kg

Fig. 5 Many-objective optimization of sustainable drainage infrastructure in an urban catchment with an average
surface slope of 6% prioritizing flood attenuation; a) objective trade-offs and selected solution (marked in red), b)
types, combinations, spatial distribution, and surface areas of the selected portfolio (red line in panel (a))
described as a percentage of the respective subcatchment surface area. The grey boxes on the axes of the panel
(a) are interactive filter bars, which allow urban designers to isolate a subset of efficient designs that meet their
preferences
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5 Conclusions

Urban drainage system design is a complex problem, which necessitates several performance
criteria to facilitate sustainability and resilience of cities against floods. Large cities are usually
characterized by spatial variations of surface slopes, affecting infiltration and detention
patterns of stormwater runoff. Surface slope is an important topographic factor that can
influence the efficiency of sustainable urban drainage components. This work has demonstrat-
ed the use of a many-objective optimization approach for selecting portfolios of drainage
infrastructure within an urban catchment with three average surface slope scenarios. The Storm
Water Management Model (SWMM) was linked to an evolutionary optimization algorithm
(CNSGA-II) to search for Pareto-optimal configurations of sustainable drainage assets in
several urban subcatchments interconnected by a conventional drainage network. For each
subcatchment, the algorithm selects a combination of two types of drainage assets from
amongst seven different options and determines the efficient surface areas of each component
type by five design objectives, i.e., minimizing capital cost, flood volume, flood duration,
average peak runoff, and total suspended solids. To demonstrate the selection of particular
drainage designs corresponding to different trade-offs between the design objectives, the
solution space was narrowed down by filtering specific optimization objectives according to

Fig. 6 Bar chart representation of the Pareto-optimal sustainable urban drainage infrastructure for each catchment
surface slope scenario according to; a) the second and b) the third set of preferences
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stakeholder preferences and/or environmental constraints. Different visualization tech-
niques were employed to analyze the results, including a novel plot where a system
design schematic is placed alongside a parallel axis trade-off plot. This optimization
approach was applied to urban catchments with three different slope scenarios to
investigate how surface slope impacts the design of sustainable urban drainage
systems. It was found that variations of surface slopes in an urban area play an
important role in controlling the optimal distribution of sustainable drainage compo-
nents, suggesting higher investment in green infrastructure in subcatchments with
steeper surface slopes. However, since sustainable drainage assets provide a set of
co-benefits for both the environment and human health, an unbalanced distribution of
sustainable drainage assets in large urban areas may raise equality concerns.

The application of optimization models to large urban drainage networks is hin-
dered by their extensive computational requirements as the optimization time increases
exponentially with the number of decision variables. Future work should develop
strategies for application of similar optimization approaches to larger drainage net-
works and consider equality and equity metrics to ensure fairness in the distribution
of green infrastructure benefits.

Fig. 7 Sunburst diagram summarizing surface areas of the selected sustainable urban drainage system designs for
each surface slope scenario and design preference. The figure shows the impact of average surface slope on
sustainable urban drainage design obtainable from an optimization model
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