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Abstract
DepthK is a source-to-source transformation tool that employs bounded model checking (BMC) to verify and falsify safety
properties in single- and multi-threaded C programs, without manual annotation of loop invariants. Here, we describe and
evaluate a proof-by-induction algorithm that combines k-induction with invariant inference to prove and refute safety prop-
erties. We apply two invariant generators to produce program invariants and feed these into a k-induction-based verification
algorithm implemented in DepthK, which uses the efficient SMT-based context-bounded model checker (ESBMC) as sequen-
tial verification back-end. A set of C benchmarks from the International Competition on Software Verification (SV-COMP)
and embedded-system applications extracted from the available literature are used to evaluate the effectiveness of the pro-
posed approach. Experimental results show that k-induction with invariants can handle a wide variety of safety properties, in
typical programs with loops and embedded software applications from the telecommunications, control systems, and medical
domains. The results of our comparative evaluation extend the knowledge about approaches that rely on both BMC and k-
induction for software verification, in the following ways. (1) The proposed method outperforms the existing implementations
that use k-induction with an interval-invariant generator (e.g., 2LS and ESBMC), in the category ConcurrencySafety, and
overcame, in others categories, such as SoftwareSystems, other software verifiers that use plain BMC (e.g., CBMC). Also,
(2) it is more precise than other verifiers based on the property-directed reachability (PDR) algorithm (i.e., SeaHorn, Vvt and
CPAchecker-CTIGAR). This way, our methodology demonstrated improvement over existing BMC and k-induction-based
approaches.

Keywords Software engineering · Formal methods · Bounded model checking · k-Induction · Invariant inference

1 Introduction

Computer-based systems have been applied to different
domains (e.g., industrial, military, education, and wearable),
which generally demand high-quality software, in order to
meet a target system’s requirements. In particular, (critical)
embedded systems, such as those in the avionics and medi-
cal domains, impose several restrictions (e.g., response time
and data accuracy) that must be met and measured, accord-
ing to users’ requirements; otherwise, failures may lead to
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catastrophic situations. As a result, software testing and ver-
ification techniques are essential ingredients for developing
systemswith high dependability and reliability requirements,
where it is necessary to ensure both user requirements and
system behavior.

Boundedmodel checking (BMC) techniques, either based
on Boolean satisfiability (SAT) [12] or satisfiability modulo
theories (SMT) [5], have been successfully applied to check
single andmulti-threaded programs and then find subtle bugs
in real programs [10,20,23,33,60]. The idea behind BMC is
to check the negation of a given property at a given depth,
i.e., given a transition system M, a property φ, and a limit
of iterations k, BMC unfolds a given system k times and
converts it into a verification condition (VC) ψ , such that ψ
is satisfiable if and only if φ has a counterexample of depth
less than or equal to k.

Typically, BMC techniques can falsify properties up to a
given depth k; however, they are not able to prove system cor-
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(b)
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Fig. 1 Unbounded loop and finite unwinding

rectness, unless an upper bound of k is known, i.e., a bound
that unwinds all loops and recursive functions to their maxi-
mumpossible depths. In summary, BMC techniques limit the
visited regions of data structures (e.g., arrays) and the number
of related loop iterations. Thus, BMC restricts the state space
that needs to be explored during verification, in such a way
that real errors in applications can be found [23,33,51,60].
Nonetheless, BMC tools are susceptible to exhaustion of time
ormemory limits,whenverifying programswith loopbounds
that are too large.

For instance, in the simple program illustrated in Fig. 1a,
where the star notation indicates non-determinism, the loop
in line 4 runs an unknown number of times, depending on
the initial non-deterministic value assigned to N, in line 1,
and the assertions in lines 8 and 9 hold independently of
the N’s initial value. Unfortunately, BMC tools like the C
boundedmodel checker (CBMC) [23], the low-level bounded
model checker (LLBMC) [60], and the efficient SMT-based
context-boundedmodel checker (ESBMC) [33] typically fail
to verify this family of programs. That happens because such
tools must insert an unwinding assertion (the negated loop
condition) at the end of the loop, as illustrated in Fig. 1b,
line 9, which will fail if k is not set to the maximum value
supported by the unsigned int data type.

In mathematics, one usually tackles such unbounded
problems using proof by induction. As a consequence, an
approach called k-induction has been successfully com-
bined with continuously refined invariants [10]. There were
also attempts to prove, via k-induction, that (restricted) C

programs do not contain data races [25,26] or that time con-
straints are respected [30]. Additionally, k-induction is a
well-established technique in hardware verification, due to
monolithic transition relations present in hardware designs
[30,39,68]. Finally, regarding the unknown-depth problem
mentioned earlier, BMC tools can still be used to prove
correctness in those cases, if used as part of k-induction algo-
rithms.

In this respect, some approaches usually require invari-
ants to bemanually annotated with their values. For example,
Donaldson et al. [27,28]were able to increase the precision of
the invariant by manually applying trace partitioning [64], a
refinement technique for abstract domains that enables infer-
ence of disjunctive invariants using non-disjunctive domains,
while others resort to static analyses for generating invari-
ants [10,27] that are later refined, which then strengthen
associated induction hypotheses. Nonetheless, a complete
automatic methodology for producing strong (inductive)
invariants would be beneficial, mainly if consists in direct
logical evolution, given that no user interaction or additional
refinement is required.

The last paragraphs inspired thiswork,whosemain contri-
bution is a methodology for combining invariant generation
and k-induction in order to prove correctness of programs
written in the C language. Besides, verification-process
automation is also tackled,where users do not need to provide
loop invariants, i.e., conditions that hold before a loop, are
preserved through each loop iteration, and act as properties
that are true at a particular program location. Moreover, the
adopted invariant-generation tools were integrated through
specific interfacing layers, due to their distinct formats, in
order to provide a unified solution based on the proposed
approach.

As a consequence, we have added a new module to the
ESBMC tool, which employs mathematical induction with
invariant inference, in order to prove the correctness of
programs containing loops and then evaluate the proposed
methodology. Such a module implements an algorithm that
executes three steps: base case, forward condition, and induc-
tive step [34]. In the first, the goal is to find a counterexample
of size k, while the second one checks whether loops have
been fully unrolled, which is achieved by verifying that no
unwinding assertion fails, and, finally, the third one verifies
if a property holds indefinitely, where the mentioned integra-
tion with invariants occurs.

The proposed method infers program invariants to prune
the state space exploration and to strengthen induction
hypotheses. Additionally, to provide a practical and complete
implementation of the proposed methodology, two invariant-
generation tools were used: paralléliseur interprocédural de
programmes scientifiques (PIPS) [62] and path analysis for
invariant generation by abstract interpretation (PAGAI) [46].
The proposed method was implemented in a tool called
DepthK [65,66], which rewrites programs using invariants
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Verification and refutation of C programs based on k-induction and invariants 117

generated by PIPS or PAGAI, i.e., it adds those elements as
assumptions and uses ESBMC to verify the resulting pro-
gram with k-induction [34].

This study is a revised and extended version of previous
work [65,66] and focuses on contributions regarding combi-
nation of k-induction with invariant inference. In particular,
the main original contributions of this paper are as follows:

– We describe the original k-induction and our extended
version, which combines programs with invariants gen-
erated by either PIPS or PAGAI, in order to strengthen
its inductive step. In particular, we presented technical
details of the combination process for both PIPS and
PAGAI. Then, we concluded by presenting an illustra-
tive example in order to demonstrate the effectiveness of
our tool. Indeed, the mentioned example was extracted
from the International Competition on Software Verifica-
tion (SV-COMP) 2019 [8], and our extended k-induction
was able to prove its correctness, but plain k-induction
was not (Sect. 3).

– We analyze and compare the results of our tool against
other existing software verifiers that implement k-
induction and property-directed reachability (PDR). In
particular, we use ESBMCwith k-induction and interval-
invariant generator [33], CBMC [54], 2LS [19], SeaHorn
[43], Vvt [42], and CPAchecker-CTIGAR [13] (see
Sect. 4). Experimental results showed that k-induction
with invariant inference could handle a wide variety of
safety properties, in typical programs with loops and
embedded software applications from the telecommuni-
cations, control systems, and medical domains. Our k-
induction proof rule with polyhedral program invariants
was able to solve 2223verification tasks, i.e., it has proved
correctness in 602 and found property violations in 1621
benchmarks. These results outperformed other software
verifiers, including 2LS, CBMC and ESBMC, in some
particular categories (e.g., SoftwareSystems and Con-
currencySafety), which thus demonstrates improvement
over existing BMC and k-induction-based approaches.
Besides, our proposedmethod using PAGAI confirms the
hypothesis that DepthK is competitive when compared to
the best available PDR-based tool implementations.

Outline. In Sect. 2.1, we first give a brief introduction to
the BMC and k-induction techniques and also compare them
with PDR (or incremental construction of inductive clauses
for indubitable correctness - IC3) [16,44]. Section 3 presents
our induction-based verification algorithm using polyhedral
invariant inference for specifying pre- and post-conditions,
which works for C programs. In Sect. 4, the results of
our experiments are described by using several software-
model-checking benchmarks extracted from SV-COMP and
embedded systems applications. In Sect. 5, we discuss the

related work and, finally, Sect. 6 presents this work’s conclu-
sions.

2 Background

2.1 Boundedmodel checking

BMC based on SAT [12] was initially proposed in the early
2000s to verify hardware designs [11,12]. Indeed, a group
of researchers at Carnegie Mellon University were able to
successfully check large digital circuits with approximately
9510 latches, and 9499 inputs, leading to BMC formulae
with 4 × 106 variables and 1.2 × 107 clauses to be checked
by standard SAT solvers [11]. BMC based on SMT [5], in
turn, was initially proposed by Armando et al. [3], in order to
deal with ever-increasing software-verification complexity.

Generally speaking, BMC techniques aim to check the
violation of a given (safety) property at a given system depth.
Indeed, given a transition system M, which is derived from
the control-flow graph of a program, a property φ, which rep-
resents program correctness and/or a system’s behavior, and
an iteration bound k, which limits loop unrolling, data struc-
tures, and context-switches. BMC techniques thus unfold a
transition systemM k times, in order to convert it into a verifi-
cation conditionψ , which is expressed in propositional logic
or in a decidable-fragment of first-order logic. For example,
ψ is satisfiable if and only if φ has a counterexample of depth
less than or equal to k. The propositional problem associated
with SAT-based BMC is formulated as [11]

ψk = I (s0) ∧
k−1∧

i=0

R (si , si+1) ∧ ¬φk, (1)

where φk represents a safety property φ at step k, I is the
set of initial states of M , and R (si , si+1) is the transition
relation of M at time steps i and i + 1. Hence, the equation∧k−1

i=0 R (si , si+1) means the set of all executions of M with
length k and¬φk represents the condition thatφ is violated in
state k, which is reached by a bounded execution of M with
length k. Finally, the resulting (bit-vector) equation is trans-
lated into conjunctive normal form in linear time and passed
to a SAT solver for checking satisfiability. Equation (1) can be
used to check safety properties [63] (e.g., deadlock freedom),
while liveness ones (e.g., starvation freedom) that contain the
linear-time temporal Logic (LTL) operator F are verified by
encoding¬φk in a loop within a bounded execution of length
at most k, such that φ is violated on each state in that loop
[61]. This way, Eq. 1 can be rewritten as

ψk = I (s0) ∧
k−1∧

i=0

R (si , si+1) ∧
(

k∨

i=0

¬φi

)
, (2)
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where φi is the propositional variable φ at time step i . Thus,
this formula can be satisfied if and only if, for some i (i ≤ k),
there exists a reachable state at time step i in which φ is
violated.

Onemaynotice thatBMCanalyzes only boundedprogram
runs, but generates verification conditions (VCs) that reflect
the exact path in which a statement is executed, the con-
text in which a given function is called, and the bit-accurate
representation of expressions. In this context, a verification
condition is a logical formula (constructed from a bounded
program and desired correctness properties) whose validity
implies that a program’s behavior agreeswith its specification
[18]. Users can specify correctness properties in our context
via assert statements or automatically generated from a spec-
ification language [4]. If all of a bounded program’s VCs are
valid, then a program complies with its specification up, to
the given bound.

BMC tools tend to fail due to memory or time limits if
programs with loops whose bounds are too large or cannot
be statically determined are verified. In addition, even if a
program does not contain a violation up to a given bound k,
nothing can be said about k+1. Consequently, such limita-
tions has motivated researchers to develop new verification
techniques, in order to go deep into a program’s search space
and, at the same time, prove global correctness. In particular,
two possible strategies have been proposed in the literature,
in order to achieve that goal: k-induction [30,68] and IC3
[16,44], which are briefly described in the following sections.

2.2 Induction-based verification of C programs

One approach to achieve completeness in BMC techniques
is to prove that an invariant (assertion) is k-inductive using
SAT/SMT solvers [30,68]. The main challenge regarding
such a technique relies on computing and strengthening
inductive invariants from programs, in order to prove global
correctness. In particular, full verification requires, as a cru-
cial step, inference of each loop with a loop invariant [32],
which is a logical formula that is an abstract specification
of a loop. Therefore, loop invariants provide the means to
reason about loops and to prove their correctness. According
to the Xujie et al. [69] inferring loop invariants enables a
broad and deep range of correctness and security properties
to be proven automatically by a variety of program verifi-
cation tools spanning type checkers, static analyzers, and
theorem provers. Moreover, loop invariants must be induc-
tive in order to check satisfiability for the correspondingVCs,
as described by Bradley and Manna [18].

Si et al. [69] define loop invariant inference by introducing
Hoare logic [47] for proving program-correctness assertions.
Let P (precondition) and Q (post-condition) denote predi-
cates over program variables, and also let S denote a program
under evaluation. Based on Hoare rules, such triples can be
inductively derived over the structure of S. This way, we can

highlight the following one regarding loops:

P �⇒ I {I ∧ B}S{I } (I ∧ ¬B) �⇒ Q

{P} while B do S {Q} , (3)

where predicate I (the inductive invariant) is called a loop
invariant, i.e., an assertion that holds before and after each
iteration, as shown in the premise of the rule, and B is a
predicate on a program state. Thus, if a loop is equipped
with an invariant, proving its correctness means establishing
the two following hypotheses [32]:

– The initialization ensures the invariant, which is called
initiation property;

– The body preserves the invariant, which is called conse-
cution (or inductiveness) property.

For instance, consider the C-code fragment shown in
Fig. 1. Suppose that one wants to prove that P : x > 0 is
invariant. In order to attempt proving the invariant property
P, one can apply induction considering that the underlying
software-model checker supports IEEE floating-point stan-
dard (IEEE 754) [38,50]:

– In the base case, it holds initially because

N = ∗ ∧ i = 0 ∧ x = 2︸ ︷︷ ︸
initial condition

�⇒ x > 0︸ ︷︷ ︸
P

;

– In the inductive step, whenever P holds for k loop
unwindings, it also holds for k + 1 steps, i.e.,

x > 0︸ ︷︷ ︸
P

∧ x ′ = 2 ∗ x − 1 ∧ i ′ = i + 1︸ ︷︷ ︸
transition relation

�⇒ x ′ > 0︸ ︷︷ ︸
P’

.

Specifically, if we consider the IEEE754 standard [38,50],
then the invariant x > 0 holds initially and after each itera-
tion and x tends to infinity after 128 iterations, so x > 0 is
a candidate for a loop invariant. Nonetheless, this invariant
is not inductive, given that x > 0 before an initial iteration
does not ensure that x > 0 after each iteration, given that
if we initially assign x = 0.9, then x < 0 after the fourth
iteration. As a consequence, even if invariant-generation pro-
cedures successfully compute such assertions, which are
indeed invariant, those must be inductive, so that k-induction
verifiers can automatically prove global correctness. In this
specific example, an inductive invariant would be x > 1,
given that if x > 1 holds before the initial iteration, then
x > 1 also holds after k iterations.

Several invariant-generation algorithms discover linear
and polynomial relations among integer and real variables,
in order to provide loop invariants and also to discover
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memory “shapes,” in programming languages with point-
ers, such as those used in PIPs and PAGAI [46,62]. The
current literature regarding that also reports a significant
increase in effectiveness and efficiency, while outperforms
all previous implementations of k-induction-based verifica-
tion algorithms for C programs, using invariant generation
and strengthening, mostly based on interval analysis [10].

Novel verification algorithms for proving correctness of
(a large set of) C programs, by mathematical induction and
in a completely automatic way (i.e., users do not need to
provide loop invariants), have been recently proposed [10,
19,25,34,65,66]. Additionally, k-induction based verification
was also applied to ensure that (restricted) C programs (1) do
not contain violations related to data races [26], considering
the Cell BE processor, and (2) do respect time constraints,
which are specified during system design phases [30]. Apart
from that, k-induction is easily applied, due to themonolithic
transition relation present in such designs [30,39,68].

Note that k-inductionwith invariants has the potential to be
directly integrated into existing BMC approaches, given that
the induction algorithm itself can be seen as an extension after
k unwindings. It is possible to generate program invariants
with other software modules, which are then translated and
instrumented into an input program [65].

2.3 Property-directed reachability (or IC3)

While BMC is very effective in finding counterexamples, it
is indeed incomplete, due to the bound limitation. This weak-
ness motivated the development of IC3 and other complete
SAT-based approaches. In particular, Bradley et al. [16,44]
introduced IC3, which is also known as PDR. IC3 aims to
find an inductive invariant F stronger than P , i.e.,

I N I T ⇒ F

F ∧ T ⇒ F ′

F ⇒ P, (4)

where I N I T describes the set of initial states and T repre-
sents the set of transitions, by learning relatively inductive
facts (incrementally) locally. Indeed, that is carried out
by iteratively computing an over-approximated reachability
sequence F0, F1, . . . , Fl+1, such that

F0 = I N I T

Fi => Fi+1

Fi ∧ T ⇒ F ′
i+1

Fi ⇒ P. (5)

In summary, starting from the initial states, every assignment
that satisfies the current clause Fi also satisfies the next one
(Fi+1), every reachable state satisfies the next clause, and

a given property is satisfied in every clause, i.e., P is an
invariant up to k + 1. As a result, if Eq. (5) is performed, F
becomes an inductive invariant stronger than P, as shown in
Eq. (4).

In fact, IC3 is a procedure for safety verification of sys-
tems, and some studies have shown that IC3 can scale on
specific benchmarks, where k-induction fails to succeed. In
particular, the success of IC3 over k-induction procedures is
due to the ability of the former to guide a search for inductive
instances with counterexamples to inductiveness (CTIs) of a
given property. Besides, the previous SAT-based approaches
require unrolling the transition relation T (cf. Eqs. 4 and 5),
in order to search for an inductive invariant and to strengthen
it; however, IC3 performs no unrolling, given that it learns
relatively inductive facts locally.

A CTI is a state (more generally, a set of states repre-
sented by a cube, i.e., a conjunction of literals) that is a
counterexample to consecution [17]. Consider again the C-
code fragment shown in Fig. 1, where P : x > 0 is an
invariant, but assume now that x has been initialized with a
non-deterministic value, in order to make it harder to infer
an invariant, as given by

x > 0︸ ︷︷ ︸
P

∧ x ′ = 2 ∗ x − 1 ∧ i ′ = i + 1︸ ︷︷ ︸
transition relation

��⇒ x ′ > 0︸ ︷︷ ︸
P’

.

In that specific example, one possible CTI returned by a
SAT/SMT solver is x = 0. If this particular state is not elim-
inated from the search space performed by the solver, then
the invariant P cannot be established, since it is not induc-
tive, given the initial assignment to x . Indeed, the generated
inductive assertion should establish that the CTI x = 0 is
unreachable and if such an inductive assertion does not exist,
then other CTIs can be examined instead (e.g., 0.1, 0.2, . . . ,
0.9). As a consequence, the resulting lemmas must be strong
enough that consecutively revisiting a finite set of CTIs will
eventually lead to an assertion, which is inductive relative to
them, thus eliminating the proposed CTI. In the mentioned
example, the loop invariant candidate x > 1 is inductive and
thus eliminates all possible CTIs in our running example.

Recent work has been done to improve the IC3’s strengths
further, in order to prove safety properties. One notable study
was performed by Jovanović et al. [53], which presents a
reformulation of the IC3 technique by separating reachabil-
ity checking from inductive reasoning. In particular, those
authors further replace the regular induction algorithm by the
k-induction proof rule and show that it providesmore concise
invariants than the original approach proposed by Bradley
[16]. Additionally, the mentioned authors implemented that
proof rule in the SALLY model checker1, using the SMT
solver Yices22, in order to perform the forward search,

1 https://github.com/SRI-CSL/sally.
2 http://yices.csl.sri.com/.
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and MathSAT53, to perform backward search. Finally, they
showed that their proposed algorithm could solve several
real-world benchmarks, at least as fast as other existing
approaches.

3 Induction-based verification of C programs
Using invariants

In this section, we describe the main contribution of the
present paper: a verification methodology for combining
k-induction and loop invariant generation, which was imple-
mented in a tool named as DepthK.4 The first step of our
methodology consists in generating invariants for a given
ANSI-C program, which is performed with external tools
to strengthen the associated inductive step. Indeed, PIPS
and PAGAI were used for such a purpose, with invariants
included as comments in different formats, which led to the
development of distinct integration layers for each invari-
ant generator, as described in Sects. 3.3 and 3.4. In that
sense, future invariant-generation tools would then only need
new integration layers, when used along with our verifica-
tion methodology. Moreover, one may notice that PIPS and
PAGAI are suitable for the C language and have the potential
to handle a wide variety of safety properties [59].

Although other invariant generators beyond PIPs and
PAGAI do exist, such as accelerated symbolic polyhedral
invariant computation (ASPIC) and integer set library (ISL),
the latter do not handle automatic abstraction and some
specific details of the C programming language, such as
pointer arithmetic, as mentioned by Maisonneuve et al. [59].
Moreover, PIPS and PAGAI present different configuration
options, which lead to different results and can also be
explored with the goal of pruning state-spaces. Specifically,
PIPS [59] is an inter-procedural source-to-source compiler
framework for C and Fortran, based on automatic static
analysis, which relies on polyhedral abstraction of program
behavior for inferring invariants, while PAGAI [46] is a
source code analysis algorithm based on abstract interpre-
tation with linear domains (products of intervals, octagons,
and polyhedra) and path focusing, which can generate induc-
tive invariants.

3.1 The k-induction algorithm

Algorithm 1 shows an overview of the k-induction algorithm
used in ESBMC [34], which is an extended version of the
original k-induction initially proposed by Eén and Sörensson
[30]. It takes a program P , as input, and returns FALSE if a
property violation is found, TRUE if it can prove correctness,
or UNKNOWN.

3 http://mathsat.fbk.eu/.
4 https://github.com/hbgit/depthk.

Input: Program P
Output: TRUE, FALSE, or UNKNOWN

1 begin
2 k = 1;
3 while k <= max_iterations do
4 if baseCase (P, k) then
5 show the counterexample s[0 . . . k];
6 return FALSE;
7 else if forwardCondition (P, k) then
8 return TRUE;
9 else

10 k=k+1;
11 if inductiveStep (P, k) then
12 return TRUE;
13 end
14 end
15 end
16 return UNKNOWN ;
17 end

Algorithm 1: The k-induction algorithm.

In the base case (lines 4-6), the algorithm tries to find
a counterexample up to k steps. If no property violation is
found, then the forward condition (lines 7-8) checks whether
the completeness threshold5 is reached at the current k step.
Finally, the inductive step (lines 11-12) checks whether the
property φ holds indefinitely. If φ is valid for k iterations,
then it must be valid for the next ones. The algorithm runs up
to a certain number of repetitions and only increases the value
of k if it cannot falsify the property during the base case. One
may notice that k is incremented only at the start of the else
branch, on line 10. In our benchmarks, we also noticed that
computational resources are wasted if we start with k = 1 in
the inductive step since loops are usually unfolded at least
two times. The properties checked by each step are generated
during their execution, as follows. In the base case and also
in the inductive step, in addition to user-defined properties
(using assert statements), safety properties such as out-
of-bounds checks, pointer validity, and division by zero are
derived from a program and checked. In the forward condi-
tion, only the completeness threshold is checked, which is
done in a C program, by using unwinding assertions, i.e., it
verifies whether all loops were unrolled entirely. There exists
no need to check any other properties in the forward condi-
tion, as all of them were already checked for the current step
k. Those properties are used to assign a non-deterministic
value of program variables that participate in a loop.

Although k-induction is a successful technique to falsify
or prove correctness, the over-approximation employed by
the inductive step is unconstrained and might present spu-
rious counterexamples. For example, traces produced by a
failed inductive step in k-induction are a feasible sequence
of k+1 transitions from an arbitrary loop iteration to an error

5 The completeness threshold defines a bound k such that if no coun-
terexample of length k or less to a given LTL formula is found, then the
formula, in fact, holds over all infinite paths in the model [56]
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state, where that loop iteration itself may be unreachable.
Currently, our main idea as described by Gadelha et al. [35],
is to search simultaneously forward, from the initial state,
and backward, from the error state, whose procedure stops
if those two searches meet halfway. This extension aims to
convert the k-induction algorithm into a bidirectional search
approach by using the base case as the forward part and the
inductive step as the backward one.

3.2 Extended k-induction algorithm

Our technique generates invariants (using external tools). It
creates a copy of an input program, which is modified by the
inductive step of the k-induction algorithm in order to over-
approximate its loops. Algorithm 2 describes our extended
k-induction algorithm combined with invariants.

Input: Program P , Tool T
Output: TRUE, FALSE, or UNKNOWN

1 begin
2 I nv = genInvariants (P , T );
3 P ′ = combine (P, I nv);
4 k = 1;
5 while k <= max_iterations do
6 if baseCase (P ′, k) then
7 show the counterexample s[0 . . . k];
8 return FALSE;
9 else if forwardCondition (P ′, k) then

10 return TRUE;
11 else
12 k=k+1;
13 if inductiveStep (P ′, k) then
14 return TRUE;
15 end
16 end
17 end
18 return UNKNOWN ;
19 end

Algorithm 2: Our extended k-induction algorithm.

Similarly to the original k-induction algorithm, our
extended version returns FALSE, TRUE, or UNKNOWN,
depending on the result of each step. However, it takes three
inputs: the original program P , the property φ to be checked,
and the chosen tool, which is either PIPS or PAGAI.

In the first step of the extended Algorithm 2 (line 2), the
chosen tool T is called and it tries to generate invariants for
program P . In case of tool failure or no invariant generated,
it returns ∅; otherwise, it returns a set of invariants I nv.
The second step is to combine the set of invariants I nv and
the original program P , in order to create P ′ (Line 3). This
process is specific to each tool, as invariants are generated in
different formats, and, as a consequence, such elements need
to be preprocessed before being combined with P . Function

combine is defined in

combine := [
P ′ := i te(I nv = ∅, P, P ∧ I nv)

]
, (6)

where the new program P ′ is the result of an i te operation.
If the set of invariants is ∅, P ′ is the original program P;
otherwise, P ′ = P ∧ I nv. The technical description of the
combination of the original program with invariants gener-
ated by PIPS and PAGAI is described in Sects. 3.3 and 3.4,
respectively.

Finally, the last modification to the base algorithm is to
use program P ′ in every step, during verification, instead of
P (lines 6, 9, and 13).

In order to provide reliable results, we have integrated the
available witness checkers [8] into DepthK (i.e., CPAchecker
and Ultimate Automatizer). After achieving a conclusive
result (true or false), DepthK generates an extensible markup
language (XML) file that contains all program states, i.e.,
from the initial state to the bad one, which lead to a given
property violation. This file is known as the witness file. Cur-
rently, there exist two state-of-the-art tools able to perform
witness validation: CPAchecker [6] and Ultimate Automizer
[45]. DepthK currently handles this witness file as follows:

1. It is submitted to CPAchecker [6] for validation and, if
the DepthK’s result is confirmed, then it is provided to
users;

2. If CPAchecker is unable to confirm the result pro-
vided by DepthK or if there exists an internal failure in
CPAchecker, then it is submitted to Ultimate Automizer
[45] and, if the DepthK’s result is confirmed, that is pro-
vided to users;

3. If both tools are unable to evaluate it, then the result
is considered UNKNOWN, i.e., the witness-validation
procedure is unsuccessful in confirming the DepthK’s
verification result.

Validation of witness files became a rule in SV-COMP, as
a way of deeply assessing verification results provided by a
given verifier since it is possible to confirm, fully automat-
ically, if values used in state-space exploration, which are
available in a counterexample, lead to a correct result.

3.3 Invariant generation using PIPS

PIPS aims to process large programs by performing a
two-step analysis [62] automatically. Firstly, each program
instruction is associated with an affine transformer, repre-
senting its underlying transfer function. Indeed, that is a
bottom-up procedure, which starts from elementary instruc-
tions and then goes through compound statements, up to
function definitions. Secondly, polyhedral invariants are
propagated along with instructions, using previously com-
puted transformers.
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Fig. 2 Sample with PIPS invariants using the structure #init

PIPS takes a C program as input, generates invariants, and
prints a C program with those invariants as comments before
each program statement. Then, we process those comments
and instrument source code using assume statements.6

Each comment must be preprocessed before being added
to a C program, as those invariants generated by PIPS con-
tain the suffix#init and includesmathematical expressions
(e.g., 2 j < 5t). For instance, Fig. 2 shows transformers, pre-
conditions, and generated syntax for the program described
in [59], using PIPS. One may notice that those mathemati-
cal expressions do not contain a multiplication sign between
constant and variable names,which does not consist in a valid
C syntax.

In Algorithm 3, we describe the process of combining
an original C program P with a set of invariants. As previ-
ously defined, P is the original program, I nvSet is the set of
invariants, and P ′ is the combination of the original program
P and invariants I nvSet . The complexity of that algorithm is
O(n2), where n is the code size with invariants generated by
PIPS. Algorithm 3 is split into three parts: (1) identification
of structures #init, (2) generation of code to support trans-
lation of structures#init into invariants, and (3) translation
of the related mathematical expressions into ANSI-C code.

The first part of Algorithm 3 is performed in Line 7,
which consists of reading each line of I nvSet and identi-
fying whether a given comment is an invariant generated
by PIPS (line 8) or not. If an invariant is identified and it
contains a structure #init, then its location (i.e., its line
number) defined by Inv.line is stored, as well as type and
name of the associated variable. After identifying struc-
tures #init in invariants, the second part of this algorithm
analyzes each code line in I nvSet , but now with the goal
of identifying the beginning of each programming function
(line 15). For each function that is identified, this algorithm

6 ESBMC requires assume statements to be written using
__ESBMC_assume(bool).

Input: Program P , Set of invariants I nvSet
Output: Program P ′

1 if I nv is empty then
2 return P
3 end

// dictionary to identify #init
4 dict_varinitloc[] ← { }

// copy comments of each invariant into
array pips_comments

5 pips_comments[] ← extract_comments(I nv)
// list for the new code generated in the

translation
6 P ′ ← { }

// Part 1 - identifying #init in the
invariants

7 foreach I nv in I nvSet do
8 if pips_comments[Inv] is not empty then
9 if pips_comments[Inv] has the pattern

([a-zA-Z0-9_]+)#init then
10 dict_varinitloc[I nv.line] ← the variable

suffixed #init
11 end
12 end
13 end

// list of translated invariants
14 listinvpips ← { }

// Part 2 - code generation to support
#init structure and corrections
regarding invariant format

15 foreach I nv in I nvSet do
16 P ′ ← I nv.line
17 if P ′ at I nv.line is a function then
18 if there exists some line in this function ∈

dict_varinitloc then
19 foreach variable ∈ dict_varinitloc do
20 P ′ ← Declare a variable as

variable.type
var_init=variable.name;

21 end
22 end
23 end

// Part 3 - translation of the related
mathematical expressions into
ANSI-C code

24 if pips_comments[Inv] is not empty then
25 foreach expression ∈ pip_comments[Inv] do
26 listinvpips ← Reformulate the expression

according to the C programs syntax and replace
#ini t by _ini t

27 end
28 P ′ ← __ESBMC_assume(conjunction of all

invariants in listinvpips);
29 end
30 end
31 return P ′

Algorithm 3: The combination algorithm for PIPS.

checks whether it has structures #init (line 18) and, when
that is true, a new code line is generated, for each related
variable and at the beginning of the same function, with
the declaration of an auxiliary variable, which contains a
variable’s old value, i.e., its initial value. The newly created
variable has the format variable.type var_init =
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variable.name , where variable.type is its identi-
fied type and variable.name is its identified (original)
name.

Finally, each line containing a PIPS invariant is turned into
expressions supported by theANSI-C standard. Such a trans-
formation consists of applying regular expressions (line 26)
to multiplication operators (e.g., from 2 j to 2∗ j) and replac-
ing structures #init by _init, which indicates that a new
auxiliary variable must be generated and its content will be
used as initial value for the original one. For each analyzed
PIPS comment/invariant in I nvSet , a new code line is gen-
erated in P ′. The function __ESBMC_assume’s parameter
is a conjunction of all invariants generated by PIPS.

3.4 Invariant generation using PAGAI

PAGAI [46] is a static analyzer that uses structures of the low-
level virtual machine (LLVM) compiler [57] and computes
inductive invariants on numerical variables of an input pro-
gram. Indeed, it uses a source-code analysis algorithm based
on abstract interpretation to infer invariants for each control
point in a C/C++ program. PAGAI performs a linear-relation
analysis, which obtains invariants as convex polyhedra; how-
ever, it also supports other abstract domains, e.g., octagons
and products of intervals, which is not true for PIPS. Indeed,
this last difference provides some variability for the adopted
tools, which can be explored for tuned behavior in specific
scenarios.

In the experimental evaluation presented by Henry et al.
[46], PAGAI was applied to real-world examples (indus-
trial code and GNU programs). According to those authors,
front-ends for many analysis tools place restrictions (e.g.,
no backward goto instructions and no pointer arithmetic),
which may compromise safety-critical embedded programs.
At the same time, PAGAI does not suffer from such issues.
Nonetheless, it may apply coarse abstractions to someC/C++
programs, which can lead to weak invariants, whose con-
junctions with safety properties are not inductive, as later
confirmed in the experimental results of that work.

PAGAI takes a program as input, generates invariants, and
outputs a new program, with invariants as comments before
each statement. Similarly to our approach based on PIPS,
those invariants are added to a program as assume statements.
Let P denote the original program, I nvSet be a set that has
each invariant extracted from the PAGAI annotations and
its code location (i.e., the line number of the code), in the
analyzed program P , and P ′ be the combination between
the original program P and invariants from I nvSet . Aiming
to include the program invariants inferred in I nvSet , our
PAGAI-based translation approach uses assume statements
(in our case, __ESBMC_assume) to integrate them into P ′.
In contrast to PIPS, such invariants require minor changes,
given that they are already ANSI-C compliant.

Fig. 3 Verification example with two properties

3.5 Illustrative example

As an illustrative example, we describe a C program7

extracted from SV-COMP 2019 [8] (shown in Fig. 3). We
chose this particular example because it demonstrates the
importance of invariants, when verifying programs: the k-
induction algorithm without invariants (using ESBMC) was
unable to prove its correctness, during the same competition.

Two properties are being checked here (lines 7 and 8),
eight times for each outer-loop iteration. Onemay notice that
the nested loop does not change the properties being verified,
but rather repeats checks eight times. Indeed, this is reduced
by ESBMC, which checks a property only once per (outer)
loop iteration, as follows:

1. assert(nlen-1-i < nlen): can be rewritten as
assert(i>=0);

2. assert(0 <= nlen-1-i): can be rewritten as
assert(nlen >= i+1).

This program is safe, so the traditional base casewill never
find a property violation. In order to prove correctness using
the forward condition, a BMC tool will try to unwind the
outer loop 231 − 1 times, while unwinding the inner one 8
times, on each iteration: only when it can unwind to that
depth, it will reach all possible states, which is infeasibly
expensive in both time and memory.

A plain inductive step is also unable to prove correctness,
which is done by rewriting the mentioned program as illus-
trated in Fig. 4. The transformations are: (1) all variables
written inside a loop are treated as non-deterministic, as one
can see in line 6, (2) it is assumed that the loop is indeed exe-
cuted, as performed in line 7, and (3) after the loop’s body, it
terminates, which happens in line 11. Onemay notice that the
inner loop is not present in this verification. Indeed, although
j is written inside that loop body (when it is incremented),
it is not part of the property’s verification.

Indeed, the plain inductive step will easily find a coun-
terexample for this program, as both i and nlen are

7 loop-invgen/id_build_true-unreach-call_true-termination.i.
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Fig. 4 Verification example rewritten during the inductive step

unconstrained. ESBMC finds a property violation for nlen
= 4 and i = -536870913, and although nlen = 4 is
a value reachable by nlen during program execution, i
will never reach -536870913. It is worth noticing that the
related counterexample is spurious, due to the overapproxi-
mation previously mentioned.

The programs in Fig. 5 show invariants inserted by both
PIPS and PAGAI, using the intrinsic function
__ESBMC_assume. Both tools generate inductive invari-
ants that are able to prove correctness of both properties:

1. PIPS generates 0<=i && i+1<=nlen
2. PAGAI generates i >= 0 && -1+nlen-i >= 0,

Which are precisely the properties under verification. By
assuming those two invariants, BMC tools will remove every
state that violates those properties, leaving only reachable
states. Our extended k-induction algorithm, combined with
invariants, is a simple but substantial modification to the
original k-induction and allows us to increase the number
of programs that can be proved correct.

4 Experimental evaluation

In this section, we present an experimental evaluation to
establish a baseline for empirical comparisons involving
DepthK, CPAchecker-kinduction, and PDR-based tools, in
the context of software verification, and to determinewhether
we can combine the strengths of k-induction with those of
loop invariant generation. Our method was implemented in
DepthK; we applied it to verify C benchmarks from embed-
ded system applications and also the SV-COMP editions
20188 and 2019.9 Additionally, we have also compared

8 https://sv-comp.sosy-lab.org/2018/results/results-verified/.
9 https://sv-comp.sosy-lab.org/2019/results/results-verified/.

(a)

(b)

Fig. 5 Verification example with invariants

our approach against ESBMC [33], CBMC [54], and 2LS
[19]10,11 DepthK was also evaluated against the available
PDR-based verifiers CPAchecker-CTIGAR [13], SeaHorn
[43], and Vvt [42]12, which can be applied to actual C pro-
grams. SeaHorn is the most prominent software verifier that
implements IC3; however, given its last participation in SV-
COMP, in 2016, it did not performwell against other existing
software verifiers (including DepthK), given a large number
of incorrect results as reported by Beyer et al. [7]. There-
fore, regarding IC3 tools comparison and given their current
limited availability for C programs [9], we have considered
only the verification tasks where the property to verify is the

10 https://sv-comp.sosy-lab.org/2018/results/results-verified/
META_ReachSafety_depthk.table.html.
11 https://sv-comp.sosy-lab.org/2018/results/results-verified/
META_SoftwareSystems_depthk.table.html.
12 https://www.sosy-lab.org/research/pdr-compare/supplements/
results/table.html.
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unreachability of a program location (i.e., ReachSafety and
SoftrwareSystems), as presented in Table 3.

4.1 Experimental setup

In order to evaluate the effectiveness of our proposedmethod,
we use C programs with loops from public repositories,
which constitute the main reference in the software verifica-
tion area, such as the set of C benchmarks from SV-COMP
[8] and embedded systems applications [40,67,70]. For each
benchmark, we check a single property encoded as an asser-
tion or as an error location, i.e.,we checkwhether an assertion
is not violated or whether an error label is unreachable in any
finite execution of the program.

The SV-COMP’s benchmarks used in this experimental
evaluation include:

– ReachSafety, which contains benchmarks for checking
the reachability of an error location;

– MemSafety, which presents benchmarks for checking
memory safety;

– ConcurrencySafety, which provides benchmarks for
checking concurrency problems;

– Overflows, which is composed of benchmarks for check-
ing if variables of signed-integers type overflow;

– Termination, which contains benchmarks for which ter-
mination should be decided;

– SoftwareSystems, which provides benchmarks from real
software systems.

Regarding the PDR-based experimental results presented
in Table 3, we consider only verification tasks that explore
the strength of the PDR approach, where the property to ver-
ify is the unreachability of a program location. From the
benchmarks above, we excluded properties for overflows,
memory safety, and termination, which are not in the scope
of this evaluation, and the categories ReachSafety-Recursive
and ConcurrencySafety, each of which is not supported by at
least one of the evaluated implementations. The remaining
set of categories consists of 5591 verification tasks.

The embedded-system applications used in this experi-
mental evaluation are classified in 3 categories: Powerstone
[67], which is used for automotive-control and fax appli-
cations; Real-Time SNU [70], which contains a set of
programs for matrix handling and signal processing, such
as matrix multiplication and decomposition, second-degree
equations, cyclic-redundancy check, Fourier transform, and
JPEG encoding; and WCET [40], which is a set of programs
for executing worst-case time analysis.

Here, we analyze the number of true and false positives
and also the number of true and false negatives. Addition-
ally, we generate a score for each analyzed tool based on the
total number of correct and incorrect results. In particular,

this experimental evaluation is performed with the following
tools:

– DepthK v3.1 with k-induction and invariants, using poly-
hedra (through PIPS and PAGAI), where ESBMC’s
parameters are defined in a wrapper script available in
the DepthK’s repository;

– ESBMC v6.0 along with plain k-induction, which is
run with an interval-invariant generator that preprocesses
input programs, infers invariants based on intervals, and
includes them into programs.

– CBMC v5.11 with a bounded model checker, which,
in the absence of additional loop transformations or k-
induction, runs the script provided by Beyer, Dangl, and
Wendler [10];

– CPAchecker13 (revision 15596, acquired directly from its
SVN repository) [10], which was executed with options
k-induction together with invariants, and for k-induction
without invariant;

– CPAchecker-CTIGAR (revision 27742) [13], which is an
adaptation of PDR to software verification. Our evalua-
tion compares CPAchecker with the implementations of
CTIGAR;

– 2LS v0.7.2 along with k-induction and invariants, which
is named kIkI and is executed with a wrapper script from
SV-COMP 2019 [8];

– SeaHorn(F16-0.1.0-rc3) [43], which is a modular verifi-
cation framework that uses constrained Horn clauses as
the intermediate verification language. SeaHorn’s verifi-
cation condition generator is based on IC3;

– VVT [42], which is an implementation of the CTIGAR
approach [13] that uses an SMT-based IC3 algorithm
[15] incorporating Counterexample Guided Abstraction
Refinement (CEGAR) [22]. Our evaluation compares the
combination ofVvt-CTIGARand boundedmodel check-
ing, which is named as Vvt-Portfolio.

The present experimental evaluation was conducted on a
computer with Intel Core i7 − 4790 CPU @ 3.60GHz and
32 GB of RAM, running Linux Ubuntu 18.04 LTS x64. Each
verification task is limited to a CPU time of 15 minutes and
a memory consumption of 15 GB.

4.2 Experimental results

After running all tools, we obtained the results shown in
Tables 1 , 2 and 3. Table 1 shows the results for the embed-
ded system benchmarks, where Tool is the name of the Tool
used in the experiments, Correct Results is the number of
correctly proven programs, Incorrect Results is the num-
ber of programs where the respective Tool found at least one
error, although being completely correct, or it does not iden-

13 https://svn.sosy-lab.org/software/cpachecker/trunk.
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tify an error, but the program contains a property violation,
Unknown andTO is the number of programs that the Tool is
unable to verify, due to lack of resources, tool failure (crash),
or verification timeout (15 min), and Time is the runtime, in
minutes, to verify the entire benchmark set.

Table 2 shows the results for all evaluated tools, regard-
ing the SV-COMP 2019’s benchmark suite, whereCategory
is the SV-COMP’s category, Tool is the name of the tool
used in the experiments, Correct True is the number of pro-
grams where the respective tool did not find a bug, and that
is correct, Correct False is the number of programs where
the respective tool correctly found a bug, True Incorrect is
the number of programs where the respective tool does not
identify an error, which is correct, and False Incorrect is the
number of programs where the respective tool found at least
one error, although being completely correct.

Table 3 shows the results for all the 5591 verification tasks
and has the same categorization as Table 2. Nonetheless, it
compares the effectiveness and efficiency of our implemen-
tation to the only available verifiers that implement a pure
PDR approach for software-model checking.

Regarding Table 1, we have the following observations:

– The winning tool using k-induction is 2LS, which was
able to give a correct result in all 34verification tasks from
the embedded-system benchmarks (Powerstone, SNU,
and WCET): the difference with our approach is the way
invariants are produced, i.e., we generate them before
verification starts, while 2LS does that on each step, in
order to continuously strengthen them.

– The results presented by DepthK using PIPS were lower
than that of ESBMC and CPAchecker, but it outper-
formed CBMC with k-induction: although there exist no
failures in our verification process, many inconclusive
results were presented (i.e., unknown and TO), the rea-
son being that both (PIPS and PAGAI) are not adequately
prepared to handle some C features (e.g., bit-shift oper-
ations) used in embedded-system applications.

– The results presented by our approach are directly related
to the maturity of each invariant generation tool: it is pos-
sible to improve the results presented by PIPS, since it has
a wide variety of configurations that can be exploited by
users, and PAGAI cannot be configured by users, which
is the main difficulty for generating inductive invariants
for embedded-system applications.

– Invariant generation configuration may be an improve-
ment task: as already mentioned, PIPS presents a wide
variety of configurations, which can be adaptively done
for a given scenario or benchmark type.

– ESBMCv6.0has received significant improvements in its
k-induction algorithm, with bug and memory-leak fixes
and guard simplification: using only its k-induction tech-
nique was enough to outperform our proposed method
and its execution time was also shorter, due to implemen-

tation of those same improvements and because it does
not require additional time for generating invariants;

– CPAchecker using only k-induction was slightly worse
than ESBMC with k-induction. There exist two reasons
to explain this result. The first one is that CPAchecker’s
invariant-generation algorithm works in the background,
while it verifies a program. Consequently, the cumulative
runtime of its two versions might exceed that of ESBMC,
because the latter performs everything sequentially, in
one single call, i.e., in order to generate a control flow
graph, annotate a program with invariants, and finally
verify it. The secondone is thatCPAchecker continuously
refines invariants, which might run for longer times and
then get strengthened, thus proving program correctness.

– CBMC with k-induction that verifies the absence of vio-
lated assertions under a given loop unwinding bound;
however, it seems to be still experimental. In particular,
CBMC relies on a limited loop unwinding technique and
concurrent programs, which is unable to unroll nested
loops [25].

In Tables 2, we have the following observations about
those experimental results, per category.

– ReachSafety:

– Our proposed method based on PAGAI presented
the lowest number of correct answers, if compared
with other existing approaches, because the generated
invariants increased verification times and memory
consumption rapidly, soDepthKdid not reach a result
promptly or even exceeded the amount of allowed
memory;

– ESBMC is the tool that correctly verified the most
significant number of benchmarks, which demon-
strated the effectiveness of the new interval-invariant
used during verification processes. This improvement
influenced results for some categories, such asReach-
Safety and SoftwareSystems; however, ESBMC failed
to verify other benchmarks, due to an internal bug
in ESBMC, which made it unable to track variables
going out of scope [33];

– 2LS is the tool that correctly verified the second most
significant number of benchmarks, which demon-
strates its ability to analyze programs requiring
combined reasoning about the shape and content
of dynamic data structures and instrumentation for
memory safety properties. Nonetheless, the reason-
ing about array contents is still missing, and the 2LS’
algorithm kIkI does not support recursion yet.

– MemSafety:

– ESBMC and CBMC were denoted as the first- and
the second-best tools, respectively, due to recent
improvements explicitly implemented for this cate-
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Table 1 Experimental results for the Powerstone, SNU, and WCET benchmarks

Tool DepthK DepthK ESBMC CPAchecker CPAchecker CBMC 2LS
(PIPS) (PAGAI) (k-ind) (k-ind) (cont. ref. k-ind.) (k-ind)

Correct results 16 14 29 27 27 15 34

Incorrect results 0 0 0 0 0 0 0

Unknown and TO 18 20 5 7 7 19 0

Time (min) 55.51 56.13 54.18 1.8 1.95 286.06 10.6

Table 2 Experimental results for the SV-COMP’19

Category Tool Correct Correct Total Incorrect Incorrect Total
True False Correct True False Incorrect

ReachSafety DepthK (PAGAI) 62 700 762 0 4 4

ESBMC (k-ind) 1332 893 2225 7 3 10

2LS 1062 453 1515 1 2 3

CBMC 641 669 1310 0 0 0

MemSafety DepthK (PAGAI) 80 45 125 1 16 17

ESBMC (k-ind) 130 64 194 8 2 10

2LS 65 66 131 3 68 71

CBMC 119 71 190 2 6 8

ConcurrencySafety DepthK (PAGAI) 194 608 802 16 4 20

ESBMC (k-ind) 182 600 782 14 7 21

2LS – – – – – –

CBMC 165 331 496 0 3 3

Overflows DepthK (PAGAI) 0 167 167 0 0 0

ESBMC (k-ind) 85 149 234 0 0 0

2LS 87 140 227 0 0 0

CBMC 31 169 200 0 0 0

Termination DepthK (PAGAI) 266 0 266 14 0 14

ESBMC (k-ind) 717 0 717 0 0 0

2LS 676 306 982 0 3 3

CBMC 718 0 718 0 0 0

SoftwareSystems DepthK (PAGAI) 0 101 101 0 6 6

ESBMC (k-ind) 1165 28 1193 12 2 14

2LS 171 0 171 0 0 0

CBMC 28 8 36 1 2 3

Total DepthK (PAGAI) 602 1621 2223 31 30 61

ESBMC (k-ind) 3611 1734 5345 41 14 55

2LS 2061 965 3026 4 73 77

CBMC 1702 1248 2950 3 11 14

Bold values indicate the highest number of correct results and the lowest number of incorrect results for each category

gory [54]. However, the number of incorrect results,
although relatively low, is the main problem.

– Our proposed method and 2LS were the tools that
solved the lowest numbers of benchmarks. However,
2LSpresented a large number of incorrect results, due
to the lack of a bit-precise verification engine driven
by weak invariants that did not take into account the

nature of this category and its respective safety prop-
erties.

– ConcurrencySafety:

– The proposed method using PAGAI is the tool that
correctly verified the most significant number of
benchmarks and was indeed able to increase that fig-
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Table 3 PDR-based experimental results SV-COMP’18

Category Tool Correct Correct Total Incorrect Incorrect Total
True False Correct True False Incorrect

ReachSafety DepthK (PAGAI) 395 644 1039 0 7 7

CPAchecker-CTIGAR 397 214 611 0 1 1

SeaHorn 1010 595 1605 6 105 111

Vvt-Portfolio 528 311 839 9 22 31

SoftwareSystems DepthK (PAGAI) 393 58 451 0 3 3

CPAchecker-CTIGAR 435 41 477 0 0 0

SeaHorn 1714 149 1863 40 12 52

Vvt-Portfolio 0 0 0 0 0 0

Total DepthK (PAGAI) 788 702 1490 0 10 10

CPAchecker-CTIGAR 832 255 1087 0 1 1

SeaHorn 2724 744 3468 46 117 163

Vvt-Portfolio 528 311 839 9 22 31

Bold values indicate the highest number of correct results and the lowest number of incorrect results for each category

ure, due to its invariant inference. Also, our method
was able to minimize ESBMC weakness by reduc-
ing the number of incorrect results. One of the
main contributions of the present work is the gen-
eration of sufficiently inductive invariants that can
guide ESBMC to correct results, given that invari-
ants inferred by PAGAI were essential to eliminate
states that would typically induce ESBMC to fail.

– ESBMC has full concurrency support, and its stan-
dard context-BMC algorithm can solve a wide range
of verification tasks, without the aid of k-induction
and external invariants. Nonetheless, this tool pro-
duced the most significant number of incorrect
results, due to the lack of support for some POSIX
Pthreads functions, which are still un-modeled;

– CBMCwas the tool that solved the lowest numbers of
benchmarks, whichwas caused by current limitations
in the treatment of pointers, and despite this tool’s
latest improvements [2];

– 2LS does not have native support for verifying con-
current programs based on POSIX/Pthreads [8].

– Overflows:

– ESBMC and 2LS were denoted as the first- and
the second-best tools, respectively, due to recent
improvements regarding inductive invariants and
considering programs that require joint reasoning
about shape and content of dynamic data structures;

– CBMC and our proposed method were the tools that
solved the lowest numbers of benchmarks due to the
lackof a bit-precise verification engine that efficiently
handles arithmetic overflow checks.

– Termination:

– 2LS and CBMC were the tools that successfully
solved the highest number of benchmarks; however,
if a larger number of unwindings are needed, the
approach becomes quite inefficient. The strengths
of BMC, on the other hand, are its predictable per-
formance and amenability to the full spectrum of
categories;

– ESBMC using k-induction generated better results
than our method that infers invariants, which hap-
pened because many inconclusive results were pre-
sented and that led to ameager amount of verification
tasks successfully analyzed;

– SoftwareSystems:

– ESBMC using k-induction generated better results,
when compared with other tools that infer invariants,
which happened because of the relational analysis
that can keep track of relations between variables;

– 2LS,which alsouses inductive invariants,was slightly
better than our method; however, it presented the
same issues relating to limitation of states to be veri-
fied. That happened because someof the benchmarks,
e.g., those requiring reasoning about arrays contents,
demand invariants stronger than what is inferred by
2LS;

– DepthK overcame CBMC because it supports struc-
tureswith pointers and considers variables of this type
in the static analysis and also during invariant gener-
ation, as with 2LS.

Table 3 presents results for the chosen PDR-based tools,
which were evaluated using the SV-COMP 2018’s bench-
mark suite. There exist 5591 verification tasks, with 1457 of
them containing bugs, while the remaining 4134 are consid-
ered to be safe, when checked with the best configurations of
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Fig. 6 Score regarding loops subcategory

DepthK, CPAchecker, SeaHorn, and Vvt-portfolio. Indeed,
such results give an overview of the best configurations
used by the three different chosen software verifiers that use
PDR. One may notice that SeaHorn achieved the highest
numbers of total correct results, but it also presented a sig-
nificant amount of total incorrect ones. Because SeaHorn is
unsound for satisfiability, it can report that some expression-
tree satisfies behavioral specificationψ , when in fact no such
expression-tree exists. Also, SeaHorn verifier is unreliable
for most bit-vector operations, e.g., bit-shifting [48]. Despite
considering only verification tasks that explore the strengths
of the PDR approach, DepthK with PAGAI came second
and overcame the other two PDR-based tools, as a result of
our well-engineered implementation that provides invariants
based on the idea of k-induction. Additionally and despite
the PDR tools’ compatibility restrictions, DepthK haswidely
used SV-benchmarks collection of verification tasks. In con-
clusion, our proposed method using PAGAI can be regarded
as a competitive verification tool, when compared with the
chosen PDR-based ones.

Figures 6 and 7 show the scoring system adopted in the
SV-COMP’s benchmarks, including comparative results for
the SV-COMP’s loops subcategory and embedded-system
benchmarks, respectively. Here, we used only the SV-
COMP’s loops subcategory in this analysis, since loops are a
widely recognized challenge regarding the inference of pro-
gram invariants. One can notice that for embedded-system
benchmarks, safe programs [33] were used, since the main
goal here is to check whether strong (inductive) invariants
are inferred, i.e., conditions that hold throughout an entire
program, in order to prove correctness.

DepthK with PAGAI achieved a lower score than PIPS,
in the embedded system benchmarks, due to the fact that

Fig. 7 Score regarding embedded systems

PAGAI was unable to produce inductive invariants, with the
potential to support ESBMC in reaching a verification result
trueor false. Indeed, PAGAI is a relatively new tool that is still
under development, mainly regarding invariant prediction,
and unlike PIPS that has many configuration options, PAGAI
does not allow a combination of static analysis methods to
infer invariants, which is the main reason for its low score.

On the one hand, in the loops benchmarks, DepthK
(PIPS) achieved the second-highest score, among all tools
using invariants, being overcome only by 2LS. On the other
hand, DepthK (PAGAI) presented the lowest score in the
embedded-system benchmarks, mainly due to 58.82% of
results identified as Unknown, i.e., when it is not possible
to determine an outcome or due to tool failure. There exist
also failures related to invariants and code generation, which
are given as input to the BMC procedure. As already men-
tioned, PAGAI is still under development (in a somewhat
preliminary state), but one can argue that its results are still
promising.

The CPAchecker k-induction is better than DepthK
(PAGAI), since it is a more sophisticated tool while getting
very close to ESBMC, in the embedded-system benchmarks.
The main problem with both approaches is the number of
errors that directly impacts their final scores. Nonetheless,
CPAchecker k-induction was not better than 2LS, which can
be explained by the fact that 2LS implements invariant gen-
eration techniques, incremental BMC, and k-induction. The
2LS’s result was also the best regarding the embedded sys-
tems category, because it generated stronger invariants when
comparedwithDepthK (PIPS)/PAGAI; however, the number
of correct results was close to that obtained by ESBMC.

CBMC with k-induction was the tool that generated the
highest number of inconclusive results, in the loops subcat-
egory, and the verification time is noticeably superior to all
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Fig. 8 Results for the loops subcategory

tools used in the presented experimental evaluation; however,
one can point out that the number of errors is not so different
if compared with other approaches, and CBMC shows that it
is as stable as the other tools.

In order to measure the impact of the invariants appli-
cation to k-induction verification schemes, the distribution
regarding DepthK + PIPS/PAGAI and ESBMC results were
classified, per verification step: base case, forward condition,
and inductive step. In this analysis, only the results related to
DepthK and ESBMCwere evaluated, given that they are part
of the proposed approach and it is not possible to identify the
steps of the k-induction algorithm (in standard logs), in other
tools. Figure 8 shows the distribution of the results, for each
verification step, regarding the SV-COMP’s loops subcate-
gory, while Fig. 9 presents results for the embedded-system
benchmarks.

The distribution of results in Fig. 8, during the execution
of the k-induction algorithm in the loops subcategory, shows
that invariants generated by PIPS helped the k-induction
algorithm inDepthK to increase the number of correct results.
Here, the default ESBMC presents weaknesses for programs
with loops, since it is unable to produce inductive loop invari-
ants, in order to prove correctness.

By analyzing the presented results, we noticed that invari-
ants allowed the k-induction algorithm to prove that loops
were sufficiently unwound and whenever a property is valid
for k unwindings, it is also valid after the next unwind-
ing of a system. We also identified that the DepthK (PIPS)
and DepthK (PAGAI) did not find a solution (leading to
Unknown and Timeout) in 33.09% and 49.29% of the
loops subcategory (see Fig. 8), respectively. In the embedded
system benchmarks, DepthK (PIPS) did not find a solution
in 52.94% and DepthK (PAGAI) in 58.82% (see Fig. 9).

Fig. 9 Results for the embedded programs

This is explained by the invariants generated from PIPS and
PAGAI, which could not produce inductive invariants for the
k-induction algorithm, either due to a transformer or invari-
ants that are not convex.

Webelieve that PIPS’ results canbe significantly improved
by fixing errors related to the tool’s implementation since
some results generated as Unknown are related to failures
in our tool execution, which happened due to the algorithm
that identifies functions and variables in the analyzed source
code. Additionally, we have identified that adjustments are
needed in the PIPS’s script parameters, in order to gener-
ate invariants, since PIPS has a broad set of commands for
code transformation and that might lead to a positive impact,
regarding invariant generation for specific classes of pro-
grams.

Due to the full range of benchmarks used in this exper-
imental evaluation and the fact that PIPS has numerous
configuration options, one possible improvement in our
approach is to use PIPS, in order to allow us to discard
unreachable states to reduce code, in addition to identifying
loops to generate invariants to limit their unfolding. Thus,
by adopting a new combination of PIPS’s option set, results
could be improved, and the k-induction algorithmwould then
speed upwith stronger (inductive) invariants, for each bench-
mark.

5 Related work

The k-induction algorithm has already been implemented
and further extended by the software verification commu-
nity, in many studies, which led to comparisons between our
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approach and other similar k-induction algorithms. Recently,
Bradley et al. have introduced the ”property directed reach-
ability” (or IC3) procedure for safety verification of systems
[16,44] and showed that IC3 could scale on certain bench-
marks, where k-induction fails to succeed. We do not
compare k-induction with IC3, as Bradley [16] already per-
formed this, and focus on related k-induction procedures.

Donaldson et al. described a verification tool called
Scratch [26], which can detect data races during direct mem-
ory access (DMA) in CELL BE processors from IBM [26],
using k-induction. Properties (in the form of assertions) are
automatically inserted tomodel behavior ofmemory control-
flow. The mentioned algorithm tries to find violations on
those properties or prove that they hold indefinitely, by using
a base case step and an inductive one, respectively, with-
out checking the completeness threshold. That method also
requires source code to be manually annotated with loop
invariants, whereas our approach automatically generates
and adds them to a given program. Finally, it can prove
the absence of data races in several benchmarks, but it is
restricted to verify a specific class of problems for a par-
ticular type of hardware. At the same time, our approach is
evaluated over a more general group of programs, through
(traditional) benchmarks from SV-COMP.

In another related work, Donaldson et al. described two
tools for proving program correctness: K-Boogie and K-
Inductor [25]. The former is an extension of the Boogie lan-
guage,which aims to prove correctness (using k-induction) of
programs written in some languages (Boogie, Spec, Dafny,
Chalice, VCC, and Havoc), while the latter is a bounded
model checker for C programs, which is built on top of
CBMC [23]. Both use the k-induction algorithm, which con-
sists of a base case and an inductive step and, like previous
work, the completeness threshold is not separately checked
and relies only on the inductive step, in order to prove correct-
ness. Their proposed k-induction has a preprocessing step;
however, differently from ours, in which we introduce invari-
ants, their preprocessing removes all nested loops and leaves
only non-nested ones. Those authors compared the results
of K-Inductor with Scratch. They showed that their new
approachmaintained the same coverage (in terms of correctly
verified programs) while being faster. However, similarly to
previous work, programs needed to be manually changed,
in order to insert loop invariants, while our approach does
it automatically. Madhukar et al. [58] described a method
to accelerate the generation of program invariants, without
k-induction, by adopting analysis of source code regard-
ing loops. The basic idea was to identify invariants and
their deviations in order to accelerate verification processes.
Their article compared some model checkers (e.g., UFO
[1], CPAchecker, CBMC, and IMPARA [14]), without using
k-induction and regarding invariant generation, in order to
speed up verification of programs with loops. In summary,
the technique proposed by Madhukar et al. [58] is based on

under-approximating loops for fast counterexample detec-
tion. It works as a preprocessor for replacing loops and
improving verification processes, which reduces verification
times and false results, in order to improve its confidence.
In contrast to Madhukar et al., the proposed method does
not modify existing loops, but instead includes assumptions
based on invariants, in order to guide the k-induction algo-
rithm.

Beyer et al. [10] introduced a different approach regard-
ing invariant generation. In particular, they proposed a
k-induction algorithm, which can generate invariants sep-
arately from the verification algorithm itself, named as
Continuously Refined Invariants. The latter is an assistant
for CPAchecker with k-induction and runs in parallel with
verification tasks. It starts with weak invariants (i.e., with-
out an invariant generator as PAGAI or PIPS), by using an
abstract domain based on expressions over intervals. This
method continuously adjusts and refines invariant precision,
during verification processes, and creates inductive invari-
ants [10]. This way, verification tasks can take advantage
of previously generated values so that the k-induction veri-
fication algorithm can strengthen the induction hypotheses.
In another work, Beyer et al. [9] implemented a standalone
PDR algorithm. In particular, they designed an invariant gen-
erator based on the ideas of PDR, and also evaluated the
PDR invariant-generation module on an extensive set of C
verification tasks. This method further extends the knowl-
edge about PDR for software verification and outperforms
an existing implementation of PDR. In summary, the PDR-
based approach proposed here represents an effective and
efficient technique for computing invariants, which are dif-
ficult to obtain with automated verification tools. However,
the approach proposed by Beyer et al. solves less verification
tasks and takes longer than other verifiers, includingDepthK.
Additionally, our approach is evaluated over a more gen-
eral group of programs, through the same set of benchmarks
extracted from SV-COMP.

Brain et al. [19] proposed an incremental verification
method called kIkI, which combines state-of-the-art veri-
fication approaches from the literature (e.g., plain BMC,
k-induction, and abstract interpretation), instead of using
only k-induction algorithms. In particular, kIkI firstly applies
theBMC technique to refute properties and then finds a coun-
terexample: if it is not possible, a new verification procedure
using k-induction (composed of the base case, forward con-
dition, and inductive step) and invariants are applied, in order
to prove that a program is safe. If the k-induction algorithm
does not proveproperties or does not generate a counterexam-
ple, an abstract interpretation technique, based on polyhedra,
is applied, to generate invariants for the next state-space
unrolling. In contrast to Brain et al. [19], the present work
is based only on the application of k-induction, considering
invariants in the polyhedral domain.
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In another related work, Garg et al. [36] introduced the
ICE-learning framework for synthesizing numerical invari-
ants. According to Garg et al. [36], there exist many advan-
tages in the (machine) learning approach. For instance, it
typically concentrates on finding the simplest concept, which
satisfies the constraints implicitly by providing a tactic for
generalization. At the same time, white-box techniques (e.g.,
interpolation [55]) need to build in tactics to generalize.
ICE-learning framework uses examples (test runs of the pro-
gram on random inputs), counterexamples, and implications
to refute the learner’s conjectures. The ICE-algorithm iter-
ates over all possible template formulas, thus growing in
complexity, until it finds an appropriate formula, and adopts
template-based synthesis techniques, which use constraint
solvers. Garg et al. [36] use octagonal domain and present an
empirical evaluation on benchmarks from SV-COMP loops
category and programs from the literature (e.g., [41]). In con-
trast to Garg et al. [36], we adopted the polyhedral domain
and presented an extensive evaluation over different cate-
gories from SV-COMP benchmarks. For future work, we
also plan to use a machine learning approach to infer invari-
ants.

Ezudheen et al. [31] extended the ICE learning model for
synthesizing invariants using Horn implication counterex-
amples [37]. According to Ezudheen et al. [31], their main
contribution is to devise a decision tree-based Horn-ICE
algorithm. The goal of the learning algorithm is to synthe-
size predicates, which are arbitrary Boolean combinations
of the Boolean predicates and atomic predicates of the form
n ≤ c, where n denotes a numerical function, and where c is
arbitrary. The implementation of the proposed method uses
a predicate template of the form x ± y ≤ c, called octagonal
constraints,where x , y are numeric programvariables or non-
linear expressions over numeric program variables and c is a
constant determined by the decision tree learner. Ezudheen
et al. [31] present an evaluation using 109 programs, which
52 programs are from SV-COMP’18 recursive category. In
comparison to Ezudheen et al. [31], we have used the poly-
hedral domain. However, our approach uses PAGAI to infer
program invariants, where the abstract domains are provided
by the APRON library [52], which include convex polyhe-
dral, octagon, and products of intervals. We also, extend
the experimental evaluation by adopting 6 categories from
SV-COMP and embedded-system applications to validate
the program invariant quality. Additionally, our approach
does not need to produce samples or counterexamples to
infer program invariants as Garg et al. [36] and Ezudheen
et al. [31]. PIPS uses an interprocedural analysis, where
each program instruction is associated with an affine trans-
former, representing its underlying transfer functions. For
future work, we intend to investigate the strategy proposed
in Ezudheen et al. [31], which chooses a template from a
class of templates based on extracting features from a sim-
ple static analysis of the program and using priors gained

from the experience of verifying similar programs in the
past.

Champion et al. [21] proposed combining refinement
types with the machine-learning-based for invariant discov-
ery in ICE framework [36] suitable for higher-order program
verification. Champion et al. [21] show the implementation
of the proposed approach, which consists of two parts: (i)
RType is a frontend (written in OCaml [71]) generating Horn
clauses from programs written in a subset of OCaml; and
(ii) HoIce, written in Rust14, is one such Horn clause solver
and implements the modified ICE framework. According to
Champion et al. [21], RType supports a subset of OCaml
including (mutually) recursive functions and integers, with-
out algebraic data types. Champion et al. [21] argued that
only considered programs that are safe since RType is not
refutation-sound.Additionally, aiming to compare theirHorn
clause solver HoIce to other solvers, Champion et al. [21]
show a comparison on the SV-COMP with Spacer (imple-
mented in Z3). Where HoIce timeouts on a significant part of
the benchmarks. Champion et al. [21] noted that are unsat-
isfiable; the ICE framework is not made to be efficient at
proving unsatisfiability. In contrast to Champion et al. [21],
our approach to infer invariants adopting PAGAI and PIPS
that not apply machine-learning techniques. Related to the
solver, the PAGAI uses Yices [29] or Z3 [24] through their C
API, and PIPS is based on discrete differentiation and inte-
gration that is different from the usual abstract interpretation
fixed-point computation based on widening. Champion et al.
[21] show, in their experimental evaluation, that 11 programs
fail because inherent limitations of the proposed approach,
where two of them require an invariant of the form x+ y ≥ z.
We argue that our proposed approach can handle with that
form invariant since we adopt a polyhedral form such as
a.x + b.y ≤ c.

6 Conclusions

We described and evaluated a verification approach based on
the k-induction proof rule, in which polyhedral abstraction
of program behavior is used to infer (inductive) invari-
ants. The proposed method, which was implemented in
a tool named as DepthK, was used to verify reacha-
bility properties using benchmarks from SV-COMP and
embedded-systems automatically. In particular, 10522 ver-
ification tasks from SV-COMP 2019, 5591 verification tasks
from SV-COMP 2018 and 34 ANSI-C programs from real-
world embedded-system applications were evaluated. Also,
a comparison among DepthK (using PIPS and PAGAI, as
invariant generation tools), CPAchecker, ESBMC, CBMC,
and 2LS, the latter with k-induction and invariants, was per-
formed.

14 https://www.rust-lang.org/.
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TheDepthK’s k-induction proof rule, togetherwith invari-
ants generated by PIPS, was able to provide verification
results as accurate as those obtained with ESBMC k-
induction, without invariant inference. We argue that the
proposed method, in comparison to other existing software
verifiers, shows promising results, which indicates that it can
be sufficient to verify real programs. In particular, in bench-
marks from SV-COMP 2019, DepthKwas able to solve 2223
verification tasks and overcame other verifiers (e.g., 2LS,
CBMC and ESBMC) that use either BMC or k-induction
proof rule in ConcurrencySafety category. Besides, DepthK
was able to solve 1490 tasks and overcame other verifiers
(e.g., CPAchecker-CTIGAR and Vvt) that use PDR-based
techniques.

Additionally, the combination of k-induction with invari-
ants inferred by PAGAI led to fewer accurate results than
those obtained with PIPS and also standard ESBMC k-
induction. The configurations used in PIPS and PAGAI for
benchmarks fromembedded systems andSV-COMP indicate
that our approach does not cover all possible categories of
benchmarks. In particular, improvements in invariant gen-
eration must be made, depending on the program that is
being verified. Those improvements range from refining
PIPS and PAGAI configurations to deal with distinct veri-
fication conditions to the identification of the most suitable
approach to be used for a given benchmark. As a result,
DepthK would be able to deal with a series of verifica-
tion tasks, through specific strategies both in the invariant
generation and decision regarding the use of k-induction
with invariant inference. Toward that, machine learning tech-
niques could be used, which would be able to fine-tune
configurations and guess the best approach to be employed
[49].

For future work, we will investigate a hybrid approach
to infer program invariants, which combines both PIPS and
PAGAI, i.e., a strategy that merges invariants produced by
both tools. We also aim to learn from counterexamples, in
order to create stronger (inductive) invariants, and as a conse-
quence increase effectiveness from bug detection perspective
using k-induction proof combined with invariants.
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