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Abstract—The rise of microgrid-based architectures is heavily
modifying the energy control landscape in distribution systems.
Decentralised control mechanisms are needed to ensure reli-
able power system operations. We propose using Reinforcement
Learning to implement load frequency control without requir-
ing a centralised authority. Specifically, we approximate the
optimal solution using Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) at all levels: primary, secondary and
tertiary. Generation units are characterized as agents that learn
how to maximize their long-term performance by acting and
interacting with the environment to balance generation and
load, thus restoring frequency. We prove numerically that our
Reinforcement Learning methodology can be used to implement
the load frequency control in a decentralised way, even when
more than one balancing authority is considered.

Index Terms—Reinforcement Learning, MADDPG, Droop
Control, Automatic Generation Control, Economic Dispatch,
Load Frequency Control.

I. INTRODUCTION

The world of electricity is living a revolution. Distributed
generation systems are substituting large electromechanical
generators driven by heat engines, e.g., microgrids heavily
relying on power electronics devices [1]. In the past, large
generation units, such as coal or nuclear plants, produced
electricity at large scale. Nowadays, every single house can
produce and deliver energy to the network at small scale by
different means, such as solar panels or windmills.

This paradigm shift is shaping our understanding of en-
ergy and bringing us a whole new branch of opportunities
and challenges as well. In this context of decentralization,
coordination amongst generators to balance generation and
load [2] is crucial. A hierarchical control system is used
to meet this objective, i.e., primary, secondary and tertiary
frequency control. Secondary and tertiary control layers need
a centralizing authority to coordinate the generation. However,
solving the load frequency control using a centralized authority
when dealing with power electronics system is not feasible
[3]. Thus, new approaches should be investigated to find out
how frequency control can be developed in an economically
decentralised optimal way.

Different approaches has attempted to implement in a
decentralised manner the traditional hierarchical control (see,
e.g., [4], [5], [3]). Regarding primary control, some examples
that can be found in the literature try to adapt and mimic

droop control strategies [6]. Droop control is by nature a de-
centralised algorithm that acts upon each individual generator,
so the challenge here is to deal with electronic inverters instead
of large turbines. The dynamics may change, but the whole
philosophy remains the same: each generator individually
modulates its power generation with the variations in the
frequency of the network accordingly.

There are also several proposed approaches to implement a
non-centralised secondary control, e.g., the centralized aver-
aging PI (CAPI) presented in [7] and distributed averaging PI
(DAPI) given in [8]. These algorithms use weighted averages
of the frequency as the integral feedback. Despite their theo-
retical appeal, they suffer from lack of robustness, and their
communication demands make them difficult to implement in
real-life scenarios [9].

Regarding tertiary control, some efforts have attempted
to define microgrid architectures where the communication
between nodes enable joint global actions [10]. Nevertheless,
as with other approaches, communication is intense between
nodes and the system may become too complex.

Multi-Agent Reinforcement Learning (MARL) looks like a
promising alternative to implement load frequency control in
a decentralised way [11]. In MARL, various software agents
learn optimal policies by negotiating, cooperating, and/or com-
peting [12]. In this work we formulate the primary, secondary
and tertiary control layers as a MARL problem so that the
agents, or generation units, learn to keep generation and load
balanced by controlling the energy supply whereas minimizing
resources and information exchange.

In this paper: i) the frequency control problem is formalised
as a MARL problem; ii) Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) is used to implement primary,
secondary and tertiary control in a multi-agent problem; and
iii) numerical studies are presented to demonstrate that the
proposed methodology is a valid alternative to solve load
frequency control in a decentralised.

The paper is structured as follows: in Section II the control
problem is formulated. In Section III we define our approach to
solve the problem. In Section IV numerical results are showed.
Conclusions are stated in Section V.



II. PRELIMINARIES

The system frequency indicates if supply and demand are
properly balanced. When the generated power exceeds the load
the system frequency increases and the other way round, the
system frequency decreases if generation is not enough. Thus,
controlling the frequency of the system is a classical approach
to balance demand and supply [13].

A. Secondary Control ignoring network effects

The frequency control is divided in a hierarchy of three
layers: primary, secondary and tertiary control. In primary con-
trol, generation and demand are rapidly balanced increasing
and decreasing the power output to keep frequency around
the nominal set point. This is achieved by a decentralised
proportional control mechanism called droop control [14].
Then, a secondary control layer implements an integral control
that compensates the steady-state error derived from droop
control. Automatic Generation Control (AGC) [15] imple-
ments the secondary control layer collecting information from
all generation units in a centralized way.

The classical representation model considers a power system
with n generators. The deviation of the center of inertia
speed from the synchronous speed is denoted by ∆ω. The
nominal frequency is denoted by ωs; the set of n generators
G = {G1, . . . , Gn}; the total electrical power produced
PG =

∑
i∈G Pi, where Pi is the output of generator i; the total

load PL; and the total secondary command ZG =
∑
i∈G zi,

where zi is the participation of each generator i in AGC. The
normalized participation factor of bus load changes ∆PLi

with
respect to total system load change ∆PL is denoted by σi, then
ρ, which denotes the sensitivity of the losses with respect to
the system load is

ρ =
∑
i∈G

σi
∂Plosses

∂Pi
. (1)

The dynamic behaviour of the system is expressed as:

M
d∆ω

dt
= PG − (1 + ρ)PL −D∆ω, (2)

TG
dPG
dt

= −PG + ZG −
1

RD
∆ω, (3)

where M = 2H
ωs

, with H being the system inertia constant; D
is the load damping; RD is the droop; and TG is some time
constant (see, e.g., [14]).

B. Secondary Control with network effects

The net interchange with other balancing authority areas
should also be addressed in the power balance problem as
well. In order to do so, the primary and secondary problem
described in (2) and (3) should be reformulated slightly to
account for various areas. The general formulation describes
the active and reactive power of the kth bus as:

Pk = Vk
∑
m∈Ω̄

Vm(Gkmcosθkm −Bkmsinθkm), (4)

Qk = Vk
∑
m∈Ω̄

Vm(Gkmsinθkm −Bkmcosθkm) (5)

where Ω̄k = Ωk ∪ {k}, i.e. the set of buses adjacent to k,
including k and the variables Gkm, Bkm are the real and
imaginary parts of the admittance matrix.

We assume that i) bus voltage magnitudes are |V | = 1p.u
for all nodes, ii) lines are lossless and characterised by their
susceptances Bij = Bji > 0, iii) reactive power flows do
not affect bus voltage phase angles and frequencies, and iv)
coherency between the internal and terminal voltage phase
angles of each generator so that these angles tend to “swing
together”, i.e., δi = θi.

Then, for each ith synchronous machine, there are three
different states are: the rotor electrical angular position δi ,
the difference of the rotor electrical angular velocity from
nominal ∆ωi , and the mechanical power PGi

. Then, for each
ith balancing authority area the dynamics are

dδi
dt

= ∆ωi, (6)

Mi
d∆ωi
dt

= PGi − (1 + ρ)Pi −Di∆ωi, (7)

TGi

dPGi

dt
= −PGi + ZGi −

1

RDi

∆ωi, (8)

Then, we include the network effects with DC power flow
by relating Pi , the electrical power output of generator i and
the angle δi as follows:

Pi − PLi
=

n∑
j=i,i6=j

Bij(δi − δj) (9)

where Bij is the imaginary part of the (i, k) entry of the
network admittance matrix, and PLi

the load at bus i.

C. Tertiary Control

The tertiary control layer has to do with the economic
aspect of power system operations. This layer establishes the
load sharing between the sources so that the operational costs
are minimised [16]. Tertiary control is implemented through
the economic dispatch, which calculates the optimal operating
point in an offline process.

The economic dispatch process is formulated as an optimi-
sation problem, where the objective function that needs to be
minimised is the sum of the individual costs of all generation
units, ci(Pi), for i ∈ G ; this is typically a quadratic function
that computes the production cost of each generation unit.
Here, the constraint is that the system has to keep generation
and load balanced; if generation and load are balanced then



frequency is also nominal. The economic dispatch problem
may be formulated as:

minimize
Pi

∑
i∈G

ci(Pi)

such that
∑
i∈G

Pi = (1 + ρ)PL.
(10)

III. REINFORCEMENT LEARNING FOR LOAD FREQUENCY
CONTROL

In this section we formulate the MARL problem; design the
reward function; and select a proper multi-agent actor-critic
algorithm that takes into account the fact that state and action
spaces are continuous.

A. Formulating the Markov Decision Process

Reinforcement Learning (RL) is an area of Machine Learn-
ing strongly related with the notion of software agent [17].
RL studies how software agents interact in an environment to
maximize their long-term performance. We use MARL to train
a collection of agents how to implement the load frequency
control problem in a decentralized way. RL problems are
mathematically formalized through Markov Decision Process
(MDP) [18], that are defined as the tuple:

MDP = 〈S,A, P,R〉, (11)

where each term is:
• S or state space: all possible states where the agent can

be in the environment. There are two continuous states
in the load frequency control: ∆ω, the centre of inertia
deviation from the synchronous speed denoted and zi,
the current control action of each generator i. These
states provides the agent information about the difference
between demand and supply and of how much they are
contributing to the total generation.

• A or action space: all possible actions that each agent
take in every state. Our agents-generators can increase or
decrease the control action zi in order to modify the state
of the environment.

• P or probability state transition function: it defines the
dynamics of the environment, modelling the transition
between states. If addressing the problem of a single
balancing authority, these dynamics are a set of equations
derived from (2) and (3):

M
d∆ωnew

dt
= PGold − (1 + ρ)PL −D∆ωold, (12)

TG
dPGnew

dt
= −PGold + ZGnew −

1

RD
∆ωold, (13)

ZGnew =
∑
i∈G

zinew , (14)

zinew = ziold + ∆zi, (15)

∆ωnew = ∆ωold +
d∆ωnew

dt
∆t, (16)

PGnew = PGold +
dPGnew

dt
∆t, (17)

where ∆zi is the increase or decrease in power generation
by each unit i in G estimated by each agent. Multi-Agent
Deep Deterministic Policy Gradient is used to estimate
∆zi, as described in Section III-B. On the other hand,
we can include the network effects by slightly modifying
the transition equations based on the (6),(7), (8) and (9)
to define the dynamics of the ith synchronous generator
as follows:

Pi − PLi
=

n∑
j=i,i 6=j

Bij(δ
new
i − δnew

j ), (18)

Mi
d∆ωnew

i

dt
= P old

Gi
− (1 + ρ)Pi −Di∆ω

old
i , (19)

TGi

dP new
i

dt
= −P old

i + Znew
Gi
− 1

RDi

∆ωold
i , (20)

Znew
Gi

=
∑
k∈i

znew
k , (21)

znew
k = zold

k + ∆zk, (22)

∆ωnew
i = ∆ωold

i +
d∆ωnew

i

dt
∆t, (23)

δnew
i = δold

i + ∆ωnew
i , (24)

P new
Gi

= P old
Gi

+
dP new

Gi

dt
∆t, (25)

• R or reward function: it defines a numerical signal or
reward expressing the goodness of being in a state and
performing an action. The reward function considers
two different dimensions in our case: on the one hand,
deviation of centre of inertia speed from synchronous ∆ω
should be as close to zero as possible; on the other hand,
operational costs have to be as low as possible.

MARL attempts to learn an optimal policy π : S 7→ A
that maximises the cumulative reward, or return. However,
the reward is instantaneous and does not address the global
nature of the task: i.e., one bad action can lead to an extremely
good position from which the agent can obtain a good reward.
Thus, action-value functions Qπ are used in RL to express the
expected long-term reward achievable from being in an state,
taking an action and following a the policy π:

Qπ(st, at) = Eπ [Rt|st, at] = Eπ

[ ∞∑
k=0

γkrt+k+1|st, at
]
,

(26)
where E[·] is the expectation operator, γ is the discount factor,
which expresses the trustness in long-term predictions of Qπ ,
the cumulative reward achievable in the long run Rt, and the
reward rt at time t. Most algorithms strongly support their
learning process in value functions. The most famous and
paradigmatic is Q-learning [19].

The action-value function associates a value Qπ to each
state-action pair. However, when the number of states and
actions is too large, it becomes computationally challenging to
estimate them efficiently. Recent work has merged the field of
RL with Deep Learning, giving birth to a powerful algorithm
called Deep Q-learning (DQN) [20]. This algorithm uses
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Fig. 1: MADDPG schema in a frequency control scenario.

deep neural networks as parametric function approximators
to estimate the action-value function of each state-action pair.

The spectrum of existent algorithms to solve MARL prob-
lems is wide. Most of them use game-theoretic approaches
to augment Q-learning: i.e., Nash Q-learning or minimax Q-
learning [21]. In our problem, state and action spaces are con-
tinuous and the interaction of various agents are required. This
limits the range of algorithms available in the literature. Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [22]
addresses both problems at the same time.

B. Multi-Agent Deep Deterministic Policy Gradient

MADDPG is an actor-critic algorithm. This means that the
architecture of each agent, or generation unit, is split into two.
First, the actor directly estimates an action while secondly, the
critic assess whether the action was good or not by estimating
the action-value function of the state-action pair. The Qπ

estimated by the critic is used by the own critic and the actor
to learn how to behave in the environment. In MADDPG, the
critics use central information to teach each actor the dynamics
of the environment and the behavior of the rest of the agents as
well. In operation, actors only use local information because
they learnt how other actors will do.

More specifically, each actor i estimates ∆zi given the
state of the environment ∆ω and its current zi. Each critic
assess each state-action pair defined by the environment and
the actions of all the actors. The critic estimates each state-
action action-value that is used during actor’s training, as it
can be seen in Fig. 1. We denote by ∆z−i (∆z−j) the action
predicted by all other actors besides i (j) and z−i (z−j) the
control action state of all other actors besides i (j).

Deep Recurrent Neural Networks, particularly Long Short-
Term Memory Network (LSTM) [23], are used to model each
actor and critic. LSTMs implement memory so that previous
history is stored and acted upon [24]. The Markov assumption
rules MDPs, according to which the current state comprises
all information needed to choose an action. However, in the
frequency control problem the dynamics are quite complex

and the Markov assumption may not hold. Thus, LSTMs help
us correcting the violation of the Markov assumption.

The actor network, see Fig. 2, inputs ∆ω and zi and
computes ∆zi. The critic network, see Fig. 3, inputs the
frequency state of the network ∆ω, the secondary control
action zi and the change in the action predicted by the actor
associated to that critic ∆zi, and the secondary control action
z−i the change in the action predicted by all other actors ∆z−i,
and computes the Qπ(·) value of the state-action pair estimated
by the actor associated to that critic. Then, both networks
have an 100-neuron LSTM that implements memory, and three
more 1000, 100 and 50 fully-connected hidden layers.

The design of the reward funcion is critical, since it deter-
mines the behavior that agent will learn. Ideally, the reward
function incorporates two different components: (i) on the one
hand, the reward function must be based in the frequency
state of the environment to solve the primary and secondary
problem; and (ii) on the ohter hand, the reward function should
also address the operational cost associated with the system
to solve the tertiary control problem. Taking into account the
frequency component in the reward function is straightforward
since we set a higher reward for smaller frequency deviations
∆ω. Next, we need to determine how to define the reward
function in order to take into account the cost component.
In this regard, we study the case where the cost functions
of generators are of the form ci(Pi) = aiP

2
i + βPi + γi

for i ∈ G [?]. The cost minimisation is part of the tertiary
control in the hierarchical control setting; the formulation of
which may be found in (10). For quadratic cost functions under
no generation limits we may find the optimal solution in an
analytical way [13]. The Lagrangian may be written as

L(Pi, λ) =
∑
i∈G

ci(Pi) + λ

(
(1 + ρ)PL −

∑
i∈G

Pi

)
,

were λ is the dual variable of the power balance constraint.
The necessary conditions for a minimum are

∂L
∂Pi

= 0⇒ dci
dPi
− λ = 0⇒ 2aiPi + βi = λ,∀i ∈ G . (27)

The solution to the problem above defines the base point
operation of tertiary control. We now define with the aid of

∆ω

zi
LSTM

...
...

... ∆zi

50 neurons

100 neurons

1000 neurons

100 neurons

Fig. 2: Architecture of the MADDPG actor.
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Qπ(∆ω,∆zi)

z−i

zi

Fig. 3: Architecture of the MADDPG critic.

participation factors how would a generator participate in a
load change in order that the new load be served at the most
economic operating point. We start from a given base point
λ0 as found from (27). Assume the change in load is ∆PL;
the system incremental cost moves from λ0 to λ0 + ∆λ. For
a small change in power output on unit i ∆Pi we have

∆λ ≈ d2ci
dP 2

i

∆Pi ⇒ ∆Pi =
∆λ
d2ci
dP 2

i

,∀i ∈ G . (28)

Thus we wish that each generator i changes its output so the
following holds

∆λ =
d2ci
dP 2

i

∆Pi =
d2cj
dP 2

j

∆Pj ,∀i, j ∈ G , (29)

i.e., for each generator the change in the action ∆zi, i ∈ G
we wish that∣∣∣∣∣∆zi d2ci

dP 2
i

−∆zj
d2cj
dP 2

j

∣∣∣∣∣ = 0,∀i, j ∈ G . (30)

We construct two conditions that will be used in the formula-
tion of the reward function. The first condition is:

C1 : ∆ω < ε1,

where ε1 is some selected tolerance; this condition ensures
that r will reward actions that help in frequency restoration.
The second condition is:

C2 :

∑
i∈G

∑
j∈G ,j>i

∣∣∣zi d2cidP 2
i
− zj d

2cj
dP 2

j

∣∣∣
(n− 1)!

< ε2,

where ε2 is some selected tolerance; this condition ensure that
r will reward actions that follow the cost efficient path.

When only the primary and secondary control problems
need to be solved, the reward function may be formulated
using C1 as

r =

{
d, if C1

0, otherwise
, (31)

PL ± β

G1

G2

Fig. 4: Test case: two generators and a load; training case:
random load variation.

Nominal frequency fnom = 50 Hz
Initial operating point P1 = 1.5pu, P2 = 1.5pu

Inertia parameter M = 0.1pu
Droop RD = 0.1pu

Load damping D = 0.0160pu
Generator dynamics time constant TG = 30s

Cost function generator 1 c1 = 2P 2
1 [£/pu]

Cost function generator 2 c2 = P 2
2 [£/pu]

TABLE I: Test case 1 data; pu refers to 100 MVA base power
reference.

where d is a constant. On the other hand, by taking these
two conditions into account we may formulate a general form
reward function to solve the tertiary control problem as

r =


d1, if C1 and C2

d2, if C1 or C2

0, otherwise
, (32)

where d1, d2 are constants with d2 < d1. This reward function
both helps in frequency restoration as well as performs it a
cost efficient way is rewarded higher that if either purposes
are met.

IV. NUMERICAL RESULTS

We validate the MARL methodology using two test systems.
On the one hand, we formulate the reward function and present
the results of the tertiary control problem for one single
balancing authority area. We demonstrate that the generators
are able to restore the system frequency back to nominal and
operate at a point close to optimal when a change of load
occurs in a decentralised way. On the other hand, we formulate
the reward function and present the results of the primary and
secondary control problem for two balancing authority areas
exchanging generation between them.

A. Tertiary control in a single balancing authority area

The test case designed to test the performance of the tertiary
control in a single balancing authority area comprises of
two generation units or agents that interact with a load. The
configuration of the system during training can be found in
Fig. 4. The parameters of the environment can be found in
Table I. In each episode, or training simulation, the load varies
randomly around a nominal set point. The load varies as
PL±∆PL = 3±β pu, where β follows a uniform distribution.

The reward function has been derived following (32). We
set ε1 = 0.05pu, ε2 = 0.2pu, d1 = 200, and d2 = 100. Thus
we have the two conditions:

C1 : ∆ω < 0.05,



and
C2 : |2z1 − z2| < 0.2.

Taking these two conditions into account we may formulate
the reward function as

r =


200, if C1 and C2

100, if C1 or C2

0, otherwise
. (33)

The reward function is used only during the training period.
In the operation phase, the actors interact with the environment
without experiencing any reward. Agents only observe the
frequency of the system and its own control action z. They
have learnt during training how behave according to the
evolution of the environment to balance supply and demand
while optimizing operational costs. In the test, we change the
load by by 0.15pu and then, we observe how the agents restore
the system frequency.

We can observe in Fig. 5 the cumulative reward obtained
by the agents. The agents can obtain 20, 000 at maximum per
episode: i.e., the maximum reward per step is 200 and the
number of steps per episode is 100. The agents learn how to
obtain higher rewards as episodes goes on. If that was not the
case the cumulative reward function would oscillate around
small values near zero.

In Figs. 6, 7 we see how the agents restore the frequency
back around the nominal set point, thus balancing supply and
demand. Actors learn how to balance generation and demand
without exchanging information. The agents have learnt that
keeping ∆ω close to 0 is the key to obtain high rewards. They
have learnt how to perform the primary and secondary control.

In order to test the optimality of the solution provided
by the proposed approach in terms of cost, we need to
calculate the optimal point when the load in the system, as

Fig. 5: Smoothed cumulative reward per episode with 95%
confidence levels.

Fig. 6: System frequency after change in load by 0.15pu.

described in Fig. 4, is PL = 3.15pu. By solving the economic
dispatch problem as given in (10) we have P1 = 1.05pu and
P2 = 2.10pu. In Fig. 8, 9, the behaviour of each generator
output and the associated is depicted. We may see how they
both converge to a set value. It can be observed that the
agents intuit how much they have to produce to be around
the optimal solution. As seen in Fig. 8, the control action of
agent one stabilises around a set point that is approximately
half of the control action of agent two. It is not exactly the
optimal solution (slightly above half the production: 60%),
but they get an intuition of what to do while keeping load and
supply balanced in a fully decentralised way. The performance
of the agents is determined by what actions they learn during
training that lead to high rewards. Thus, the reward function
is the main tool to show each agent what they have to do. The
reward function defined in (34) builds a reward combining
two different dimensions: cost and frequency. This means

Fig. 7: Total power after change in load by 0.15pu.



Fig. 8: Generators’ output after change in load by 0.15pu.

that the reward function can show various maxima depending
on the combination of both reward dimensions. The agents
learn by trial and error a behavioural heuristic to obtain high
rewards, but they may converge to a local optimum that may be
different from the global one. An improvement of the reward
function (34) could help the agents to improve the results
showed here and to get closer to the optimum solution.

Here, instead of solving the economic dispatch to obtain the
optimal operating point, we are proposing a MARL framework
to infer the production costs and the necessity of balancing
demand and supply from the reward function and enclose this
information in the behaviour of the actors. The benefit of the
proposed approach is that these agents can act in real time in a
decentralised way. Once trained, they do not need to centralise
information at all. Dynamics are embedded in the agents that
only use local information.

Fig. 9: Generators’ cost after change in load by 0.15pu.

Fig. 10: Test case: two balancing authorities: each one has a
generator and a load.

Nominal frequency fnom
area1

, fnom
area2

= 50 Hz
Initial operating point P1 = 1.5pu, P2 = 1.5pu

Inertia parameter M1 = 0.1pu, M2 = 0.15pu
Droop RD1

= 0.1pu, RD2
= 0.08pu

Load damping D1 = 0.0160pu, D2 = 0.0180pu
Generator dynamics time constant TG1 , TG2 = 30s

TABLE II: Test case 2 data; pu refers to 100 MVA base power
reference.

B. Primary and Secondary accounting for network effects

Analogously, we have designed a the test case to test the
performance of the proposed solution on the primary and
secondary control problem when multiple balancing authority
areas are present. There are two balancing authority areas,
each one composed by one generation unit or agents that
interact with a single load. The configuration of the system
can be found in Fig. 10. The parameters of the environment
can be found in Table II. In each training episode, the load
varies around a nominal set point randomly. The modification
is indicated by PL ± ∆PL = 3 ± β pu, where β follows a
uniform distribution.

In this case, as long as we are not concerned about tertiary
control here, the reward function has been derived following
(31). Setting ε1 = 0.05pu and d = 200. Thus we can use the
condition C1 : ∆ωi < 0.05 to formulate the reward function
as

r =


200, if C1 for both areas
100, if C1 for one area
0, otherwise

. (34)

In Fig. 11 the cumulative reward obtained by the agents
during training can be seen. Again, it can be clearly seen that
the agents are learning and have discovered how to obtain
higher rewards in this second scenario. In this case, the agents
learn how to jointly balance generation and demand in both
areas.

Following the same schema, we change the load by 0.15pu
in both areas and the, we observe how the frequency changes
and the system power in both areas too. The frequency is
restored and demand and generation are rapidly balanced, as
can be seen in Figs. 12, 13. This confirm that the described
methodology can be applied to solve primary and secondary
control problems when more than one balancing area are



present. Whithout centralising any kind of information, the
agents learn how to exchange generation. Now, the agents
learn that keeping ∆ω close to 0 in all areas is associated
with high rewards.

It can be seen in Fig. 14 the secondary control action of
each generator. Here, as long as we are not addressing how to
solve the tertiary control problem, the agents can freely decide
the control actions that they estimate. Their only concern is to
keep ∆ωi close to 0 for all i. Extending the tertiary control
solution methodology is not straightforward when considering
multiple balancing authority areas.

V. CONCLUDING REMARKS

In this paper, we propose a MARL alternative to implement
load frequency control. We showed how to formalize the
load frequency control as a MARL problem and how to
design a reward function that is based on insights on the
economic dispatch problem. Furthermore, we proposed an
algorithm, MADDPG, to solve the RL problem. Then, we
showed numerical results in two scale test systems. They
showed that MADDPG performed efficiently at implementing
primary and secondary control even when more than one
balancing authority is present and looked promising when
applied to tertiary control, i.e., restored frequency with a
closed-to-optimal solution. Our key contribution is that the
three layers of control are implemented in a fully decentralised
way, since traditional solutions centralise information to solve
the problem and new technological paradigms make these
approaches no longer useful.

For future work, we plan working on different elements
of the MARL paradigm that could be enhanced, i.e., the
reward function, the LSTM architecture and the introduction
of domain knowledge could be further analysed to come
up with agents that are able to improve their performance.
The applicability and scalability of these techniques in more

Fig. 11: Smoothed cumulative reward per episode with 95%
confidence levels.

Fig. 12: System frequency in both areas after change in each
load by 0.15pu.

complex scenarios also needs to be investigated. It would be
interesting as well to check the validity of MADDPG to deal
with different types of generation plants and to estimate to
what extent MARL could be applied in this kind of contexts.
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