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Among different discretization approaches, Finite Difference Method 
(FDM) is widely used for acoustic and elastic full-wave form 
modeling. An inevitable deficit of the technique, however, is its sever 
requirement to computational resources. A promising solution is 
parallelization, where the problem is broken into several segments, 
and the calculations are distributed over different processors. For the 
present FD routines, however, such parallelization technique 
inevitably needs domain-decomposition and inter-core data exchange, 
due to the coupling of the governing equations. In this study, a new 
FD-based procedure for seismic wave modeling, named as ‘Modal 
Finite Difference Method (MFDM)” is introduced, which deals with 
the simulation in the decoupled modal space; thus, neither domain-
decomposition nor inter-core data exchange is anymore required, 
which greatly simplifies parallelization for both MPI- and CUDA 
implementations over CPUs and GPUs. With MFDM, it is also 
possible to simply cut off less-significant modes and run the routine 
for just the important ones, which will effectively reduce computation 
and storage costs. The efficiency of the proposed MFDM is shown by 
some numerical examples. 

©2016 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

The Finite Difference Method (FDM) is supposed to be one of the most efficient numerical 
procedures for solving differential equations appeared in the science and engineering fields. 
Among various numerical procedures, the FDM is an old and matured method. The initial 
attempts for numerical solution of the wave equation involved somehow a FD-based procedure 
(Alterman and Karal, 1968 [1], Boore, 1970, 1972 [2, 3]). Even with the appearance of new 
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sophisticated numerical methods such as the finite element method (FEM) (Zienkiewicz and 
Taylor, 2000; Cohen et al., 1994 [4, 5]), pseudo-spectral methods (Kosloff and Baysal, 1982; 
Kosloff et al., 1984; Fornberg, 1987 [6-8]), the spectral element method (SEM) (Komatitsch and 
Tromp, 1999 [9]) and the discrete Galerkin Method (DGM) (Grote et al., 2006 [10]), the FDM is 
still appealing and attractive for many researchers. Such attraction is undoubtedly due to 
simplicity of the FDM. 

Since early employments of FDM in seismic wave-field modeling, different approaches were 
established to further develop this numerical procedure. Various customized versions of the 
method for wave-simulation is thus offered and new modified FD-based procedures are still 
under development. The most recognized among these variations is the staggered finite 
difference method which solves differential wave equations over staggered grids (Virieux, 1984, 
1986, Levander, 1988, Graves, 1996 [11-13]). Eventhough the staggered procedures are proved 
to be efficient and are vastly used for wave-field modeling (Moczo et al. 2004, 2007 [14, 15]), 
the FD procedures with simple non-staggered grids are still attractive for their simplicity and 
ease of implementation. Several researches are recently dedicated to improve the FD solutions 
over simple grids. Higher-order FD operators (Dablain, 1986 [16]), DSF (Mikhailenko, 2000 
[17]) and compact FD procedures (Lele, 1992 [18]) are some extensions to the primary version 
of the time-domain FD method. They try to improve FD results over simple and coarse meshes 
(Pirozzoli, 2007 [19]). 

The main drawback of the FDTD simulations is that they are drastically data intensive and need 
a tremendous amount of floating-point calculations which necessitate computational resources. 
Appropriate FDTD simulations require fine meshes for both spatial and temporal domains to 
prevent numerical errors such as instability or numerical dispersion. Thus, most realistic 
simulations inevitably exceed memory limits on a single computer and have to be distributed 
over a cluster of computers. It is now more than a decade that parallelization on high-
performance PC (personal computer) clusters has become a promising approach toward 
numerical seismic wave-propagation modeling (Bohlen, 2002 [20]). 

The FDTD method is naturally appropriate for parallelization; since, for every FD spatial node, 
the field values of the neighboring cells in the previous - and not the current - time steps are 
required. However, such parallelization inevitably introduces extra computational costs due to 
boundary data exchange between adjacent spatial-domain divisions. 

Different parallel implementations of FDTD have been proposed in the literature, with a wide 
range of various parallel architectures and hardware configurations. They get use of different 
programming models and protocols such as Open MultiProcessing (OpenMP, 2009 [21]) for 
single computing node or Massage Passing Interface (MPI) (Gropp et al., 1999 [22]) for 
parallelization across multiple nodes. 

There has been a great deal of interest toward employing graphics processing units (GPUs) to 
accelerate FDTD simulations in recent years. While caching mechanisms on CPUs are not 
appropriate for FDTD memory access patterns, GPUs provide effective control on data-loading 
onto a small shared memory which significantly enhances memory access (Shams and Sadeghi, 
2011 [23]). Modern GPUs are now installed on desktop computers and offer extremely efficient 
well-performed computations especially when calculations are duly independent of each other. 
For an efficient solution with GPU, one may partition the problem into independent sub-
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problems which are distributed over streaming multiprocessors (SMs) through some thread 
blocks (Mehra et al., 2012 [24]).  

Parallelization of FDTD in its conventional form has some fundamental issues which avoid its 
implementation on any present parallel hardware. Though some architectures are proved to be 
more efficient than others, there still remains a great deal of details and optimizing 
considerations such as domain-decomposition techniques, load distribution and memory 
management to be dealt with. Surely, a time-domain FD technique with no need for domain-
decomposition and boundary-data transfer is highly welcomed. 

In the current study, a new FD-based method is developed to solve the elastic wave equation 
numerically. This procedure named as the ‘Modal Finite Difference Method (MFDM)’ explicitly 
solves the wave equation in the time domain within the modal space and gets use of the modal 
orthogonality of the FD matrix operator. Through this procedure, the explicit FD equations are 
decoupled which facilitates parallel CUDA (Compute Unified Device Architecture)-based 
computerized implementation without resorting to domain-decomposition techniques. More 
importantly is the fact that manipulating some few MFD equations might provide responses 
within acceptable tolerance. 

2. Theory 

In this study the P-SV differential wave equation is considered for the homogeneous elastic 
medium: 

 

 utt = ([ + 2 ] ux)x + ( uz)z + ( wz)x +  ( wx)z + fx 
(1)  

 wtt = ([ + 2 ] wz)z + ( wx)x + ( uz)x +  ( ux)z + fz 
where (.)


 denotes partial derivative with respect to  which might be the spatial coordinates x, z 

or the time variable t.  and  are the Lame` constants,  is the mass density and u and w are the 
displacement components along x and z directions respectively. fx and fz are the body forces 
along x and z that vanish for all medium points other than those associated with the seismic 
source. 

The above differential equations might be recast into the following explicit algebraic equations 
by the use of appropriate FD stencil for spatial derivatives and second-order central FD stencil 
for temporal ones: 

 
tt-tttt fBuAuu     (2) 

where A and B are some nn time-independent FD-based matrices and u is the n-dimensional 
displacement vector (n is the number of degrees of freedom). f t is the n-dimensional source 
equivalent-force vector which is usually defined as: 
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 )(tsxff   (3) 

where fx is the vector of source spatial distribution and s(t) is the source temporal function. The 
superscripts appeared in Eq. (2) represent time steps which are sampled at every t. Given  as 
the eigenvector matrix of A, Eq. (2) is rewritten as: 

 
t

q
t-t

qq
t
qq

tt
q fuBuAu    (4) 

in which 

 
 AAq

1  (5) 

 
 BBq

1  (6) 

are A- and B- equivalents in the modal space, and 

 
uqu 1   (7) 

and 

 )()( tsts qxxq ffff   11   (8) 

are the modal displacement and source-force vectors respectively. Aq is clearly a diagonal matrix 
which entails eigenvalues of A. The system of equations (4) is decoupled provided that B is also 
diagonal; i.e. the eigenvectors of A are also orthogonal with respect to B. For the second-order 
central FD stencil being used for the time-discretization of Eq. (2), Bq=-I and thus Eq. (4) 
represents the following n decoupled explicit equations: 

 

 
nitsfuuu iqx

tt
iq

t
iqi

tt
iq ,...,2,1),()()()()()(      (9) 

where (i) is the ith  eigenvector of A. Once uq is found for every time step t, the displacement 
vector u is calculated by: 

 
t
q

t uu   (10) 
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fqx(i) in Eq. (9) shows the ith mode contribution in the total response. Based on this, it is possible 
to contribute the most important modes up to the desired accuracy. For this purpose, the square 
matrix  in Eqs. (5-8) are replaced by a rectangular matrix m; this matrix involves the m 
eigenvectors corresponding to the most significant modes. The pseudo-inverse of the rectangular 
matrix m must thus be used rather than -1. 

3. Implementation 

As pointed out in the previous section, MFDM is a two-step procedure. At the first step, denoted 
as the pre-processing step, matrix A of Eq. (2) as well as its modal characteristics (i.e. 
eigenvalues and eigenvectors) should be found. The second step, which is the main process, 
implements the Modal FD method. Since both steps are computationally expensive, they should 
be implemented on parallel systems. 
 

3.1. Pre-processing (Mode calculations) 

Pre-processing (eigenvalues-eigenvectors calculation for matrix A) seems to be the major 
bottleneck and costly step in MFDM. As will be seen in numerical examples (Section 4), point 
seismic sources in 2D problems inevitably excite a large range of modes of A; thus, calculation 
of a few eigenvalues-eigenvectors for the A matrix is certainly not sufficient to achieve 
satisfactory results. Because of this, MFDM seems to be especially appropriate for applications 
where it is required to deal with a large number of different seismic sources in a constant 
velocity model. Focal search procedures are among such applications. The requirement for 
several runs of the MFD for different seismic sources may justify costly eigen-system 
calculations in the pre-processing step. It is however reminded that for underground simulations, 
since the velocity model might not exactly be determined, an approximation of the unknown 
fields such as displacement or stress suffices. Moreover, through mode separation, it would 
become possible to contribute more confident modes (having larger wavelengths). 

Since matrix A is a sparse non-symmetric matrix, the well-performed Arnoldi algorithm might 
simply be adopted for the pre-processing step. This procedure employs an orthogonal projection 
onto a Krylov subspace (Saad, 1980, 2003 [25, 26]). In order to implement the Arnoldi algorithm 
on GPU, Compressed Sparse Row (CSR) or Block Compressed Sparse Row (BCSR) format 
storing is appropriate for the sparse matrix A (Choi et al., 2010 [27]). Other more sophisticated 
storage formats such as Coordinate List (COO), Ellpack (ELL), Hybrid (HYB) and Diagonal 
(DIA) formats may also be used (Bell and Gerland, 2009 [28]). Either NVIDIA CUBLAS [29] or 
CUSPARSE libraries might be employed to compute the eigenvalues and eigenvectors of A. It is 
also notable that for some special structured forms of the sparse matrix A, there exist explicit 
formulae for eigenvalues-eigenvectors calculations (see Chang et al., 2009 [30]). 

3.2. MFDM implementation 

Different parallel techniques for FDTD implementation have been offered in the literature. The 
most recognized and applicable ones are those with OpenMP (OpenMP, 2009 [21]) and Message 
Passing Interface (MPI) (Gropp et al., 1999 [22]) which are customized for parallelization over 
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one single node and multiple nodes, respectively. There has also been a wide interest toward 
using Graphic Processing Units (GPUs) for parallel FDTD implementation recently. In this 
section, MPI- and CUDA-based parallel implementations of MFDM are explained. 

3.2.1. MPI-based implementation 

MPI is one of the most widely used parallel processing standards. Actually, it is a library of 
functions which are called from C, C++ or Fortran routines. The MPI library is well remarked 
for its standardization, portability, performance and functionality (Gropp et al., 1999 [22]). 

For an MPI-based parallel implementation of MFDM, it is required that each processor is fetched 
with data related to a portion of system modes according to Eq. (9). The master node reads 
modal data and sends packages of eigenvalues nk

ii

1}{  and modal forces k

iiqf 1)( }{   to the slaves 

just once. Each slave then starts up with the received data and updates its own modal 
displacements k

iiqu 1)( }{   according to Eq. (9) at each time-step t. After each update, the slave sends 

the modal displacements back to the master and starts the new run for the following step.  

Figure 1 is the pseudo-code for the proposed MPI-based MFDM parallel implementation. It is 
notable that the scheme significantly reduces slave-master communications; actually, except at 
the start of the parallel routine, there remains only a unilateral slave-to-master data stream. 

3.2.2. CUDA-based implementation 

Nowadays, the programmable Graphics Processing Unit (GPU) is known as an alternative to the 
traditional CPUs networks for performing massively parallel calculations. In particular, CUDA, 
the programming model introduced in 2006 by NVIDIA [29], has proven to be a convenient, 
general purpose framework to exploit the parallel computing engine on NVIDIA GPUs. Not only 
new programs are routinely implemented in CUDA to solve complex computational problems 
(Dugan, et al., 2013 [31]), but also many massively parallel scientific packages, developed 
essentially on the MPI and/or OpenMP models during decades are now being equipped with 
GPU capabilities. 

A GPU consists of an array of a large number of independent execution units and a global 
memory. The global memory is accessible both by the host CPU and all the execution units of 
the GPU. Each execution unit naturally has its own set of processors, registers and memory units 
and is called a multi-threaded Streaming Multiprocessor (SM).  The host CPU program 
distributes the work over the SMs. Each SM can execute a large number of threads 
simultaneously. Since MFDM skips domain-decomposition and thus no boundary-data is 
exchanged, each thread can independently execute the FD kernel function. The pseudo-code for 
CUDA-based MFDM parallel implementation is shown in Fig. 2. The host CPU allocates 
memory and copies modal data (eigenvalues nk

ii

1}{  and modal forces k

iiqf 1)( }{  ) onto the device 

once at the beginning of the application. Thereafter, almost no device-host data transfers are 
necessary during simulation. This gives rise to an implementation which considerably profits 
from GPU performance and enables one to competently employ the typical PCI (Peripheral 
Component Interconnect) express bus data exchange issues. By calling the kernel, the device 
(GPU) starts up with the data and calculations for each mode (assigned to a single GPU thread) 
are followed. All operations are done per-mode with a SIMD (single instruction multiple data) 
approach. Each thread updates its own modal displacements k

iiqu 1)( }{   according to Eq. (9) after 
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which modal displacements are copied from device to host and the displacement vector is 
retrieved according to Eq. (10). In order to synchronize the received data gathered from different 
threads, the computed data are first lumped in the shared memory (pertaining to the blocks) and 
then might be transferred to the global memory. 

 

Initialize MPI 

Master: 

         read eigenvalues and eigenvectors 

         Compute fq 

         Send  portions to workers 

         Receive results (uq) from slaves 

         Calculate u =   uq 

         Print u 

Slaves: 

         Receive data from master 

         Time step starts: 

         Apply force fq
t 

         Update uq (Eq. 9) 

         Send uq to master 

        Time step ends.  

Fig. 1.  Pseudo-code for MPI-based implementation of MFDM 

 

4. Numerical examples 

A 4 km  4 km 2D spatial domain is considered for the following two cases: 

1. Homogeneous domain of Granite Rock (first Lamé constant  = 23.08 GPa, second Lamé 
constant  = 15.38 GPa and density 2700 = ߩ kg mଷ⁄ ) 



R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016) 

192 
 

2. Non-homogenous domain comprised of two layers: a lower layer of Granite rock (depth of the 
lower layer ܪଵ = 3 km, ߣଵ = 23.08 GPa, ߤଵ = 15.38 GPa and ߩଵ = 2700 kg mଷ⁄ ) and an upper 
layer of a young sediment deposit (depth of the upper layer ܪଶ = 1 km, ߣଶ = 60.0 MPa, ߤଶ = 60.0 
MPa, and ߩଶ = 2000 kg mଷ⁄ ). 

 

Host : 

 Allocate memory on Device 

Initialize variables  

 Read eigenvalues and eigenvectors 

Copy data from Host to Device 

Call kernel 

Copy results  from Device to Host 

Calculate u =   uq 

Print u 

Device: 

Identify threads ID 

Time step starts: 

Apply force  fqt  

Update uq ( Eq. 9) 

Time step ends.  

Fig. 2.  Pseudo-code for CUDA-based implementation of MFDM 

 

A point source with the following form: 

 )()( tstf xg  (11) 

is placed at the center of the domain. g(x) is defined as:  fs ux-xx ˆ)()( g  (12) 

in which xs is the source location, )(.  is the Dirac function and fû  is the direction of the body 

force. For the present example, fû  is defined for the two cases of explosive source and shearing 

double-couple. The source time function s(t) is represented by a Ricker wavelet with the 
maximum amplitude of 1000 Pa and time duration T=1.0 s. The spatial domain is discretized by 
x=z=100 m and is bounded with zero displacement for the sake of simplicity. The time step 
t=0.005 s is applied for temporal discretization. Second-order FD stencils are employed for 
both space and time discretization. 



R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016) 

193 
 

Calculations for both homogeneous and non-homogeneous examples are performed using the 
following FDTD schemes: 

M1. Serial FDTD 

M2. Serial modal FDTD 

M3. Parallel MPI-based conventional FDTD 

M4. Proposed parallel MPI-based modal FDTD 

M5. Proposed parallel CUDA-based modal FDTD 

4.1. The homogeneous case 

For MDFM implementation, the characteristic matrix A is first developed and its eigenvalues are 
calculated according to the procedure introduced in Section 3.1. Figures 3(a-b) show diagrams 
for the eigenvalues n

ii 1}{   and modal forces n
iiqxf 1)( }{   for all present modes respectively. As 

pointed out earlier, modal forces might be supposed as modal contribution factors. From Fig. 3-
b, it is concluded that higher modes are contributed (and might be more effective) in the total 
response. Figure 3-c depicts the sorted absolute modal forces from which it is possible to select 
an appropriate number of modes according to the required level of accuracy; e.g. 95% of the 
overall response might be achieved by contribution of at least 2000 modes.  

 
                (a)                                                       (b)                                                         (c) 

 
                                                            (d)                                                               (e) 

Fig. 3. (a) Eigenvalues, (b) modal force (explosive source) , (c) sorted modal force (explosive source), (d) modal 
force  (for double couple) and (e) sorted modal force (for double couple) in the homogeneous case 
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Figures 4(a-c) illustrates the first 15 mode shapes as well as the most effective 15 modes for the 
two cases of explosive and double-couple mid-sources respectively. The mode number 
associated with each mode shape is reported underneath. 

Figure 5 illustrates the convergence of the displacement field at t=1.6 s as more modes are 
contributed for the case of explosive source. It is well observed that an overall demonstration of 
the wave pattern is appropriately comprised with the contribution of the first 500 modes. More 
details are determined when higher modes are supplied. Interestingly, mode superposition 
according to mode numbers (Fig. 5-a) converges slightly better than that the result obtained 
according to the superposition of most significant modes (Fig. 5-b). Such feature is also observed 
for the case of double-couple source as shown by Fig. 6.   

       (a) 

      (b) 

Fig. 4. Displacements of: (a) the first 15 modes , (b) the most effective 15 modes for explosive source, and (c) the 
most effective 15 modes, for double-couple source (homogeneous case)  
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      (c) 
Fig. 4. (Continued) 

 

      (a) 

      (b) 

Fig. 5. Snapshots of the displacement wave at t=1.6 s for increasing number of mode contribution (explosive-source 
homogeneous case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their modal 

contribution values 
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      (a) 

      (b) 
Fig. 6. Snapshots of the displacement wave at t=1.6 s for increasing number of mode contribution (double couple-

source homogeneous case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their 
modal contribution values 

4.2. The 2-Layer case 

Figures 7(a-b) show diagrams for the eigenvalues n
ii 1}{   and modal forces n

iiqxf 1)( }{   in all 

present modes respectively. As pointed out earlier, modal forces might be assumed as modal 
contribution factors. A comparison of Figs. 3-b and 7-b shows that the contribution of the first 
modes are effectively reduced in the non-homogeneous case; however, no remarkable difference 
exists between the diagrams in Figs. 3-c and 7-c which shows that the number of modes required 
for a specific level of accuracy has not much changed for the two cases. In other words, the 
contribution to the total response is more uniformly distributed among the modes for the 
homogeneous case in comparison with the non-homogeneous case. 

 
                 (a)                                                           (b)                                                             (c) 

Fig. 7. (a) Eigenvalues, (b) modal force (explosive source), (c) sorted modal force (explosive source), (d) modal 
force (for double couple) and (e) sorted modal force (for double couple) in the non- homogeneous (2-layer) case 



R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016) 

197 
 

  

 
                                                       (d)                                                                         (e) 

Fig. 7. (Continued) 

 

Figure 8 illustrates the first and the most effective 15 modes for the two cases of explosive and 
double-couple mid-sources respectively. Figs. 9 and 10 illustrate the convergence of the 
displacement field at t=1.6 s as more modes are contributed for the two cases of explosive and 
double-couple sources. Again, an overall demonstration of the wave pattern is comprised with 
the contribution of almost the first 500 modes. As was the case in the previous example, mode 
superposition according to the mode number (Figs. 9(a) and 10(a)) gives more robust results than 
the results obtained from superposition based on the most significant modes (Figs. 9(b) and 
10(b)).  

       (a) 
Fig. 8. Displacements of (a) the first 15 modes, (b) the most effective 15 modes for explosive source and (c) the 

most effective 15 modes for double-couple source (non-homogeneous 2-layer case)   
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      (b) 

      (c) 
Fig. 8. (Continued) 

      (a) 
Fig. 9. Snapshots of the displacement wave at t=0.1 s for increasing number of mode contribution (explosive-source 
non-homogeneous 2-layer case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their 

modal contribution values 
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      (b) 
Fig. 9. (Continued) 

 

      (a) 

      (b) 

 

Fig. 10. Snapshots of the displacement wave at t=0.1 s for increasing number of mode contribution (double couple-
source non-homogeneous 2-layer case): (a) Modes sorted according to eigenvalues, and (b) Modes sorted according 

to their modal contribution values 

 

In Fig. 11(a), the elapsed times for serial MFDM (M2) runs (on an Intel Pentium Dual Core 3.0 
GHz Processor) are illustrated versus the number of contributed modes for the introduced 
problem (homogeneous case with explosive source) discretized by a 3030 mesh. The red point 
on the diagram depicts the elapsed time of 2.168 s obtained by serial FDTD (M1). According to 
the figure, the elapsed time for MFDM (M2), with all modes being contributed, is 1.700 s which 
is notably less than that of M1. Specially, when less modes are considered based on the required 
accuracy, such discrepancy increases (e.g. with the contribution of 500 modes by which a pattern 
of the wave-field is formed, the elapsed time is 0.281 sec). The discrepancy is surely more 
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remarkable for more refined meshes. However, it is reminded that the pre-processing step is not 
reckoned for here in the calculation of the elapsed time of M2 runs; such step is effectively 
expensive unless an appropriate parallel procedure is employed as explained in Section 3.1. As 
mentioned earlier, MFDM seems to be appropriate for the applications in which simulations for 
several source features is required while the velocity model does not change. 

In Fig. 11(b), the parallel MPI- and CUDA- based implementations of FD and MFD methods 
(M3, M4 and M5) are compared for the same problem. For MPI-based implementation, a 3-node 
cluster which contained 8 AMD 2.2GHz processors was employed. The network system used for 
MPI communications was Gigabit Ethernet with the bandwidth of 0.1 GB/s. The GPU system 
used for analysis contained two Nvidia Tesla C1060 GPUs with an Intel Quad-Core 2.66 GHz 
CPU as host. 

A simple comparison between Figs. 11(a) and (b) shows that the computation times are 
considerably reduced by using the parallel procedures. Specially, the discrepancy between FDM 
and MFDM methods are more remarkable in parallel procedures as compared with serial 
procedures. It is also notable that CUDA-based implementation is slightly more costly than the 
MPI- based implementation for MFD runs. This is due to the fact that in MFDM, the 
communications are efficiently reduced such that the simulation time is attributed to FD 
temporal updates. Here, MPI implementations get use of a network of 3 CPUs which are 
computationally more powerful than the GPU system. 

 

 

 
 

      (a)         (b) 

Fig. 11. (a) Serial MFDM (M2) performance versus the number of used modes and serial FDM (M1) performance 
(red point); (b) Parallel MPI- and CUDA- based MFDMs (M4 and M5) performance vs. the number of used modes 

and MPI-based FDM performance (M3) (red point) 
5. Conclusion 

This paper presents the new FD-based procedure ‘Modal FDM’ for wave-field modeling in the 
elastic medium which explicitly solves wave equations in the time-domain. The proposed 
method is well-remarked for the following features: 
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1. Contribution to the overall response is not the same for different modes. In some cases, the 
significant portion of the response is almost contributed by a few modes and thus, calculations 
for all eigenvalues might not be required anymore. Such possibility is especially justifiable since 
the source mechanism and velocity model of the region are unknown or approximately known in 
most cases. Therefore, a solution procedure adjustable to access any arbitrary accuracy level is 
mostly demanded. 

2. Since the explicit equations appeared in the proposed procedure are decoupled, processing for 
each mode can be performed independently. Concurrent processing is then simply possible and 
the method can easily be parallelized by any appropriate parallel standard without the need for 
domain-decomposition technique and slave-slave inter-core communications. From this point of 
view, MFDM is even preferred to FDFD procedures. The procedure is especially straightforward 
for being implemented in GPUs. 

3. The parallel implementation of the procedure is dimension independent; i.e. a single parallel 
MFD algorithm might be used for any 1-, 2- and 3-dimensional wave-modeling problem. 

4. MFDM seems to be computationally efficient for applications such as focal search procedures 
in which simulations for a large number of different sources is required while the velocity model 
does not change. In such applications, the time-consuming eigen-system calculation is performed 
once and the MFD runs will greatly reduce the subsequent computational costs in comparison 
with the conventional FD procedures. 
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