
 Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

I S A V

Journal of Theoretical and Applied

Vibration and Acoustics

journal homepage: http://tava.isav.ir

MPI- and CUDA- implementations of modal finite difference
method for P-SV wave propagation modeling

Hossein Samadiyeh, Reza Khajavi *

Earthquake Research Center, Ferdowsi University of Mashhad, Mashhad, Iran

A R T I C L E I N F O

A B S T R A C T

Article history:
Received 18 July 2016

Received in revised form 21
August 2016

Accepted 17 October 2016

Available online 25 December
2016

Among different discretization approaches, Finite Difference Method
(FDM) is widely used for acoustic and elastic full-wave form
modeling. An inevitable deficit of the technique, however, is its sever
requirement to computational resources. A promising solution is
parallelization, where the problem is broken into several segments,
and the calculations are distributed over different processors. For the
present FD routines, however, such parallelization technique
inevitably needs domain-decomposition and inter-core data exchange,
due to the coupling of the governing equations. In this study, a new
FD-based procedure for seismic wave modeling, named as ‘Modal
Finite Difference Method (MFDM)” is introduced, which deals with
the simulation in the decoupled modal space; thus, neither domain-
decomposition nor inter-core data exchange is anymore required,
which greatly simplifies parallelization for both MPI- and CUDA
implementations over CPUs and GPUs. With MFDM, it is also
possible to simply cut off less-significant modes and run the routine
for just the important ones, which will effectively reduce computation
and storage costs. The efficiency of the proposed MFDM is shown by
some numerical examples.

©2016 Iranian Society of Acoustics and Vibration, All rights reserved.

Keywords:
Finite difference method

Graphics Processing Unit (GPU)

Message Passing Interface (MPI)

Modal

Wave propagation

1. Introduction

The Finite Difference Method (FDM) is supposed to be one of the most efficient numerical
procedures for solving differential equations appeared in the science and engineering fields.
Among various numerical procedures, the FDM is an old and matured method. The initial
attempts for numerical solution of the wave equation involved somehow a FD-based procedure
(Alterman and Karal, 1968 [1], Boore, 1970, 1972 [2, 3]). Even with the appearance of new

* Corresponding Author.
 E-mail address: : rezakhajavi@ferdowsi.um.ac.ir (R. Khajavi)

http://dx.doi.org/ 10.22064/tava.2016.45442.1052

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

186

sophisticated numerical methods such as the finite element method (FEM) (Zienkiewicz and
Taylor, 2000; Cohen et al., 1994 [4, 5]), pseudo-spectral methods (Kosloff and Baysal, 1982;
Kosloff et al., 1984; Fornberg, 1987 [6-8]), the spectral element method (SEM) (Komatitsch and
Tromp, 1999 [9]) and the discrete Galerkin Method (DGM) (Grote et al., 2006 [10]), the FDM is
still appealing and attractive for many researchers. Such attraction is undoubtedly due to
simplicity of the FDM.

Since early employments of FDM in seismic wave-field modeling, different approaches were
established to further develop this numerical procedure. Various customized versions of the
method for wave-simulation is thus offered and new modified FD-based procedures are still
under development. The most recognized among these variations is the staggered finite
difference method which solves differential wave equations over staggered grids (Virieux, 1984,
1986, Levander, 1988, Graves, 1996 [11-13]). Eventhough the staggered procedures are proved
to be efficient and are vastly used for wave-field modeling (Moczo et al. 2004, 2007 [14, 15]),
the FD procedures with simple non-staggered grids are still attractive for their simplicity and
ease of implementation. Several researches are recently dedicated to improve the FD solutions
over simple grids. Higher-order FD operators (Dablain, 1986 [16]), DSF (Mikhailenko, 2000
[17]) and compact FD procedures (Lele, 1992 [18]) are some extensions to the primary version
of the time-domain FD method. They try to improve FD results over simple and coarse meshes
(Pirozzoli, 2007 [19]).

The main drawback of the FDTD simulations is that they are drastically data intensive and need
a tremendous amount of floating-point calculations which necessitate computational resources.
Appropriate FDTD simulations require fine meshes for both spatial and temporal domains to
prevent numerical errors such as instability or numerical dispersion. Thus, most realistic
simulations inevitably exceed memory limits on a single computer and have to be distributed
over a cluster of computers. It is now more than a decade that parallelization on high-
performance PC (personal computer) clusters has become a promising approach toward
numerical seismic wave-propagation modeling (Bohlen, 2002 [20]).

The FDTD method is naturally appropriate for parallelization; since, for every FD spatial node,
the field values of the neighboring cells in the previous - and not the current - time steps are
required. However, such parallelization inevitably introduces extra computational costs due to
boundary data exchange between adjacent spatial-domain divisions.

Different parallel implementations of FDTD have been proposed in the literature, with a wide
range of various parallel architectures and hardware configurations. They get use of different
programming models and protocols such as Open MultiProcessing (OpenMP, 2009 [21]) for
single computing node or Massage Passing Interface (MPI) (Gropp et al., 1999 [22]) for
parallelization across multiple nodes.

There has been a great deal of interest toward employing graphics processing units (GPUs) to
accelerate FDTD simulations in recent years. While caching mechanisms on CPUs are not
appropriate for FDTD memory access patterns, GPUs provide effective control on data-loading
onto a small shared memory which significantly enhances memory access (Shams and Sadeghi,
2011 [23]). Modern GPUs are now installed on desktop computers and offer extremely efficient
well-performed computations especially when calculations are duly independent of each other.
For an efficient solution with GPU, one may partition the problem into independent sub-

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

187

problems which are distributed over streaming multiprocessors (SMs) through some thread
blocks (Mehra et al., 2012 [24]).

Parallelization of FDTD in its conventional form has some fundamental issues which avoid its
implementation on any present parallel hardware. Though some architectures are proved to be
more efficient than others, there still remains a great deal of details and optimizing
considerations such as domain-decomposition techniques, load distribution and memory
management to be dealt with. Surely, a time-domain FD technique with no need for domain-
decomposition and boundary-data transfer is highly welcomed.

In the current study, a new FD-based method is developed to solve the elastic wave equation
numerically. This procedure named as the ‘Modal Finite Difference Method (MFDM)’ explicitly
solves the wave equation in the time domain within the modal space and gets use of the modal
orthogonality of the FD matrix operator. Through this procedure, the explicit FD equations are
decoupled which facilitates parallel CUDA (Compute Unified Device Architecture)-based
computerized implementation without resorting to domain-decomposition techniques. More
importantly is the fact that manipulating some few MFD equations might provide responses
within acceptable tolerance.

2. Theory

In this study the P-SV differential wave equation is considered for the homogeneous elastic
medium:

 utt = ([ + 2] ux)x + ( uz)z + ( wz)x + ( wx)z + fx
(1)

 wtt = ([ + 2] wz)z + ( wx)x + ( uz)x + ( ux)z + fz
where (.)


 denotes partial derivative with respect to  which might be the spatial coordinates x, z

or the time variable t.  and  are the Lame` constants,  is the mass density and u and w are the
displacement components along x and z directions respectively. fx and fz are the body forces
along x and z that vanish for all medium points other than those associated with the seismic
source.

The above differential equations might be recast into the following explicit algebraic equations
by the use of appropriate FD stencil for spatial derivatives and second-order central FD stencil
for temporal ones:

tt-tttt fBuAuu   (2)

where A and B are some nn time-independent FD-based matrices and u is the n-dimensional
displacement vector (n is the number of degrees of freedom). f t is the n-dimensional source
equivalent-force vector which is usually defined as:

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

188

)(tsxff  (3)

where fx is the vector of source spatial distribution and s(t) is the source temporal function. The
superscripts appeared in Eq. (2) represent time steps which are sampled at every t. Given  as
the eigenvector matrix of A, Eq. (2) is rewritten as:

t

q
t-t

qq
t
qq

tt
q fuBuAu   (4)

in which

 AAq

1 (5)

 BBq

1 (6)

are A- and B- equivalents in the modal space, and

uqu 1  (7)

and

)()(tsts qxxq ffff   11  (8)

are the modal displacement and source-force vectors respectively. Aq is clearly a diagonal matrix
which entails eigenvalues of A. The system of equations (4) is decoupled provided that B is also
diagonal; i.e. the eigenvectors of A are also orthogonal with respect to B. For the second-order
central FD stencil being used for the time-discretization of Eq. (2), Bq=-I and thus Eq. (4)
represents the following n decoupled explicit equations:

nitsfuuu iqx

tt
iq

t
iqi

tt
iq ,...,2,1),()()()()()(    (9)

where (i) is the ith eigenvector of A. Once uq is found for every time step t, the displacement
vector u is calculated by:

t
q

t uu  (10)

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

189

fqx(i) in Eq. (9) shows the ith mode contribution in the total response. Based on this, it is possible
to contribute the most important modes up to the desired accuracy. For this purpose, the square
matrix  in Eqs. (5-8) are replaced by a rectangular matrix m; this matrix involves the m
eigenvectors corresponding to the most significant modes. The pseudo-inverse of the rectangular
matrix m must thus be used rather than -1.

3. Implementation

As pointed out in the previous section, MFDM is a two-step procedure. At the first step, denoted
as the pre-processing step, matrix A of Eq. (2) as well as its modal characteristics (i.e.
eigenvalues and eigenvectors) should be found. The second step, which is the main process,
implements the Modal FD method. Since both steps are computationally expensive, they should
be implemented on parallel systems.

3.1. Pre-processing (Mode calculations)

Pre-processing (eigenvalues-eigenvectors calculation for matrix A) seems to be the major
bottleneck and costly step in MFDM. As will be seen in numerical examples (Section 4), point
seismic sources in 2D problems inevitably excite a large range of modes of A; thus, calculation
of a few eigenvalues-eigenvectors for the A matrix is certainly not sufficient to achieve
satisfactory results. Because of this, MFDM seems to be especially appropriate for applications
where it is required to deal with a large number of different seismic sources in a constant
velocity model. Focal search procedures are among such applications. The requirement for
several runs of the MFD for different seismic sources may justify costly eigen-system
calculations in the pre-processing step. It is however reminded that for underground simulations,
since the velocity model might not exactly be determined, an approximation of the unknown
fields such as displacement or stress suffices. Moreover, through mode separation, it would
become possible to contribute more confident modes (having larger wavelengths).

Since matrix A is a sparse non-symmetric matrix, the well-performed Arnoldi algorithm might
simply be adopted for the pre-processing step. This procedure employs an orthogonal projection
onto a Krylov subspace (Saad, 1980, 2003 [25, 26]). In order to implement the Arnoldi algorithm
on GPU, Compressed Sparse Row (CSR) or Block Compressed Sparse Row (BCSR) format
storing is appropriate for the sparse matrix A (Choi et al., 2010 [27]). Other more sophisticated
storage formats such as Coordinate List (COO), Ellpack (ELL), Hybrid (HYB) and Diagonal
(DIA) formats may also be used (Bell and Gerland, 2009 [28]). Either NVIDIA CUBLAS [29] or
CUSPARSE libraries might be employed to compute the eigenvalues and eigenvectors of A. It is
also notable that for some special structured forms of the sparse matrix A, there exist explicit
formulae for eigenvalues-eigenvectors calculations (see Chang et al., 2009 [30]).

3.2. MFDM implementation

Different parallel techniques for FDTD implementation have been offered in the literature. The
most recognized and applicable ones are those with OpenMP (OpenMP, 2009 [21]) and Message
Passing Interface (MPI) (Gropp et al., 1999 [22]) which are customized for parallelization over

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

190

one single node and multiple nodes, respectively. There has also been a wide interest toward
using Graphic Processing Units (GPUs) for parallel FDTD implementation recently. In this
section, MPI- and CUDA-based parallel implementations of MFDM are explained.

3.2.1. MPI-based implementation

MPI is one of the most widely used parallel processing standards. Actually, it is a library of
functions which are called from C, C++ or Fortran routines. The MPI library is well remarked
for its standardization, portability, performance and functionality (Gropp et al., 1999 [22]).

For an MPI-based parallel implementation of MFDM, it is required that each processor is fetched
with data related to a portion of system modes according to Eq. (9). The master node reads
modal data and sends packages of eigenvalues nk

ii

1}{ and modal forces k

iiqf 1)(}{  to the slaves

just once. Each slave then starts up with the received data and updates its own modal
displacements k

iiqu 1)(}{  according to Eq. (9) at each time-step t. After each update, the slave sends

the modal displacements back to the master and starts the new run for the following step.

Figure 1 is the pseudo-code for the proposed MPI-based MFDM parallel implementation. It is
notable that the scheme significantly reduces slave-master communications; actually, except at
the start of the parallel routine, there remains only a unilateral slave-to-master data stream.

3.2.2. CUDA-based implementation

Nowadays, the programmable Graphics Processing Unit (GPU) is known as an alternative to the
traditional CPUs networks for performing massively parallel calculations. In particular, CUDA,
the programming model introduced in 2006 by NVIDIA [29], has proven to be a convenient,
general purpose framework to exploit the parallel computing engine on NVIDIA GPUs. Not only
new programs are routinely implemented in CUDA to solve complex computational problems
(Dugan, et al., 2013 [31]), but also many massively parallel scientific packages, developed
essentially on the MPI and/or OpenMP models during decades are now being equipped with
GPU capabilities.

A GPU consists of an array of a large number of independent execution units and a global
memory. The global memory is accessible both by the host CPU and all the execution units of
the GPU. Each execution unit naturally has its own set of processors, registers and memory units
and is called a multi-threaded Streaming Multiprocessor (SM). The host CPU program
distributes the work over the SMs. Each SM can execute a large number of threads
simultaneously. Since MFDM skips domain-decomposition and thus no boundary-data is
exchanged, each thread can independently execute the FD kernel function. The pseudo-code for
CUDA-based MFDM parallel implementation is shown in Fig. 2. The host CPU allocates
memory and copies modal data (eigenvalues nk

ii

1}{ and modal forces k

iiqf 1)(}{ ) onto the device

once at the beginning of the application. Thereafter, almost no device-host data transfers are
necessary during simulation. This gives rise to an implementation which considerably profits
from GPU performance and enables one to competently employ the typical PCI (Peripheral
Component Interconnect) express bus data exchange issues. By calling the kernel, the device
(GPU) starts up with the data and calculations for each mode (assigned to a single GPU thread)
are followed. All operations are done per-mode with a SIMD (single instruction multiple data)
approach. Each thread updates its own modal displacements k

iiqu 1)(}{  according to Eq. (9) after

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

191

which modal displacements are copied from device to host and the displacement vector is
retrieved according to Eq. (10). In order to synchronize the received data gathered from different
threads, the computed data are first lumped in the shared memory (pertaining to the blocks) and
then might be transferred to the global memory.

Initialize MPI

Master:

 read eigenvalues and eigenvectors

 Compute fq

 Send portions to workers

 Receive results (uq) from slaves

 Calculate u =  uq

 Print u

Slaves:

 Receive data from master

 Time step starts:

 Apply force fq
t

 Update uq (Eq. 9)

 Send uq to master

 Time step ends.

Fig. 1. Pseudo-code for MPI-based implementation of MFDM

4. Numerical examples

A 4 km  4 km 2D spatial domain is considered for the following two cases:

1. Homogeneous domain of Granite Rock (first Lamé constant  = 23.08 GPa, second Lamé
constant  = 15.38 GPa and density 2700 = ߩ kg mଷ⁄)

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

192

2. Non-homogenous domain comprised of two layers: a lower layer of Granite rock (depth of the
lower layer ܪଵ = 3 km, ߣଵ = 23.08 GPa, ߤଵ = 15.38 GPa and ߩଵ = 2700 kg mଷ⁄) and an upper
layer of a young sediment deposit (depth of the upper layer ܪଶ = 1 km, ߣଶ = 60.0 MPa, ߤଶ = 60.0
MPa, and ߩଶ = 2000 kg mଷ⁄).

Host :

 Allocate memory on Device

Initialize variables

 Read eigenvalues and eigenvectors

Copy data from Host to Device

Call kernel

Copy results from Device to Host

Calculate u =  uq

Print u

Device:

Identify threads ID

Time step starts:

Apply force fqt

Update uq (Eq. 9)

Time step ends.

Fig. 2. Pseudo-code for CUDA-based implementation of MFDM

A point source with the following form:

)()(tstf xg (11)

is placed at the center of the domain. g(x) is defined as: fs ux-xx ˆ)()(g (12)

in which xs is the source location,)(. is the Dirac function and fû is the direction of the body

force. For the present example, fû is defined for the two cases of explosive source and shearing

double-couple. The source time function s(t) is represented by a Ricker wavelet with the
maximum amplitude of 1000 Pa and time duration T=1.0 s. The spatial domain is discretized by
x=z=100 m and is bounded with zero displacement for the sake of simplicity. The time step
t=0.005 s is applied for temporal discretization. Second-order FD stencils are employed for
both space and time discretization.

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

193

Calculations for both homogeneous and non-homogeneous examples are performed using the
following FDTD schemes:

M1. Serial FDTD

M2. Serial modal FDTD

M3. Parallel MPI-based conventional FDTD

M4. Proposed parallel MPI-based modal FDTD

M5. Proposed parallel CUDA-based modal FDTD

4.1. The homogeneous case

For MDFM implementation, the characteristic matrix A is first developed and its eigenvalues are
calculated according to the procedure introduced in Section 3.1. Figures 3(a-b) show diagrams
for the eigenvalues n

ii 1}{  and modal forces n
iiqxf 1)(}{  for all present modes respectively. As

pointed out earlier, modal forces might be supposed as modal contribution factors. From Fig. 3-
b, it is concluded that higher modes are contributed (and might be more effective) in the total
response. Figure 3-c depicts the sorted absolute modal forces from which it is possible to select
an appropriate number of modes according to the required level of accuracy; e.g. 95% of the
overall response might be achieved by contribution of at least 2000 modes.

 (a) (b) (c)

 (d) (e)

Fig. 3. (a) Eigenvalues, (b) modal force (explosive source) , (c) sorted modal force (explosive source), (d) modal
force (for double couple) and (e) sorted modal force (for double couple) in the homogeneous case

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

194

Figures 4(a-c) illustrates the first 15 mode shapes as well as the most effective 15 modes for the
two cases of explosive and double-couple mid-sources respectively. The mode number
associated with each mode shape is reported underneath.

Figure 5 illustrates the convergence of the displacement field at t=1.6 s as more modes are
contributed for the case of explosive source. It is well observed that an overall demonstration of
the wave pattern is appropriately comprised with the contribution of the first 500 modes. More
details are determined when higher modes are supplied. Interestingly, mode superposition
according to mode numbers (Fig. 5-a) converges slightly better than that the result obtained
according to the superposition of most significant modes (Fig. 5-b). Such feature is also observed
for the case of double-couple source as shown by Fig. 6.

 (a)

 (b)

Fig. 4. Displacements of: (a) the first 15 modes , (b) the most effective 15 modes for explosive source, and (c) the
most effective 15 modes, for double-couple source (homogeneous case)

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

195

 (c)
Fig. 4. (Continued)

 (a)

 (b)

Fig. 5. Snapshots of the displacement wave at t=1.6 s for increasing number of mode contribution (explosive-source
homogeneous case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their modal

contribution values

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

196

 (a)

 (b)
Fig. 6. Snapshots of the displacement wave at t=1.6 s for increasing number of mode contribution (double couple-

source homogeneous case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their
modal contribution values

4.2. The 2-Layer case

Figures 7(a-b) show diagrams for the eigenvalues n
ii 1}{  and modal forces n

iiqxf 1)(}{  in all

present modes respectively. As pointed out earlier, modal forces might be assumed as modal
contribution factors. A comparison of Figs. 3-b and 7-b shows that the contribution of the first
modes are effectively reduced in the non-homogeneous case; however, no remarkable difference
exists between the diagrams in Figs. 3-c and 7-c which shows that the number of modes required
for a specific level of accuracy has not much changed for the two cases. In other words, the
contribution to the total response is more uniformly distributed among the modes for the
homogeneous case in comparison with the non-homogeneous case.

 (a) (b) (c)

Fig. 7. (a) Eigenvalues, (b) modal force (explosive source), (c) sorted modal force (explosive source), (d) modal
force (for double couple) and (e) sorted modal force (for double couple) in the non- homogeneous (2-layer) case

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

197

 (d) (e)

Fig. 7. (Continued)

Figure 8 illustrates the first and the most effective 15 modes for the two cases of explosive and
double-couple mid-sources respectively. Figs. 9 and 10 illustrate the convergence of the
displacement field at t=1.6 s as more modes are contributed for the two cases of explosive and
double-couple sources. Again, an overall demonstration of the wave pattern is comprised with
the contribution of almost the first 500 modes. As was the case in the previous example, mode
superposition according to the mode number (Figs. 9(a) and 10(a)) gives more robust results than
the results obtained from superposition based on the most significant modes (Figs. 9(b) and
10(b)).

 (a)
Fig. 8. Displacements of (a) the first 15 modes, (b) the most effective 15 modes for explosive source and (c) the

most effective 15 modes for double-couple source (non-homogeneous 2-layer case)

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

198

 (b)

 (c)
Fig. 8. (Continued)

 (a)
Fig. 9. Snapshots of the displacement wave at t=0.1 s for increasing number of mode contribution (explosive-source
non-homogeneous 2-layer case): (a) Modes sorted according to eigenvalues and (b) Modes sorted according to their

modal contribution values

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

199

 (b)
Fig. 9. (Continued)

 (a)

 (b)

Fig. 10. Snapshots of the displacement wave at t=0.1 s for increasing number of mode contribution (double couple-
source non-homogeneous 2-layer case): (a) Modes sorted according to eigenvalues, and (b) Modes sorted according

to their modal contribution values

In Fig. 11(a), the elapsed times for serial MFDM (M2) runs (on an Intel Pentium Dual Core 3.0
GHz Processor) are illustrated versus the number of contributed modes for the introduced
problem (homogeneous case with explosive source) discretized by a 3030 mesh. The red point
on the diagram depicts the elapsed time of 2.168 s obtained by serial FDTD (M1). According to
the figure, the elapsed time for MFDM (M2), with all modes being contributed, is 1.700 s which
is notably less than that of M1. Specially, when less modes are considered based on the required
accuracy, such discrepancy increases (e.g. with the contribution of 500 modes by which a pattern
of the wave-field is formed, the elapsed time is 0.281 sec). The discrepancy is surely more

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

200

remarkable for more refined meshes. However, it is reminded that the pre-processing step is not
reckoned for here in the calculation of the elapsed time of M2 runs; such step is effectively
expensive unless an appropriate parallel procedure is employed as explained in Section 3.1. As
mentioned earlier, MFDM seems to be appropriate for the applications in which simulations for
several source features is required while the velocity model does not change.

In Fig. 11(b), the parallel MPI- and CUDA- based implementations of FD and MFD methods
(M3, M4 and M5) are compared for the same problem. For MPI-based implementation, a 3-node
cluster which contained 8 AMD 2.2GHz processors was employed. The network system used for
MPI communications was Gigabit Ethernet with the bandwidth of 0.1 GB/s. The GPU system
used for analysis contained two Nvidia Tesla C1060 GPUs with an Intel Quad-Core 2.66 GHz
CPU as host.

A simple comparison between Figs. 11(a) and (b) shows that the computation times are
considerably reduced by using the parallel procedures. Specially, the discrepancy between FDM
and MFDM methods are more remarkable in parallel procedures as compared with serial
procedures. It is also notable that CUDA-based implementation is slightly more costly than the
MPI- based implementation for MFD runs. This is due to the fact that in MFDM, the
communications are efficiently reduced such that the simulation time is attributed to FD
temporal updates. Here, MPI implementations get use of a network of 3 CPUs which are
computationally more powerful than the GPU system.

 (a) (b)

Fig. 11. (a) Serial MFDM (M2) performance versus the number of used modes and serial FDM (M1) performance
(red point); (b) Parallel MPI- and CUDA- based MFDMs (M4 and M5) performance vs. the number of used modes

and MPI-based FDM performance (M3) (red point)
5. Conclusion

This paper presents the new FD-based procedure ‘Modal FDM’ for wave-field modeling in the
elastic medium which explicitly solves wave equations in the time-domain. The proposed
method is well-remarked for the following features:

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

201

1. Contribution to the overall response is not the same for different modes. In some cases, the
significant portion of the response is almost contributed by a few modes and thus, calculations
for all eigenvalues might not be required anymore. Such possibility is especially justifiable since
the source mechanism and velocity model of the region are unknown or approximately known in
most cases. Therefore, a solution procedure adjustable to access any arbitrary accuracy level is
mostly demanded.

2. Since the explicit equations appeared in the proposed procedure are decoupled, processing for
each mode can be performed independently. Concurrent processing is then simply possible and
the method can easily be parallelized by any appropriate parallel standard without the need for
domain-decomposition technique and slave-slave inter-core communications. From this point of
view, MFDM is even preferred to FDFD procedures. The procedure is especially straightforward
for being implemented in GPUs.

3. The parallel implementation of the procedure is dimension independent; i.e. a single parallel
MFD algorithm might be used for any 1-, 2- and 3-dimensional wave-modeling problem.

4. MFDM seems to be computationally efficient for applications such as focal search procedures
in which simulations for a large number of different sources is required while the velocity model
does not change. In such applications, the time-consuming eigen-system calculation is performed
once and the MFD runs will greatly reduce the subsequent computational costs in comparison
with the conventional FD procedures.

Acknowledgements

The authors would like to thank Mr. Navazandeh for his guidance in MPI programming and Dr.
Ali Sadeghi from Swiss Nanoscience Institute and Department of Physics at the University of
Basel, Switzerland for his contribution in running the programs.

References

[1] Z. Alterman, F.C. Karal, Propagation of elastic waves in layered media by finite difference
methods, Bulletin of the Seismological Society of America, 58 (1968) 367-398.
[2] D.M. Boore, Love waves in nonuniform wave guides: Finite difference calculations, Journal
of Geophysical Research, 75 (1970) 1512-1527.
[3] D.M. Boore, Finite difference methods for seismic wave propagation in heterogeneous
materials, Methods in computational physics, 11 (1972) 1-37.
[4] O.C. Zienkiewicz, R.L. Taylor, The finite element method: solid mechanics, Butterworth-
heinemann, 2000.
[5] G. Cohen, P. Joly, N. Tordjman, Higher-order finite elements with mass-lumping for the 1D
wave equation, Finite Elements in Analysis and Design, 16 (1994) 329-336.
[6] D.D. Kosloff, E. Baysal, Forward modeling by a Fourier method, Geophysics, 47 (1982)
1402-1412.
[7] D.D. Kosloff, M. Reshef, D. Loewenthal, Elastic wave calculations by the Fourier method,
Bulletin of the Seismological Society of America, 74 (1984) 875-891.
[8] B. Fornberg, The pseudospectral method: Comparisons with finite differences for the elastic
wave equation, Geophysics, 52 (1987) 483-501.

R. Khajavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 185-202 (2016)

202

[9] D. Komatitsch, J. Tromp, Introduction to the spectral element method for three-dimensional
seismic wave propagation, Geophysical Journal International, 139 (1999) 806-822.
[10] M.J. Grote, A. Schneebeli, D. Schötzau, Discontinuous Galerkin finite element method for
the wave equation, SIAM Journal on Numerical Analysis, 44 (2006) 2408-2431.
[11] J. Virieux, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
method, Geophysics, 51 (1986) 889-901.
[12] A.R. Levander, Fourth-order finite-difference P-SV seismograms, Geophysics, 53 (1988)
1425-1436.
[13] R.W. Graves, Simulating seismic wave propagation in 3D elastic media using staggered-
grid finite differences, Bulletin of the Seismological Society of America, 86 (1996) 1091-1106.
[14] P. Moczo, J. Kristek, L. Halada, The finite-difference method for seismologists, Comenius
University, 2004.
[15] P. Moczo, J.O.A. Robertsson, L. Eisner, The finite-difference time-domain method for
modeling of seismic wave propagation, Advances in Geophysics, 48 (2007) 421-516.
[16] M.A. Dablain, The application of high-order differencing to the scalar wave equation,
Geophysics, 51 (1986) 54-66.
[17] B.G. Mikhailenko, Seismic modeling by the spectral-finite difference method, Physics of
the Earth and Planetary Interiors, 119 (2000) 133-147.
[18] S.K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of
Computational Physics, 103 (1992) 16-42.
[19] S. Pirozzoli, Performance analysis and optimization of finite-difference schemes for wave
propagation problems, Journal of Computational Physics, 222 (2007) 809-831.
[20] T. Bohlen, Parallel 3-D viscoelastic finite difference seismic modelling, Computers &
Geosciences, 28 (2002) 887-899.
[21] OpenMP Application Programming Interface, version 3.0, in,
http://openmp.org/wp/openmp-specifications/, 2009.
[22] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the
message-passing interface, MIT Press, 1999.
[23] R. Shams, P. Sadeghi, On optimization of finite-difference time-domain (FDTD)
computation on heterogeneous and GPU clusters, Journal of Parallel and Distributed Computing,
71 (2011) 584-593.
[24] R. Mehra, N. Raghuvanshi, L. Savioja, M.C. Lin, D. Manocha, An efficient GPU-based
time domain solver for the acoustic wave equation, Applied Acoustics, 73 (2012) 83-94.
[25] Y. Saad, Variations on Arnoldi's method for computing eigenelements of large unsymmetric
matrices, Linear Algebra and its Applications, 34 (1980) 269-295.
[26] Y. Saad, Iterative methods for sparse linear systems, 2003.
[27] J.W. Choi, A. Singh, R.W. Vuduc, Model-driven autotuning of sparse matrix-vector
multiply on GPUs, ACM Sigplan Notices, 45 (2010) 115-126.
[28] N. Bell, M. Garland, Implementing sparse matrix-vector multiplication on throughput-
oriented processors, in: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ACM, Portland, OR, USA, 2009, pp. 18.
[29] CUDA toolkit documentation, in, http://docs.nvidia.com/cuda/index.html.
[30] H.-W. Chang, S.-E. Liu, R. Burridge, Exact eigensystems for some matrices arising from
discretizations, Linear Algebra and its Applications, 430 (2009) 999-1006.
[31] N. Dugan, L. Genovese, S. Goedecker, A customized 3D GPU Poisson solver for free
boundary conditions, Computer Physics Communications, 184 (2013) 1815-1820.

