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Squeeze Film Dampers (SFD) are commonly used for passive 
vibration control of rotor-bearing systems. The Magnetorheological 
(MR) and Electrorheological (ER) fluids in SFDs give a varying 
damping characteristic to the bearing that can provide active control 
schemes for the rotor-bearing system. A common way to model an 
MR bearing is implementing the Bingham plastic model. Adding 
this model to the finite element (F.E.) model of the rotor enables 
analyzing the rotor bearing behavior. In this work, considering 
uncertainties, three types of controllers are designed for a rotor-
bearing system and the efficiency of using these controllers in 
attenuating the vibration amplitude of the system is studied. As a 
result, employing these controllers reveals a remarkable 
improvement in reducing the vibration amplitude of the shaft 
midpoint near the critical velocity. 
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1. Introduction 

Rotating machinery, such as compressors, turbines, internal combustion engines, and electrical 
motors are the most widely used elements in mechanical systems. Manufacturing inaccuracy in 
these systems can cause the existence of unbalance forces. Vibration attenuation of rotor-bearing 
systems is always an interesting problem in rotor dynamics [1-4]. Using SFD in some rotor-
bearing systems has a beneficial effect on the performance of the system. This is because 
utilizing this kind of dampers decreases the rate of vibration transmitted to the retainer structure 
and increases the system stability. 
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Selecting the suitable SFD for lowering the risk of failure by fatigue and wearing leads to 
defining the increase in vibration as a negative effect [5, 6]. The real challenge is when it is 
attempted to design lighter and smaller rotor-bearing systems. Using dampers with MR fluid 
provides the possibility of using active and semi-active control strategies. This leads to an 
investigation in MR dampers in order to optimize the characteristics of dampers and designing 
control schemes for better results. 

Electrorheological fluids are known for more than one century [7]. In the past two decades, 
research efforts on MR and ER fluids have resulted in industrial semi-active devices. However, 
only some of them are focused on the vibration control problems in rotor-bearing systems [6]. 
The first studies on intelligent fluids were focused on ER fluids [7, 8]. Nikolajsen [7] was the 
first person that used ER fluid for decreasing the vibration of a one-sided clamped rotor-bearing 
system. He showed that these materials are able to decrease the vibration level. Morishita and 
Mitsui [2] studied electrorheological dampers and concluded based on experiments that these 
dampers can decrease the rotating machinery vibration in a wide range of rotating speeds. They 
showed that for each speed, an optimum damping ratio exists which can be calculated. Tichi [9] 
obtained a mathematical model for a rigid rotor-bearing system with an Electrorheological (ER) 
damper using Reynolds equations and the Bingham model. He calculated the velocity and 
pressure profile for the damper and vibration attenuation near the critical speed is estimated via 
this model. Zhu [4] introduced a magnetorheological (MR) disc damper that worked based on the 
shearing mode. Then, to prove the design, they investigated the magnetic fields in the MR 
damper via the finite element method. It is then shown both theoretically and experimentally that 
the dynamic characteristics of an MR disc damper can be easily controlled by an external 
magnetic field. Wang et al. [6] studied the behavior of a rotor mounted on MR dampers in shear 
mode and achieved good results in vibration attenuation. They obtained a modified Reynolds 
equation set with the long bearing assumption that can predict the damper forces. They also 
studied the capability of an on-off controller in transverse vibration reduction. Forte et al. [10, 
11] developed a linear model for a rotor-bearing system mounted on a squeeze film damper and 
studied the vibration behavior of such system. They modeled the magnetorheological forces with 
equivalent stiffness and damper values. They also investigated the effect of viscosity and critical 
speed on the dynamical response of the system. Kim et al. [12] designed and modeled an SFD 
with MR fluid using parametric identification based on the magnetic bearing working on semi-
active control schemes. Hemmatian and Ohadi [1] utilized an identification model of an SFD 
with MR fluid with long bearing assumption and designed a robust control to reduce the 
vibration of the clamped rotor-bearing system with MR damper. Irannejad and Ohadi [13] 
studied the rotor dynamic behavior of a system and made a comparison between short bearing 
and long bearing assumptions for MR squeeze film dampers. 

Despite the high amount of research on rotor-bearing systems, there is not any study on the 
performance of control algorithms with short bearing assumption. In addition, fuzzy control of 
rotor-bearing systems with MR dampers based on fuzzy identification is not executed yet. In this 
work, the mathematical model of an MR bearing is developed by simplifying the Navier-Stokes 
equation. Therefore, the short bearing assumption is used for simplifying the equations. This 
model is considered as a force that is dependent on the input current. This force is added to the 
finite element model of the rotor bearing system. Three kinds of semi-active controllers are 
applied to this model. These control schemes are model-based and reducing the vibration of the 
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system is considered as their goal. The performance of these controllers for controlling vibrations 
is also studied. 

2. The magnetorheological squeeze film damper analysis 

To model an SFD with MR fluid, the Navier-Stokes equation is initially considered with the 
assumption that viscous forces are much greater than inertial and gravitational forces. As a result, 
the equations are simplified as follows [14]: 

ݔ߲߲ܲ  = ݕ߲߲ ߤ) ݕ௫߲ݑ߲ ) (1) 

ݕ߲߲ܲ  = 0 (2) 

ݖ߲߲ܲ  = ݕ߲߲ ߤ) ݕ௭߲ݑ߲ ) (3) 

In Eqs. (1-3), P is the pressure distribution and is dependent on the instantaneous angle ߠ of the 
shaft with respect to the reference coordinate system. ݈ is the length of the MR bearing and ߤ is 
the viscosity of the fluid in the bearing. ݔ,  are the coordinate axes. These parameters are ݖ and ݕ
shown in Fig. 1. The ݖ axis is perpendicular to the xy plane which is not shown. 

Starting from Eqs. (1-3) and considering the aforementioned assumption (short bearing), the 
pressure distribution is computed as follows: 

 

,ߠ)ܲ (ݖ = ۔ۖەۖ
6߱߳ۓ sin ߠ ቀߛሶߤ௙ + ߬଴(ܪ)ቁߛሶܿଶ(1 + ߳ cos ଷ(ߠ ଶݖ) − ݈ଶ4 ) ሶߛ > ߬଴(ܪ)ߤ − ௙6߱߳ߤ sin ߠ ൫ߤ௣൯ܿଶ(1 + ߳ cos ଷ(ߠ ଶݖ) − ݈ଶ4 ) ሶߛ ≤ ߬଴(ܪ)ߤ − ௙ߤ

 (4) 

where ߱, ߳ and ܿ are the whirling speed of the shaft, eccentricity and clearance between the 
shaft and the damper respectively. On the other hand, the MR fluid in the damper is modeled as 
Bingham plastic [13]. The Bingham plastic model has two regions for the conditions before and 
after the occurrence of the shearing phenomenon. The characteristics of this model are described 
by ߛሶ ,  is the viscosity defined ߤ ௣ after the shearing whereߤ before shearing and (ܪ)௙   and ߬଴ߤ
in each zone, ߬଴(ܪ) is the yielding shearing stress that is dependent on the magnetic field 
intensity (ܪ) and ߛሶ  is the shearing stress rate. The MR bearing consists of a ball bearing around 
the shaft which prevents any shearing in the fluid, thus only the second part of Eq. (4) is used for 
simulation. 

If it is assumed that the pressure distribution is zero for ߠ = 0 to ߠ =  ,(Gumbel condition [15]) ߨ
then the radial and tangential forces can be calculated as follows [13]: 

௥ܨ  = ቮܴ න න ܲ cos ଶగ ݖ݀ ߠ݀ ߠ
గ

ା௟ଶି௟ଶ ቮ = ௣ܴ݈߱ଷܿଶߤ2 ߳ଶ(1 − ߳ଶ)ଶ =  ௥ (5)ܤ௣ߤ
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௧ܨ  = ቮܴ න න ܲ sin ଶగ ݖ݀ ߠ݀ ߠ
గ

ା௟ଶି௟ଶ ቮ = ௣ܴ݈߱ଷܿଶߤߨ ߳(1 − ߳ଶ)ଷଶ =  ௧ (6)ܤ௣ߤ

 

 
Fig. 1. Pressure distribution (P), radial and tangential forces of the bearing (N, T) 

The MR damper forces can be written as a vector that has only two non-zero elements. Hence, 
the MR damper force is  ܨெோௌி஽ = ெோௌி஽ܤ ெோௌி஽ whereܤ௣ߤ ∈ ܴ௡×ଵ. 

3. Rotor-bearing model 

The system consists of a plane disc mounted near the midspan of an elastic shaft which is 
supported by two roller bearings at both sides and by a Squeeze Film Damper with 
magnetorheological Fluid (MRSFD) near the disc position as shown in Fig. 2-a. The system is 
mounted on a nonlinear elastic foundation and it is known that the MRSFD and the foundation 
introduce nonlinearity into the equations of motion. 

The rotor is modeled using the finite element method for which 80 elements and 81 nodes (n=81) 

are considered. The elements are selected as Euler beam type with the length of ݈௙ = ௅଼଴ where ܮ 

is the total length of the shaft. Four degrees of freedom are considered at each node as it is seen 

in Fig. 2-b. The coordinate vector for each node is ݍ௜ = ,௫௜ݑൣ ,௬௜ݑ ,௬௜ߠ ௫௜൧்ߠ
 and the general 

coordinate vector can be considered as ݔ = ,ଵݍ] ,ଶݍ … ,  ௡]். The lagrange’s equation for eachݍ
element is written where the internal damping is assumed to be negligible and boundary 
condition for each bearing can be considered by the Newton’s law. In order to access the 
equation of motion for the system the equations of motion for the nodes are assembled together.  
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           a             b 

Fig. 2. (a) Schemes of the rotor-bearing system with MR bearing damper. The numbers in the rectangles are the 
number of elements considered in the finite element model between two members. All dimensions are in mm (b) 

Beam element and the degrees of freedom at nodes i and i+1. 

The equation of motion of this system is written as follows: 

ࡹ  ሷ࢞ + ࡯ ሶ࢞ + ࢞ࡷ = ࡲ +  (7) ࢊ

where ܯ is the inertial matrix, ܥ is the gyroscopic effect matrix and ܭ is the stiffness matrix that 
includes both the rotor bearing and foundation. The term ܨ includes the normal and tangential 
forces of the MRSFD that appear in Eq. (5) and Eq. (6). In order to use normal and tangential 
forces, the MRSFD force can be written in the Cartesian coordinate system. Hence, F is equal to ൣ0ଵ,ସכଷଽ, ௥ܨ cos ߠ + ௧ܨ sin ߠ , ௥ܨ sin ߠ + ௧ܨ cos ߠ  ,0,0, 0ଵ,ସכସଵ൧்

. The terms 39 and 41 indicate the 
number of nodes before and after the MRSFD and each of the nodes has four degrees of 

freedom; so, the subvectors ൣ0ଵ,ସכଷଽ൧்
 and ൣ0ଵ,ସכସଵ൧்

 impose zero values in ܨ for all the nodes 
before and after the MRSFD. On the other hand, the subvector [ܨ௥ cos ߠ + ௧ܨ sin ߠ , ௥ܨ sin ߠ ௧ܨ+ cos ߠ  ,0,0]் shows that ܨ only has nonzero values in x and y directions. 

The term ݀ is defined as the sum of the disturbances that exist in the system. Here, d denotes the 
combination of unbalance forces (݀ଵ) and nonlinear forces related to the nonlinear support of the 
system (݀ଶ) as ݀ = ݀ଵ + ݀ଶ. Unbalance forces can be written as ݀ଵ = ൣ0ଵ,ସכସ଻, ݉௨ݎ௨߱ଶ sin ߠ , ݉௨ݎ௨߱ଶ cos ,ߠ 0,0 , 0ଵ,ସכଷଷ൧்

 that has nonzero value on the disc 
node and zero in other nodes where ݉௨ stands for mass, ݎ௨ represents the mean radius according 
to unbalance force and ߱ is the whirling speed of the shaft. The nonlinear forces that are related 
to the mount elasticity are defined as ݀ଶ = ൣ0ଵ,ସכହ, ௫௕ଷݑ௡௕,௫ܭ , ௬௕ଷݑ௡௕,௬ܭ , 0,0, 0ଵ,ସכ଺ହ, ௫௕ଷݑ௡௕,௫ܭ , ௬௕ଷݑ௡௕,௬ܭ , 0,0, 0ଵ,ସכଽ൧்

 which has nonzero 
value on the bearing nodes and zero in other nodes. ܭ௡௕,௫, ܭ௡௕,௬ are related to the mount 
elasticity and ݑ௫௕ and ݑ௬௕ are the displacements of the shaft in x and y directions at the bearing 
nodes.  The performance of the controllers is tested in presence of these disturbances. 

4. Feedback linearization control  

Rotor-bearing equations of motion can be written in the following form: 

ݐ݀݀  ቄ ሶቅݔ ݔ = ቂ 0 ܭଵିܯ−ܫ ቃܥଵିܯ− ቄݔݔሶቅ + ൜ ெோௌி஽ൠܤଵିܯ0  ௣ (8)ߤ

ߩ  = ஽௜௦௖ଶݔ + ஽௜௦௖ଶݕ  (9) 

where ݔ ∈ ܴସ௡×ଵ and ݔሶ ∈ ܴସ௡×ଵ are the state vectors so the global state vector can be written as ܺ = ሼݔଵ. … . .௡ݔ .ሶଵݔ … . ܯ .ሶ௡ሽ்ݔ ∈ ܴସ௡×ସ௡ is the inertial matrix, ܭ ∈ ܴସ௡×ସ௡  is the stiffness 
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matrix that includes both the shaft and the foundation elasticity, ܥ ∈ ܴସ௡×ସ௡  is the damping 
matrix and ܨ ∈ ܴସ௡×ଵ is the input vector.  ݔ஽௜௦௖ and  ݕ஽௜௦௖ are the horizontal and vertical 
displacements of the shaft at disc location and ߩ is the distance of the center of  the shaft from 
bearing axis. In this algorithm, disturbances are not considered. This means that the term ݀ in Eq. 
(7) is eliminated in controller design because only their upper limit is known. However, the 
controller performance is evaluated in presence of disturbances. Defining ܣ = ቂ 0 ܭଵିܯ−ܫ ܤ  ,ቃܥଵିܯ− =  ൜ ݑ ெோௌி஽ൠ andܤଵିܯ0 =  ௣ leads to represent Eq. (8) in theߤ

following form: 

 ሶܺ = ܺܣ +  (10) ݑܤ

It is considered that each node has 4 degrees of freedom ݔ௣ = ቄݔ௣. .௣ݕ ߶௫೛. ߶௬೛ቅ்
 where ߶௫ and ߶௬ represent the rotations about x and y axes. The system is modeled with n nodes. The indices 

of the state vector can thus be modified based on the degrees of freedom at each node and the 
node number. Therefore, the output of this transformation is presented in Eq. (11). 

ߩ  = ஽௜௦௖ଶݔ + ஽௜௦௖ଶݕ = ସ஽ିଷଶݔ + ସ஽ିଶଶݔ  (11) 

where D is the node number related to disc location. In designing the controller, in order to 
obtain the relationship between ߩ and ݑ, the first and second derivatives of ߩ are computed and 
are substituted into system equations. 

ሶߩ  = ሶସ஽ିଷݔ ସ஽ିଷݔ) + (ሶସ஽ିଶݔ ସ஽ିଶݔ = ൫ݔସ஽ିଷ ݔସ(௡ା஽)ିଷ +  ସ(௡ା஽)ିଶ൯ (12)ݔ ସ஽ିଶݔ

ሷߩ  = ൫ ݔସ(௡ା஽)ିଷଶ + ሶସ(௡ା஽)ିଷݔ ସ஽ିଷݔ + ସ(௡ା஽)ିଶଶݔ +  ሶସ(௡ା஽)ିଶ൯ (13)ݔ ସ஽ିଶݔ

The parameters ݔሶସ(௡ା஽)ିଷ and ݔሶସ(௡ା஽)ିଶ represent the disc’s accelerations in x and y directions. 
In other words, based on the notation given in section 3, ݔሶସ(௡ା஽)ିଷ and ݔሶସ(௡ା஽)ିଶ can be written 
as ݔሶସ(௡ା஽)ିଷ = ሷݑ ௫஽ and ݔሶସ(௡ା஽)ିଶ = ሷݑ ௬஽ where ݑ௫஽ and ݑ௬஽ are displacements of the disc. 
Substituting ݔሶସ(௡ା஽)ିଷ and ݔሶସ(௡ା஽)ିଶ from the equations of motion, the above equation is 
transformed into the following form: 

ሷߩ  = ൫ ݔସ(௡ା஽)ିଷଶ + ସ஽ିଷ (ܽସ(஽ା௡)ିଷܺݔ + ܾସ(஽ା௡)ିଷݑ) + +ସ(௡ା஽)ିଶଶݔ ସ஽ିଶ (ܽସ(஽ା௡)ିଶܺݔ + ܾସ(஽ା௡)ିଶݑ)൯ (14) 

In Eq. (14), ܽ௜ and ܾ௜ are defined as row matrices that represent the ith row of the A and B 
matrices. It can be written as follows: 

ሷߩ   = ܲ +  (15) ݑܳ

where P and Q are defined in the following equations: 

 ܲ = ቀ ݔସ(௡ା஽)ିଷଶ + ସ஽ିଷ ൫ܽସ(஽ା௡)ିଷܺ൯ݔ + ସ(௡ା஽)ିଶଶݔ +  ସ஽ିଷ ൫ܽସ(஽ା௡)ିଶܺ൯ቁ (16)ݔ

 ܳ = ସ஽ିଷܾସ(஽ା௡)ିଷݔ) +  ସ஽ିଶܾସ(஽ା௡)ିଶ) (17)ݔ
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Eq. (15) denotes the visible relationship of output ߩሷ  and input u. The control input is considered 
in the following form:  

ݑ  = 1ܳ ଵݒ) − ܲ) (18) 

where ݒଵ is the auxiliary controller. Defining the error as ݁ = ௖ݎ −  ଵ can be designed as inݒ , ߩ
the following form using the proportional derivative: 

ଵݒ  = ݇ଵ݁ + ݇ଶ ሶ݁ (19) 

where ݇ଵand ݇ଶ are positive constants. 

5. Sliding mode control 

The robustness of sliding mode control can allow designing a controller with consideration of 
uncertainties and disturbances. In this section, the disturbance terms are added to the model and 
steps of designing the controller are followed. The modified model is then: 

ݐ݀݀  ቄ ሶቅݔ ݔ = ቂ 0 ܭଵିܯ−ܫ ቃܥଵିܯ− ቄݔݔሶቅ + ൜ ெோௌி஽ൠܤଵିܯ0 ௣ߤ + ቄ  ቅ (20)ݓ0

ݕ  = ටݔ஽௜௦௖ଶ + ஽௜௦௖ଶݕ  (21) 

In order to obtain the relationship between y and u, ݕሶ  and ݕሷ  are calculated in Eq. (22) and Eq. 
(23) with differentiating y twice. Substituting ݔሶସ(௡ା஽)ିଷ.  ,ሶସ(௡ା஽)ିଶ from the equations of motionݔ
the following form is obtained: 

ሶݕ  = ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ(ݔସ஽ିଷ ݔሶସ஽ିଷ + =(ሶସ஽ିଶݔ ସ஽ିଶݔ ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ൫ݔସ஽ିଷ ݔସ(௡ା஽)ିଷ +  ସ(௡ା஽)ିଶ൯ݔ ସ஽ିଶݔ
(22) 

ሷݕ  = ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ൫ ݔସ(௡ା஽)ିଷଶ + ସ஽ିଷ (ܽସ(஽ା௡)ିଷܺݔ + ܾସ(஽ା௡)ିଷݑ + +(ସ஽ିଷݓ ସ(௡ା஽)ିଶଶݔ + ସ஽ିଷ (ܽସ(஽ା௡)ିଶܺݔ + ܾସ(஽ା௡)ିଶݓ+ݑସ஽ିଶ)൯− 12 ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ൫ݔସ஽ିଷ ݔସ(௡ା஽)ିଷ +  ସ(௡ା஽)ିଶ൯ݔ ସ஽ିଶݔ

(23) 

For shortening the equation, P , Q and d from Eqs. (24-26) are substituted into Eq. (23). 

 ܲ = ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ ቀ ݔସ(௡ା஽)ିଷଶ + ସ஽ିଷ ൫ܽସ(஽ା௡)ିଷܺ൯ݔ + +ସ(௡ା஽)ିଶଶݔ −ସ஽ିଷ ൫ܽସ(஽ା௡)ିଶܺ൯ቁݔ 12 ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ൫ݔସ஽ିଷ ݔସ(௡ା஽)ିଷ +  ସ(௡ା஽)ିଶ൯ݔ ସ஽ିଶݔ

(24) 
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 ܳ = ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ൫ ݔସ஽ିଷܾସ(஽ା௡)ିଷ +  ସ஽ିଶܾସ(஽ା௡)ିଶ൯ (25)ݔ

 ݀ = ସ஽ିଷଶݔ) + ସ஽ିଶଶݔ )ିଵଶ( ݔସ஽ିଷݓସ஽ିଷ +  (ସ஽ିଶݓସ஽ିଶݔ
 

(26) 

Therefore, Eq. (23) is transformed into: 

ሷݕ  = ܲ + ݑܳ + ݀ (27) 

It is assumed that the sliding variable s is defined as: 

ݏ  =  (28) ࢋ࢑

where ࢑ = ࢋ ,[݇ 1] = [݁ ሶ݁]் and ݁ = ௖ݎ −  .ݕ

Then, the relationship between u and y is obtained and the control input can be considered as 
follows: 

ݑ  = 1ܳ ଶݒ) − ܲ +  (29) ((ݏ)݊݃ݏ ߟ

where ߟ is the higher bound of disturbances (ߟ > max|݀|). In Eq. (29), ݒଶ is the auxiliary 
controller and it is defined in Eq. (30) as: 

ଶݒ  = ݇ ሶ݁ (30) 

where ݇ is a positive constant. 

6. Fuzzy controller 

In the last controller, the behavior of the MR damper is identified using a fuzzy identification 
algorithm. In this case, ܤ௥ and ܤ௧ represent the forces of the MR damper independent of 
viscosity. Initially, a primary fuzzy system is created based on clustering of the inputs by Fuzzy 
C-means algorithm. In this system, ܤ௥ and ܤ௧ are functions of  ߳ and the fuzzy system has one 
input and two outputs. In order to identify these forces, 70% of the data is considered as learning 
data and the remaining data is test data. After defining the primary fuzzy system, this model is 
improved by using the ANFIS toolbox in MATLAB. Results for learning the data of ܤ௥ are 
presented in Fig. 3 and Fig. 4. In the upper plot of Fig. 3, the output of the designed Fuzzy 
system (ܤ෠௥) and real data of the simulation are shown. It is seen that the difference between 
model data and real data is negligible. Given the small difference, in the lower plots of Fig. 3, the 
error (left plot) and the error histogram (right plot) are shown to depict a clear picture of the 
bounds of the error and error distribution. 
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Fig. 3. Performance of the fuzzy system for training data (Br) outputs of fuzzy system vs. real values (upper plot), 

Error (lower left), Error’s histogram (lower right) 

 

As it can be seen in Fig. 3, the upper and lower bounds of error are 0.4 and -0.2, and the RMSE† 
is 0.056. On the other hand, the right plot is showing the resemblance of the error to the normal 
distribution. For a better view on the identification process, Fig. 4 shows the relationship 
between outputs of the fuzzy system and the real values. If a line is fit on this data, the equation 
of this line is Output ~= 1*Target + 6.8e−05.  Therefore, it can be concluded that the fuzzy 
system follows the real system.  

 
Fig. 4. Regression plot for learning data (Br) 

                                                 
† Root Mean Square Error 
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The results for the test data of ܤ௥ and learning and test data of ܤ௧ are presented in Table 1. As it 
can be seen, the identification errors of both outputs are negligible.   

Table 1. Performance of Fuzzy system on the learning and test data 

  RMSE Upper Bound Lower Bound  

Training Data ܤ௥ 0.056 0.4 -0.2 ܤ௧ 0.027 -0.1 0.1 

Test Data ܤ௥ 0.057 0.4 -0.2 ܤ௧ 0.027 -0.1 0.1 

 
The behavior of the MR damper is modeled by two Takagi-Sugeno systems with membership 
functions of the first output (ܤ௥) as shown in Fig. 5 and the rules of the system written as 
follows: 

 
Fig. 5. Membership functions of the fuzzy system ࢘࡮ 

 ܴ(ଵ): ௥ܤ ܰܧܪܶ (ଵ)ܣ ݏ݅ ߳ ܨܫ =  362.8߳ _ 87.82 ܴ(ଶ): ௥ܤ ܰܧܪܶ (ଶ)ܣ ݏ݅ ߳ ܨܫ = 40.38߳ _ 0.09645 ܴ(௜): ௥ܤ ܰܧܪܶ (ଷ)ܣ ݏ݅ ߳ ܨܫ = 1829߳ +  1512 ܴ(௜): ௥ܤ ܰܧܪܶ (ସ)ܣ ݏ݅ ߳ ܨܫ = 52.74߳ +  15.3 

(31) 

For the second output (ܤ௧), the membership functions are shown in Fig. 6 and the rules for each 
cluster are presented in Eq. (33). 

 ܴ(ଵ): ௧ܤ ܰܧܪܶ (ଵ)ܤ ݏ݅ ߳ ܨܫ = −0.3981߳ +  30.34 ܴ(ଶ): ௧ܤ ܰܧܪܶ (ଶ)ܤ ݏ݅ ߳ ܨܫ = 229.1߳ − 41.89 ܴ(ଷ): ௧ܤ ܰܧܪܶ (ଷ)ܤ ݏ݅ ߳ ܨܫ = 979.2߳ +  659.8 ܴ(ସ): ௧ܤ ܰܧܪܶ (ସ)ܤ ݏ݅ ߳ ܨܫ = 20.96߳ +  43.28 

(32) 
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Fig. 6. Membership functions of the fuzzy system ࢘࡮ 

In order to design the controller in Eq. (20), the disturbances are ignored and through 
differentiating Eq. (21) twice, the following equation can be obtained: 

ሷݕ  = ܲ +  (33) ݑܳ

P and Q are defined in Eq.(24) and Eq.(25). and the controller is designed as follows 

ݑ  = 1ܳ ଶݒ) − ܲ) (34) 

In the Eq.(34) ݒଶ is an auxiliary controller that is defined in Eq.(30). By replacing the MR 
damper forces with the fuzzy system, the fuzzy controller is defined as follows: 

 ܴ(௜): ݑ ܰܧܪܶ (௜)ܪ ݏ݅ ߳ ܨܫ = 1ܳ෠ ଶݒ) − ܲ) (35) 

In Eq. (35), ෠ܳ  is a fuzzy system based on the MR fuzzy identification process discussed. 

7. Results and discussion 

The parameters of the rotor-bearing system are presented in Table 2. These parameters included 
both the rotor-bearing system and the characteristics of the MRSFD. The output of the controller 
is designed for each control strategy based on the viscosity of the MR fluid. However, the 
electricity current is adjustable. Roszkowski et al. [16] conducted an experimental study and they 
concluded that there is linear relationship between the viscosity of MR fluid and the magnetic 
field in some regions. On the other hand, they found that there is a linear relationship between 

the electric current and the magnetic field (ܤ =  ఓబேூଶோ ) where ߤ଴ is the permeability constant, N is 

the number of turns of the coil and R is the mean radius of the coil. 
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7.1. Feedback linearization 

The characteristics of the feedback linearization control are shown in Table 3. The results of the 
simulation are given at the spin speed of Ω = 1000 rpm. There are three figures that show the 
trajectory of the midpoint of the disc, the distance of the midpoint of the disc from the bearing 
axis and the input current. All of these figures are compared with the system without a controller. 

 

Table 2. Parameters of the rotor-bearing system [13] 

Parameter Value Parameter Value 

Disc outer diameter D=0.1 ݉ MRSFD length ܮ = 0.016 ݉ 

Disc thickness t=0.015 ݉ MRSFD clearance ܿ = 0.001 ݉ 

Shaft density 7800=ߩ ݇݃ ݉ଷ⁄   MR fluid Newtonian 
viscosity 

௙ߤ = 0.061 ܲܽ.  ݏ

Rolling bearing stiffness, 
x direction 
y direction 

 ݇௫ = 5݁7 ܰ ݉⁄  ݇௬ = 7݁7 ܰ ݉⁄  

Shaft length ܮ௦ = 0.780 ݉ 

Rolling bearing damping, 
x direction 
y direction 

௫ܥ  = 5݁2 ܰ ݉⁄ ௬ܥ  = 5݁2 ܰ ݉⁄  

Shaft diameter in 
different positions  

ܦ = 10; 12; 14 ݉݉ 

Nonlinear foundation 
stiffness, 
x direction 
y direction 

 
 ݇௡௕,௫ = 3݁7 ܰ ݉⁄  ݇௡௕,௬ = 5݁7 ܰ ݉⁄  

Shaft Young modulus ܧ = 2݁11ܲܽ 

Coil number of turns ܰ = 750 Shaft shear modulus ܩ = 7.69݁10 ܲܽ 

MRSFD average diameter D=0.091m Shaft Poisson’s ratio ߥ = 0.3 

  Unbalance 
(mass×radius) 

݉௨ݎ௨ = 1݁ − 4 ݇݃ ∙ ݉ 

 

Table 3. Parameters of the feedback linearization control 

Parameter Value ݇ଵ 500 ݇ଶ 1000 ݎ௖ 3݁ − 4݉  Ω 1000 ݉݌ݎ 

 



A. Kamali E. et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 77-96(2017) 

89 
 

In Fig. 7 and Fig. 9, the efficiency of using feedback linearization control at Ω = 1000 rpm is 
shown. As it can be seen from Fig. 9, vibration attenuation in Ω = 1000 rpm is achieved by 
using the designed controller. The controller is trying to decrease the vibration attenuation to 
zero but the velocity of the shaft near the desired position is the reason that the shaft doesn’t stay 
in that position. However, an effective attenuation is seen for the mean and maximum of the 
vibration amplitude. The input current, I, for the controller that is shown in Fig. (8) declared that 
the controller output has a high-frequency response to control the vibration of the system. On the 
other hand, the saturation function on the electricity current in order to keep the MR fluid behave 
linearly to changes in viscosity. 

 

 
Fig. 7. Disc’s midpoint trajectory in the presence of feedback linearization control and I=0  

 
 

 
Fig. 8. Input current of the system from controller 



A. Kamali E. et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 77-96(2017) 

90 
 

 
Fig. 9. Distance of the disc’s center from shaft axis in terms of time for the feedback linearization control 

7.2. Sliding mode control  

The controller characteristics are presented in Table 4. The simulation is conducted for Ω =1000 rpm. The figures for this controller is similar to the previous section. 

Table 4. Parameters of SMC feedback linearization control 

Parameter Value ݇ 100 ݎ௖ 0 2.41 ߟ Ω 1000 ݉݌ݎ  

 
The vibration attenuation of sliding mode control is shown in Fig. 10 and Fig. 12. It shows that 
the controller is successful in decreasing the level of vibrations. In comparison with feedback 
linearization, this controller reaches a smoother response. The input current of MR damper is 
shown in Fig. 11. 

 
Fig. 10. Disc’s midpoint trajectory in the presence of feedback linearization control and I=0 
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Fig. 11. Input current of the system from controller 

 
Fig. 12. Distance of the disc’s center from shaft axis in terms of time in sliding mode control 

 

7.3. Fuzzy controller 

The controller characteristics are presented in Table 5. The simulation is conducted for Ω =1000 rpm.  

 

Table 5. Parameters of Fuzzy control 

Parameter Value ݇ 10 ݎ௖ 0 Ω 1000 ݉݌ݎ  
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The vibration attenuation of Fuzzy control is shown in Fig. 13 and Fig. 15. In this controller, 
smoother response is observed. The input current of the MR damper is shown in Fig. 14. 

 
Fig. 13. Disc’s midpoint trajectory in the presence of feedback linearization control and I=0 

 
Fig. 14. Input current of the system from controller 

 
Fig. 15. Distance of the disc’s center from shaft axis in terms of time for the Fuzzy control  
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As a comparison between the three types of controllers in Table. 6, the minimum, maximum and 
average values of the responses for each controller are presented. 

 

Table 6. Performance comparison between the three types of controllers 

Steady response Average (࢓ࣆ) Minimum  (࢓ࣆ) Maximum(࢓ࣆ)   

Without controller 285 284 286 

Feedback linearization 97 0.1 216 

Sliding mode control 105 0.8 208 

Fuzzy control 121 0.4 196 

 
Based on Table. 6, the attenuation of vibration amplitude for all of the controllers is observed 
both in maximum and mean values. Moreover, the goal of designing the controllers is to test 
their ability in the presence of disturbances. To check this, the disturbance of the system that is 
related to unbalance force is changed 5%. In Fig. 16, the performance of the controllers is shown.  
The parameter ߙ is the fraction of the unbalance force (݉ߙ௨ݎ௨߱ଶ) that is defined in Table 2. 

 

 
Fig. 16. Disc’s midpoint trajectory in presence of different disturbance amplitudes for (a) feedback linearization 

control (b) Sliding mode control and (c)Fuzzy control 

As it is seen, the controllers can maintain their performance after a transient response. For 
instance, the steady-state trajectory is less than 217݉ߤ for all investigated disturbances. The 
response of the system in presence of robust and fuzzy controllers is less than 2146 ݉ߤand 196݉ߤ. Therefore, this can be considered as the robustness of controllers to disturbance. 

On the other hand, the uncertainty in the length of the shaft is possible through the 
manufacturing process. Hence, the effect of the length uncertainty on the response of the rotor-
bearing system in the presence of three controllers is shown in Fig. 17. The parameter ߙ is the 
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fraction of the nominal length (݈௦ = ݈ ×  and ݈௦ is used as the shaft’s length for simulation. In (ߙ
Fig. 17, the effect of 1% changes in the shaft length on the response of the shaft is investigated. 

 

 
Fig. 17. Disc’s midpoint trajectory in the presence of length uncertainty for (a) feedback linearization control (b) 

Sliding mode control and (c) Fuzzy control 

 

Reducing the length of the shaft decreases the mass of the system. Therefore, the MR damper 
exerts the force on a lighter system and it causes greater amplitude in the vibration of the rotor-
bearing system. However, the controllers show the capability of attenuating the amplitude of 
vibration. To make a comparison between controllers, one may consider that the steady response 
of the system for robust and fuzzy controllers is 219݉ߤ and it is less than the system with 
feedback linearization controller (230݉ߤ). 

The characteristics of the MR fluid is not precise and the fuzzy identification of the system is 
based on the nominal values. So, the effect of a 5% percent change in Newtonian viscosity of the 
MR fluid on the performance of the system is checked in Fig. 18. The parameter ߙ is defined as 
the fraction Newtonian viscosity used for simulation and the Newtonian viscosity of the MR 
fluid is assumed to be ߤ௙ ×  .ߙ

It is clear that the controllers can keep their performance despite changes in the Newtonian 
viscosity. The fuzzy controller can decrease the vibration after a transient response even if the 
estimation of the MR forces are not based on the true viscosity. However, the robust controller is 
showing minimum sensitivity to this uncertainty. The steady response for feedback linearization, 
robust and fuzzy controllers are 217݉ߤ,  The response of feedback .݉ߤand 196 ݉ߤ209
linearization does not follow a certain pattern but the system with robust and fuzzy controllers 
keep the shape of their response in presence of uncertainties. 
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Fig. 18. Disc’s midpoint trajectory in the presence of Newtonian viscosity uncertainty for (a) feedback linearization 

control (b) Sliding mode control and (c)Fuzzy control 

 

8. Conclusion 

In this article, the behavior of a controlled rotor-bearing system with an MRSFD is studied. In 
order to attenuate the vibration of the system, three controllers are designed. The model of the 
system is achieved by finite element modelling of the rotor-bearing system and simplifying the 
hydrodynamic equations of the MRSFD. 

Simulation has shown that the three types of control algorithms show a beneficial performance in 
reducing the vibration of the shaft’s midpoint. This reduction is remarkable near the critical 
speed of the system. On the other hand, the robustness of controllers in different disturbance 
amplitudes, deviation in length of the shaft and Newtonian viscosity of the MR fluid is checked 
and controllers are found capable of keeping their performance in attenuation. 

In feedback linearization control, the amplitude reduction is up to 20%. The vibration amplitude 
attenuation for the sliding mode control is up to 30% and the fuzzy control has an efficiency of 
33%. It is observed that considering the uncertainties in designing the controller results in a 
better performance for the system in vibration amplitude attenuation. 
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