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Abstract. In this paper, an adaptive mesh strategy is presented for solving singu-
larly perturbed delay differential equation of convection-diffusion type using second
order central finite difference scheme. Layer adaptive meshes are generated via an
entropy production operator. The details of the location and width of the layer are
not required in the proposed method unlike the popular layer adaptive meshes mainly
by Bakhvalov and Shishkin. An extensive amount of computational work has been
carried out to demonstrate the applicability of the proposed method.
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1 Introduction

A singularly perturbed delay differential equation is a differential equation in
which the highest order derivative is multiplied by a small parameter and in-
volving at least one delay term. Singular perturbation problems are generally
the first approximation of the considered physical model. Hence in such cases,
more realistic model should include some of the past and the future states of the

�
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system and hence, a real system should be modelled by differential equations
with delay or advance. Such type of equation arises frequently in the mathemat-
ical modelling of various practical phenomena, for example, in the modelling of
the human pupil-light reflex [26], model of HIV infection [10, 33], the study of
bistable devices in digital electronics [11], variational problem in control the-
ory [17, 18], first exist time problems in modelling of activation of neuronal
variability [37], immune response [30], evolutionary biology [32], dynamics of
networks of two identical amplifiers [9], mathematical ecology [19], population
dynamics [20] and in a variety of models for physiological process [27, 28, 29].
The theory and numerical treatment of delay differential equations can be found
in [7, 12].

The numerical solution of singularly perturbed delay differential equations
with large delays can be found in Lange and Miura [22], Amiraliyev and Er-
dogan [2], Amiraliyev and Cimen [1], Amiraliyeva et al. [3], Erdogan and Ami-
raliyev [13], Subburayan and Ramanujam [34], Bansal et. al. [5, 6].

It is well-known that numerical methods for singularly perturbed boundary
value problems have to be very carefully created, due to boundary or interior
layers in the solution. Finite difference methods are always a convenient choice
for solving boundary value problems because of their simplicity. Whenever
central finite difference schemes are applied to solve the singularly perturbed
differential equations numerically on uniform meshes, oscillations are observed
in the numerical solution and their magnitude increases in layers regions. The
presence of oscillations in the approximated solution shows that central finite
difference operators are unstable. To eliminate these oscillations while retaining
the order of accuracy, one needs a fine mesh at the layer regions. This may be
done either via uniformly fine meshing or via adaptive mesh strategy. The for-
mer strategy increases significantly in computational cost as the perturbation
parameter ε decreases. The use of adaptive mesh refinement techniques is now-
a-days a standard component in numerical computation. In fact, Bakhvalov [4]
was the first to use layer adapted meshes in the context of reaction-diffusion
problems. In the late 1970s and early 1980s, the special meshes for convection-
diffusion problems have been investigated by Gartland [16], Liseikin [25], Vu-
lanovic [35, 36] and others in order to achieve uniform convergence. In early
1990s, special piecewise-uniform meshes have been proposed by Shishkin [31].
Because of their simple structure, they have attracted much attention and
are widely used for numerical approximation of SPPs. The limitation with
Shishkin meshes is the requirement of a priori knowledge of the location of the
layer regions. However, the performance of Shishkin meshes is inferior to that
of Bakhvalov meshes, which has prompted efforts to improve them while re-
taining some of their simplicity. A detailed survey about layer adapted meshes
for convection diffusion problems can be found in [24]. The aim of this paper
is to improve the performance of the adaptive mesh such that there will be
more mesh points in the layer region. In this paper, we generate the layer
adaptive meshes to suppress the oscillations, via an entropy production opera-
tor which is positive automatically whenever the solution is unphysical, which
effectively corresponds to insufficient resolution. We restrict ourselves to the
class of delay differential equations which correspond to second order boundary
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value problems with a non-zero coefficient of the convection term.
The outline of this paper is as follows: In Section 2, we state singularly

perturbed delay differential equation of convection-diffusion type. In Section
3, we introduce an adaptive mesh and use classical finite difference scheme
to solve singularly perturbed delay differential equation of convection-diffusion
type. In Section 4, we provide the error analysis for the proposed method.
In Section 5, three numerical examples have been solved to demonstrate the
applicability and efficiency of the proposed method and confirms the theoretical
estimates. The paper ends with Section 6 with a brief conclusion.

2 Statement of the problem

In this paper, we shall study the following singularly perturbed delay differential
equation of convection-diffusion type:

Lu(x) = −εu′′(x) + a(x)u′(x) + b(x)u(x− 1) = f(x), 0 < x < 2 (2.1)

with the interval and boundary conditions,

u(x) = φ(x), x ∈ [−1, 0], u(2) = β, (2.2)

where 0 < ε � 1 and a(x) ≥ α > 0, β0 ≤ b(x) < 0, 2α + 5β0 ≥ γ > 0,
a(x), b(x), f(x) are given sufficiently smooth functions on Ω̄, Ω = (0, 2), Ω̄ =
[0, 2], Ω− = (0, 1), Ω+ = (1, 2), φ(x) is a smooth function on [−1, 0] and β is a
given constant which is independent of ε.

3 Adaptive mesh strategy

To generate the adaptive mesh, we followed the steps of Kumar and Srini-
vasan [21]. We now define an auxiliary equation i.e., the entropy production
equation by multiplying with an appropriate test function. From the case of
scaler hyperbolic conservation laws in Leveque [23], we know that for scalar
conservation laws, u2 is always an appropriate entropy variable and, therefore,
2u(x) is a suitable multiplying test function. On multiplying equation (2.1)
(componentwise), we obtain

Lu ∗ 2u = f ∗ 2u, (3.1)

after simplifying, we can write the above equation (3.1) as

−ε(ξ′′ − 2(u′)2) + aξ′ + 2buu(x− 1)− 2uf = 0, where ξ = u2.

Rewriting the above equation, we get

−εξ′′ + aξ′ − 2uf + 2buu(x− 1) = −2ε(u′)2. (3.2)

We label the linear operator on the left hand side (LHS) in the above equation
(3.2), as the entropy production operator with analogy to similar operators
in the hyperbolic conservation laws in Leveque [23]. The continuous operator
should obviously be negative for all x ∈ [0, 2] (as the right hand side (RHS) is
always negative for all x ∈ [0, 2]).
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3.1 Discretization of entropy production operator

We know that if we solve the discrete problem of equation (2.1)–(2.2) com-
putationally using central difference method, we get non-physical oscillations
inside and near the boundary layer region. Similarly, if we calculate the dis-
crete problem of the left hand side equation in (3.2) using the same central
difference operator by taking ξi = u2i , where ui is the central difference com-
puted solution for equation (2.1), we observe that LHS is negative wherever
the solution is smooth enough and positive where we have boundary layers (or
oscillation in the computed solution of equation (2.1)). After investigation, we
have found that if we write the RHS term −2ε(u′)2 of equation (3.2) in the
difference operator at the ith mesh point, we get

−2ε

(
ui − ui−1
xi − xi−1

)(
ui+1 − ui
xi+1 − xi

)
(3.3)

by applying a combination of forward and backward difference operator for u
′

which is of opposite sign wherever the oscillations occur and hence results in
positive value of the difference operator as in equation (3.2) for the oscillatory
numerical solution ui. We exploit this property of the entropy production
operator to precisely determine regions of insufficient resolution.

3.2 Mesh selection strategy

The following algorithm is proposed to generate an adaptive mesh for solving
second order singularly perturbed delay differential equations:

Step 1: Choose an initial grid with few uniform mesh points.
Step 2: Calculate the entropy on the mesh points using (3.3).
Step 3: Identify mesh points where entropy is positive and then choose the

mesh point with the maximum entropy.
Step 4: Add one mesh point on the left and the right side of the location

found in Step 3 and then calculate the entropy using (3.3) at each point on
newly generated non-uniform mesh.

Step 5: If the entropy is positive for at least one mesh point, go to the Step
3. Otherwise stop the iterative process. The resulting mesh is our adapted
mesh which is represented by Ng.

3.3 Finite difference scheme

Initially, we discretize the interval [0,2] into few equal parts with mesh spacing
h. In this case, we discretize in such a way that the delay x = 1 is a mesh
point. As mentioned in the previous section, keep on adding the points on both
sides of the mesh point where the entropy is maximum and positive in each
iteration, we get a stage in which the entropy is negative at each mesh point
through out the interval. We assume the final non-uniform (or adaptive mesh
Ng) mesh as Ω̄N = {0 = x0 < x1 < .... < x2N = 2}. In each iteration, we
find the index m such that xm = m.hi = 1. We discretize the delay differential
equation (2.1)–(2.2), using central finite difference scheme on a non-uniform
mesh as follows:

Math. Model. Anal., 23(4):686–698, 2018.
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LNUi = −εδ2U(xi) + a(xi)D
0U(xi) + b(xi)U(xi−m) = f(xi), (3.4)

U(x0) = φ(0), U(x2N ) = β,

where,

D+V (xi) =
V (xi+1)− V (xi)

xi+1 − xi
, D−V (xi) =

V (xi)− V (xi−1)

xi − xi−1
,

D0V (xi) =
V (xi+1)− V (xi−1)

xi+1 − xi−1
,

and the second order centered difference operator δ2 is defined by

δ2V (xi) =
(D+V (xi)−D−V (xi))

(xi+1 − xi−1)/2
.

Since, hi = xi+1 − xi, hi−1 = xi − xi−1 and hi + hi−1 = xi+1 − xi−1, the
equation (3.4), can be written in the form(

−2ε

hi−1(hi + hi−1)
− ai
hi + hi−1

)
Ui−1 +

(
2ε

hihi−1

)
Ui

+

(
−2ε

hi(hi + hi−1)
+

ai
hi + hi−1

)
Ui+1 + biUi−m = fi.

Multiplying both sides by (hi + hi−1)hihi−1, we get

(−2εhi − aihihi−1)Ui−1 + 2ε(hi + hi−1)Ui + (−2εhi−1 + aihihi−1)Ui+1

+ bi(hi + hi−1)hihi−1Ui−m = fi(hi + hi−1)hihi−1. (3.5)

The equation (3.5) can be rewritten in the form{
EiUi−1 − FiUi +GiUi+1 = Qi, for i = 1, 2, ...,m,

EiUi−1−FiUi+GiUi+1+HiUi−m=Qi, for i = m+1,m+2, ..., 2N−1,
(3.6)

with the boundary conditions,

U0 = φ(0), U2N = β, (3.7)

where

Ei = −2εhi − aihihi−1, Fi = −2ε(hi + hi−1),

Gi = −2εhi−1 + aihihi−1, Hi = bi(hi + hi−1)hihi−1,

and

Qi =

{
(hi + hi−1)hihi−1(fi − biφi−m), for i = 1, 2, . . . ,m,

fi(hi + hi−1)hihi−1, for i = m+ 1,m+ 2, . . . , 2N − 1.

We have solved the system of equations (3.6) with the boundary conditions
(3.7) by Gauss elimination method with partial pivoting.
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4 Error analysis

4.1 Truncation error

By Taylor series expansion we have,

u(xi + hi) = u(xi) + hiu
′(xi) +

h2i
2
u′′(xi) +

h3i
6
u′′′(xi) + . . . ,

u(xi − hi−1) = u(xi)− hi−1u′(xi) +
h2i−1

2
u′′(xi)−

h3i−1
6

u′′′(xi) + . . . .

The truncation error at each nodal point is given by

τi =

(
−2ε

hi−1(hi + hi−1)
− ai
hi + hi−1

)
u(xi−1) +

(
2ε

hihi−1

)
u(xi)

+

(
−2ε

hi(hi + hi−1)
+

ai
hi + hi−1

)
u(xi+1) + biu(xi−m)− fi.

After simplification, we get the truncation error as

τi = (hi − hi−1)
(
−ε

3
u′′′(ζi) +

ai
2
u′′(ηi)

)
.

As hi → 0, the truncation error tends to zero, which shows that scheme is
consistent. The order of the truncation error is given by O(hi − hi−1).

4.2 Discretization error

Our aim is to express, if possible, the discretization error ei = ui−Ui at the ith

mesh point in terms of hi. The difference equations approximating the problem
are given by

− ε2(D+Ui −D−Ui)

hi + hi−1
+ ai

Ui+1 − Ui−1

hi + hi−1
+ biUi−m − fi = 0, (4.1)

τi = −ε2(D+ui −D−ui)
hi + hi−1

+ ai
ui+1 − ui−1
hi + hi−1

+ biui−m − fi. (4.2)

Subtracting equation (4.1) from equation (4.2), we get(
−2ε

hi−1(hi + hi−1)
− ai
hi + hi−1

)
ei−1 +

(
2ε

hihi−1

)
ei

+

(
−2ε

hi(hi + hi−1)
+

ai
hi + hi−1

)
ei+1 + biei−m = τi.

Multiplying both sides by (hi + hi−1)hihi−1, we get

(−2εhi − aihihi−1)ei−1 + 2ε(hi + hi−1)ei + (−2εhi−1 + aihihi−1)ei+1

+ bi(hi + hi−1)hihi−1ei−m = τi(hi + hi−1)hihi−1, (4.3)

Math. Model. Anal., 23(4):686–698, 2018.
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The error equation (4.3) can be represented as

Eiei−1−Fiei+Giei+1+Hiei−m=(h2i−h2i−1)hihi−1

(
−ε

3
u′′′(ζi)+

ai
2
u′′(ηi)

)
,

(4.4)
where

Ei = −2εhi − aihihi−1, Fi = −2ε(hi + hi−1),

Gi = −2εhi−1 + aihihi−1, Hi = bi(hi + hi−1)hihi−1.

It can be easily verified that

|Fi − Ei −Gi −Hi| = |bi|(hi + hi−1)hihi−1 > 0.

Now from equation (4.4)

|Fi||ei| ≤ |(h2i − h2i−1)|(hihi−1)|gi|+ |Ei||ei−1|+ |Gi||ei+1|+ |Hi||ei−m|, (4.5)

where
gi = −ε

3
u′′′(ζi) +

ai
2
u′′(ηi).

Let λ = ‖e‖∞ and select the index i for which |ei| = ‖e‖∞ = λ. Now from
equation (4.5), we have

|Fi|λ ≤ |(h2i − h2i−1)|(hihi−1)|gi|+ |Ei|λ+ |Gi|λ+ |Hi|λ,
λ{|Fi| − |Ei| − |Gi| − |Hi|} ≤ |h2i − h2i−1|(hihi−1)|gi|,

λ ≤
|(h2i − h2i−1)|(hihi−1)

|bi|(hi + hi−1)(hihi−1)
‖g‖∞, λ ≤ |(hi − hi−1)|

inf |bi|
‖g‖∞,

where

‖g‖∞ ≤
ε

3
‖u′′′‖∞ + |a(x)

2
|‖u′′‖∞,

which is bounded and independent of hi. Thus ‖e‖∞ = O(hi−hi−1) as hi → 0.
This shows the convergence of the proposed numerical scheme.

5 Numerical examples and results

In this section three illustrative examples will be studied. To demonstrate the
applicability and efficiency of the proposed method, we have implemented the
present method on three examples with right-end boundary layer in the interval
[0, 2]. These problems were widely discussed in the literature.

Since the exact solutions of the problems are not known, the maximum
absolute errors for the examples are calculated using the following double mesh
principle

EN
ε = max |UN

i − U2N
2i |.

To use the double mesh principle, we incorporated the mesh points at the
middle of each mesh and applied the central finite difference scheme on variable
mesh. The numerical rate of convergence is estimated by the formula

RN = log |EN
ε /E

2N
ε |/log 2.
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Example 1. We consider singularly perturbed delay differential equation of con-
vection-diffusion type as [8]

−εu′′(x) + 3u′(x)− u(x− 1) = 0, u(x) = 1, −1 ≤ x ≤ 0, u(2) = 2.

The exact solution of this problem is given by

u(x) =


1 + c1

[
exp

(
3x/ε

)
− 1
]

+ x/3, 0 ≤ x ≤ 1,

c2 + x
3 + (x−1)2

18 + εx
27 −

c1x
3 −

c1x
3 exp (3(x− 1)/ε)

+ exp
(

3(x−2)
ε

) [
23
18 −

2ε
27 − c2 + 2c1

3 + 2c1
3 exp

(
3
ε

)]
, 1 ≤ x ≤ 2,

where

c1 = exp (−6/ε)

[
4ε/9− ε2/27− 3

3− 4 exp(−6/ε) + 2ε
3 [exp(−3/ε)− exp(−6/ε)]

]
,

c2 =
1− 23

18 exp(−3ε ) + 2ε
27 exp(−3ε )− ε

27

1− exp(−3/ε)
+
c1 exp( 3

ε )[1− exp(−3ε )− 2
3 exp(−6ε )]

1− exp(−3/ε)
.

The maximum absolute errors, number of adaptive mesh generated points and
the rate of convergence are presented in Table 1 for different values of pertur-
bation parameter ε.

Table 1. Maximum absolute error for Example 1 for different values of ε with N = 23
(initially)

ε Max. error Generated mesh (Ng) Rate of Convergence (RN )

2−5 0.0089 29 2.1924
2−6 0.0089 31 2.1953
2−7 0.0089 33 2.2041
2−8 0.0090 35 2.2195
2−9 0.0091 37 2.2377
2−10 0.0092 39 2.2496
2−11 0.0092 41 2.2516
2−12 0.0092 43 2.2486
2−13 0.0092 47 2.2454
2−14 0.0092 49 2.2435
2−15 0.0092 51 2.2425
2−16 0.0092 53 2.2421
2−17 0.0092 55 2.2419
2−18 0.0092 57 2.2419
2−19 0.0092 59 2.2418
2−20 0.0092 63 2.2418

Example 2. We consider singularly perturbed delay differential equation of con-
vection-diffusion type as [8]

− εu′′(x) + (3 + x2)u′(x)− u(x− 1) = expx,

u(x) = expx, −1 ≤ x ≤ 0, u(2) = 2.

The maximum absolute errors, number of adaptive mesh generated points and
the rate of convergence are presented in Table 2 for different values of pertur-
bation parameter ε.

Math. Model. Anal., 23(4):686–698, 2018.
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Figure 1. Numerical solution for Example 1 with ε = 2−8, N = 23 (initially)

Table 2. Maximum absolute error for Example 2 for different values of ε with N = 23
(initially)

ε Max. error Generated mesh (Ng) Rate of Convergence (RN )

2−5 0.0257 39 2.2519
2−6 0.0256 41 2.2508
2−7 0.0254 43 2.2431
2−8 0.0252 45 2.2358
2−9 0.0250 47 2.2453
2−10 0.0250 47 2.2695
2−11 0.0250 49 2.2917
2−12 0.0250 49 2.3044
2−13 0.0250 51 2.3100
2−14 0.0250 53 2.3121
2−15 0.0250 53 2.3129
2−16 0.0250 55 2.3132
2−17 0.0250 57 2.3133
2−18 0.0250 59 2.3134
2−19 0.0250 61 2.3134
2−20 0.0250 63 2.3134

Example 3. We consider singularly perturbed delay differential equation of con-
vection-diffusion type [8]

− εu′′(x) + 5u′(x)− 1

2
u(x− 1) =

{
1, 0 < x < 1,
−1, 1 < x < 2,

u(x) = 1, −1 ≤ x ≤ 0, u(2) = 2.

In the previous two examples, it is assumed that f(x) is continuous on [0, 2].
Motivated by the works of [14,15], in this example, we suppose that f(x) has a
simple discontinuity at x = 1, that is f(1−) 6= f(1+), where f(1−) and f(1+)
are left and right limits respectively. This boundary value problem exhibits a
strong boundary layer at x = 2 and an interior week layer at x = 1.

The maximum absolute errors, number of adaptive mesh generated points
and the rate of convergence are presented in Table 3 for different values of
perturbation parameter ε. It is observed from the Table 3 that after ε = 2−9

the rate of convergence has been reduced to almost 1, which is due to the effect
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Figure 2. Numerical solution for Example 2 with ε = 2−8, N = 23 (initially)

of weak interior layer at x = 1. From the Figure 3, it is clear that some mesh
points are added around x = 1 to resolve the weak boundary layer and some
mesh points are added around x = 2 to resolve the strong boundary layer.

Table 3. Maximum absolute error for Example 3 for different values of ε with N = 23
(initially)

ε Max. error Generated mesh (Ng) Rate of Convergence (RN )

2−5 0.0720 43 2.1185
2−6 0.0719 47 2.1180
2−7 0.0718 49 2.1180
2−8 0.0718 53 2.1177
2−9 0.0717 53 2.1177
2−10 0.0414 39 1.1016
2−11 0.0392 41 0.9597
2−12 0.0379 43 0.9034
2−13 0.0376 45 0.8961
2−14 0.0380 47 0.9167
2−15 0.0382 49 0.9281
2−16 0.0383 51 0.9341
2−17 0.0384 53 0.9372
2−18 0.0384 55 0.9387
2−19 0.0384 57 0.9395
2−20 0.0384 59 0.9399

6 Conclusions

In this paper, we have presented an adaptive mesh method to deal with oscilla-
tion produced by central finite difference method, when applied to convection
dominated singularly perturbed delay differential equations. The method is
analysed for convergence. The proposed method is an ε-uniform convergent.
An extensive amount of computational work has been carried out to demon-
strate the proposed method. The maximum absolute error is tabulated in the
form of Tables 1–3 for the considered examples in support of the predicted the-
ory. The graphs of the solution of the considered examples for certain values of

Math. Model. Anal., 23(4):686–698, 2018.
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Figure 3. Numerical solution for Example 3 with ε = 2−8, N = 23 (initially)

perturbation parameter are plotted in Figures 1–3. On the basis of the numer-
ical results of a variety of examples, it is concluded that the present method
offers significant advantage for the linear singularly perturbed delay differential
equations.
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