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Ümit Totur and Muhammet Ali Okur

Adnan Menderes University, Department of Mathematics

09010 Aydın, Turkey

E-mail(corresp.): utotur@adu.edu.tr; utotur@yahoo.com

E-mail: mali.okur@adu.edu.tr; mali.okur2@gmail.com

Received April 22, 2014; revised January 4, 2015; published online March 15, 2015

Abstract. In this paper, we prove some Tauberian remainder theorems that gener-
alize the results given by Meronen and Tammeraid [Math. Model. Anal., 18(1):97–
102, 2013] for Hölder summability method using the notion of the general control
modulo of the oscillatory behaviour of nonnegative integer order.
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1 Introduction

Let u = (un) be a sequence of real numbers. Throughout this paper, the symbol
un = O(1) means that (un) is bounded for large enough n. The sequence of
the backward differences of (un) is denoted by (∆un), where ∆un = un−un−1
for n ≥ 1, and ∆u0 = u0 for n = 0.

For a sequence (un),

un − σ(1)
n (u) = V (0)

n (∆u), (1.1)

where σ
(1)
n (u) = 1

n+1

∑n
k=0 uk and V

(0)
n (∆u) = 1

n+1

∑n
k=0 k∆uk.The identity

(1.1) is called Kronecker identity.

Let the sequence V (m)(∆u) = (V
(m)
n (∆u)) be defined as follows: For each

integer m ≥ 1 and for all nonnegative integers n,

V (m)
n (∆u) = σ(1)

n

(
V (m−1)(∆u)

)
.

The classical control modulo of the oscillatory behaviour of (un) is denoted

by ω
(0)
n (u) = n∆un. The general control modulo of the oscillatory behaviour

of integer order m ≥ 1 of a sequence (un) is defined in [9] by

ω(m)
n (u) = ω(m−1)

n (u)− σ(1)
n

(
ω(m−1)(u)

)
.
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Notice that the notion of the general control modulo of the oscillatory behavior
of integer order m ≥ 1 of a sequence (un) is a generalization of the classical

control modulo of (un). For instance, if the sequence (ω
(0)
n (u)) is bounded then

the sequence (ω
(1)
n (u)) is bounded from the definition of general control modulo.

However, boundedness of the sequence (ω
(1)
n (u)) does not imply boundedness

of the sequence (ω
(0)
n (u)). For example, if we take the sequence (ω

(1)
n (u)) as a

constant sequence, then (ω
(0)
n (u)) is not bounded.

The concept of general control modulo of the oscillatory behavior of a se-
quence is used in some articles [6,7,8,20] in Tauberian theory. Actually, Çanak
and Dik [6] obtained some Tauberian conditions in terms of the general con-
trol modulo of integer order to retrieve subsequential convergence of (un) from
the boundedness of (un). Çanak and Totur [7] gave some sufficient conditions
for the usual convergence and subsequential convergence of regularly gener-
ated sequences. Çanak and Totur [8] proved a Tauberian theorem for Cesàro
summability methods, and Totur and Dik [20] gave some one-sided Tauberian
conditions for a general summability method using the general control modulo
of integer order. Moreover, various Tauberian theorems have been demon-
strated by Çanak [1, 2, 3, 4] and Çanak et al. [10].

Summability theory and Tauberian theorems have been applied to the se-
quence of fuzzy real numbers. In the recent papers, some results have been
obtained for Nörlund and Riesz summability methods of sequences of fuzzy
real numbers (see [5, 21]).

A sequence (un) is said to be (C, 1) summable to s if the limit

lim
n→∞

σ(1)
n (u) = s

exists.
The Hölder means of integer order of a sequence (un) are defined by

σ(k)
n (u) =

{
1

n+1

∑n
j=0 σ

(k−1)
j (u), k ≥ 1 ,

un, k = 0

for each integer k ≥ 0 and for all nonnegative integers n and the sequence (un)
is said to be Hölder, in short (H, k) summable to s if the limit

lim
n→∞

σ(k)
n (u) = s

exists. It can be verified that (H, 0) summable of (un) means that (un) con-
verges ordinary, and the (H, 1) method of summability is equivalent to the
(C, 1) method of summability.

The Hölder summability method is regular, more generally, if a sequence
(un) is (H, k) summable to s, where k ≥ 0 and k′ > k for integer k, k′, then (un)
is also (H, k′) summable to s. However, the converse is not necessarily true.
For example, the sequence (un) = (

∑n
j=0(j+ 1)(−1)j) is not (H, 1) summable,

but

lim
n→∞

σ(2)
n (u) =

1

n+ 1

n∑
i=0

σ
(1)
i (u) =

1

4
.
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Let λ = (λn) be a nondecreasing sequence of positive numbers such that
λn → ∞. A sequence (un) is called bounded with the rapidity (λn) (in short
λ-bounded), if

λn(un − s) = O(1)

with lim
n→∞

un = s. Let

mλ =
{
u = (un)

∣∣ lim
n→∞

un = s and λn(un − s) = O(1)
}
.

A sequence (un) is called λ-bounded by (H, k) method of summability, if

λn
(
σ(k)
n (u)− s

)
= O(1)

with limn→∞ σ
(k)
n (u) = s. Shortly, we write u ∈ ((H, k),mλ).

It is known that a λ-bounded sequence is also λ-bounded by (H, k) method
of summability. An example can be constructed to show that λ-boundedness
by (H, k) method is not sufficient for λ-boundedness of a sequence. Let (un) =

(
∑n
k=0(−1)k), λn = n + 1. Therefore limn→∞ σ

(1)
n (u) = 1

2 and we have

λn(σ
(1)
n (u) − 1

2 ) = O(1). That means u ∈ ((H, 1),mλ). However the sequence
(
∑n
k=0(−1)k) is not convergent and this implies that u /∈ mλ.
G. Kangro [11] introduced the concepts of Tauberian remainder theorems

using summability with given rapidity λ. Tammeraid [18] introduced the
concept of λ-convergent sequence, and showed the relationship between some
spaces of λ-convergent sequences. Tammeraid [17, 19] proved some Tauberian
remainder theorems for several summability method, such as Cesàro, Hölder,
Euler-Knopp methods. Moreover, a number of authors represented some Tau-
berian remainder theorems (see [12, 13, 14]). Recently, Sezer and Çanak [16]
have obtained several Tauberian remainder theorems for the weighted mean
method of summability using the weighted general control modulo of integer
order 1 and 2.

Meronen and Tammeraid [15] proved the following Tauberian remainder
theorems:

Theorem 1. Let the condition

λnV
(0)
n (∆u) = O(1)

is satisfied. If u ∈ ((H, 1),mλ), then u ∈ mλ.

Theorem 2. Let the conditions

λnω
(0)
n (u) = O(1), λnω

(2)
n (u) = O(1), λn

(
σ(2)
n (u)− s

)
= O(1)

are satisfied. If u ∈ ((H, 1),mλ), then u ∈ mλ.

In this paper, we generalize Theorem 1 and Theorem 2 given by Meronen
and Tammeraid [15] to Tauberian remainder theorems for (H, k) summability
method. In our results, we use general control modulo order any integer m ≥ 0
of the sequence (un).

Math. Model. Anal., 20(2):139–147, 2015.
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2 Preliminary Results

We need the following lemma to be used in the proofs of main theorems.

Lemma 1. For each integer m ≥ 2 and for all nonnegative integers n,

ω(m)
n (u) = ω(0)

n (u)− un + σ(1)
n (u)

+

m−1∑
j=1

(−1)j
(
m− 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
,

where
(
m−1
j

)
= (m− 1)(m− 2) . . . (m− j)/j!.

Proof. We establish the proof by the method of induction. For m = 2, we
have

ω(2)
n (u) = ω(1)

n (u)− σ(1)
n

(
ω(1)(u)

)
= ω(0)

n (u)− σ(1)
n

(
ω(0)(u)

)
− σ(1)

n

(
ω(0)(u)− σ(1)

(
ω(0)(u)

))
= ω(0)

n (u)− 2V (0)
n (∆u) + V (1)

n (∆u)

= ω(0)
n (u)− un + σ(1)

n (u) +
(
−un + 2σ(1)

n (u)− σ(2)
n (u)

)
= ω(0)

n (u)− un + σ(1)
n (u) +

1∑
j=1

(−1)j
(

1

j

)(
σ(j−1)
n (u)−2σ(j)

n (u)+σ(j+1)
n (u)

)
.

Assume that the assertion is true for m = k. That is,

ω(k)
n (u) = ω(0)

n (u)− un + σ(1)
n (u)

+

k−1∑
j=1

(−1)j
(
k − 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
. (2.1)

We must show that the assertion is true for m = k + 1. Namely, we establish
that

ω(k+1)
n (u) = ω(0)

n (u)− un + σ(1)
n (u)

+

k∑
j=1

(−1)j
(
k

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
.

By the definition of the general control modulo of (un), we get

ω(k+1)
n (u) = ω(k)

n (u)− σ(1)
n

(
ω(k)(u)

)
. (2.2)

By the identity (2.1), we have



Some Tauberian Remainder Theorems for Hölder Summability 143

ω(k+1)
n (u) = ω(0)

n (u)− un + σ(1)
n (u)− V (0)

n (∆u) + σ(1)
n (u)− σ(2)

n (u)

+

k−1∑
j=1

(−1)j
(
k − 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
−
k−1∑
j=1

(−1)j
(
k − 1

j

)(
σ(j)
n (u)− 2σ(j+1)

n (u) + σ(j+2)
n (u)

)
= ω(0)

n (u)− un + σ(1)
n (u)

+

k−1∑
j=1

(−1)j
(
k − 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
−
k−1∑
j=0

(−1)j
(
k − 1

j

)(
σ(j)
n (u)− 2σ(j+1)

n (u) + σ(j+2)
n (u)

)
.

For the last sum on the right-hand side of the last identity, we have

−
k−1∑
j=0

(−1)j
(
k − 1

j

)(
σ(j)
n (u)− 2σ(j+1)

n (u) + σ(j+2)
n (u)

)
= −

k∑
j=1

(−1)j−1
(
k − 1

j − 1

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
=

k∑
j=1

(−1)j
(
k − 1

j − 1

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
=

k−1∑
j=1

(−1)j
(
k − 1

j − 1

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
+ (−1)k

(
k − 1

k − 1

)(
σ(k−1)
n (u)− 2σ(k)

n (u) + σ(k+1)
n (u)

)
.

Since
(
k−1
j

)
+
(
k−1
j−1
)

=
(
k
j

)
, the identity (2.2) can be written as

ω(k+1)
n (u) = ω(0)

n (u)− un + σ(1)
n (u)

+

k∑
j=1

(−1)j
(
k

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

)
.

Thus, we conclude that Lemma 1 is true for each integer m ≥ 2. ut

3 Main Results

Theorem 3. Let the conditions

λnω
(0)
n (u) = O(1), λnω

(m)
n (u) = O(1) (3.1)

Math. Model. Anal., 20(2):139–147, 2015.
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and

λn
(
σ(j)
n (u)− s

)
= O(1) for each integer j such that 2 ≤ j ≤ m (3.2)

are satisfied. If u ∈ ((H, 1),mλ), then u ∈ mλ.

Proof. From Lemma 1, we have

λnω
(m)
n (u) = λn

(
ω(0)
n (u)− un + σ(1)

n (u)

+

m−1∑
j=1

(−1)j
(
m− 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

))

= λn

(
ω(0)
n (u)− (un − s) +

(
σ(1)
n (u)− s

)
+

m−1∑
j=1

(−1)j
(
m− 1

j

)((
σ(j−1)
n (u)−s

)
− 2
(
σ(j)
n (u)−s

)
+
(
σ(j+1)
n (u)−s

)))
.

Rewriting the above equation, we have

λn(un − s) = λnω
(0)
n (u)− λnω(m)

n (u)

+ λn
(
σ(1)
n (u)− s

)
+ λn

m−1∑
j=1

(−1)j
(
m− 1

j

)(
σ(j−1)
n (u)− s

)
− 2λn

m−1∑
j=1

(−1)j
(
m−1

j

)(
σ(j)
n (u)−s

)
+λn

m−1∑
j=1

(−1)j
(
m−1

j

)(
σ(j+1)
n (u)−s

)
.

Using (3.1) and (3.2) we get

λn(un − s) = O(1) +O(1) +O(1) +O(1) +O(1) +O(1) = O(1).

Therefore we obtain u ∈ mλ. ut

Theorem 4. Let the condition

λnV
(j)
n (∆u) = O(1) for each integer j such that 0 ≤ j ≤ k − 1, (3.3)

be satisfied. If u ∈ ((H, k),mλ), then u ∈ mλ.

Proof. Suppose that u ∈ ((H, k),mλ). Taking j = k − 1 in (3.3), it follows
from the identity

σ(k−1)
n (u)− σ(k)

n (u) = V (k−1)
n (∆u),

that

λn
(
σ(k−1)
n (u)− s

)
= λn

(
σ(k)
n (u)− s

)
+ λn

(
σ(k−1)
n (u)− σ(k)

n (u)
)

= O(1) +O(1) = O(1).



Some Tauberian Remainder Theorems for Hölder Summability 145

This implies u ∈
(
(H, k − 1),mλ

)
. Taking j = k − 2 in (3.3), we get

λn
(
σ(k−2)
n (u)− s

)
= λn

(
σ(k−2)
n (u)− σ(k−1)

n (u)
)

+ λn
(
σ(k−1)
n (u)− s

)
= O(1) +O(1) = O(1)

from the identity

σ(k−2)
n (u)− σ(k−1)

n (u) = V (k−2)
n (∆u).

Hence we have u ∈
(
(H, k − 2),mλ

)
. Continuing in this way, we obtain that

u ∈
(
(H, 1),mλ

)
. Taking j = 0 in (3.3), we get λn(un − σ(1)

n (u)) = O(1) from
the Kronecker identity. Thus we have

λn(un − s) = λn
(
un − σ(1)

n (u)
)

+ λn
(
σ(1)
n (u)− s

)
= O(1) +O(1) = O(1).

This completes the proof. ut

Theorem 5. Let the condition

λnω
(j)
n = O(1) for each integer j such that 0 ≤ j ≤ k (3.4)

be satisfied. If u ∈ ((H, k),mλ), then u ∈ mλ.

Proof. By the definition of the general control modulo order 1 of (un), it
follows

λnω
(1)
n (u) = λnω

(0)
n (u)− λnσ(1)

n

(
ω(0)(u)

)
= λnω

(0)
n (u)− λnV (0)

n (∆u).

Taking j = 0 and j = 1 in (3.4), we get λnV
(0)
n (∆u) = O(1). From the

definition of the general control modulo order 2 of (un), we obtain

λnω
(2)
n (u) = λnω

(1)
n (u)− λnσ(1)

n

(
ω(1)(u)

)
.

Taking j = 0 and j = 2 in (3.4), we obtain λnV
(1)
n (∆u) = O(1). Continuing in

this way, by Lemma 1, we obtain

λnω
(k)
n (u) = λn

(
ω(0)
n (u)− un + σ(1)

n (u)

+

k−1∑
j=1

(−1)j
(
k − 1

j

)(
σ(j−1)
n (u)− 2σ(j)

n (u) + σ(j+1)
n (u)

))
= λnω

(0)
n (u)− λnV (0)

n (∆u)

+ λn

k−1∑
j=1

(−1)j
(
k − 1

j

)((
σ(j−1)
n (u)− σ(j)

n (u)
)
−
(
σ(j)
n (u)− σ(j+1)

n (u)
))
.

From the last identity, we get

λnω
(k)
n (u) = λnω

(0)
n (u)− λnV (0)

n (∆u) + λn

(
k−1∑
j=1

(−1)j
(
k − 1

j

)
V (j−1)
n (∆u)

)

− λn

(
k−1∑
j=1

(−1)j
(
k − 1

j

)
V (j)
n (∆u)

)
.

Math. Model. Anal., 20(2):139–147, 2015.
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If taking j = 0, 1, . . . , k in (3.4), we obtain λnV
(k−1)
n (∆u) = O(1). The

conditions in Theorem 4 holds. Hence the proof is completed. ut
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[8] İ. Çanak and Ü. Totur. Some Tauberian conditions for Cesàro summability
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