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Abstract. Analysis of nonstationary stage of quasi-Cherenkov instability of electron beam
in the case of two-wave distributed feedback is carried out.Mathematical models and numeri-
cal methods of nonstationary quasi-Cherenkov electron beam instability are proposed. Results
of numerical experiments are proposed. Bifurcations of nonstationary solution are discussed.
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1. Introduction

This contribution is devoted to further analysis of nonstationary stage of quasi-
Cherenkov instability of electron beam in Volume Free Electron Laser (VFEL) by
methods of mathematical modelling.

Nowadays FEL (free electron laser) lasing is obtained in different wavelength
ranges: from centimeter to ultraviolet. The high expensiveinternational X-ray FEL
project is on the preparation stage now [7]. VFEL based on mechanism of multi-
wave volume distributed feedback (VDFB) was proposed in [1,4]. VFELs give pos-
sibility to reduce starting currents, to provide generation in large volume, to tune ge-
neration frequency [1]. Due to large electron beam cross section, VFEL generation in
large volume essentially increases the electric strength of resonator and, in principle,
allows to produce electromagnetic pulses of high power (greater than 10 GW). Be-
sides the multi-wave distributed feedback VFEL provides the modes discrimination
in the case when linear sizes of resonator (waveguide) crosssection exceed genera-
ted wavelength ( in so-called oversized systems). First lasing of VFEL in millimeter
range was recently obtained by a group of scientists from theInstitute for Nuclear
Problems [2].
1 Authors thank prof. V. G. Baryshevsky for permanent interest to their work
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VFEL is a system with a great number of parameters. Varying these parame-
ters causes changes in VFEL generation and transitions between different generation
regimes, e.g. transition to the convective instability (amplification regime) and from
the convective instability to absolute one (oscillator regime). Mentioned instabilities
demonstrate also different features depending on parameters. There are stationary
nonlinear oscillator regime and non-stationary oscillator regime in the case of ab-
solute instability. Non-stationary regime is also dividedinto regimes with different
periods of electron beam and radiation modulation and chaotic instability regime.
Analysis of existing regimes, transitions between them (bifurcations) and parame-
ters at which these transitions occur (bifurcation points and regions) is very important
for description of VFEL operation. Quasi-Cherenkov (parametric) radiation is one of
the possible mechanisms to realize VFEL generation [3]. In this case spatial-periodic
system provides simultaneously Cherenkov synchronism condition and VDFB. Sim-
ulation of quasi-Cherenkov VFEL and its operation in different regimes is the aim of
this paper.

Figure 1. A simple scheme of quasi-Cherenkov VFEL (Bragg geometry).

2. Mathematical Formulation

In our previous paper [5] we presented a simple scheme of VFEL(see Fig. 1). An
electron beam with electron velocityu passes through the target. This target of length
L is a spatially periodic medium. Incident electromagnetic waves 1 or 2 or 1 and 2
simultaneously emerge at the target. Waves 3 and 4 are two strong waves excited
in the target, when specific conditions (so-called Bragg conditions) are fulfilled for
generation of quasi-Cherenkov radiation. If electrons areunder Cherenkov condition,
they emit electromagnetic radiation in direction 3 or 4 or both directions depending
on diffraction regime. A case without incident waves corresponds to oscillator gen-
eration regime. In Bragg geometry (Fig. 1) transmitted wave3 and diffracted wave
4 are directed in opposite directions relative to axisz. In Laue geometry the waves
propagate in the same direction.
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Let us consider the system of equations describing nonstationary quasi-Cheren-
kov instability. We write out it in a general form without accurate definition of coef-
ficients.

∂E

∂t
+ a1

∂E

∂z
+ b11E + b12Eτ

= Φ

∫ 2π

0

2π − p

8π2

(
exp

(
− iΘ(t, z, p)

)
+ exp

(
− iΘ(t, z,−p)

))
dp, (2.1)

E(t, 0) = E0, E(0, z) = 0,

∂Eτ

∂t
+ a2

∂Eτ

∂z
+ b21E + b22Eτ = 0, (2.2)

Eτ (t, L) = E1, Eτ (0, z) = 0,

∂2Θ(t, z, p)

∂z2
= Ψ

(
k −

∂Θ(t, z, p)

∂z

)3

Re
(
E

(
t − z/u, z

)
exp

(
iΘ(t, z, p)

))
, (2.3)

Θ(t, 0, p) = p,
∂Θ(t, 0, p)

∂z
= k −

ω

u
,

wherei is the imaginary unit,t > 0, z ∈ [0, L], p ∈ [−2π, 2π].

(2.1) – (2.3) is a system of integro-differential equations. In addition to tempo-
ral argument there are two independent arguments: spatial coordinatez and initial
electron phasep. Amplitudes of electromagnetic fieldsE(t, z), Eτ (t, z) and coef-
ficientsa, b andΦ are complex-valued. FunctionΘ(t, z, p) is the phase of electron
in electromagnetic wave. FunctionΘ and coefficientΨ are real.k is a projection of
wave vector on axisz, ω is a field frequency,u is an initial electron beam velocity.
Boundary conditions are written for the case of Bragg geometry.

Equation (2.3) describes a propagation of the electron beamin VFEL. We model
it by averaging over initial phases of electrons. This method is well-known [12]
and widely used in simulation of BWT (backward wave tube), TWB (traveling wave
tube), FEL and other electronic devices. Next we present a derivation of (2.3). We
consider a magnetized electron beam and assume that its propagation can be consid-
ered as one-dimensional. The motion equation of one electron in the wave has the
following form:

z̈ =
e

mγ3
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,

wheree andm are electron charge and mass respectively,γ is the Lorentz factor of
electron beam. Initial phase is an individual mark of the electron in beam. Averaging
over this phase allows us to pass from microscopical description to macroscopical
one. Averaging current and applying Liuville’s Theorem lead to the following equa-
tion:
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wheren0 is a beam density,Θ(t, t0, ~r⊥) = kzz + ~k⊥~r⊥ − ωt(z, t0) is an electron
phase,t(z, t0) is a trajectory of electron emerged at momentt0 in the target. Initial
phase of the electron in interaction region has the form:

Θ(t = t0, t0, ~r⊥) = ~k⊥~r⊥ − ωt0 = Θ1 − Θ0.

Producing some transformations one can reduce the averaging over phasesΘ0 and
Θ1 to the averaging over one phasep ∈ [−2π, 2π] and obtain equation (2.3).

In [5] we have considered the following stationary system ofequations describing
quasi-Cherenkov instability:
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Now the nonstationary system (2.1) – (2.3) is considered instead of (2.4). Differ-
ent types of instabilities and bifurcations leading to transitions between these types
of instabilities are studied on the basis of (2.1) – (2.3).

3. Numerical Algorithms

We use notations from [11] and introduce in domain

Ω = {0 ≤ z ≤ L, −2π ≤ p ≤ 2π} × {t > 0}

uniform grids with respect tot, z andp:

ωt = {tl = lht, l ≥ 0}, ωz = {zm = mhz, m = 0, 1, . . . , M, Mhz = L},

ωp = {pj = jhp, j = −N, . . . ,−1, 0, 1, . . . , N, hpN = 2π}.

Discrete functions, defined on the grid, are denoted by

Êm = E(tl+1, zm), Em = E(tl, zm), Θj
m = Θ(tl, zm, pj).

We approximate the differential problem (2.1) – (2.3) with the following finite–
difference scheme:
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Et + a1Êz̄ + b11Ê + b12Êτ = Φ

N∑

j=0

cj

(
exp(−iΘ̂j) + exp(−iΘ̂−j)
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whereẼ = E(tl −αtm, zm), α = ⌊hz/(htu)⌋. Whentl −αtm < 0 we assume that
Ẽ = E(0, zm). Herecj are coefficients of the quadrature trapezoidal rule.

In [5] we have proposed the following iterative algorithm for solving (2.4):
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where s ≥ 0 is a number of iteration,
0

Θj = hpj,
0

E = 0,
0

Eτ = 0.

a b

Figure 2.Numerical solutions: (a) stationary system, dependence onthe number of iterations,
(b) nonstationary system, dependence ont.

Let us demonstrate the dependence of stabilization of solution (3.2) on the num-
ber of iterations (see Fig. 2a). When the current density threshold is exceeded (curve
1) or there is no radiation amplification (curve 2), then about ten iterations are suffi-
cient. For the other cases it is necessary to make 20 – 50 iterations (curve 3). In the
region near generation threshold, where solution is settled very slowly, it is necessary
to compute a few hundreds of iterations (curve 4).

We are interested in investigation of dynamics of the whole system, since it is
well-known that in laser systems different types of instabilities (bistability, pulsed
solutions, chaos) can appear ([9], [10]). For different reasons namely lasers played a
decisive role in development of synergetics.
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Problems of numerical stability of solutions of PDEs of a similar nature were
investigated in [6]. But since it seems to be impossible to investigate analytically the
stability of nonlinear integro–differential time–dependent problem (2.1) – (2.3), we
restrict ourselves to numerical investigations. During computations we have changed
different control parameters of the system (see Fig. 2b, Fig. 3–Fig. 5). There exist
more than ten such parameters. As a result at all plots calculated for Bragg geometry
we obtain Hopf’s bifurcations [8, 9, 10] which lead to transition between generation
regimes with single or some basic frequencies or stable steady solutions.

If for some control parameters the solutions are unstable, then under random
perturbations the trajectory sweeps chaotically in a largephase space. As a random
perturbation we can consider computational errors in right-hand sides of the system.
As a result we can obtain turbulence or chaos. In our experiments we get turbulence
only in Laue geometry for large length of the target and high current density. In
Bragg geometry we obtain typical self-oscillations with some principal frequencies.
We suppose that for Laue geometry we obtain Hopf’s bifurcations with wide set of
principal frequencies too. This corresponds to numerous bifurcations of limit cycle
to the torus.

a b

Figure 3. Numerical solution for different current densityj without (a) and with (b) absorp-
tion in Bragg geometry.

Since our numerical algorithms (3.1) and (3.2) are nonlinear, it seems to be im-
possible to investigate their convergence. If we consider linearized cases of these
processes all becomes evident. So, according to numerical experiments, our schemes
proved itself be stable and numerical solutions converged to analytical solutions of
the initial differential system.

4. Numerical Results for the Nonstationary System

Let us discuss results of numerical experiments carried out. In this paper we want to
give several examples of numerical calculations describing behavior of the solution
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a b

Figure 4. Numerical solution for different detuning parameterl in Bragg geometry.

a b

Figure 5. Numerical solution for different current densityj (a) and different lengthL (b) in
Laue geometry.

of nonstationary system. In each graphic plot only one control parameter is changed.
That leads to transition between different regimes of generation in accordance with
transition of parameter from one critical value to the otherone. This parameter can
be a beam current densityj, detuning parameterl, absorption coefficientIm(χ0),
target lengthL, frequency and so on. In Fig. 2b, Fig. 3–Fig. 5, one can see curves
with single period of oscillations, with some basic frequencies and steady states.
For example in Fig. 3 curves of amplitudes|E(t, L)| (lower curve) and|Eτ (t, 0)|
(upper curve in each pair) are presented. It is interesting that in each pair periods of
oscillations of both curves are different. In Laue geometry(see Fig. 5) a turbulence
induced by numerous bifurcations is obtained for large length of the targetL (greater
than 80 cm).

In two-wave Bragg diffraction geometry different generation regimes include
also cases when one or two electromagnetic modes are in synchronism with elec-
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tron beam. During nonlinear dynamics this leads to transition between these modes
and to more indicative bifurcation picture in Bragg diffraction geometry. More pos-
sible regimes exist for multi–wave diffraction which shallbe considered in our future
works.

5. Conclusions

The proposed mathematical models and numerical algorithmscan be used effectively
for modelling nonlinear regimes of VFEL operation. They will be useful for provid-
ing experiments on VFEL on the installation VFEL-300 keV created at the Institute
for Nuclear Problems of Belarussian State University.
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[6] Raim.Čiegis and Rem.̌Ciegis. Numerical stability analysis of solutions of PDEs.Com-
putational Methods in Applied Mathematics, 4(1), 23 – 33, 2004.

[7] R. Brinkmann et al.TESLA XFEL, First Stage of the X-Ray Laser Laboratory. DESY
Report 2002-167/TESLA-FEL 2002-09, Hamburg, 2002.

[8] G.Iooss and D. Joseph.Elementary stability and bifurcation theory. Springer-Verlag,
Berlin, 1981.

[9] H. Haken.Advanced synergetics. Springer-Verlag, 1983.
[10] G. Nicolis and I.Prigogine.Exploring complexity. W.Y. Freeman and Company, New

York, 1989.
[11] A.A. Samarskii.Theory of finite-difference schemes. Nauka, Moscow, 1989. (in Russian)
[12] L.A. Vainshtein and V.A. Solncev.Lectures on microwave electronics. Sov. Radio,

Moscow, 1973. (in Russian)

Nestacionariosios fażes kvazi-Cherenkovo spinduliuoṫes nestabilumas periodiṅese struk-
t ūrose

K. Batrakov, S. Sytova

Straipsnyje analizuojama nestacionariosios fazės kvazi-Cherenkovo elektronų spinduliuotės
nestabilumas esant dviejų bangų sąveikai su grįžtamo ryšio pernešimu. Pasi ūlyti šios elek-
tronų spinduliuoṫes nestacionariosios fazės atveju matematiniai ir skaitiniai sprendimo meto-
dai. Pateikti skaitinio eksperimento rezultatai. Aptartos nestacionariojo sprendinio bifurkaci-
jos.


