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Abstract. We consider the hamiltonian system of linear differential equations with periodic
coefficients. Using the infinite determinant method based on the existence of periodic solutions
on the boundaries between the domains of stability and instability in the parameter space
we have developed the algorithm for analytical computation of the stability boundaries. The
algorithm has been realized for the second and the fourth order hamiltonian systems arising in
the restricted many-body problems. The stability boundaries have been found in the form of
powers series, accurate to the sixth order in a small parameter. All the computations are done
with the computer algebra system Mathematica.

Key words: Hamiltonian systems, stability, infinite determinant method, characteristic mul-
tipliers

1. Introduction

Let us consider the linear hamiltonian system of differential equations

dx

dt
= JH(t, ε)x, (1.1)

where xT = (x1, x2, . . . , x2n) ia a 2n-dimensional vector whose components xk

and xn+k are the canonically conjugated variables, J =

(

0 En

−En 0

)

and En is the

n × n identity matrix, H(t, ε) is the real-valued 2n × 2n matrix function which can
be represented in the form of the converging series

H(t, ε) = H0 + εH1(t) + ε2H2(t) + . . . , (1.2)

1 The author is very grateful to Prof. Evgenii A. Grebenikov for useful advice and fruitful
discussions of the stability problem
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where ε is a small parameter. The matrix functions Hk(t) (k = 1, 2, . . .) in (1.2)
are continuous and periodic with a period T , while H0 is a constant matrix. Besides,
H0 and Hk(t) can depend on some parameters. Equations of the form (1.1) describe
dynamical systems with intrinsic periodicity and appear in many branches of science
and engineering (see, for example, [11]). Our interest to the system (1.1) arises be-
cause such a system occurs in studying the stability of equilibrium solutions in the
elliptic restricted many-body problems [3, 9]. We are interested also in determination
of the boundaries between the domains of stability and instability in the parameter
space for the system (1.1).

According to the general theory of differential equations with periodic coeffi-
cients [11], the behaviour of solutions of the system (1.1) is determined by its char-
acteristic exponents which are continuous functions of ε. And the system may be
stable only if none of the eigenvalues of the matrix JH0 has a positive real part.
However, the system being stable for ε = 0 may become unstable even for very
small values of ε > 0. So, in order to analyse the stability of system (1.1) we have to
calculate its characteristic exponents for ε > 0. Using the method of a small param-
eter, we can find them in the form of power series in ε as it was done in [3, 8], for
example. But if we are looking for the stability boundaries the method of infinite de-
terminant turns out to be more effective [4, 7]. It was developed first by Bolotin for a
restricted class of differential equations, namely, for a system of uncoupled canonical
equations [1]. Then Lindh and Likins extended this method for completely damped
mechanical systems [6]. But in both cases the stability boundaries were determined
numerically.

Now there are modern computer algebra systems such as Mathematica [10], for
example, that essentially increases our ability in doing symbolic calculations. The
main aim of the present paper is to develop the algorithm for analytical calculation
of the stability boundaries and to use it for the hamiltonian systems of the second
and the fourth order. All calculations are done with the computer algebra system
Mathematica.

2. Properties of the Characteristic Multipliers

The hamiltonian systems of linear differential equations with periodic coefficients
and their general properties have been studied quite well. It is known that their
characteristic multipliers obey the Liapunov-Poincare reciprocal root Theorem (see
[5, 11]). It indicates that a hamiltonian system with characteristic multiplier ρ of mul-
tiplicity m must also have characteristic multiplier ρ−1 of the same multiplicity m.
Besides, coefficients in the equation (1.1) are real-valued functions. Therefore, we
can formulate the following theorem, which restricts substantially possible values of
the characteristic multipliers for the hamiltonian systems.

Theorem 1. If ρ is a characteristic multiplier for the system (1.1) then ρ−1, ρ, ρ−1

are its characteristic multipliers as well, where ρ is a complex-conjugate value for
ρ.

Hence, characteristic multipliers of the hamiltonian system are divided into
groups each of which in general case consists of four elements, namely, ρ, ρ−1,
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ρ, ρ−1. If |ρ| 6= 1 they are situated in the complex plane symmetrically both with
respect to the unit circle and with respect to the real axis (see Fig. 1). Of course,
theorem 1 will be satisfied if ρ = ρ and two characteristic multipliers are situated
on the real axis symmetrically with respect to the unit circle or |ρ| = 1 and they
are on the unit circle symmetrically with respect to the real axis. But in any case, if
|ρ| 6= 1 then there exists at least one characteristic multiplier of modulus exceeding
unity which means instability of the system. Thus, the hamiltonian system may be
stable only if all of its characteristic multipliers are situated on the unit circle in the
complex plane.

1-1 O

Ρ

Ρ��

Ρ -1

Ρ�� -1

ReΡ

ImΡ

Figure 1. Position of the characteristic multipliers in the complex plane.

Let us suppose that for ε = 0 all characteristic multipliers of the system (1.1)
are different complex numbers of unit modulus, i.e., the system is stable. According
to Theorem 1, there exist n pairs of complex-conjugate characteristic multipliers
situated on the unit circle in the complex plane symmetrically with respect to the
real axis. If for ε > 0 modulus of one characteristic multiplier becomes greater than
1, for example, and it leaves the circle then, according to Theorem 1, three additional
characteristic multipliers shown on Fig. 1 must arise. But in this case the number
of characteristic multipliers will become greater than 2n what is impossible. Hence,
all characteristic multipliers must stay on the circle and the system will be stable
for sufficiently small values of ε > 0. However, if for ε = 0 there exist multiple
characteristic multipliers, for example, one pair of complex-conjugate characteristic
multipliers has a multiplicity 2, then they can leave the circle without disturbing
Theorem 1. Indeed, they can move along radial directions and form a configuration
shown on Fig. 1. Thus, the existence of multiple characteristic multipliers is the
necessary condition of instability of the hamiltonian system (1.1) for ε > 0. It should
be noted also that if there exists at least one characteristic multiplier of the system
(1.1) whose modulus is not equal to unity for ε = 0 then the system will be unstable
for sufficiently small values of ε > 0 as well because its characteristic multipliers
are continuous functions of ε.
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3. Computing the Stability Boundaries for the Second Order
Hamiltonian System

Let us consider the linear second order differential equation of the form

d2z

dt2
+

a + ε cos t

1 + ε cos t
z(t) = 0, (3.1)

where a, ε are some positive parameters. It arises in studying the stability of equilib-
rium solutions in the elliptic restricted many-body problems, where the motion of a
particle of infinitesimal mass in the gravitational field generated by (N + 1) point
particles P0, P1, . . . , PN is investigated [3, 9]. The particles P1, . . . , PN have equal
masses and move in elliptic orbits about their common center of mass being at any
instant of time in the vertices of a regular polygon with N sides. The polygon rotates
about its center where the particle P0 is resting. It is supposed that orbits of the par-
ticles P1, . . . , PN are situated in the xOy plane of the barycentric inertial frame of
reference and its origin is at the point P0. Then equation (3.1) describes the disturbed
motion of the particle along Oz axis.

Obviously, equation (3.1) can be written in the form of the second order hamil-
tonian system (1.1) with the matrix function

H(t, ε) =

( a + ε cos t

1 + ε cos t
0

0 1

)

. (3.2)

The matrix function (3.2) is periodic with the period T = 2π and can be represented
in the form (1.2), where

H0 =

(

a 0
0 1

)

, Hk(t) = (− cos t)k

(

a − 1 0
0 0

)

and the corresponding series converges in the domain |ε| < 1 for any t.

Figure 2. Characteristic multipliers of the second order system.

The second order hamiltonian system has two characteristic multipliers ρ1 and
ρ2 which must satisfy Theorem 1. Hence, they must be situated in the complex plane
either on the real axis or on the unit circle (see Fig. 2). The first case corresponds
to unstable behaviour of the system because one of its characteristic multipliers has
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modulus exceeding unity. In the second case |ρ1| = |ρ2| = 1 and ρ2 = ρ1 and
the system is stable. Changing parameters of the system, we can force characteristic
multipliers to move in the complex plane. But its transition from stable to unstable
behaviour and back is possible only via the points ρ = ±1 where the system has
multiple characteristic multipliers. Thus, the cases ρ1 = ρ2 = 1 and ρ1 = ρ2 = −1
correspond to the boundaries between stable and unstable behaviour of the system.

The eigenvalues of the matrix JH0 are easily found and can be written as λ1,2 =
±i

√
a. The corresponding characteristic multipliers

ρ1,2 = exp(2πλ1,2) = exp(±2πi
√

a)

are complex-conjugate numbers of unit modulus. Obviously, the conditions ρ1 =
ρ2 = 1 or ρ1 = ρ2 = −1 are fulfilled only if

a =
k2

4
(k = 1, 2, . . .). (3.3)

Hence, the domains of instability in the a−ε plane can arise only in the vicinity of the
points (3.3). The significant point here is that the cases ρ1,2 = 1 and ρ1,2 = −1 are
characterized by the existence of periodic solutions of the system (1.1) with periods
T and 2T respectively. Thus, the boundaries between the domains of stability and
instability in the a − ε plane are some curves a = a(ε) which are characterized by
the presence of periodic solutions with the periods T = 2π or 2T = 4π and which
cross the a-axis in the points (3.3).

Now we can attempt to seek a solution of the equation (3.1) in the form of Fourier
series

z = c0 +

∞
∑

k=1

(

ck cos
(k

2
t
)

+ dk sin
(k

2
t
)

)

. (3.4)

Although this is a Fourier series for the function z = z(t) of period 4π, it can also be
used to obtain the solution with period 2π by setting to zero the Fourier coefficients
corresponding to k being an odd integer. By substituting (3.4) into equation (3.1) and
equating coefficients of cos(k2 t) and sin(k

2 t) to zero we obtain the following infinite
sequence of equations determining coefficients of the Fourier series (3.4):



































a c0 = 0,

ε c0 + (a − 1) c2 −
3

2
ε c4 = 0,

...

−k(k − 2)

2
ε c2k−2 + (a − k2) c2k − k(k + 2)

2
ε c2k+2 = 0, . . .

(3.5)











































(

a − 1

4
+

3

8
ε) c1 −

5

8
ε c3 = 0,

...

− (2k − 5)(2k − 1)

8
ε c2k−3 +

(

a −
(

k − 1

2

)2)
c2k−1

− (2k − 1)(2k + 3)

8
ε c2k+1 = 0, . . .

(3.6)
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(a − 1) d2 −
3

2
ε d4 = 0,

...

−k(k − 2)

2
ε d2k−2 + (a − k2) d2k − k(k + 2)

2
ε d2k+2 = 0, . . .

(3.7)







































(

a − 1

4
− 3

8
ε
)

d1 −
5

8
ε d3 = 0,

...

− (2k − 5)(2k − 1)

8
ε d2k−3 +

(

a − (k − 1
2 )2
)

d2k−1

− (2k − 1)(2k + 3)

8
ε d2k+1 = 0, . . .

(3.8)

It can be seen that in fact there are four infinite subsequences of linear homo-
geneous equations (3.5) – (3.8). Systems (3.5) and (3.7) are for coefficients c0,
c2, . . . , c2k and d2, . . . , d2k respectively and represent solution (3.4) with pe-
riod 2π. For a solution to exist, the corresponding determinants of infinite systems
(3.5), (3.7) must vanish, thus determining the stability boundaries in the a− ε plane.
These boundaries obviously reduce to a = k2 (k = 0, 1, 2, . . . ) when ε → 0.
The remaining two subsequences of equations (3.6) and (3.8) are for coefficients
c1, c3, . . . , c2k+1 and d1, . . . , d2k+1 and they correspond to those stability bound-

aries which reduce to a = (2k−1)2

4 (k = 1, 2, . . . ) when ε → 0 .

Of course, it’s impossible to calculate a determinant of the infinite matrix. So,
in order to find the stability boundaries a = a(ε) we should truncate the infinite
subsequences of equations (3.5) – (3.8) after the k-th term, where k is a suitably
large number. The corresponding determinant for the system (3.5), for instance, can
be written as

Dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a 0 0 0 ... 0
ε a − 1 − 3

2 ε 0 ... 0
0 0 a − 4 −4ε ... 0
0 0 − 3

2 ε a − 9 ... 0
... ... ... ... ... ...

0 0 0 0 −k(k−2)
2 ε a − k2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.9)

Equating determinant (3.9) to zero we obtain an algebraic equation giving an
approximation for the stability boundary a = a(ε). An exact expression for the
boundary is obtained when k → ∞. This approach giving the equation for the
stability boundary is known as the infinite determinant method [6].

Determinant (3.9) is most efficiently evaluated from the following recurrence
relation

Dk = (a − k2)Dk−1 − ε2

2
(k − 2)(k − 1)k(k + 1)Dk−2, k ≥ 3, (3.10)
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which is readily established from (3.9). To start the iterative process we observe that

D1 = a, D2 = a(a − 1).

A similar procedure can be followed for the other systems (3.6) – (3.8). For
instance, determinant of the system (3.7) is just the same as (3.9) with the first row
and column deleted. The recurrence relation is again (3.10) for k ≥ 3, but the starting
values are now given by

D1 = a − 1, D2 = (a − 1)(a − 4).

The corresponding determinants for the system (3.6), (3.8) are

Dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a − 1
4 ± 3

8 ε − 5
8 ε 0 ... 0

3
8 ε a − 9

4 − 21
8 ε ... 0

0 − 5
8 ε a − 25

4 ... 0

... ... ... ... ...

0 0 0 − (2k−1)(2k−5)
8 ε a − (2k−1)2

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.11)

The recurrence relation for the determinants (3.11) is

Dk = (a− (2k − 1)2

4
) Dk−1−

ε2

64
(2k−5)(2k−3)(2k−1)(2k+1) Dk−2 (3.12)

with the starting values

D1 = a − 1

4
± 3ε

8
, D2 = (a − 1

4
± 3ε

8
)(a − 9

4
) +

15ε2

64
.

It is evident from (3.10), (3.12) that in the case of ε = 0 determinants of systems
(3.5) – (3.8) will be equal to zero when a = 1

4 k2 (k = 0, 1, 2, . . .). It means that
the stability boundaries cross the ε = 0 axis in the a − ε plane at the points (3.3).
For sufficiently small ε we can represent the corresponding curves a = a(ε) in the
vicinity of these points as power series

a =
k2

4
+ a1ε + a2ε

2 + ... (k = 0, 1, 2 ... ). (3.13)

It is easy to show from (3.10), (3.12) that in order to find the curves (3.13) in the
vicinity of the point a = 1

4k2 with accuracy o(ε2n), it is sufficient to calculate the de-
terminant Dk+n. Then we should substitute (3.13) into the expression for Dk+n and
expand it in powers of ε. Afterwards, equating coefficients of εk (k = 1, 2, 3, . . . )
to zero, we obtain a system of algebraic equations determining the coefficients ak in
the expansion (3.13). As a result we have found the following curves

a = 0, a = 1, a = 4 − 6

5
ε2 − 39

125
ε4 − 7023

43750
ε6,
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a = 9 − 108

35
ε2 − 139617

171500
ε4 − 177754233

420175000
ε6,

a = 16− 40

7
ε2 − 4670

3087
ε4 − 11800015

14975037
ε6,

a = 25− 100

11
ε2 − 115475

47916
ε4 − 11932109425

9496855368
ε6, (3.14)

a =
1

4
∓ 3

8
ε +

15

128
ε2 ∓ 45

2048
ε3 +

885

32768
ε4 ∓ 6105

524288
ε5 +

220305

16777216
ε6,

a =
9

4
− 135

256
ε2 ∓ 45

2048
ε3 − 34695

262144
ε4 ∓ 23895

2097152
ε5 − 8975205

134217728
ε6,

a =
25

4
− 525

256
ε2 − 141225

262144
ε4 ∓ 525

2097152
ε5 − 37465575

134217728
ε6,

a =
49

4
− 2205

512
ε2 − 2388015

2097152
ε4 − 2545233705

4294967296
ε6. (3.15)

We see that systems (3.5), (3.7) determine two different curves (3.15) crossing

the ε = 0 axis at the points a = (2k−1)2

4 (k = 1, 2, . . . ), while systems (3.6), (3.8)
determine the same curves (3.14). Hence, the domains of instability for the equation
(1.1) with matrix function (3.2) exist only between the curves (3.15). Thus, we can
formulate the following theorem.

Theorem 2. The domains of instability for the second order hamiltonian system (1.1)
with the matrix function (3.2) exist only in the vicinity of the points

a =
(2k − 1)2

4
(k = 1, 2, . . . )

in the a − ε plane and are bounded by the curves (3.15). The bandwidth of these
domains is O(ε2k−1) and decreases very fast if the number k is growing up.

It should be emphasized that, increasing the order n of determinant Dn of the
systems (3.5) – (3.7), we’ll be able to find only small correction terms in the equa-
tions of the stability boundaries (3.13). The terms we have already found in (3.14),
(3.15) will be the same.

4. Hamiltonian System of the Fourth Order

4.1. Characteristic multipliers for the fourth order system

The fourth order hamiltonian system has four characteristic multipliers which must
obey Theorem 1 as well. Hence, the system may be stable only if all its characteristic
multipliers are complex-valued with unit magnitude
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aL bL
Figure 3. Motion of the characteristic multipliers in the complex plane.

|ρ1| = |ρ2| = |ρ3| = |ρ4| = 1.

Geometrically these characteristic multipliers are situated on the unit circle in the
complex plane, symmetrically in pairs with respect to the real axis (see Fig. 3a).

System (1.1) becomes unstable if at least one characteristic multiplier leaves the
circle. But Theorem 1 imposes restrictions on possible motion of the characteristic
multipliers in the complex plane. One possibility is shown in Fig. 3b, when two
characteristic multipliers, being in the same semi-plane, move toward each other on
the circle until their coincidence and then start to move away of the circle along
radial directions. It means that the system becomes unstable because modulus of
two characteristic multipliers becomes greater than 1. If such a case is realized then
system (1.1) has no periodic solutions and we have to calculate its characteristic
multipliers explicitly in order to find the stability boundaries. There is also another
possibility when two characteristic multipliers, moving on the circle toward each
other, coincide in the point ρ = −1 and then continue their motion along the real
axis (see Fig. 4).

aL bL
Figure 4. Transition of two characteristic multipliers into the real axis.

Similar situation can occur if two characteristic multipliers coincide in the point
ρ = 1. In both cases the other two characteristic multipliers remain on the unit circle,
being symmetrical with respect to the real axis. Again the cases ρ = ±1 correspond
to the boundary between stable and unstable behaviour of the system (1.1), similarly
as it is in the case of the second order hamiltonian system. The interesting and sig-
nificant result from this analysis is that for ρ = ±1 the system (1.1) has periodic
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solutions of period T and 2T respectively and this property may be used for deter-
mination of the boundaries between the domains of stability and instability in the
parameter space.

4.2. Computing the stability boundaries

Let us consider now the hamiltonian system (1.1) of the fourth order with the matrix
function

H(t, ε) =















1 + b + 4ε cos t

1 + ε cos t
0 0 −2

0 − b

1 + ε cos t
0 0

0 0 1 0
−2 0 0 1















, (4.1)

where b and ε are some positive parameters. Such a system describes the disturbed
motion of the particle in the xOy plane in the elliptic restricted problem of four
bodies [2]. The matrix function (4.1) is periodic with the period T = 2π and may be
represented in the form (1.2), where

H0 =









1 + b 0 0 −2
0 −b 0 0
0 0 1 0
−2 0 0 1









, Hk(t) = (− cos t)k









−3 + b 0 0 0
0 −b 0 0
0 0 0 0
0 0 0 0









,

and the corresponding series converges in the domain |ε| < 1 for any t. Hence,
characteristic exponents for the system are continuous functions of ε. In the case of
ε = 0 they are just the eigenvalues of the matrix JH0 and can be represented as
λ1,2 = ±iσ1, λ3,4 = ±iσ2 where

σ1,2 =

(

1 ±
√

1 − 12b + 4b2

2

)1/2

.

They are distinct pure imaginary numbers if parameter b satisfies the following in-
equalities

0 < b <
1

4
(6 −

√
32) or

1

4
(6 +

√
32) < b < 3. (4.2)

Thus, the considered hamiltonian system may be stable for ε > 0 only if parameter
b belongs to the intervals (4.2). In other cases there exists at least one characteristic
exponent with a positive real part and the system will be unstable for sufficiently
small ε.

Let us consider the first interval in (4.2). The corresponding intervals for σ1,2 can
be easily found and are given by

1√
2

< σ1 < 1, 0 < σ2 <
1√
2
.

Obviously, there is only one possibility for the system to have multiple characteristic
multipliers. It is just the case σ2 = 1

2 when two characteristic multipliers
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ρ3,4 = exp(±2πσ2i) = −1.

The corresponding geometrical configuration is shown in Fig. 4. From the analysis
above it follows that the domain of instability can arise only in the vicinity of the
point

b =
1

4
(6 −

√
33), (4.3)

for which σ2 = 1
2 . Hence, the boundaries between the domains of stability and

instability in the b − ε plane are some curves b = b(ε) which are characterized by
the presence of periodic solutions with the period 2T = 4π and cross the b-axis at
the point (4.3).

In order to find the stability boundaries let us rewrite the system (1.1) with matrix
(4.1) in the form of two linear second order differential equations

{

(1 + ε cos t)(ẍ1 − 2ẋ2) + (−3 + b)x1 = 0,

(1 + ε cos t)(ẍ2 + 2ẋ1) − b x2 = 0,
(4.4)

where a dot means the derivative
d

dt
. Now we can attempt to seek a solution of the

system (4.4) in the form of Fourier series

x1 = p0 +

∞
∑

k=1

(

pk cos(
k

2
t) + qk sin(

k

2
t)
)

, (4.5)

x2 = α0 +
∞
∑

k=1

(

αk cos(
k

2
t) + βk sin(

k

2
t)
)

.

By substituting (4.5) into equations (4.4) and equating coefficients of cos(k2 t) and
sin(k

2 t) to zero we obtain two infinite sequences of linear homogeneous equations.
The first system is for the odd coefficients p1, p3, ... , p2k−1 and β1, ... , β2k−1 and
is given by

(−b +
13

4
+

ε

8
) p1 + (1 +

ε

2
) β1 +

9ε

8
p3 +

3ε

2
β3 = 0,

(−1 +
ε

2
) p1 + (−b − 1

4
+

ε

8
) β1 −

3ε

2
p3 −

9ε

8
β3 = 0,

...

ε

8
(3 − 2k)2p2k−3 +

ε

2
(−3 + 2k)β2k−3 + (−b +

13

4
− k + k2) p2k−1

+ (−1 + 2k) β2k−1 +
ε

8
(1 + 2k)2 p2k+1 +

ε

2
(1 + 2k) β2k+1 = 0,

ε

2
(−3 + 2k)p2k−3 +

ε

8
(−3 + 2k)2β2k−3 + (1 − 2k) p2k−1 (4.6)

+ (−b − 1

4
+ k − k2) β2k−1 +

ε

2
(1 + 2k) p2k+1 +

ε

8
(1 + 2k)2 β2k+1 = 0, . . .
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The second system of equations determines the coefficients q1, q3, ... , q2k−1 and
α1, ... , α2k−1 and it can be written as

(−b +
13

4
− ε

8
) q1 + (−1 +

ε

2
) α1 +

9ε

8
q3 −

3ε

2
α3 = 0,

(1 +
ε

2
) q1 − (b +

1

4
+

ε

8
) α1 +

3ε

2
q3 −

9ε

8
α3 = 0,

...

ε

8
(3 − 2k)2q2k−3 −

ε

2
(−3 + 2k)α2k−3 + (−b +

13

4
− k + k2) q2k−1

+ (1 − 2k) α2k−1 +
ε

8
(1 + 2k)2 q2k+1 −

ε

2
(1 + 2k) α2k+1 = 0,

ε

2
(−3 + 2k)q2k−3 −

ε

8
(−3 + 2k)2α2k−3 + (−1 + 2k) q2k−1 (4.7)

+ (−b − 1

4
+ k − k2) α2k−1 +

ε

2
(1 + 2k) q2k+1 −

ε

8
(1 + 2k)2 α2k+1 = 0, . . .

Extracting coefficients of cos(k t) and sin(k t) we can easily obtain two similar
sequences of equations for the even coefficients p2k, q2k, α2k, β2k. For a solution
to exist, the corresponding determinants of infinite systems (4.6), (4.7) must van-
ish, thus determining the stability boundaries in the b − ε plane. These boundaries
obviously must reduce to the point b = (6 −

√
33)/4 when ε → 0.

In order to find the stability boundaries b = b(ε) we should truncate the infinite
sequences of equations (4.6) – (4.7) after the k-th term, where k is a suitably large
number. For k = 3, for example, the corresponding determinants may be written as

D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−b + 13
4 ± ε

8 ±1 + ε
2

9ε
8 ± 3ε

2 0 0

∓1 + ε
2 −b − 1

4 ± ε
8 ∓ 3ε

2 − 9ε
8 0 0

ε
8 ± ε

2 −b + 21
4 ±3 25ε

8 ± 5ε
2

∓ ε
2 − ε

8 ∓3 −b − 9
4 ∓ 5ε

2 − 25ε
2

0 0 9ε
8 ± 3ε

2 −b + 37
4 ±5

0 0 ∓ 3ε
2 − 9ε

8 ∓5 −b − 25
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.8)

Equating determinants (4.8) to zero we obtain two algebraic equations giving an
approximation for b = b(ε). For sufficiently small ε we can represent the functions
b = b(ε) in the vicinity of the point (4.3) as power series

b =
6 −

√
33

4
+ b1ε + b2ε

2 + . . . . (4.9)

Substituting (4.9) into (4.8) and equating coefficients of εk to zero we get the system
of algebraic equations determining the coefficients bk (k = 1, 2, . . .). Solving this
system we obtain the stability boundaries in the form

b =
6 −

√
33

4
± ε

8
+

23ε2

128
√

33
∓ 105ε3

2048
− 148859ε4

1081344
√

33

∓ 58335ε5

5767168
− 1085089447ε6

18270388224
√

33
, (4.10)
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where the error term is O(ε7).

The second interval in (4.2) may be analysed similarly. As a result we obtain the
boundaries of the second domain of instability as

b =
6 +

√
33

4
± ε

8
− 23ε2

128
√

33
∓ 105ε3

2048
+

148859ε4

1081344
√

33

∓ 58335ε5

5767168
+

1085089447ε6

18270388224
√

33
. (4.11)

Thus, we can formulate the following theorem.

Theorem 3. The fourth order hamiltonian system (1.1) with the matrix function (4.1)
may be stable only if parameter b belongs to the intervals (4.2). For sufficiently small
ε > 0 there exist the domains of instability in the vicinity of the points b = (6 ±√

33)/4 in the b − ε plane which are bounded by the curves (4.10), (4.11).

It should be emphasized that increasing the order n of the determinants Dn of the
systems (4.6) – (4.7) we’ll be able to find only the higher order coefficients b7, b8, . . .
in the equations of the stability boundaries (4.9). The coefficients b1, b2, . . . , b6 are
the same as in (4.10), (4.11).

5. Conclusions

Using the infinite determinant method based on the existence of periodic solutions
on the boundaries between the domains of stability and instability in the parameter
space we have developed the algorithm for analytical computation of the stability
boundaries for the hamiltonian systems of linear differential equations with periodic
coefficients. The algorithm has been implemented in the case of the second and the
fourth order hamiltonian systems arising in the elliptic restricted many-body prob-
lems. The obtained results are in a good agreement with similar results of [2, 3],
where the calculations are done with smaller accuracy and another method is used.
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Hamiltono sistemų su periodiniais koeficientais stabilumo tyrimas begalinių determi-
nantų metodu

A.N. Prokopenya

Nagrinėjama Hamiltono tiesinių diferencialinių lygčių su periodiniais koeficientais sistema.
Remiantis tuo, kad parametrų erdvėje stabilumo ir nestabilumo sritis skiriančioje sienoje
egzistuoja periodinis sprendinys, sukurtas analitinis minėtos sienos apskaičiavimo algoritmas.
Algoritmas realizuotas antros ir ketvirtos eilės Hamiltono sistemoms, kylančioms nagrinėjant
apribotų keleto kūnų uždavinius. Stabilumo srities siena randama laipsninės eilutės pavidalu
mažojo parametro šešto laipsnio tikslumu. Skaičiavimai atlikti skaičiavimo algebros paketo
Mathematica pagalba.


