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Abstract. In this work, we investigate the asymptotic behavior of solutions of
a viscoelastic flexible marine riser with vessel dynamics. Under a suitable control
applied at the top end of the riser, we establish explicit decay rates for a large class of
relaxation functions. In particular, exponentially and polynomially (or power type)
decaying functions are included in this class. Our method is based on the multi-
plier technique. Numerical simulations justifying the effectiveness of the proposed
boundary control to suppress the vibrations of the flexible marine riser are provided.
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1 Introduction

When a cylinder is submerged in a moving fluid we assist to the formation of
complex vertices which destabilize the cylinder from its initial position. They
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make the cylinder vibrate. This phenomenon is called Vortex-induced vibra-
tions. It is one of the main concern in engineering and in particular in offshore
industry. Companies are spending a lot of money in their investments to rem-
edy to this problem. Indeed, vortices produce unwanted and in fact destructive
vibrations of the pipeline connecting the well in the bottom of the sea to the
floating platform. In addition to these “transversal” vibrations and as the riser
transports crude oil or natural gaz there will be internal pressure due to the
fluid flow (often with pulses). There are also other causes of vibrations like
transmission of waves, earthquake ground motions, etc.

An immediate consequence of these vibrations is the partial or complete
destruction of the riser, or at least a limitation of its lifetime. This damage has
to be predicated long before. A failure will affect the productivity or lead to
an ecological disaster in case of leakage. Therefore there is a need for periodic
inspections and maintenance.

Several ways have been devised to improve the efficiency and the lifespan
of the riser. In particular, different forms, shapes and material have been used
to suppress or at least reduce the unwanted vibrations. Also, some additional
devices have been added to the structure like fairings, streaks and tensioner
to increase the stiffness or the riser. Yet these devices are not able to give
satisfactory results. Researchers have been forced to use sensors and actuators
to control the vibrations. Unless the platform is fixed and the riser is clamped,
for instance, to the supports (legs) of the structure, it is not practical to place
these devices in inaccessible spots. Unfortunately, most of the platforms are
floating because of the deep water (up to 3 km) and the need for mobility. The
best location for control is the top of the riser. That is a boundary control
at only one endpoint. This direction of research has gained a lot of attention.
A successful boundary control should stabilize the system quickly enough to
avoid any damage. We refer the reader to [4, 6, 8, 13, 17, 23] where the authors
studied the boundary control of flexible marine riser. It is worth mentioning
the work of Seghour et al. [29] where the authors considered the problem

ρwtt(x, t)+EIwxxxx(x, t)−EI
∫ t

0

h (t−s)wxxxx (x, s) ds−Twxx(x, t)=0, (1.1)

for all (x, t) ∈ (0, L)× [0,∞), with the boundary conditions and the initial data


w (0, t) = wx (0, t) = wxx (L, t) = 0, t ≥ 0,

−EIwxxx(L, t) + EI

∫ t

0

h (t− s)wxxx (L, s) ds+ Twx (L, t)

= u (t)− dswt (L, t)−Mswtt (L, t) , t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ [0, L].

(1.2)

Here w (x, t), wtt(x, t), w (L, t) and wt (L, t) are the displacement, accelera-
tion of the riser at the position x for the time t, the position and velocity of the
vessel at L, respectively. The positive constants ρ, L, EI and T represent, the
uniform mass per unit length, the length, the bending stiffness and the tension
of the riser, respectively. The coefficients Ms and ds denote the mass of the
surface vessel and the vessel damping, and u(t) is the top boundary control of
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the riser. The integral term in the Equation (1.1) represents the viscoelastic
damping term. This term appears in the constitutive relationship between the
stress and the strain according to the Boltzmann Principle (see [7]). The kernel
h is called the relaxation function. The expressions w0(x) and w1(x) are given
initial data. Under the following control

u(t) =
−K

wt (L, t)

[
wxxx (L, t)

2
+w (L, t)

2
+
(∫ t

0

h(t−s)wxxx (L, s) ds
)2]

, t ≥ 0,

where K is positive constant, for wt (L, t) 6= 0. The authors proved an exponen-
tial decay result for solutions of the problem (1.1)–(1.2) for kernels h verifying
the condition

0 < h′(t) + γh(t) ≤ ξ(t), t ≥ 0

for some positive constant γ and nonnegative function ξ(t).
Also, in [12] the authors studied a similar problem to (1.1)–(1.2) when h ≡ 0

in (1.1) with internal damping of the form wt(x, t).
The boundary control has received great attention in recent years due its nu-

merous applications in engineering such as vibration control of flexible robotic
manipulator [2,3,16], the flexible wings of a robotic aircraft [14], the control of
a nonuniform gantry crane [11], the industrial moving strip [15], the nonlinear
axially moving string [19] and the references therein. The boundary stabiliza-
tion and control has been developed for the Euler-Bernoulli beam, by among
others: Krall [20], de Querioz et al. [5], Li et al. [21], Andrews et al. [1], Guo
and Huang [10], Guo and Guo [9] (see also the references therein). In particu-
lar, dissipative mechanisms of viscoelastic type have been implemented. Park
et al. [28] looked into the following problem

wtt(x, t) + wxxxx(x, t)−
∫ t

0

h(t− τ)wxxxx(x, τ)dτ + g(wt(x, t)) = 0,

where (x, t) ∈ [0, L]× (0,∞), with the boundary conditions and initial data
w(0, t) = wx(0, t) = wxx(L, t) = wxxx(0, t) = 0, t ≥ 0,

wxxx(L, t)−
∫ t

0

h(t− τ)wxxx(L, t)dτ = f(y(L, t)), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x) x ∈ [0, L].

They proved the existence of solutions using the Faedo-Galerkin method and
investigated the exponential stability of the system by using the multiplier
technique for kernels h of an exponential type, i.e.

∃ki > 0, i = 0, ..., 2 : −k0h(t) ≤ ht(t) ≤ −k1h(t), 0 < htt(t) ≤ k2h(t).

A similar result was obtained by the same authors in [27] together with a
boundary output feedback control

w(0, t) = wx(0, t) = wxx(L, t) = 0, t ≥ 0,

wxxx(L, t)−
∫ t

0

g(t− τ)wxxx(L, t)dτ = u(t), t ≥ 0,

wout = wt(L, t) t ≥ 0,

Math. Model. Anal., 23(3):433–452, 2018.
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where wout is the measured signal of the system at time t with{
u(t) = k(t)wt(L, t), k(0) > 0, t ≥ 0,

k′(t) = rw2
t (L, t), t ≥ 0.

An analogous result was also established by Kang et al. [18] with the boundary
conditions

w(0, t) = wx(0, t) = wxx(L, t) = 0, t ≥ 0,

wxxx(L, t)−
∫ t

0

g(t− τ)wxxx(L, t)dτ = u(t)− θ̃ sin(t), t ≥ 0,

wout = yt(L, t) t ≥ 0,

where θ̃ is a positive constant. For exponentially decaying kernels, using the
multiplier technique they proved the exponential stability under the following
adaptive output feedback controller

u(t) = h(t)wt(L, t) + θ(t) sin t, t ≥ 0,

ht(t) = rw2
t (L, t), h(0) = h0 > 0, t ≥ 0, r > 0,

θt(t) = wt(L, t) sin t, θ(0) = θ0.

The main objective of this work, is to establish different types of decay
rates of the system (1.1)–(1.2) under a suitable control acting on top of the
riser. This will be shown for a large class of kernels. Namely, we suppose that
h′ (t) ≤ ξ (t) for some non-negative function ξ(t) and the kernel h verifies

h (t− s) ≥ µ (t)

∫ ∞
t

h (σ − s) dσ, t > 0

for some function µ(t). This condition is satisfied by a large class of functions
including polynomials and exponentials (see Remark 2). It is important to
consider these conditions which allow the use of more materials that could be
more convenient. For other types of kernels, one can consult [2, 19].

The well-posedness of our system (1.1)–(1.2) can be established by using
Faedo-Galerkin method, we refer the reader to [3]. We set

V=
{
w ∈ H2(0, L), w(0)=wx(0)=0

}
, W=

{
w ∈ H4(0, L), wxx(L)=0

}
,

where H2(0, L) and H4(0, L) are the usual Sobolev spaces.

Proposition 1. Let w0 ∈ W, w1 ∈ V and h(t) be a nonnegative summable
kernel. Under the control u(t) defined in (3.1), the system (1.1)–(1.2) has a
unique solution w in the class

w ∈ L∞
(
[0, T ); W

)
, wt ∈ L∞

(
[0, T ); V

)
, wtt ∈ L∞

(
[0, T );L2(0, L)

)
,

where T > 0.

The rest of our paper is organized as follows. In Section 2 we prepare some
lemmas which will be useful in the proof of our result. The arbitrary decay
result under a suitable boundary control u(t) is stated and proved in Section 3.
Simulations are presented to illustrate the performance of the proposed control
in Section 4, and some conclusions are given in Section 5.
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2 Preliminaries results

In this section, we give some lemmas which will be used throughout this paper.
First, to simplify the notation, we denote by � the binary operator, defined by

(h�v) (t) =

∫ L

0

∫ t

0

h(t− s)
(
v (t)− v (s)

)2
dsdx, t ≥ 0.

We shall use the following inequalities.

Lemma 1. Under our boundary conditions (1.2), we have

w2(x, t) ≤ L‖wx‖22, w2(x, t) ≤ L3‖wxx‖22, w2
x(x, t) ≤ L‖wxx‖22,

for all (x, t) ∈ [0, L]× R+ and

‖w‖22 ≤ L2‖wx‖22 ≤ L4‖wxx‖22 ∀x ∈ [0, L].

To preserve the hyperbolicity of our system (1.1)–(1.2), we assume that the
kernel h satisfies

1−
∫ ∞
0

h (s) ds =: 1− κ > 0.

Lemma 2. The energy functional E(t) of the problem (1.1)–(1.2) given by

2E (t) =ρ‖wt‖22 + EI

(
1−

∫ t

0

h (s) ds

)
‖wxx‖22 + T‖wx‖22

+Msw
2
t (L, t) + EI (h�wxx) ,

satisfies, for all t ≥ 0

d

dt
E (t) = −EI

2
h(t)‖wxx‖22 +

EI

2
(h′�wxx)−dsw2

t (L, t) +u (t)wt (L, t) , (2.1)

where ‖.‖2 is the norm in L2(0, L).

Proof. By multiplying the Equation (1.1) by wt, integrating over (0, L) and
using the boundary conditions (1.2), we get

1

2

d

dt

(
ρ‖wt‖22 + EI‖wxx‖22 + T‖wx‖22 +Msw

2
t (L, t)

)
= EI

∫ L

0

wxxt

∫ t

0

h(t− s)wxx(s)dsdx− dsw2
t (L, t) + u (t)wt (L, t) , t ≥ 0.

Now, it suffices to observe that

2

∫ L

0

ωxxt

∫ t

0

h(t− s)ωxx(s)dsdx =

∫ L

0

(h′�wxx)dx− h(t)‖wxx‖22

− d

dt

[∫ L

0

(h�wxx)dx−
(∫ t

0

h(s)ds
)
‖wxx‖22

]
,

Math. Model. Anal., 23(3):433–452, 2018.
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for all t ≥ 0, to conclude. ut

From this lemma we see that it is not clear that the energy E(t) of our system
(1.1)–(1.2) is decreasing. Now, we set

V (t) = E(t) +

4∑
i=1

λiVi(t), t ≥ 0, (2.2)

where λi, i = 1, ..., 4 are positive constants which will be chosen later, and

V1 (t) = ρ

∫ L

0

wtwdx+Mswt(L, t)w(L, t), t ≥ 0,

V2 (t) = −ρ
∫ L

0

wt

∫ t

0

h (t− s)
(
w (t)− w (s)

)
dsdx

−Mswt(L, t)

∫ t

0

h (t− s)
(
w (L, t)− w (L, s)

)
ds, t ≥ 0,

V3 (t) =

∫ t

0

(∫ ∞
t

h (σ − s) dσ
)
‖wxx (s)‖22 ds, t ≥ 0

V4 (t) =

∫ t

0

(∫ ∞
t

ξ (σ − s) dσ
)
‖wxx (s)‖22 ds, t ≥ 0.

Remark 1. The functionals Vi, i = 1, ..., 4 should be chosen in such a way that
their derivatives will provide us with similar terms to the ones in the energy
expression (kinetic, potential ...) but with negative coefficients. We will control
these terms and have the energy with a negative sign in the right hand side of
the estimate of the derivative of (2.2).

The first result tells us that V (t) and E(t) + V3(t) + V4(t) are equivalent.

Lemma 3. There exist ρi > 0, i = 1, 2 such that

ρ1

[
E (t) + V3(t) + V4(t)

]
≤ V (t) ≤ ρ2

[
E (t) + V3(t) + V4(t)

]
,

for all t ≥ 0.

Proof. By Young’s and Hölder’s inequalities, we obtain

V1 (t) ≤ρ
2
‖wt‖22 +

ρL4

2
‖wxx‖22 +

Ms

2
w2 (L, t) +

Ms

2
w2
t (L, t) , t ≥ 0.

Therefore, by using Lemma 1, we get

V1 (t) ≤ρ
2
‖wt‖22 +

(
ρL+Ms

)L3

2
‖wxx‖22 +

Ms

2
w2
t (L, t) , t ≥ 0. (2.3)

For V2 (t), it easy to see

V2 (t) ≤ ρ

2
‖wt‖22 +

ρL4κ

2
(h�wxx) +

Ms

2
w2
t (L, t)

+
Msκ

2

∫ t

0

h (t− s)
(
w (L, t)− w (L, s)

)2
ds, t ≥ 0.
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Using Lemma 1 again, we have∫ t

0

h (t− s)
(
w (L, s)− w (L, t)

)2
ds ≤ L3 (h�wxx) , t ≥ 0.

The last relation, imply that

V2 (t) ≤ρ
2
‖wt‖22 +

(
ρL+Ms

)κL3

2
(h�wxx) +

Ms

2
w2
t (L, t) , t ≥ 0. (2.4)

Gathering (2.3) and (2.4), we end up with

V (t) ≤ρ
2

(
1 + λ1 + λ2

)
‖wt‖22 +

1

2

[
EI + λ2

(
ρL+Ms

)
κL3

]
(h�wxx) (t)

+
1

2

[
EI

(
1−

∫ t

0

h (s) ds

)
+ λ1

(
ρL+Ms

)
L3

]
‖wxx‖22

+
T

2
‖wx‖22 +

1

2
Ms

(
1 + λ1 + λ2

)
w2
t (L, t) + λ3V3 (t) + λ4V4 (t) , t ≥ 0.

Therefore,

V (t) ≤ ρ2
(
E (t) +

4∑
j=3

Vj(t)
)
, t ≥ 0

for some positive constant ρ2. Similarly,

2V (t) ≤ρ
(
1− λ1 − λ2

)
‖wt‖22 +

[
EI − λ2

(
ρL+Ms

)
κL3

]
(h�wxx)

+
[
EI (1− κ)− λ1

(
ρL+Ms

)
L3
]
‖wxx‖22 + T‖wx‖22

+Ms

(
1− λ1 − λ2

)
w2
t (L, t) + 2λ3V3 (t) + 2λ4V4 (t) , t ≥ 0.

Hence,

V (t) ≥ ρ2
(
E (t) +

4∑
j=3

Vj(t)
)
, t ≥ 0

for some constant ρ1 > 0, provided that

λ1 < min

[
1,

EI (1− κ)(
ρL+Ms

)
L3

]
, λ2 < min

[
1− λ1,

EI(
ρL+Ms

)
κL3

]
.

ut

The following inequality will be used repeatedly in the sequel.

Lemma 4. We have

δγ ≤ ηδ2 +
γ2

4η
, δ, γ ∈ R, η > 0.

The identity to follow is easy to justify and is helpful to prove our results.

Math. Model. Anal., 23(3):433–452, 2018.
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Lemma 5. (See [30]) We have for h ∈ C (0,∞) and y ∈ C
(
(0,∞) ;L2 (0, L)

)
∫ L

0

y

∫ t

0

h (t− s) y (s) dsdx =
1

2

(∫ t

0

h (s) ds

)
‖y‖22 −

1

2
(h�y) (t)

+
1

2

∫ t

0

h (t− s) ‖y (s)‖22 ds,
(2.5)

for all t ≥ 0.

3 Asymptotic behavior

Our goal in this section is to prove a stabilization result. We start by giving
some notions and assumptions used in this work in line with [30]. Let A be a

measurable set, such that A ⊂ R+, we denote by ĥ (A) the probability measure

ĥ (A) =
1

κ

∫
A
h (s) ds.

The non-decreasingness set of h is defined by Qh := {s ∈ R+ : h′ (s) ≥ 0}, we

also define the non-decreasingness rate of h by Rh := ĥ (Qh) . We suppose
that the kernel h (t) verifies (see [30]):

(H1) h (t) ≥ 0 for all t ≥ 0 and 0 < κ =

∫ +∞

0

h (s) ds < 1.

(H2) h (t) is absolutely continuous and of bounded variation on (0,∞) and
h′ (t) ≤ ξ (t) for some non-negative summable function
ξ (t) (= max {0, h′ (t)}) and almost all t > 0.

(H3) There exist two functions µi (t) > 0, i = 1, 2 such that

h (t− s) ≥ µ1 (t)

∫ ∞
t

h (σ − s) dσ, t > 0,

ξ (t− s) ≥ µ2 (t)

∫ ∞
t

ξ (σ − s) dσ, t > 0.

Remark 2. Notice that this assumption (H3) is satisfied by a large class of
functions namely functions of polynomial type and functions of exponential
type. Indeed, ξ(t) = (1 + t)−α, α > 0 satisfies the assumption with µ(t) =
(α− 1)/(1 + t). The function ξ(t) = e−βt, β > 0 satisfies the assumption with
µ(t) = β.

Let t∗ > 0 be a number such that
∫ t∗
0
h(s)ds = h∗ > 0. For simplicity, we

consider kernels continuous everywhere and continuously differentiable a.e.
In order to stabilize the system (1.1)–(1.2), we propose the following bound-

ary control
u(t) = dswt(L, t), t ≥ 0. (3.1)
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Remark 3. The boundary control law defined in (3.1), is proposed to suppress
the vibrations of the flexible marine riser in a fast manner. There are other
ways how to design suitable boundary controllers for PDEs in the literature,
the reader is referred to [22,24,25,26], and their references.

Now, we are ready to state and prove our main result.

Theorem 1. Under the assumptions (H1)–(H3) and the control u(t) defined
in (3.1), if Rh is sufficiently small, then, for small L1-norm of ξ there exist
positive constants Λ and ν such that

(a) if lim
t−→∞

µ1 (t) = 0 or lim
t−→∞

µ2 (t) = 0,

E(t) ≤ Λ exp

(
−ν
∫ t

0

min
{
µ1 (s) , µ2 (s)

}
ds

)
, t ≥ 0.

(b) If lim
t−→∞

µ1 (t) 6= 0 and lim
t−→∞

µ2 (t) 6= 0, we have

E(t) ≤ Λe−νt, t ≥ 0.

Proof. A differentiation of V1 (t) with respect to t along solutions of (1.1)
gives

d

dt
V1 (t) =ρ‖wt‖22 +Mswt (L, t)

2
+Mswtt (L, t)w (L, t)

+ I1 + I2 + I3, t ≥ 0,
(3.2)

where

I1 = −EI
∫ L

0

wwxxxxdx, I2 = EI

∫ L

0

w

∫ t

0

h (t− s)wxxxx (s) dsdx,

I3 = T

∫ L

0

wwxxdx.

Integrating by parts in Ii i = 1, ..., 3 and using the boundary conditions (1.2),
we get

I1 = −EIw (L, t)wxxx (L, t)− EI‖wxx‖22, t ≥ 0, (3.3)

I2 = EIw (L, t)

∫ t

0

h (t− s)wxxx (L, s) ds

+ EI

∫ L

0

wxx

∫ t

0

h (t− s)wxx (s) dsdx, t ≥ 0, (3.4)

I3 = Twx(L, t)w(L, t)− T‖wx‖22, t ≥ 0. (3.5)

Substituting the estimates (3.3)–(3.5) in Equation (3.2), taking into account
the boundary conditions (1.2), the expression of the control u(t) and canceling
common terms, we obtain

d

dt
V1(t) =ρ‖wt‖22 +Msw

2
t (L, t)− EI‖wxx‖22 − T‖wx‖22

+ EI

∫ L

0

wxx

∫ t

0

h (t− s)wxx (s) dsdx, t ≥ 0

Math. Model. Anal., 23(3):433–452, 2018.
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and by the identity (2.5) in Lemma 5 we get

d

dt
V1(t) ≤ ρ‖wt‖22 +Msw

2
t (L, t)− EI

(
1− κ

2

)
‖wxx‖22 − T‖wx‖22

− EI

2
(h�wxx) +

EI

2

∫ t

0

h(t− s)‖wxx(s)‖22ds, t ≥ 0.

(3.6)

For the functional V2(t), we have

d

dt
V2 (t) = −ρ

(∫ t

0

h (s) ds
)
‖wt‖22 −Ms

(∫ t

0

h (s) ds
)
w2
t (L, t)

− ρ
∫ L

0

wt

∫ t

0

h′ (t− s)
(
w (t)− w (s)

)
dsdx−Mswt(L, t)

×
∫ t

0

h′ (t− s)
(
w (L, t)− w (L, s)

)
ds−MswttL, t)

×
∫ t

0

h (t− s)
(
w (L, t)− w (L, s)

)
ds+ I4 + I5 + I6 + I7, t ≥ 0, (3.7)

where

I4 = EI

∫ L

0

wxxxx

∫ t

0

h (t− s)
(
w (t)− w (s)

)
dsdx,

I5 = −EI
∫ L

0

(∫ t

0

h (t− s)wxxxx (s) ds

)∫ t

0

h (t− s)
(
w (t)− w (s)

)
dsdx,

I6 = −T
∫ L

0

wxx

∫ t

0

h (t− s)
(
w (t)− w (s)

)
dsdx.

An integration by parts of Ii, i = 4, 5, 6 and using our boundary conditions
(1.2), we obtain for all t ≥ 0,

I4 = EIwxxx(L, t)

∫ t

0

h (t− s)
(
w(L, t)− w(L, s)

)
ds

+ EI

∫ L

0

wxx

∫ t

0

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx, (3.8)

I5 = −EI
(∫ t

0

h(t− s)wxxx(L, s)ds
)∫ t

0

h (t− s)
(
w(L, t)− w(L, s)

)
ds

− EI
∫ L

0

(∫ t

0

h(t−s)wxx(s)ds
)∫ t

0

h(t−s)
(
wxx(t)−wxx(s)

)
dsdx (3.9)

and

I6 = −Twx(L, t)

∫ t

0

h (t− s)
(
w(L, t)− w(L, s)

)
ds

+ T

∫ L

0

wx

∫ t

0

h (t− s)
(
wx (t)− wx (s)

)
dsdx. (3.10)
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Collecting the estimates (3.8)–(3.10) in (3.7), using again the boundary condi-
tions, the expression of the control u(t) after canceling common terms, we see
that

d

dt
V2 (t) = −

(∫ t

0

h (s) ds
)(
ρ ‖wt‖22 +Msw

2
t (L, t)

)
− ρ

∫ L

0

wt

∫ t

0

h′ (t− s)
(
w (t)− w (s)

)
dsdx−Mswt(L, t)

∫ t

0

h′ (t− s)

×
(
w (L, t)− w (L, s)

)
ds+ EI

∫ L

0

∣∣∣∫ t

0

h (t− s)
(
wxx(t)− wxx(s)

)
ds
∣∣∣2dx

+ T

∫ L

0

wx

∫ t

0

h (t− s)
(
wx (t)− wx (s)

)
dsdx+ EI

(
1−

∫ t

0

h (s) ds
)

×
∫ L

0

wxx

∫ t

0

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx, t ≥ 0. (3.11)

Now, we estimate the terms in (3.11). For all measurable sets A and Q such
that A = R+\Q, we start by the last term∫ L

0

wxx

∫ t

0

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx

=

∫ L

0

wxx

∫
A∩[0,t]

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx

+

∫ L

0

wxx

∫
Q∩[0,t]

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx

≤
∫ L

0

wxx

∫
A∩[0,t]

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx

+
(∫

Q∩[0,t]
h (t−s) ds

)
‖wxx‖22 −

∫ L

0

wxx

∫
Q∩[0,t]

h (t−s)wxx (s) dsdx, (3.12)

for all t ≥ 0. Clearly, for η1 > 0, we have∫ L

0

wxx

∫
At

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx

≤ η1 ‖wxx‖22 +
κ

4η1

∫ L

0

∫
At

h (t−s)
(
wxx (t)− wxx (s)

)2
dsdx,

where we have used the notation Bt = B ∩ [0, t] and∫ L

0

wxx

∫
Qt

h (t− s)wxx (s) dsdx

≤ 1

2

(∫
Qt

h (t− s) ds
)
‖wxx‖22 +

1

2

∫
Qt

h (t− s) ‖wxx (s)‖22 ds, t ≥ 0.
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These two estimations show that (3.12), becomes∫ L

0

wxx

∫ t

0

h (t− s)
(
wxx (t)− wxx (s)

)
dsdx ≤

(
η1 +

3

2

∫
Qt

h (t− s) ds
)

× ‖wxx‖22 +
κ

4η1

∫ L

0

∫
At

h (t− s)
(
wxx (t)− wxx (s)

)2
dsdx

+
1

2

∫
Qt

h (t− s) ‖wxx (s)‖22 ds, η1 > 0, t ≥ 0. (3.13)

For the 5th term, it holds that for η2 > 0∫ L

0

∣∣∣∣∫ t

0

h (t− s)
(
wxx (t)− wxx (s)

)
ds

∣∣∣∣2 dx ≤ (1 +
1

η2

)
κ

×
∫ L

0

∫
At

h (t−s)
(
wxx (t)− wxx (s)

)2
dsdx+ (1 + η2)

(∫
Qt

h (t−s) ds
)

×
∫ L

0

∫
Qt

h (t− s)
(
wxx (t)− wxx (s)

)2
dsdx, t ≥ 0. (3.14)

For the 6th term, using Lemma 4, it is easy to see that∫ L

0

wx

∫ t

0

h (t− s)
(
wx (t)− wx (s)

)
dsdx ≤ η3‖wx‖22 +

κL

2η3

×
∫ L

0

∫
At

h (t− s)
(
wxx (t)− wxx (s)

)2
dsdx+

κL

2η3

(∫
Qt

h (t−s) ds
)

×
∫ L

0

∫
Qt

h (t− s)
(
wxx (t)− wxx (s)

)2
dsdx, η3 > t ≥ 0. (3.15)

Using Lemma 4 again and the assumption (H2), the third and the forth terms
in the right-hand side of (3.12) can be estimated for η4 > 0 as follows∫ L

0

wt

∫ t

0

h′ (t− s)
(
w (t)− w (s)

)
dxds

≤ η4 ‖wt‖22 +
L4

4η4

(∫ t

0

|h′ (s)| ds
)

(|h′|�wxx) (3.16)

≤ η4 ‖wt‖22 −
L4

4η4
BV [h]

∫ L

0

∫
At

h′ (t− s)
(
wxx (t)− wxx (s)

)2
dsdx

+
L4

4η4

(∫
Qt

ξ (t− s) ds
)∫ L

0

∫
Qt

ξ (t− s)
(
wxx (t)− wxx (s)

)2
dsdx, t ≥ 0

and

wt(L, t)

∫ t

0

h′ (t−s)
(
w (L, t)−w (L, s)

)
ds ≤ η4w2

t (L, t)+
1

4η4

(∫ t

0

|h′ (s)| ds
)

×
∫ t

0

|h′ (t− s) |
(
w (L, t)− w (L, s)

)2
ds ≤ η4w2

t (L, t)−
L3

4η4
BV [h]
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×
∫ L

0

∫
At

h′ (t− s)
(
wxx (t)− wxx (s)

)2
dsdx+

L3

4η4

(∫
Qt

ξ (t−s) ds
)

×
∫ L

0

∫
Qt

ξ (t− s)
(
wxx (t)− wxx (s)

)2
dsdx, t ≥ 0, (3.17)

where BV [h] is the total variation of h.

The insertion of (3.13)–(3.17) into Equation (3.11) gives for all t ≥ t∗ > 0

d

dt
V2 (t) ≤ (η4 − h∗)

(
ρ ‖wt‖22 +Msw

2
t (L, t)

)
+ Tη3 ‖wx‖22 +

EI

2
(1− h∗)

×
∫
Qt

h (t−s) ‖wxx (s)‖22 ds+EI (1−h∗)
(
η1 +

3

2

∫
Qt

h (t−s) ds
)
‖wxx‖22

+

[
EI

(
1+

1−h∗
4η1

+
1

η2

)
+
TL

2η3

]
κ

∫ L

0

∫
At

h (t−s)
(
wxx (s)−wxx (t)

)2
dsdx

+
[
EI (1 + η2) +

L

2η3

](∫
Qt

h (t− s) ds
)

×
∫ L

0

∫
Qt

h (t− s)
(
wxx (s)− wxx (t)

)2
dsdx+

L3
(
ρL+Ms

)
4η4

×
(∫

Qt

ξ (t− s) ds
)∫ L

0

∫
Qt

ξ (t− s)
(
wxx (s)− wxx (t)

)2
dsdx

−
L3
(
ρL+Ms

)
4η4

BV [h]

∫ L

0

∫
At

h′ (t− s)
(
wxx (s)− wxx (t)

)2
dsdx. (3.18)

Next, by using assumption (H3) the differentiation of V3 (t) and V4 (t) (see [30]),
yields

d

dt
V3 (t)≤κ ‖wxx‖22−η5

∫ t

0

h (t−s) ‖wxx (s)‖22 ds− (1−η5)µ1 (t)V3 (t) (3.19)

and

d

dt
V4 (t) ≤

(∫ ∞
0

ξ (σ) dσ

)
‖wxx‖22 − η6

∫ t

0

ξ (t− s) ‖wxx (s)‖22 ds

− (1− η6)µ2 (t)V4 (t) , t ≥ 0,

(3.20)

for 0 < η5, η6 < 1. Taking into account the previous estimates (3.6), (3.18),
(3.19) and (3.20), and substituting (3.1) in (2.1), we obtain for t ≥ t∗ > 0

d

dt
V (t) ≤

[
EI

2
− λ2

L3
(
ρL+Ms

)
4η4

BV [h]

]

×
∫ L

0

∫
At

h′ (t− s)
(
wxx (s)− wxx (t)

)2
dsdx− λ1

EI

2
(h�wxx)
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+
[EI

2
+ λ2

L3
(
ρL+Ms

)
4η4

(∫
Qt

ξ (t− s) ds
)] ∫ L

0

∫
Qt

ξ (t− s)

×
(
wxx (s)− wxx (t)

)2
dsdx+

[
λ1 + λ2 (η4 − h∗)

](
ρ ‖wt‖22 +Msw

2
t (L, t)

)
+
[
λ2EI (1− h∗)

(
η1 +

3

2

∫
Qt

h (t− s) ds
)

+ λ3κ+
(
λ2η3 − λ1

)
T‖wx‖22

+ λ4

∫ ∞
0

ξ (σ) dσ − λ1EI
(

1−κ
2

)]
‖wxx‖22 +λ2

[
EI
(

1 +
1−h∗
4η1

+
1

η2

)
+
TL

2η3

]
× κ

∫ L

0

∫
At

h (t− s)
(
wxx (s)− wxx (t)

)2
dsdx

− λ4η6
∫ t

0

ξ (t−s) ‖wxx (s)‖22 ds+ λ2

[
EI (1 + η2) +

L

2η3

](∫
Qt

h (t−s) ds
)

×
∫ L

0

∫
Qt

h (t− s)
(
wxx (s)− wxx (t)

)2
dsdx+

(λ1EI
2
− λ3η5

)
×
∫ t

0

h (t− s) ‖wxx (s)‖22 ds− λ3 (1− η5)µ1 (t)V3 (t)

+
λ2EI

2
(1− h∗)

∫
Qt

h (t− s) ‖wxx (s)‖22 ds− λ4 (1− η6)µ2 (t)V4 (t) . (3.21)

As in [30], we introduce the sets

An :=
{
s ∈ R+, nh′ (s) + h (s) ≤ 0

}
, n ∈ N,

Ãnt =
{
s ∈ R+, 0 ≤ s ≤ t, nh′ (t− s) + h (t− s) ≤ 0

}
, n ∈ N,

Q̃ht =
{
s ∈ R+, 0 ≤ s ≤ t, 0 ≤ h′ (t− s) ≤ ξ (t− s)

}
.

We notice that
⋃
nAn = R+\ {Qh ∪Nh}, where

Qh =
{
s ∈ R+, 0 ≤ h′ (s) ≤ ξ (s)

}
and Nh is the null set where h′ is not defined. Furthermore, if we denote Qn
:= R+\An, then lim

n→→∞
ĥ(Qn) = ĥ(Qh) because Qn+1 ⊂ Qn for all n and⋂

n Fn = Qh ∪ Nh. We take At = Ãnt and Qt = Q̃nt in (3.21), we choose
λ1 = λ2(h∗ − ε) for small ε < h∗, then select λ2

λ2 ≤ EIη4/
(
L3
(
ρL+Ms

)
BV [h]

)
,

so that
EI

2
− λ2

L3
(
ρL+Ms

)
4η4

BV [h] ≥ EI

4
,

we obtain for all t ≥ t∗ > 0

d

dt
V (t) ≤ λ2 (η4 − ε)

(
ρ ‖wt‖22 +Msw

2
t (L, t)

)
+
[
λ3κ+ λ4

∫ ∞
0

ξ (σ) dσ

+B1 − λ2(h∗ − ε)EI
(
1− κ

2

)]
‖wxx‖22 +

(EI(h∗ − ε)
2

λ2 − λ3η5
)
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×
∫ t

0

h (t−s) ‖wxx (s)‖22 ds+
{
λ2

[
EI

(
1 +

1− h∗
4η1

+
1

η2

)
+
TL

2η3

]
κ− EI

4n

}
×
∫ L

0

∫
Ãnt

h (t− s)
(
wxx (s)− wxx (t)

)2
dsdx+ λ2

[
η3 − (h∗ − ε)

]
T‖wx‖22

+ λ2

{[
(1 + η2) +

L

2EIη3

](∫
Q̃nt

h (t− s) ds
)
− h∗ − ε

2

}
EI(h�wxx)

+
{3

4

[
EI + λ2

L3
(
ρL+Ms

)
2η4

∫
Q̃nt

ξ(t− σ)dσ
]
− λ4η6

}∫ t

0

ξ (t− s)

× ‖wxx (s)‖22 ds− λ3 (1− η5)µ1 (t)V3 (t)− λ4 (1− η6)µ2 (t)V4 (t) , (3.22)

where we have used∫ L

0

∫
Q̃nt

ξ (t− s)
(
wxx (s)− wxx (t)

)2
dsdx

≤ 3

2

(∫
Q̃nt

ξ (t− s) ds
)
‖wxx‖22 +

3

2

∫ t

0

ξ (t− s) ‖wxx (s)‖22 ds,

B1 =
3

4

[
EI + λ2

L3
(
ρL+Ms

)
2η4

∫
Q̃nt

ξ (t− s) ds
](∫

Q̃nt

ξ (t− s) ds
)

+ λ2EI (1− h∗)
(
η1 +

3

2

∫
Q̃nt

h (t− s) ds
)
.

Now, we start selecting the different parameters so that all the coefficients in
the right-hand side of (3.22) be negative. First, we select η1 and η2 small
enough and we choose η3 = (g∗− ε)/2 and η4 = ε/2. If Rh is sufficiently small,
we have [

(1 + η2) +
L

2EIη3

](∫
Q̃nt

h (t− s) ds
)
− h∗ − ε

2
< 0,

3 (1− h∗)
2

(∫
Q̃nt

h (t− s) ds
)
< σh∗

(
1− κ

2

)
,

with

σ =
3 (1− h∗)κ
4 (2− κ)h∗

+ β

for a small β > 0, large n and h∗ > 3κ/(8−κ). Moreover we need to select λ3,
so that

1− ε
2

EIλ2 ≤ λ3η4 ≤
(1− δ) (h∗ − ε)

2κ
(2− κ)EIλ2η4.

Once η1, η2, n and t∗ are fixed, we select also λ2 such that

λ2

[(
1 +

1− h∗
4η1

+
1

η2

)
+

TL

2η3EI

]
κ− 1

4n
< 0.

Furthermore, we select λ4 large enough so that

λ4 >
3

4η6

[
EI + λ2

L3
(
ρL+Ms

)
2η4

∫ ∞
0

ξ(σ)dσ
]
.
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We need to take
∫∞
0
ξ (s) ds small enough to get negative coefficients in the

right-hand side of (3.22). Therefore,

d

dt
V (t) ≤ −C1E (t)− C2µ1 (t)V3 (t)− C3µ2 (t)V4 (t)

for some positive constants Ci, i = 1, 2, 3.
If limt→∞ µ1 (t) = 0 or limt→∞ µ2 (t) = 0 then there exist t ≥ t∗ such that

for all t ≥ t we have

min
{
C2µ1 (t) , C3µ2 (t)

}
≤ C1.

Therefore, by the Lemma 3, we obtain

d

dt
V (t) ≤ −min

{
C2µ1 (t) , C3µ2 (t)

}V (t)

ρ2
, t ≥ t.

Then

V (t) ≤ δ exp

(
− 1

ρ2

∫ t

t

min
{
C2µ1 (s) , C3µ2 (s)

}
ds

)
, t ≥ t, δ ≥ 0.

By continuity and Lemma 3 again, it is easy to see

E (t) ≤ Λ exp

(
−ν
∫ t

t

min
{
µ1 (s) , µ2 (s)

}
ds

)
, t ≥ 0

for some positive constants Λ and ν.
If limt→∞ µ1 (t) 6= 0 and limt→∞ µ2 (t) 6= 0, then there exist a t̂ ≥ t∗ and

C4 > 0 such that µ1 (t) , µ2 (t) ≥ C4 for t ≥ t̂. Therefore

d

dt
V (t) ≤ −C5

(
E (t) + V3 (t) + V4 (t)

)
≤ −C5

ρ2
V (t) , C5 > 0,

which leads to
E (t) ≤ Λe−νt, t ≥ t̂

for some positive constants Λ and ν. By continuity, we obtain a similar estima-
tion on the interval [0,max{t, t̂}]. ut

4 Numerical simulations

In this section, simulations for the presented system described by (1.1) and (1.2)
are carried out to illustrate the effectiveness of the proposed control defined in
(3.1). The corresponding system parameters are given in the Table 1 and,
the initial displacement and velocity are w0(x) = sin( πLx) and w1(x) = 0,
respectively. The kernel function is chosen to be h(t) = e−kt, for some k ∈ R+.

We have used finite difference method for numerical approximation of the
problem (1.1)–(1.2). Central difference approximations for both spatial and
temporal derivatives, in the differential equation (1.1) and the boundary con-
dition (1.2) have been adopted. For the convolution term, we have used the
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Table 1. The corresponding system parameters.

Parameter Description Value

L Length 1000.00m
ρ The uniform mass per unit length 500kg/m
EI Bending stiffness 1.5 × 107Nm2

T Tension 8.11 × 107N
Ms Mass of the surface vessel 9.60 × 106kg
ds Vessel damping 1 × 103Ns/m

Trapezoid method. We note that, the convolution term requires to store the
solution from t = 0 and use them at each time step. This, together with large
values of the model parameters, demand very small values of time steps, that
increases the computational time. Therefore, one can scale the parameters for
computer simulations to overcome the time performance. The behavior of the
solution of the model problem (1.1)–(1.2), with the control (3.1), have been
illustrated in Figure 1 at x = 500, 800 and x = 1000m , respectively.

a)

b)

Figure 1. Riser displacement at a) x = 500 and x = 800, b) x = 1000.

In Figure 2, the discrepancy between the solutions with and without the
control affect has been shown at three points x = 500, 800 and the boundary
x = L. The affect of the control (3.1) can be seen, after a while due to the

Math. Model. Anal., 23(3):433–452, 2018.
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Figure 2. Difference between the riser displacement with/without control, at
x = 500, 800, 1000m.

convolution term, in particular, when getting closer to the boundary point
x = L.

5 Conclusions

In this paper, the vibration control of a viscoelastic flexible marine riser with
vessel dynamics is studied. A boundary control has been designed to attenuate
the vibrations of our system. With the proposed control, closed-looped stability
for a large class of relaxation functions has been proven using the multiplier
technique. The efficiency of the proposed boundary control is confirmed by
some numerical simulations. In a future work, we intend to study the effect of
different disturbances, such as the environmental disturbance on the vessel due
to the ocean wave, wind and current.
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