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Abstract—In the context of nuclear security, uranium ore
concentrates (UOCs) play an important role: they are traded
in large quantities and this makes their use “out of regulatory
control” a possible scenario.
Once an incident of illicit trafficking o f n uclear m aterial is
detected, an understanding of its origin and production process
is required; this implies the necessity to use analytical techniques
able to measure characteristic parameters (e.g. physical, chemi-
cal, isotopic characteristics of the nuclear materials) which are
referred to, in the field o f t he n uclear forensics, a s signatures.
The present study investigates the potential of image texture
analysis (i.e. the angle measure technique), combined with the
spectrophotometric determination of colours for the evaluation
of the origin of several UOCs. The use of different multivariate
statistical techniques allows the categorization of about 80 differ-
ent samples into a few groups of UOCs powders, which makes
this approach a promising method complementing the already
established methods in nuclear forensics.

—Nuclear forensic science, Image texture analysis,
spectrophotometry, PCA, SVM, AMT

I. INTRODUCTION

THE illicit trafficking of nuclear and other radioactive
materials represents a potential threat to the citizens,

hence efforts are required in order to deter, detect, investigate
and prosecute their illicit movement. In this context, nuclear
forensics plays an important role. Since the early seizures of
nuclear materials back in the 1990’s an investigative approach
has been gradually established for the identification of the
origin and history of the material in a manner to support legal
proceedings to the actors involved in the illicit trafficking [1].
This approach is the core of nuclear forensic science. The
key in the tracing process is the identification of characteristic
parameters or “signatures” which can relate a particular nu-
clear or other radioactive material to a production process, date
and possibly to a production site. Examples of characteristic
parameters are: chemical composition, isotopic abundances of
U and Pu, metallic impurities or physical morphologies.
Incidents involving nuclear materials out of “regulatory con-
trol” in the last decades have raised the necessity to include the
early stages of the nuclear fuel cycle in the nuclear forensics
investigations; in this scenario increasing interest has been
attributed to the uranium ore concentrates (UOCs). They are
produced after milling, leaching and precipitating uranium
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from the uranium ores. UOCs contain about 60-80% uranium
in different chemical composition (e.g. ammonium diuranate,
uranyl hydroxide, uranyl peroxide, or uranium oxide [2]) and
are available in large quantities; this may lead to an increased
risk of thefts for diversion purposes.
Different signatures have been identified in the field of nu-
clear forensics for UOCs which are related to their origin
or production process, namely the isotope ratio of U, in
particular 238U/234U and 235U/234U [3]–[5], or that of Pb, Sr,
Nd [6]–[9]), the measurement of trace level of 232Th and 228Th
[10] or the impurities content [9], [11]. Recent works have
highlighted the potential of discriminating different uranium
ore concentrates on the basis of morphological information
extracted by using image analysis. Keegan and co-workers
have supported their conclusion on an unknown UOC sample
thanks to a visual comparison performed via scanning electron
microscopy (SEM) with the powder of the Mary Kathleen
uranium mine [9]; Ho Mer Lin [12] and Fongaro et al. [13]
have tested the potentiality of image texture analysis for the
classification of 14 uranium ore concentrates characterised by
different chemical compositions and production processes.
The present work aims to further investigate the approach
used in [13]. Here, a batch of 79 commercial UOCs, pro-
duced in different facilities around the world (see section
II), was used as training-samples; they were firstly classified
on the basis of their colours by using diffuse-reflected spec-
trophotometry, cluster analysis and support vector machine
(SVM) algorithm for classification. This allowed obtaining
six different colour-groups of UOCs, hence performing a first
differentiation among the powders. A further discrimination
was then obtained by applying the Angle Measure Technique
(AMT) algorithm within two colour-groups of samples; this
last approach represents the preliminary phase of the image
texture classification within each colour-group for the entire
batch of 79 samples.

II. MATERIALS AND METHODS

A. Uranium ore concentrate powders

The 79 uranium commercial uranium ore concentrates in-
vestigated in the present experimental campaign are listed in
Table I.
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TABLE I
UOC POWDERS MEASURED IN THE PRESENT EXPERIMENTAL CAMPAIGN.

1 England-Wheal Edward 41 Canada-North Span
2 USA-Kerr MgGee 42 USA-Utah
3 Spain-Jen 43 Australia-Ranger
4 Australia-Yeelirrie 44 Germany-Brunhilde
5 Namibia-Rossing 45 Germany-Ellweiler
6 Zambia-Mindola 46 Niger-Somair
7 USA-Cotter 47 Portugal
8 Gabon-EFI(Mouand) 48 USA-Lucky McGill
9 USA-Pathfinder 49 USA-Everest Black
10 Canada-Stanrock 50 Canada-Rio Algom
11 Holland-Delft 51 Canada-Rabbit Lake
12 Mozambique-Maruzi 52 USA-Everest Yellow
13 S.Africa-Palabora 53 Sweden-Ranstadt
14 Belgium-Belgian Congo 54 USA-El Mesquite
15 Brazil-Nuclebras 55 USA-Union Carbide
16 Spain-Enusa 56 Canada-Denison
17 Australia-Queensland 57 USA-Atlas
18 Germany-Wismut 58 Australia-Mary Kathleen
19 USA-Yankee Yellow 59 USA-United Uranium
20 Canada-Dyno 60 USA-South Dakota
21 Canada-Key Lake 61 Argentina
22 China-Hengyang 62 USA-Federal American Partners
23 USA-Petromic 63 USA-Dawn
24 Canada-Blind River 64 Canada-Milliken Lake
25 Canada-Gunnair 65 Australia-Rum Jungle
26 Yugoslavia-Spisak Black 66 Canada-El Dorado
27 Canada-Faraday 67 Canada-Ray Rock
28 Australia-Olympic Dam 68 USA-Chevron Hill
29 Yugoslavia-Spisak Yellow 69 S.Africa-Nufcor
30 USA-Mulberry 70 Russia-Techsnab
31 USA-Falls City 71 USA-United Nuclear
32 Canada-Madawaska 72 Yugoslavia-Rudnik
33 USA-Irigaray 73 Australia-South Alligator
34 USA-ESI 74 USA-Yankee Black
35 Canada-Macassa 75 USA-Sesquehanna
36 USA-Anaconda 76 Romania
37 USA-Shirley Basin 77 USA- White Mesa
38 USA-Mobil 78 USA-Homestake
39 Canada-ESI 79 Canada-Stanleigh
40 Australia-Radium Hill

The set of UOCs consists of ⇠ 30 ammonium diuranate,
six sodium diuranate, ⇠ 10 uranyl hydroxide, ⇠ five uranyl
peroxide, seven are triuranium octoxide and then two are of
non-conventional chemical composition. Mixtures of ammo-
nium diuranate-oxide or oxide-hydroxide complete the list.
For spectrophotometric investigations the samples were intro-
duced in vials made of quartz (75 x 10 mm) or in vials of
borosilicate glass (45 x 14.7 mm).
In the case of the SEM acquisitions, the powder was not coated
due to the necessity of reusing it for future analyses. It was
inserted inside a disc made of graphite and gently pressed
with a weight of 1 g. In general, three different repetitions
were used for each UOC powder (to consider the variability
introduced with the preparation); this number was reduced to
two when the available amount of sample was insufficient.

B. Spectrophotometry

The colour of the samples was measured by means of a
portable Konika Minolta CM-700d sphere-type spectropho-
tometer, which is characterized by a silicon photodiode array
detector and an integrating sphere having a diameter of 40

mm. This spectrophotometer uses a xenon lamp equipped
with a UV cut filter and operates in the visible range of the
electromagnetic spectrum (⇠ 400-700 nm).
The light reflected by the sample is collected in the inte-
grating sphere and then is normalized to the zero reflection
condition and to a pure white standard (100 % reflection).
The reflectance values as a function of the wavelength were
collected, together with the ”tristimulus values” in terms of
L⇤, a⇤, b⇤ in the L*a*b colour space, where [14]:

L⇤ = 116f(
Y

Yn
)− 16 (1)
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X

Xn
)− f(

Y
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X, Y, Z are the tristimulus values of the considered object;
Xn, Yn and Zn are those of the perfect reflecting standard.

C. Scanning electron microscopy image acquisition and angle
measure technique (AMT)

SEM images of the UOC powders: 10, 11, 33, 38, 51, 52,
54, 63, were acquired using a FIB/SEM FEI Versa 3D in low-
vacuum mode (pressure = 10 Pa) equipped with a concentric
backscattered detector for backscattered electrons.
In order to reduce the electrostatic charging phenomenon, due
to the interaction between the electrons and the UOC powders,
a voltage of 5 kV was applied to the electron beam and the
images were acquired using a maximum magnification of 500
x, with a dimension of 3072 x 2048 pixels.
The acquisition was performed in integration mode (16 frames
to obtain an image), with a dwell time of 300 ns. For each
UOC powder 15 independent images per magnification were
acquired and stacked, then mean-centred with a plugin for
ImageJ 1.51j8 [15], in a manner to obtain a more uniform
contrast prior to the analysis [13].
The texture of the images, which is strictly linked to the
physical surface texture, is usually defined as the relationship
of the intensity values, frequencies and spatial distribution
among all the pixels in the image [16]. Different measures
of the image texture are possible, one of these is the AMT.
The angle measure technique was introduced by Andrle [17]
to characterize the complexity of geomeorphic lines. In image
texture analysis, AMT operates in the following manner:

AMT performs the image unfolding

The image is represented as
grey-level intensities versus
pixels in the unfolded image

In each point of the sampling-
set AMT centres a circle

having 1 radius  n (n is,
in general, the image width)

AMT calculates the supplementary
of the angle constructed
by the intersection of the

intensity line and the circle

AMT averages the angle values
obtained for each point of the
sampling-set at a fixed radius

AMT repeats the procedure until the
maximum radius (n) has been used.

The reader can find detailed explanation of the AMT
algorithm in [13], [17]–[19].

D. Multivariate statystical analysis: cluster analysis, princi-
pal components analysis (PCA) and support vector machine
(SVM)

In the present work reflectance spectra and L⇤, a⇤, b⇤ values
were analysed by means of cluster analysis and support
vector machine algorithms. Principal components analysis was
applied to the AMT spectra of two groups of samples. For
multivariate statistical analysis we used a PLS Toolbox version
8.6.1 (Eigenvectors Research, Inc., USA) for Matlab 2017a
(The Matworks Inc., Natick, MA, USA).

1) Cluster analysis: The aim of the cluster analysis is to
group a large number of objects on the basis of an appropriate
criterion applied to a matrix of multivariate measurements of
these objects. The clustering must be performed in a manner to
maximize the differences among the groups while minimizing
those within them [20]. Different algorithms are available;
here, the hierarchical Ward’s method was used. This method
joins two clusters that minimise the sum of the square errors
[21], hence the increase of variation inside the groups.

2) Principal components analysis: PCA is a technique
that allows extracting information from the covariance or
correlation matrix in a manner that a group of variables can be
reduced in dimensionality. PCA performs linear combinations

of the observed variables that represent the so-called “principal
components” and are able to explain most of the variance in
the original variables. The coefficients of the linear combina-
tion are the loadings corresponding to each extracted principal
component. [22]. PCA is a data reduction technique that is
widely used in the explorative analysis.

3) Support vector machine: Support vector machine is
a kernel-based algorithm for classification and regression
analysis. In classification, SVM uses a function generated by
learning from the original data which finds the hyperplane
maximizing the distance among the available classes of data.

III. RESULTS

A. Colour-groups

The 39 variables, corresponding to the reflectance values
in the range 360 - 740 nm, were coupled with the L⇤, a⇤, b⇤

values for each powder in Table I and statistically treated.
Fig 1 shows the clustering representation obtained by
applying Ward’s method on the data pre-processed with the
autoscale function. It is possible to choose different combina-
tions, however, that with 6 colour-groups was chosen.
Once performed the colour-classes selection, these were re-
named in: Whyello (white-yellow), Yellow, Dyello (Dark-
yellow), Orange, Brown and Black.
It is worthwhile to notice that peroxides belong mostly to
the first g roup, a mmonium d iuranate, s odium d iuranate and
hydroxides to Yellow, Dyello and Orange (differences in the
yellow nuances are most likely linked to the production
processes). Mixed compounds are in the Brown class whilst
the Black group contains oxides. This result highlights the ca-
pability of the statistical analysis in identifying links between
the powders production process and their colours.

Fig. 1. Hierarchical cluster analysis of the entire samples collection. Different
clusters are possible by selecting the position on the dendogram. In this work
the 6 different colour-groups were chosen.

The above-mentioned classes were used as category vari-
ables for the SVM colour-based classification, hence each
sample was renamed according to the corresponding class. To
achieve the classification, SVM implemented with LIBSVM
library and the Radial Basic Function Kernel were employed;
data were then pre-processed by means of the autoscale
function whilst a maximum cost of 50 was selected (50 was
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introduced with the preparation); this number was reduced to
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tometer, which is characterized by a silicon photodiode array
detector and an integrating sphere having a diameter of 40
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C. Scanning electron microscopy image acquisition and angle
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SEM images of the UOC powders: 10, 11, 33, 38, 51, 52,
54, 63, were acquired using a FIB/SEM FEI Versa 3D in low-
vacuum mode (pressure = 10 Pa) equipped with a concentric
backscattered detector for backscattered electrons.
In order to reduce the electrostatic charging phenomenon, due
to the interaction between the electrons and the UOC powders,
a voltage of 5 kV was applied to the electron beam and the
images were acquired using a maximum magnification of 500
x, with a dimension of 3072 x 2048 pixels.
The acquisition was performed in integration mode (16 frames
to obtain an image), with a dwell time of 300 ns. For each
UOC powder 15 independent images per magnification were
acquired and stacked, then mean-centred with a plugin for
ImageJ 1.51j8 [15], in a manner to obtain a more uniform
contrast prior to the analysis [13].
The texture of the images, which is strictly linked to the
physical surface texture, is usually defined as the relationship
of the intensity values, frequencies and spatial distribution
among all the pixels in the image [16]. Different measures
of the image texture are possible, one of these is the AMT.
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to characterize the complexity of geomeorphic lines. In image
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were analysed by means of cluster analysis and support
vector machine algorithms. Principal components analysis was
applied to the AMT spectra of two groups of samples. For
multivariate statistical analysis we used a PLS Toolbox version
8.6.1 (Eigenvectors Research, Inc., USA) for Matlab 2017a
(The Matworks Inc., Natick, MA, USA).
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maximize the differences among the groups while minimizing
those within them [20]. Different algorithms are available;
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joins two clusters that minimise the sum of the square errors
[21], hence the increase of variation inside the groups.

2) Principal components analysis: PCA is a technique
that allows extracting information from the covariance or
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of the observed variables that represent the so-called “principal
components” and are able to explain most of the variance in
the original variables. The coefficients of the linear combina-
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learning from the original data which finds the hyperplane
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the 6 different colour-groups were chosen.

The above-mentioned classes were used as category vari-
ables for the SVM colour-based classification, hence each
sample was renamed according to the corresponding class. To
achieve the classification, SVM implemented with LIBSVM
library and the Radial Basic Function Kernel were employed;
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function whilst a maximum cost of 50 was selected (50 was
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chosen among the lower costs having the best performance).
Table II lists the sensitivities and the specificities obtained
with the present model which has a Root Mean Square Error
Cross Validation (RMSECV) of 0.420969. The model is able
to attribute each sample in Table I in the correct class.
Figures 2 and 3 provide an example of the results obtained: all
the samples belonging to the Whyello and Yellow categories are
correctly classified. These samples were successively used for
the preliminary image texture analysis and sub-classification.
The model was validated by using a set of additional measures
of 25 UOC powders, which represents the validation dataset.
The model attributes 24/25 samples to the correct class,
while misclassifies one Orange sample as Yellow. This result
appears satisfactory, especially considering the low RMSECV
obtained.

TABLE II
SENSITIVITIES AND SPECIFICITIES IN CALIBRATION AND

CROSS-VALIDATION FOR THE SVM CLASSIFICATION PERFORMED ON THE
6 COLOUR-CLASSES OF SAMPLES. THE ROOT MEAN SQUARED ERROR IN

CROSS-VALIDATION (RMSECV): 0.420969

Sensitivity (Cal) 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (Cal) 1.000 1.000 1.000 1.000 1.000 1.000
Sensitivity (CV): 0.933 1.000 0.955 1.000 0.800 1.000
Specificity (CV): 1.000 0.967 0.982 1.000 1.000 1.000
Class. Err (Cal): 0 0 0 0 0 0
Class. Err (CV): 0.0333 0.0164 0.0315 0 0.1 0

Fig. 2. Classification results for the samples pre-classified as Whyello.
The classification prediction membership is measured either by a 0 (non-
membership) or by a 1 (membership). These values are assigned on the basis
of the highest probability of belonging to a particular group. Specifically, each
sample in the Whyello class is correctly assigned.

B. Subgroups exploration

The determination of the colour-groups enabled us to per-
form first discrimination among the UOC powders available
in the present study. To enhance the differentiation capability,
the samples within a specific colour-group must be further
separated by applying a technique capable to tackle possible

Fig. 3. Classification r esults f or t he s amples p re-classified as Yellow.
The classification p rediction m embership i s m easured e ither b y a 0 (non-
membership) or by a 1 (membership). These values are assigned on the basis
of the highest probability of belonging to a particular group. Specifically, each
sample belonging to the Yellow class is correctly assigned.

additional differences.
Most of the samples in one colour-group have the same
chemical composition, however, the production route causes
differences in the morphology of the powders, in particular
in the powder’s texture (i.e. particle size, size distribution,
homogeneity and shape), which is reflected o n t he t exture of
the acquired images.
The images at 500 x of the samples in subsection II-C and
belonging to the Whyello and Yellow groups were selected.
In general acquisition of the images of peroxides was more
difficult. T he i mages o f 5 1, 3 8, 5 2 a nd 3 3 ( Whyello) were
stacked together and pre-processed as already explained in
subsection II-C; the same operation was performed on 10,
11, 54 and 63 (Yellow). The images were then reduced in
dimension (as suggested by Kucheryavski and co-workers)
[23] to 600 x 400 and a sampling of 2% was chosen for shorter
calculation time. The mean angle values of the five replicates
obtained for each sample repetition were averaged which
provided three mean angle distributions for each facility-class.
Fig 4 shows the averaged mean angle spectral data for the
Yellow category samples, together with their textural images.
AMT spectra are in general complex and interpretation is not
straightforward, however, high mean angle (MA) values can be
interpreted as a high variation in the image texture complexity,
while low values are more related to a lower variation [18]: in
the Yellow category the highest complexity is displayed by the
specimen number 10 (Canada Stanrock), the lowest by number
63 (USA Dawn).
These spectra were successively analysed using PCA (au-
toscale preprocessing and leave-one-out cross-validation): Fig-
ures 5 and 6 show respectively the score-plots of the Whyello
and Yellow samples. In both cases two components were
chosen: for Yellow UOCs this choice explains 99.35% of the
variance (PC1= 94.6%; PC2= 4.7%); for Whyello UOCs the

explained variance is 86.19% (PC1= 48.6%; PC2= 37.59%).
In both cases outliers in terms of Q-residuals and Hotelling
number T2 [24] were absent, only one average value of
the sample 51 was borderline in terms of Q-residuals, but
this value was included in the exploratory analysis. In both
Figures 5 and 6 it is possible to identify samples clusters
within the same colour-group: in the Whyello, overlapping
between Canada Rabbit Lake (51) - USA Irigaray (33) and
USA Mobil (38) - USA Everest Yellow (52) are clearly
visible; in the Yellow group the facilities-classes are separated
mostly along the PC1, where it is possible to recognize the
“trend” observed in Fig 4: USA Dawn (63) has the largest
negative score along PC1 (lowest mean angle values), whilst
Canada Stanrock the larger positive score along the same PC
(higher mean angle values). The overlapping among clusters
observed in the Whyello analysis is most probably caused by
the difficult image acquisitions of the UOC powders containing
peroxides, this would suggest that actions must be taken to
limit the charging phenomena such as coating the powder with
a conducting material.

Fig. 4. Average mean angle spectra for the UOCs belonging to the Yellow
group together with SEM images of the specimens displaying their texture

Fig. 5. PCA of the average mean angle spectra obtained with the UOC
powders in the Whyello group

IV. CONCLUSION

The present study aims to investigate a new methodology
in nuclear forensic science, capable to provide hints on the

Fig. 6. PCA of the average mean angle spectra obtained with the UOC
powders in the Yellow group

origin of uranium ore concentrates in a fast and simple manner.
The route explores the potentiality of multivariate statistical
analysis applied to techniques that could highlight differences
among the powders which are based on the chemical com-
position and which were obtained through the same generic
production process. The first part of the study provides a model
based on the combination of spectrophotometry and support
vector machine algorithm which is capable to restrict the field
of investigation among a few facilities only on the basis of
the colour of the sample. The model was validated and, then,
finalised. The second part of the study is a preliminary attempt
to distinguish among samples belonging to the same colour-
group: to achieve this goal AMT image texture analysis was
used and its potentiality, as signature in nuclear forensics,
was investigated by using the Principal Components Analysis.
In this last case results are promising, a first discrimination
among the determined facilities-classes, thus the different
production processes, appears possible. However, different
algorithms or combination of other image texture analyses will
be further investigated in order to obtain a model which can
provide reliable nuclear forensics findings.
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chosen among the lower costs having the best performance).
Table II lists the sensitivities and the specificities obtained
with the present model which has a Root Mean Square Error
Cross Validation (RMSECV) of 0.420969. The model is able
to attribute each sample in Table I in the correct class.
Figures 2 and 3 provide an example of the results obtained: all
the samples belonging to the Whyello and Yellow categories are
correctly classified. These samples were successively used for
the preliminary image texture analysis and sub-classification.
The model was validated by using a set of additional measures
of 25 UOC powders, which represents the validation dataset.
The model attributes 24/25 samples to the correct class,
while misclassifies one Orange sample as Yellow. This result
appears satisfactory, especially considering the low RMSECV
obtained.

TABLE II
SENSITIVITIES AND SPECIFICITIES IN CALIBRATION AND

CROSS-VALIDATION FOR THE SVM CLASSIFICATION PERFORMED ON THE
6 COLOUR-CLASSES OF SAMPLES. THE ROOT MEAN SQUARED ERROR IN

CROSS-VALIDATION (RMSECV): 0.420969

Sensitivity (Cal) 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (Cal) 1.000 1.000 1.000 1.000 1.000 1.000
Sensitivity (CV): 0.933 1.000 0.955 1.000 0.800 1.000
Specificity (CV): 1.000 0.967 0.982 1.000 1.000 1.000
Class. Err (Cal): 0 0 0 0 0 0
Class. Err (CV): 0.0333 0.0164 0.0315 0 0.1 0

Fig. 2. Classification results for the samples pre-classified as Whyello.
The classification prediction membership is measured either by a 0 (non-
membership) or by a 1 (membership). These values are assigned on the basis
of the highest probability of belonging to a particular group. Specifically, each
sample in the Whyello class is correctly assigned.

B. Subgroups exploration

The determination of the colour-groups enabled us to per-
form first discrimination among the UOC powders available
in the present study. To enhance the differentiation capability,
the samples within a specific colour-group must be further
separated by applying a technique capable to tackle possible

Fig. 3. Classification r esults f or t he s amples p re-classified as Yellow.
The classification p rediction m embership i s m easured e ither b y a 0 (non-
membership) or by a 1 (membership). These values are assigned on the basis
of the highest probability of belonging to a particular group. Specifically, each
sample belonging to the Yellow class is correctly assigned.

additional differences.
Most of the samples in one colour-group have the same
chemical composition, however, the production route causes
differences in the morphology of the powders, in particular
in the powder’s texture (i.e. particle size, size distribution,
homogeneity and shape), which is reflected o n t he t exture of
the acquired images.
The images at 500 x of the samples in subsection II-C and
belonging to the Whyello and Yellow groups were selected.
In general acquisition of the images of peroxides was more
difficult. T he i mages o f 5 1, 3 8, 5 2 a nd 3 3 ( Whyello) were
stacked together and pre-processed as already explained in
subsection II-C; the same operation was performed on 10,
11, 54 and 63 (Yellow). The images were then reduced in
dimension (as suggested by Kucheryavski and co-workers)
[23] to 600 x 400 and a sampling of 2% was chosen for shorter
calculation time. The mean angle values of the five replicates
obtained for each sample repetition were averaged which
provided three mean angle distributions for each facility-class.
Fig 4 shows the averaged mean angle spectral data for the
Yellow category samples, together with their textural images.
AMT spectra are in general complex and interpretation is not
straightforward, however, high mean angle (MA) values can be
interpreted as a high variation in the image texture complexity,
while low values are more related to a lower variation [18]: in
the Yellow category the highest complexity is displayed by the
specimen number 10 (Canada Stanrock), the lowest by number
63 (USA Dawn).
These spectra were successively analysed using PCA (au-
toscale preprocessing and leave-one-out cross-validation): Fig-
ures 5 and 6 show respectively the score-plots of the Whyello
and Yellow samples. In both cases two components were
chosen: for Yellow UOCs this choice explains 99.35% of the
variance (PC1= 94.6%; PC2= 4.7%); for Whyello UOCs the

explained variance is 86.19% (PC1= 48.6%; PC2= 37.59%).
In both cases outliers in terms of Q-residuals and Hotelling
number T2 [24] were absent, only one average value of
the sample 51 was borderline in terms of Q-residuals, but
this value was included in the exploratory analysis. In both
Figures 5 and 6 it is possible to identify samples clusters
within the same colour-group: in the Whyello, overlapping
between Canada Rabbit Lake (51) - USA Irigaray (33) and
USA Mobil (38) - USA Everest Yellow (52) are clearly
visible; in the Yellow group the facilities-classes are separated
mostly along the PC1, where it is possible to recognize the
“trend” observed in Fig 4: USA Dawn (63) has the largest
negative score along PC1 (lowest mean angle values), whilst
Canada Stanrock the larger positive score along the same PC
(higher mean angle values). The overlapping among clusters
observed in the Whyello analysis is most probably caused by
the difficult image acquisitions of the UOC powders containing
peroxides, this would suggest that actions must be taken to
limit the charging phenomena such as coating the powder with
a conducting material.

Fig. 4. Average mean angle spectra for the UOCs belonging to the Yellow
group together with SEM images of the specimens displaying their texture

Fig. 5. PCA of the average mean angle spectra obtained with the UOC
powders in the Whyello group

IV. CONCLUSION

The present study aims to investigate a new methodology
in nuclear forensic science, capable to provide hints on the

Fig. 6. PCA of the average mean angle spectra obtained with the UOC
powders in the Yellow group

origin of uranium ore concentrates in a fast and simple manner.
The route explores the potentiality of multivariate statistical
analysis applied to techniques that could highlight differences
among the powders which are based on the chemical com-
position and which were obtained through the same generic
production process. The first part of the study provides a model
based on the combination of spectrophotometry and support
vector machine algorithm which is capable to restrict the field
of investigation among a few facilities only on the basis of
the colour of the sample. The model was validated and, then,
finalised. The second part of the study is a preliminary attempt
to distinguish among samples belonging to the same colour-
group: to achieve this goal AMT image texture analysis was
used and its potentiality, as signature in nuclear forensics,
was investigated by using the Principal Components Analysis.
In this last case results are promising, a first discrimination
among the determined facilities-classes, thus the different
production processes, appears possible. However, different
algorithms or combination of other image texture analyses will
be further investigated in order to obtain a model which can
provide reliable nuclear forensics findings.
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