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Abstract. We study universal quantities characterizing the second order phase transition
in the Gribov process. To this end, we use numerical methods for the calculation of the
renormalization group functions up to two-loop order in perturbation theory in the famous
ε-expansion. Within this procedure the anomalous dimensions are evaluated using two
different subtraction schemes: the minimal subtraction scheme and the null-momentum
scheme. Numerical calculation of integrals was done on the HybriLIT cluster using the
Vegas algorithm from the CUBA library. The comparison with existing analytic calcula-
tions shows that the minimal subtraction scheme yields more precise results.

1 Introduction

The Gribov process is also known in the literature [1–5] as an epidemic with recovery or directed
(bond) percolation process. Equivalent processes were studied several times as chemical reactions
system known in the literature as Schlögl’s first equation [6]. The Gribov process belongs to a class of
systems that exhibits a nonequilibrium phase transition between the active and absorbing states. The
most prominent feature of such transitions is the nontrivial scaling behavior, which can be fully quan-
titatively characterized by several independent critical exponents. These exponents can be estimated
in a controllable manner by various theoretical techniques.

An important procedure for the calculation of universal quantities is the renormalization group
(RG) approach [7]. Using this technique, one can systematically build numerical methods for ap-
proximate calculation of the critical exponents. In this paper, the renormalization procedure is carried
out in the framework of the ε-expansion, where ε stands for the deviation from the upper critical di-
mension dc = 4. Numerical calculations are performed in two different subtraction schemes. In the
first case, the minimal subtraction (MS) scheme is employed and contributions to the renormalization
constants for each Feynman diagram are determined. The second scheme is the Normalization Point
(NP) scheme [8–13] which is a variant of the zero momentum subtraction (ZM) scheme [7], where the
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computation of the RG constants is skipped and contributions of diagrams to the anomalous dimen-
sion are calculated. The choice of the scheme is arbitrary since the universal quantities in the form of
the ε-expansion are independent of the choice of the renormalization scheme. The main goal of this
paper is to develop numerical methods of evaluation of the critical exponents for different subtraction
schemes and to determine the most efficient one.

2 Model and Renormalization

In the terminology of reaction-diffusion problems [1–3], the Gribov process describes the time evo-
lution of classical objects R that diffuse in a d-dimensional continuous space. At the same time, they
are subject to the following chemical reactions:

R + M
k−1−→ A, R + N

k+1−→ 2R, 2R
k−2−→ R + N, R + R

k=2−→ B, (1)

where the number of objects M and N are kept constant, A and B are chemically inert, while k−1 , k+1 , k−2 ,
k=2 denote rate constants. Using the classical master equation, the systems can be easily reformulated
in terms of bosonic ladder creation and annihilation operators. Via coherent-state path integrals, one
finally arrives at the following field theoretic action functional [4]:

S(ψ̃, ψ) = ψ̃[−∂t + D0∇2 + (k−1 − k+1 )]ψ +

√
k+1
2

(k−2 + 2k=2 )
[
ψ̃ψ2 − ψ̃2ψ

]
+

k−2 + k=2
2
ψ̃2ψ2, (2)

where ∂t = ∂/∂t, ∇2 is the Laplace operator, D0 is the diffusion constant, and ψ and ψ̃ correspond
to the coherent states of the bosonic creation and annihilation operators. Integrations over time and
spatial variables in (2) are implied.

For the later use of ultraviolet renormalization [7], it is convenient to rewrite the action functional
as follows:

S0(ψ̃, ψ) = ψ̃[−∂t + D0∇2 − D0τ0]ψ +
D0λ0

2

[
ψ̃2ψ − ψ̃ψ2

]
, (3)

where λ0 is a positive coupling constant and τ0 measures the deviation from the threshold value of
the critical probability (an analog of the critical temperature in static models). The last term in the
action (2) (four point interaction) was neglected due to its infrared irrelevance.

The model is studied by field theoretical RG [7] near its critical dimension dc = 4 in the vicinity
of the second order phase transition by means of ε-expansion, which is for convenience defined as
follows 2ε = 4 − d. The renormalized action functional takes the form

SR = ψ̃[−Z1∂t + Z2D∇2 − Z3Dτ]ψ +
Z4Dλµε

2
[ψ̃2ψ − ψ̃ψ2], (4)

where µ is the renormalization mass and Zi, i = 1, 2, 3, 4 are the renormalization constants. The model
possesses symmetry with respect to the so-called rapidity symmetry [5], and as a direct consequence
two triple vertices are renormalized by the same renormalization constant Z4. On the other hand, the
renormalized action could be obtained by multiplicative renormalization of the fields and parameters

ψ0 = ψZψ, ψ̃0 = ψ̃Zψ̃, D0 = DZD, λ0 = λµ
εZλ, τ0 = τZτ. (5)

The role of the coupling constant in perturbation theory is played by λ2. To keep the notation simple,
we define a new charge g ≡ 2λ2/((4π)d/2Γ(d/2)), where Γ(x) is the gamma function.

An important role is played by the choice of the subtraction scheme for the calculation of the RG
functions. We have considered two different schemes for the evaluation of universal quantities. In
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An important role is played by the choice of the subtraction scheme for the calculation of the RG
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the MS scheme [7], the renormalization constants can depend only on the poles in ε and the coupling

constant g, i.e. Zi = 1 +
∞∑

n=1
gn

n∑
k=1

cnkε
−k, where cnk is a pure number (not depending on other param-

eters). The anomalous dimensions in the MS scheme can be determined through the renormalization
constants as follows [7]:

β(g) = −g
(
2ε + γg(g)

)
, γi(g) =

−2ε g∂g ln Zi

1 + g∂g ln Zg
. (6)

To calculate the anomalous dimensions in the MS scheme, the residues at poles in ε in renormalization
constants were calculated with Sector Decomposition method [14].

The second subtraction procedure is the NP scheme [8–11]. Within this scheme, the anomalous
dimensions γi are directly expressed in terms of some Feynman diagrams which are free of diver-
gences and thus the calculation of the renormalization constants can be entirely skipped (for details
see [10, 12, 13]).

Integrals were calculated by the modified Monte Carlo methods, which were developed for cal-
culations of integrals in multidimensional space. The integration is the same as in the original Monte
Carlo method. The only difference lies in the low-discrepancy sequence of random numbers. The nu-
merical calculation was carried out by the Vegas algorithm within a new implementation. A detailed
description of the Vegas algorithm can be found in [15].

3 Results

The unrenormalized Green functions are independent of the momentum scale µ. This fact implies (for
both the MS and NP schemes) the basic RG differential equations for the renormalized one-irreducible
Green functions [7]

(
µ∂µ + β∂g − τγτ∂τ − DγD∂D − nψγψ − nψ̃γψ̃

)
ΓR

nψnψ̃ = 0, (7)

where nψ, nψ̃ are the numbers of the corresponding fields entering the Green function under consider-
ation. The anomalous dimensions up to the second order of the perturbation theory take the following
form:

γi(g) = C(1)
i g +C(2)

i g
2 + O(g3), i ∈ {g, τ,D, ψ}. (8)

For the MS scheme, the coefficients C(k)
i are numbers. For the NP scheme, they can depend on ε, in

the two loop case C(2)
i is a number, while C(1)

i contains a term proportional to ε.
The RG method predicts [4, 7] that the large scale behavior is determined by the infrared attractive

fixed point, the coordinate of which is found from the condition βg(g∗) = 0. The main objects of
interest in our study are the critical exponents defined as:

z = 2 − γD(g∗), η = 2γψ(g∗). (9)

The dynamic exponent z is related to the mean square radius, whereas the second exponent η to the
survival probability of the percolating cluster. These quantities are universal. This means that their
ε-expansion does not depend on the subtraction scheme (contrary to the anomalous dimensions which
are non-universal as well as the coordinate of the fixed point). The expansions of these quantities take
the following forms:

z = 2 − ε
6
+Czε

2 + O(ε3), η = −ε
3
+Cηε2 + O(ε3), (10)

where Cz and Cη are displayed in Table 1.

3

EPJ Web of Conferences 226, 02001 (2020) https://doi.org/10.1051/epjconf/202022602001
Mathematical Modeling and Computational Physics 2019



Table 1. The values of the second order contributions to dynamic critical exponents

Cz Cη
analytical calculation [5] −0.116836209 −0.272300063
numerical NP scheme −0.116847(29) −0.272307(28)
numerical MS shceme −0.116836177(73) −0.272299997(88)

4 Conclusion

Numerical calculations were carried out for the Gribov process up to the second order perturbation
theory by two different subtraction schemes. In both cases the results (anomalous dimensions, critical
exponents) are in good agreement with the analytical calculations. However, the values are more
precise for the MS scheme and this method will be more suitable for numerical calculation in the
higher order of the perturbation theory.
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