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Mathematical Modelling and Computer Simulations in Undergraduate
Biology Education

Abstract
A course in computational biology that introduces undergraduate biology students to mathematical
modelling and computer simulations is described. Spreadsheets offer the perfect environment to introduce
our biology students to computational thinking and the increasing role that computer simulations are playing
in biology research. Here, we detail the spreadsheet modelling of some of the simulations covered in the
course; the Lotka-Volterra predator-prey model, a cellular automaton model of tumor growth, and a model of
an infectious disease outbreak. The experience of implementing computational biology simulations in a
spreadsheet environment encourages and enables our biology students to use computer simulations and
spreadsheets more in their future research, and makes our students more comfortable when interpreting
scientific literature that pertains to computational biology research. These are important skills that our biology
students will need in their future careers as researchers and scientists.
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1 Introduction

Undergraduate biology education can be enhanced through the introduction of mathematical mod-

els and computer simulations by improving general quantitative skills, ensuring students are more

comfortable interpreting the results from computational studies and encouraging students to im-

plement computer models as part of their future research. There have been many studies that have

linked the use of computational tools in STEM (science, technology, engineering and mathematics)

classrooms to the enhanced learning of the students [1]. This is potentially more beneficial in bi-

ology classrooms as, in contrast to other STEM disciplines, biology majors are disproportionately

composed of more female students [2]. Gender identity within our society often reinforces a per-

ception that boys prefer computational, engineering or mathematical based careers while girls show

a preference for the life sciences [3]. A potential gender gap in the use of mathematical models

and computer simulations in future biomedical research could be alleviated through the use of a

computerized learning environment, and by increasing the familiarity and proficiency of biology

undergraduates with computer simulations in female-dominated classrooms [4]. In addition, there

is strongly believed to be a technological gap between working and educated classes, the former in-

cluding disproportionately many African Americans and other people of color, and bridging this gap

at the university level is vitally important for promoting the diversity of future biology researchers

[5, 6]. Given the important role that computer simulations will play in biological research (research

in areas such as sustainable food growth, sustaining ecosystems and biodiversity, and understanding

human health [7]) it is important that all of our students (regardless of race, gender or socioeco-

nomics) are proficient in the use of mathematical models and their exploration with computational

simulations, and better prepared to meet these future challenges [8]. This is in contrast to how

mathematics, computer science and biology courses are currently taught. Mathematics is taught
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almost entirely independent of undergraduate biology courses [9, 10], with students unable to ap-

preciate the influences and overlap between these disciplines. Even more alarming is that biology

majors often take few or no computer sciences classes. This has a direct and measurable impact on

future biologists and their research, with papers containing a greater concentration of mathematical

equations often receiving less citations by their peers [11, 10]. This lack of comfort that biologists

have towards mathematically-dense papers limits their ability to appreciate the increasingly larger

role that computer simulations are playing in biological research [10].

The majority of undergraduate biology textbooks are densely filled with facts and images, and

lack insights into the nature of scientific inquiry [12] and the computational skills required for future

biologists [10, 13, 14]. This is changing, however, with computer simulations increasingly being

used in undergraduate biology courses [15]. It has been argued that computer simulations can allow

students to perform experiments that might be too impractical, dangerous or expensive in reality [16,

17]. Furthermore, at the high school level there are concerns for animal welfare, and arguments have

been made for replacing traditional dissections with computer simulations [17]. This often results in

computer simulations being used as a black box tool for students to interact with on the short-term

[17]. Some of the computational tools that are used for enhancing instruction, however, are both

complicated and enlightening; for example, the Quantitative Circulatory Physiology model exposes

future healthcare professionals to many physiological scenarios that their patients might experience,

including the simulation of heart failure, anemia, and diabetes [18]. On the other hand, computer

simulations are not simply an alternative tool to traditional instruction. Computer simulations

can conceptually elucidate and quantitatively explore the fundamental science and mechanisms

that comprise enormously complex biomedical systems, and this is making mathematical modeling

and computer simulations an increasingly integral part of biological research [14]. Mathematical

modeling and computer simulations, therefore, should be taught to undergraduate biology students
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in an interactive manner, which allows students to directly implement and change the fundamental

mathematics and computational implementation of these simulations. In this manner, educational

computer simulations become not only a set of evolving pedagogical tools [14] but should reflect

the inquisitive and investigative nature of computer simulations in biological research. Introducing

computer programing to undergraduate biology students is not only important for establishing a

future generation of computational biologists, however, but also improves students use of scientific

logic and comfort with quantitative analysis [19], which are required skills for all future biologists

[10].

Spreadsheets are important tools for biologists and an excellent tool for introducing biology stu-

dents to mathematical modeling and computer simulations. Spreadsheets are a particularly useful

teaching resource at the university level because essentially all classrooms in U.S. public schools

(and classrooms in most developed countries) have access to computers and the internet [20, 21].

Futhermore, spreadsheets are increasingly being incorporated in to online environments (such as

course management systems and ebooks). That said, biology students can still often struggle with

using spreadsheet software and it is important that students recognize the difference between the

science they are trying to elucidate and the computational mechanisms of the spreadsheet envi-

ronment [19]. However, the widespread use of spreadsheets both in biological research, and in the

workplace, make spreadsheets the obvious computational environment to introduce computer pro-

graming to undergraduate biology students. Spreadsheet models can also be very complex [22]. For

example, Geyer recently implemented the Hodgkin-Huxley Model for action potentials in neurons

using a spreadsheet model, allowing the students to explore this model and design their own exper-

iments to further their understanding of neuron behaviour [23]. As another example, Langendorf

and Strode recently implemented a simulation of an evolving population experiencing natural selec-

tion to introduce evolution in the classroom [24]. The inherent complexity can sometimes make the
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behaviour of these systems difficult for both students and researchers to intuitively deduce, and the

use of computer simulations can be invaluable to elucidating the nature of these systems. Further-

more, mechanisms within a computer model can be systematically (and sometimes unrealistically)

turned off in a simulation to explore the strength and behaviour of different effects and interactions.

Here, we describe a computational biology course that introduces computer simulations to un-

dergraduate biology students using a spreadsheet environment. The course both introduces the

students to computer models, and also incorporates a research component that sees students im-

plement computer models found within the scientific literature and adapt these computer models

as part of an in-class scientific research project. Furthermore, a couple of examples of computer

simulations that are implemented by our students as part of the course are detailed. The spread-

sheet simulations described here are the Lotka-Volterra predator-prey model, a cellular automaton

model of tumor growth, and a model of an infectious disease outbreak.

2 Computational Biology

Computational Biology is a course taught at our institution that uses spreadsheets to introduce

mathematical modelling and computer simulations to our undergraduate biology students. Students

investigate models that explore a variety of different biological systems. The prerequisites for this

class is General Physics I (a calculus-based mechanics class) which our students will usually take

in their first or second years at university. Students are, therefore, familiar with the concept of

mathematical models of the physical world and will already have taken Calculus I, which covers

differentiation and introduces integration. No prior programming experience is required before

students take this class, which makes spreadsheets the perfect programming environment for this

course. Students also work on a research project and learn how to present their results in a scientific
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manner.

The first part of the course introduces students to spreadsheets. In particular, we describe

the basics of entering data, entering formula and some of the functions available to spreadsheets.

Furthermore, we discuss the inclusion of macros and the addition of a button within the spreadsheet

that runs the macro; whilst spreadsheet syntax is generally universal, it should be noted that macros

(or scripts) are handled differently for different spreadsheet software.

In terms of mathematical formula, our students have not been introduced to finite difference

calculations and numerical integration before taking this course. Therefore, the course covers the

derivation of forward, backward and central difference approximations and the trapezoidal rule. It

is important for students to understand the role that discretization has when numerically simulating

a continuum mathematical model. In particular, the role of the temporal and spatial discretizations

in the numerical stability of the computer simulation is an area that should be emphasized.

As an example we first consider diffusion in one-dimension. The diffusion equation is given by

∂φ

∂t
=

∂

∂x
D
∂φ

∂x
(1)

where φ is the concentration, t is time, D is the diffusion coefficient, and x is position. The discrete

form of the equation that is implemented into the spreadsheet is of the form

φt+1
i = φt

i +D
∆t

(∆x)2
[
φt
i+1 + φt

i−1 − 2φt
i

]
(2)

where the superscript represents the discrete time, and the subscript represents the discrete location.

This gives students a way to explore numerical stability and understand how the discretization in

time and space, ∆t and ∆x respectively, influence numerical stability.
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Another simple example that we initially consider is the logistic growth model, which captures

the growth of a population that is constrained by resources or its environment. The rate equation

is of the form

dN

dt
= rN

(
K −N

K

)
(3)

where N is the population, r is the growth rate, K is the carrying capacity and t is time. The

discrete form of this equation is

N t+1 = N t + ∆trN t
(
K −N t

)
/K (4)

where the superscript represents the discrete time. This is a good example of growth rate that

students may have seen in previous courses (without really looking too closely at the mathematics,

and certainly without numerically implementing this model in a spreadsheet).

The course also introduces students to research methods and the process of writing scientific

papers. Students would typically take this class prior to starting their senior thesis research project.

The course then progresses by alternating each week between students working on their in-class

research project and students implementing a model that is chosen by the instructor. The following

sections give examples of some of the models that students implement in this course.

3 Lotka-Volterra predator-prey model

The Lotka-Volterra Predator-Prey System is usually captured with the following nonlinear differ-

ential equations that can result in a continual cycle of growth and decline [25]. The rate of change

of the number of prey is given by

dx

dt
= αx− βxy (5)
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where x is the number of prey, y is the number of predators, α is the prey growth rate and β is the

rate of predation. The rate of change of the number of predators is given by

dy

dt
= δxy − γy (6)

where δ is the predator growth rate and γ is the predator loss rate. These simple coupled equations

can lead to quite interesting behaviour.

These equations can be discretized and implemented in a spreadsheet environment by the stu-

dents to explore the complex interactions between predators and prey in this model. The discretized

equations are simply

xt+1 = xt + ∆t
(
αxt − βxtyt

)
(7)

and

yt+1 = yt + ∆t
(
δxtyt − γyt

)
(8)

where ∆t is the time step and superscripts represent discrete time. An implementation of this model

is depicted in Figure 1. This is a wonderful example of the dynamics of a model which undergoes

cyclic behaviour. For undergraduate biology students, whose only experience of calculus is a course

that covers very basic differentiation (always with respect to one variable) and a brief introduction to

integration, implementing these coupled equations and observing the resultant dynamic behaviour,

can be quite thought-provoking. Once students have implemented this model they can try to see if

they can capture the dynamics of a real system; real systems invariably exhibit greater complexity

than the models we use to mimic their behaviour and this can result in a good area of discussion. For

example, some of my students had already taken a zoology course with a colleague whose research

interests is in amphibians, and this resulted in a classroom discussion about the applicability of
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Figure 1: Example of the spreadsheet implementation of the Lotka-Volterra predator prey model.

The system is cyclic. As the predators eat the prey their population increases, but the number of

prey decreases. This is unsustainable and the number of predators will decrease once the number

of prey is sufficiently low. However, as the number of predators decreases the number of prey is

allowed to rebound, and with it the number of predators, and the cycle reiterates once more.

this model to wood frogs. Wood frogs are found in Western Pennsylvania and have an interesting

ability to tolerate freezing temperatures. This allows the frogs to stay nearer the surface during

winter and emerge sooner in the spring and capture the prey first, before other frogs that have to

bury themselves further underground during the winter. The class discussion centered around how

we can mimic the effects of temperature in the model. The students were interested in the idea

that the properties of the model could be time-dependent and the “activity” of the freeze-tolerant

frogs and various insects could be slowly turned on to mimic the beginning of spring.

4 Cellular automaton model of tumor growth

This two-dimensional model of cancer growth is adopted from Poleszczuk and Enderling [26] and

can easily be implemented, on a smaller scale, within a spreadsheet model. Within this spreadsheet

model, each cell of the spreadsheet represents an individual cancer cell that occupies a spatial area
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of (10µm)2 on a two-dimensional regular square lattice.

Each cancer cell is characterized by its remaining proliferation potential (how many times left

that a cell can divide), ρ, and its probability of spontaneous death α. The model assumes a

heterogeneous tumor population consisting of cancer stem cells and non-stem cancer cells. Cancer

stem cells are assumed to be immortal and have unlimited proliferation potential. In other words,

their remaining proliferation potential is infinite, and their probability of spontaneous death is

zero. Non-stem cancer cells, on the other hand, can only divide a limited number of times, ρmax,

before cell death. Each cell type can divide symmetrically to produce two daughter cells with

parental phenotype. In other words, a stem cell would proliferate two stem cells, but a non-stem

cell would proliferate two non-stem cells (with a remaining proliferation potential reduced by 1).

However, a cancer stem cell can also undergo asymmetric division and create a cancer stem cell

and a non-stem cancer cell with ρ = ρmax (and the remaining proliferation potential of these non-

stem cells would decrease with each subsequent non-stem cell division like any other non-stem cell).

The probability of asymmetric division is 1 − psymm (where psymm is the probability of symmetric

cancer stem cell division). Cells need adjacent space for proliferation, and cells that are completely

surrounded by other cells (the surrounding eight spreadsheet cells on our two-dimensional lattice)

become quiescent. Otherwise, cells can randomly proliferate into vacant adjacent space. Cells can

undergo spontaneous death, independent of the available space, with rate of α. Cells that die are

instantaneously removed from the system, and this space is then considered empty. The temporal

discretization in the model is ∆t = 1/24 day (i.e., 1 hour), and proliferation probabilities are scaled

to this simulation time step.

A layout of the simulation is depicted in Figure 2. The simulation (which consists of 20 × 20

cells in the spreadsheet) is replicated 14 times through the spreadsheet. The first instance is shown

as the left-most square in Figure 2 and contains the current state of the system. This is comprised
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Figure 2: Example of the spreadsheet implementation of a two-dimensional cellular automata model

of cancer growth. This is how the different stages of the variables during a single iteration are stored

across the spreadsheet. Starting on the left is the current state of the system, and moving across

to the right we end at the next iterative state.

of a number which represents the current remaining proliferation potential (or -1 if the spreadsheet

cell contains a cancer stem cell). Immediately to the right of this is the next 20 × 20 grid that

contains either 0 if the cell is going to spontaneously die or maintains the remaining proliferation

potential if the cell survives onto the proliferation stage of the simulations iteration. For any cells

which are non-stem cancer cells we check to see if a random number is less than the probability of

the cell dying (in other words, if the random number is less than α then the cell is removed).

Next, we have to capture the proliferation of the cancer cells. If a random number is less than

the probability of proliferation and the space is occupied than the cell is identified to proliferate

(the value within the spreadsheet cell is set to 1). Below this is another two 20 × 20 grids which, if

the cell is identified to proliferate, is assigned a value of between 1 and 8 that represent directions

that the cancer cell will attempt to proliferate in.

In figure 2 there are now a series of eight 20 × 20 grids arranged in the directions that the

proliferation can be in. We go from one direction to the next and if the cell is empty, and the cell in
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Figure 3: Example of the spreadsheet implementation of a two-dimensional cellular automata model

of cancer growth. a) A screenshot of the spreadsheet, showing the variables at the top and the

current state of the simulation below, and b) a contour plot of the remaining proliferation potential

(or -1 if the spreadsheet cell contains a cancer stem cell).

the opposite direction is proliferating in this direction then it will contain a new cell. The identity

of the new cell is randomly determined to be either symmetrically proliferating or asymmetrically

proliferating (creating both stem and non-stem cells) based on the probability psymm. The new

remaining proliferation potential is determined (or the spreadsheet cell contains -1 if the cancer

stem cell proliferates another cancer stem cell). In other words, if the cell is occupied by a stem

cancer cell then the new cell can either by a stem cell (equal to -1) or a non-stem cell with a

proliferation potential set to the maximum value, but if it is occupied by a non-stem cell then the

proliferation potential of the newly created non-stem cell is reduced by 1. Note the probability of

the stem cancer cell proliferating either a stem cell or a non-stem cell depends on the probability

of symmetric proliferation This is calculated for each direction in turn and then copied to the last

20 × 20 grid, on the right of Figure 2, which represents the next iteration of the simulation.

Now to complete an iteration we just have to copy the next iteration grid over to the original

grid. We can create a macro that will simply copy the contents and paste special (the values but
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not the formulas) to the original cells, and insert a button that when pressed will run the macro to

update the system. Figure 3a shows a snapshot of the spreadsheet simulation. The constants are

stored at the top of the spreadsheet and the current state of the system is below it (the top left

20× 20 grid from Fig. 2). At the top of the screenshot is the button that will run a macro that will

copy the next iteration values back to the current iteration values. Once these values are copied the

spreadsheet will automatically recalculate all of the values for the next iteration. In other words,

every time the button is pressed the simulation progresses through one iteration (representing an

hour of time). Figure 2b shows the remaining proliferation potential (or -1 if the spreadsheet cell

contains a cancer stem cell) after a number of iterations. For the values considered here there would

appear to be a greater concentration of stem cancer cells in the center of the tumor.

During the class discussions that have followed students seem skeptical and believe that the

model might not necessarily represent a real tumor. In particular, the two-dimensional array of

numbers in the spreadsheet can be difficult for students to visualize as an actual representation of

a tumor. Discussions in this class can sometimes be a little uncomfortable as there will be students

who have lost family or friends to cancer. I generally steer the conversation to cancer treatments.

For example, using nanoparticles to deliver chemotherapeutic agents [27], immunotherapy [28] or

molecularly targeted therapy [29]. The model predicts that the stem cells are generally contained

in the center of the tumor, and this has lead the discussion on to the accessibility of different parts

of the tumor to nutrients (and the administered drugs) and the emergence of a complex vasculature

in tumors. Interestingly this can result in an enhanced permeability and retention (EPR) effect

which sees small particles tending to accumulate in tumor tissue to a much greater extent than

they do in normal tissues. Furthermore, there is a strong debate on the nature of the emergence of

drug resistance during chemotherapy that is worth mentioning. The debate surrounds whether drug

resistance is initially present in the tumor to some small extent, or if the drug resistance emerges
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while the tumor is exposed to treatments than can increase mutation rates. In the latter case,

does having stem cells in the center of a tumor surrounded by non-stem cancer cells that are being

exposed to chemotherapeutic agents result in a greater probability of drug resistance emerging?

5 Model of an infection outbreak

The models that represent the outbreak of an infection are well-established and this computer

simulation is used to introduce these models to the students. We choose an infection that the

students are familiar with for this example, and simulate the spread of a zombie apocalypse [30].

This lecture coincides with the week of Halloween and is a fun way for the students to explore this

class of model. Furthermore, students often get excited about which zombie movie or television

show is their favourite, and attempt to vary the parameters to best replicate the effects of their

chosen strain of zombie outbreak.

The differential equations for this model are

dS

dt
= Π − βSZ − δS

dI

dt
= βSZ − ρI − δI

dZ

dt
= ρI − αSZ

and

dR

dt
= δS + δI + αSZ

where S is the number of susceptible people, I is the number of people infected, Z is the number

of zombies and R is the number of people permanently removed from the system (dead, but not
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undead). Π is the birth rate of new people, β is the transmission factor (how people become

infected), δ is the rate at which people die from non-zombie related causes, ρ is the rate at which

the infected become actual flesh-eating zombies, and α is the rate at which humans kill the zombies.

We will solve these equations using the usual finite difference equations (Euler method) and

choose our time step, ∆t, to be suitably small. The discretized equations, that are suitable for

incorporating into the spreadsheet, are

St+1 = St + ∆t [Π − βStZt − δSt]

It+1 = It + ∆t [βStZt − ρIt − δIt]

Zt+1 = Zt + ∆t [ρIt − αStZt]

and

Rt+1 = Rt + ∆t [δSt + δIt + αStZt]

where the subscripts represents the time. A screenshot of the spreadsheet simulation is included as

Figure 4. The various constants are placed at the top of the spreadsheet and directly below this are

5 columns. The first column is time, with each subsequent cell just being updated by the value of

∆t. The second column is the number of susceptible people and this is increased by the birthrate

(which is relatively small), significantly decreased by the transmission of the zombie “disease” and

slightly decreased by the rate at which people die from non-zombie related causes. The third column

is the number of people who are infected with the zombie disease (bitten by a zombie). This is

increased by the same rate of transmission of the zombie “disease” that significantly decreased

the number of susceptible people, but is also decreased by the rate at which the infected become

zombies and (similar to the susceptible population) slightly decreased by the rate at which people
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die from non-zombie related causes. The fourth column is the number of zombies. This is increased

as the infected turn into zombies and is only decreased by the rate at which susceptible people kill

the zombies (although students who reference the movie 28 days later argue that over large times

the zombies will die off on their own). The final column is the number of people removed from the

system. This is increased by the death of susceptible and infected people, or the death of zombies

at the hand of normal humans; note that in the current model this saturates at α/β, as with the

variables considered here the death of zombies is much more prominent than the regular death rate

(although we might expect this to increase during the apocalypse). The zombies quite quickly take

over the world in the current model.

This provides a wonderful way for students to interact with this model and understand the

relationship between the terms in the equations and the overall behaviour of the system. This

model also allows students the opportunity to add additional terms to the equations (or even

populations) to make the model more accurately capture the behaviours found in their favourite

zombie movies. As an example I generally start the discussion by comparing Night of the Living

Dead slow-moving zombies to the 28 Days Later fast-moving zombies. In the case of fast-moving

zombies we might expect the probability of zombies infecting humans to be much higher and the

probability of humans killing zombies to be much smaller. Furthermore, the George A. Romero

zombies can infect susceptible people and the infection leads to zombification over several hours,

while Alex Garland imagined the zombie transformation to be almost instantaneous. This can be

included by drastically increasing the rate that infected are transformed to zombies. The most

interesting discussions, in my opinion, relate to areas that are not initially part of the model. For

example, in one class a couple of students modified the model to account for susceptible people

killing infected people. I think this is a really interesting development. Not just taking a model

and changing the parameters, but exhibiting the confidence and creativity to modify the model to
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Figure 4: Example of the spreadsheet implementation of a model of an infection outbreak. The

infection is chosen to be a zombie apocalypse and the number of susceptible, infected, zombified,

and dead people are calculated and plotted as a function of time.

capture the behaviour they want to mimic.

6 Summary and conclusions

Here we have described a course which we offer that introduces our undergraduate biology students

to computational thinking, mathematical modeling, computer simulations and the power of spread-

sheets in implementing simple models. The course stresses the role of computer simulations in

scientific research, and the benefits of computer literacy and quantitative skills throughout biologi-

cal research. Three examples of models implemented in a spreadsheet environment by our students

have been detailed: the Lotka-Volterra predator-prey model, a cellular automaton model of tumor

growth, and a model of an infectious disease outbreak. Other computer simulations also currently

explored within this course include the dynamic instability of microtubules [31], the treatment of

drug-resistant strains of tumor cells [32], a tissue heat transfer model of scalds and burns [33], and
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a model of dry-eye syndrome [34]. However, the possibilities are endless and the choice of models

to explore within the class is largely based on the interests of the instructor and students.

We have found that the incorporation of computer simulations within undergraduate biology is

important for improving the quantitative skills of our students, and their ability to use spreadsheets

to analysis experimental results. This is perhaps not too surprising after an entire semester course

where the students implement computer models in a spreadsheet environment. Furthermore, a

number of students have subsequently gone on and incorporated spreadsheet models within their

senior thesis research projects and honors research projects (outside of this course). In particular, in

the last two sections offered (which contained on average 15 students each) 6 biology students have

continued using computer models and simulations in their future research projects; something that

would have been unheard of before this class was offered. The long term impact of this course is,

therefore, expected to be significant in the research abilities and possible research direction of our

graduating students. Certainly we hope that the observation that biologists are uncomfortable with

articles that contain mathematical models and computer simulations would not apply as much to

our students after taking this course. As computer simulations and computational thinking become

increasingly prevalent in K-12 education [35] we might expect that undergraduate biology students

will become increasingly comfortable with integrating quantitative skills into their biology research.

Socioeconomic factors will see this occur in some demographics sooner than others, and including a

comprehensive introduction to computer simulations within an undergraduate biology sequence is

expected to help diversify the make up of future computational biologists. Regardless of a student’s

background, however, I have observed that all students that have taken this course have developed

an ability to implement and manipulate computer models within a spreadsheet environment, and I

believe that their general spreadsheet skills have improved significantly.
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