
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

Producing Madgraph5_aMC@NLO gridpacks and using
TensorFlow GPU resources in the CMS HTCondor Global
Pool

Brian Paul Bockelman1, Edgar Fajardo Hernandez2, Diego Davila Foyo3, Kenyi Hurtado
Anampa4, Farrukh Aftab Khan5, Krista Larson5, James Letts2, Marco Mascheroni5, David
Mason5, Antonio Perez-Calero Yzquierdo6,7, and Todor Trendafilovz Ivanov8

1University of Nebraska-Lincoln, Lincoln, NE, USA
2University of California San Diego, La Jolla, CA, USA
3Autonomous University of Puebla, Puebla, Mexico
4University of Notre Dame, Notre Dame, IN, USA
5Fermi National Accelerator Laboratory, Batavia, IL, USA
6Port d’Informació Científica, Barcelona, Spain
7Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain
8University of Sofia, Sofia, Bulgaria

Abstract. The CMS experiment has an HTCondor Global Pool, composed of
more than 200K CPU cores available for Monte Carlo production and the analy-
sis of data. The submission of user jobs to this pool is handled by either CRAB,
the standard workflow management tool used by CMS users to submit analysis
jobs requiring event processing of large amounts of data, or by CMS Connect, a
service focused on final stage condor-like analysis jobs and applications that al-
ready have a workflow job manager in place. The latest scenario can bring cases
in which workflows need further adjustments in order to efficiently work in a
globally distributed pool of resources. For instance, the generation of matrix
elements for high energy physics processes via Madgraph5_aMC@NLO and
the usage of tools not (yet) fully supported by the CMS software, such as Ten-
sorFlow with GPU support, are tasks with particular requirements. A special
adaption, either at the pool factory level (advertising GPU resources) or at the
execute level (e.g: to handle special parameters that describe certain needs for
the remote execute nodes during submission) is needed in order to adequately
work in the CMS global pool. This contribution describes the challenges and
efforts performed towards adapting such workflows so they can properly profit
from the Global Pool via CMS Connect.

1 The submission system

While submission of CMS [1] user jobs to the Global Pool [2] is mostly managed by CRAB
[3], the standard analysis workflow management tool, the generation of matrix elements for
high energy physics processes via Madgraph5_aMC@NLO [4] and the usage of machine
learning tools with GPU resources are independent use-cases that require special adaptation
in order to take advantage of the Global Pool resources.



2

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

CMS Connect [5] provides a service where users can submit HTCondor jobs to the CMS
Global Pool (a global HTCondor pool provisioned by GlideinWMS) with a submission in-
terface similar to those provided by analysis facilities physicists are familiar with, such as
the CERN Analysis Facility [6]. This service complements CRAB, as illustrated in Figure 1,
dealing with a different set of analysis workflows, such as Madgraph gridpacks and the use
of GPU resources with TensorFlow [7] jobs. The sections below describe the challenges and
efforts performed towards adapting these two different workflow types in order to properly
work with CMS Connect and the Global Pool resources.

Figure 1. CMS analysis submission services.

2 Generating Madgraph5_aMC@NLO gridpacks

Monte Carlo (MC) event generators, such as Madgraph5_aMC@NLO, are used to model
physics processes in the high energy physics field. The information generated, including for
example, the computation of the differential cross sections and final state particles involved
in these processes, is stored in a compressed tarball package called gridpack. This is one of
the very first steps in the simulation chain that produces the MC samples used in physics
analyses, as shown in Figure 2.

A generator’s package that automates the production of these gridpacks by setting
up the CMS software environment and providing Madgraph5_aMC@NLO is used in the
experiment. From a computational point of view, this can be achieved in two different ways,
by using all cores available on a single machine, or by having Madgraph5_aMC@NLO
create and submit multiple jobs to a batch manager (e.g.: HTCondor [8]).

The second method is preferred for complex processes, due to the high demand of CPU
power. Furthermore, while local resources, such as the CERN Analysis Facility or local
Tier 3s, where users have login access to the resource batch submission system (in contrast
to grid-enabled resources, where a grid middleware manages the submission to the batch



3

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

CMS Connect [5] provides a service where users can submit HTCondor jobs to the CMS
Global Pool (a global HTCondor pool provisioned by GlideinWMS) with a submission in-
terface similar to those provided by analysis facilities physicists are familiar with, such as
the CERN Analysis Facility [6]. This service complements CRAB, as illustrated in Figure 1,
dealing with a different set of analysis workflows, such as Madgraph gridpacks and the use
of GPU resources with TensorFlow [7] jobs. The sections below describe the challenges and
efforts performed towards adapting these two different workflow types in order to properly
work with CMS Connect and the Global Pool resources.

Figure 1. CMS analysis submission services.

2 Generating Madgraph5_aMC@NLO gridpacks

Monte Carlo (MC) event generators, such as Madgraph5_aMC@NLO, are used to model
physics processes in the high energy physics field. The information generated, including for
example, the computation of the differential cross sections and final state particles involved
in these processes, is stored in a compressed tarball package called gridpack. This is one of
the very first steps in the simulation chain that produces the MC samples used in physics
analyses, as shown in Figure 2.

A generator’s package that automates the production of these gridpacks by setting
up the CMS software environment and providing Madgraph5_aMC@NLO is used in the
experiment. From a computational point of view, this can be achieved in two different ways,
by using all cores available on a single machine, or by having Madgraph5_aMC@NLO
create and submit multiple jobs to a batch manager (e.g.: HTCondor [8]).

The second method is preferred for complex processes, due to the high demand of CPU
power. Furthermore, while local resources, such as the CERN Analysis Facility or local
Tier 3s, where users have login access to the resource batch submission system (in contrast
to grid-enabled resources, where a grid middleware manages the submission to the batch

Figure 2. Monte Carlo request submission chain. Red circle in the diagram shows where gridpacks are
requested in this chain.

system), can in principle be used for this goal, not all CMS users have access to the same
local resources and the submission methods can vary, depending on the batch submission
manager available. Also, long term running jobs might need special requirements, such as
renewing AFS tokens periodically. The submission of jobs to the Global Pool offers many
advantages:

• Higher computing power distributed across all grid site resources available in the CMS
Global Pool.

• Better accounting and monitoring of jobs.

• A central submission node for all CMS users with a grid proxy certificate registered in the
CMS Virtual Organization.

• A single batch submission manager (HTCondor) to deal with.

However, the Global Pool infrastructure expects certain parameters that characterize the
job that are not set by default, such as the maximum executable wall time estimated, or a list
of the CMS sites to submit the jobs to. Additionally, jobs that were not able to finish running
because of an error that might require further action and are put on "hold" state in the system



4

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

(meaning, these jobs will not match to any resource until they are released) are treated as
a general failure in Madgraph5_aMC@NLO, aborting the whole submission, but transient
errors leading to held jobs are not uncommon when submitting to several different sites
globally. The cluster manager in Madgraph5_aMC@NLO was adapted in order to account
for these factors.

For instance, a dynamic adjustment of the requested maximum wall time per job is per-
formed, as well as specifying the the remote sites for submission through environment vari-
ables in the system (while in most cases, matching to all sites is desired, selecting particular
sites can be especially useful to e.g: exclude sites known to have transient issues at the time,
test submission of jobs with special dependencies not yet distributed via the CernVM File
System [9] to a specific site, etc). The cluster manager in Madgraph5_aMC@NLO was
modified to use the HTCondor python bindings in order to check for the status of the jobs
and release held jobs with common transient errors for retrial. Also, the environment in the
worker nodes were adjusted in order to propagate library dependency paths that are lost when
using Singularity [10] containers (the default behavior for remote resources in the Global
Pool). Figure 3 shows a diagram with the changes described above. Additionally, gridpack
jobs set special HTCondor classads that are later used to track the activity of each on CMS
monitoring dashboards. For example, Figure 4 shows the gridpack activity in the Global Pool
divided by name. The name for each gridpack was stored as an HTCondor classad that is
later used at the monitoring side in order to make this classification.

Figure 3. Adaptations applied to Madgraph5_aMC@NLO in order to make it compatible with the
Global Pool infrastructure.

3 Deep learning and GPU resources

Machine Learning algorithms, such as boosted decision trees, random forest or artificial
neural networks, have been successfully used within the high energy physics field for
decades, but the rise in terms of demand of GPU resources started just a few years ago, with
the training of deep neural networks, a subset of Machine Learning inspired in artificial
neural networks (see Figure 51 ).

1Source: NVIDIA



5

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

(meaning, these jobs will not match to any resource until they are released) are treated as
a general failure in Madgraph5_aMC@NLO, aborting the whole submission, but transient
errors leading to held jobs are not uncommon when submitting to several different sites
globally. The cluster manager in Madgraph5_aMC@NLO was adapted in order to account
for these factors.

For instance, a dynamic adjustment of the requested maximum wall time per job is per-
formed, as well as specifying the the remote sites for submission through environment vari-
ables in the system (while in most cases, matching to all sites is desired, selecting particular
sites can be especially useful to e.g: exclude sites known to have transient issues at the time,
test submission of jobs with special dependencies not yet distributed via the CernVM File
System [9] to a specific site, etc). The cluster manager in Madgraph5_aMC@NLO was
modified to use the HTCondor python bindings in order to check for the status of the jobs
and release held jobs with common transient errors for retrial. Also, the environment in the
worker nodes were adjusted in order to propagate library dependency paths that are lost when
using Singularity [10] containers (the default behavior for remote resources in the Global
Pool). Figure 3 shows a diagram with the changes described above. Additionally, gridpack
jobs set special HTCondor classads that are later used to track the activity of each on CMS
monitoring dashboards. For example, Figure 4 shows the gridpack activity in the Global Pool
divided by name. The name for each gridpack was stored as an HTCondor classad that is
later used at the monitoring side in order to make this classification.

Figure 3. Adaptations applied to Madgraph5_aMC@NLO in order to make it compatible with the
Global Pool infrastructure.

3 Deep learning and GPU resources

Machine Learning algorithms, such as boosted decision trees, random forest or artificial
neural networks, have been successfully used within the high energy physics field for
decades, but the rise in terms of demand of GPU resources started just a few years ago, with
the training of deep neural networks, a subset of Machine Learning inspired in artificial
neural networks (see Figure 51 ).

1Source: NVIDIA

Figure 4. Gridpack production activity in the Global Pool during a day.

The availability of thousands of cores and a faster bandwidth to memory than conven-
tional CPU resources are some of the main features in GPU resources. On the other hand, the
low memory, low clock speeds and the fact data has to be transferred to the GPU card makes
it challenging for several applications to take advantage of this. However, deep learning
algorithms involve several matrix multiplication and other operations that can be massively
parallelized and are not tied to high memory requirements or large data transfers, making it
suitable for the GPU architecture.

The usage of deep learning algorithms in industry has lead to the development of pow-
erful machine learning frameworks. For instance, Tensorflow [7] is an open source software
library, originally developed by Google, providing strong support for machine learning and
deep learning with several APIs for programming languages, such as Python and C++, two
popular languages in the high energy physics community.

Figure 5. Artificial Intelligence algorithms over the years. Source: NVIDIA [11].



6

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

3.1 Using TensorFlow and GPU resources in the Global Pool

Even though many grid sites with GPU resources are available in the CMS Global Pool,
meeting the software dependencies needed in order to use deep learning algorithms in
them can become a challenge due to the lack of support of TensorFlow and other related
frameworks in the base Operating Systems commonly used by CMS (Red Hat 6 and 7).

To help with this, CMS provides such dependencies through CVMFS, but its support
is only available at the CPU level. The integration with GPU resources can easily fall
into potential conflicts with GPU library dependencies. For instance, different TensorFlow
versions can require specific versions of cuDNN (the Nvidia Deep Learning SDK) or the
CUDA [12] toolkit to work.

To overcome this issue on a wider scale, Singularity containers [10, 13] based on
Ubuntu with TensorFlow installed with GPU support are built, maintained and distributed
via CVMFS by the Open Science Grid (OSG) [14, 15]. Figure 6 illustrates the different com-
ponents involved in the provisioning of such software dependencies handled by the OSG.
These Singularity images are used with the CMS resources in a transparent way, due to the
full support for Singularity in the CMS Global Pool infrastructure.

Figure 6. Schematic representing the link between GPU resources, CUDA drivers, machine learning
frameworks and the experiments and organizations using this infrastructure.

4 Conclusions

This work has presented the needs and challenges present in two different types of workflows
existing in the CMS collaboration, as well as the solutions provided in order to make them
compatible with Global Pool resources via CMS Connect. While the production of gridpacks
required adaptations at the Madgraph5_aMC@NLO code level, in order to set a group of job



7

EPJ Web of Conferences 214, 03004 (2019)	 https://doi.org/10.1051/epjconf/201921403004
CHEP 2018

3.1 Using TensorFlow and GPU resources in the Global Pool

Even though many grid sites with GPU resources are available in the CMS Global Pool,
meeting the software dependencies needed in order to use deep learning algorithms in
them can become a challenge due to the lack of support of TensorFlow and other related
frameworks in the base Operating Systems commonly used by CMS (Red Hat 6 and 7).

To help with this, CMS provides such dependencies through CVMFS, but its support
is only available at the CPU level. The integration with GPU resources can easily fall
into potential conflicts with GPU library dependencies. For instance, different TensorFlow
versions can require specific versions of cuDNN (the Nvidia Deep Learning SDK) or the
CUDA [12] toolkit to work.

To overcome this issue on a wider scale, Singularity containers [10, 13] based on
Ubuntu with TensorFlow installed with GPU support are built, maintained and distributed
via CVMFS by the Open Science Grid (OSG) [14, 15]. Figure 6 illustrates the different com-
ponents involved in the provisioning of such software dependencies handled by the OSG.
These Singularity images are used with the CMS resources in a transparent way, due to the
full support for Singularity in the CMS Global Pool infrastructure.

Figure 6. Schematic representing the link between GPU resources, CUDA drivers, machine learning
frameworks and the experiments and organizations using this infrastructure.

4 Conclusions

This work has presented the needs and challenges present in two different types of workflows
existing in the CMS collaboration, as well as the solutions provided in order to make them
compatible with Global Pool resources via CMS Connect. While the production of gridpacks
required adaptations at the Madgraph5_aMC@NLO code level, in order to set a group of job

variables expected by the Global Pool and to handle common transient errors for release and
resubmission, the support of machine learning tools working with GPU resources is handled
by integrating the solutions provided by the OSG in the infrastructure.

The Open Science Grid and University of Chicago Team not only provide and maintain the CI-Connect
based submission hardware and networking infrastructure, but also support the service on different lev-
els, including hosting, registration, software updates and maintenance notifications, within other tasks.
We are especially grateful to Robert Gardner, Lincoln Bryant, Suchandra Thapa and Balamurugan
Desinghu who assisted closely in the integration of the CI-Connect platform with the CMS Global
Pool and continue supporting the service operability. The present work is partially funded under grants
from the U.S Department of Energy, the National Science Foundation and Spain Ministry of Econ-
omy and Competitiveness grant FPA2013-48082-C2-1/2-R. The Port d’ Informació Científica (PIC)
is maintained through a collaboration between the Generalitat de Catalunya, CIEMAT, IFAE and the
Universitat Autonoma de Barcelona.

References

[1] S Chatrchyan et al. (The CMS Collaboration), The CMS experiment at the CERN LHC
JINST 3, S08004 (2008)

[2] B Bockelman et al. Exploring GlideinWMS and HTCondor scalability frontiers for an
expanding CMS Global Pool, to be published in these proceedings (CHEP2018)

[3] M Cinquilli, D Spiga, C Grandi, J M Hernandez, P Konstantinov, M Mascheroni, H
Riahi and E Vaandering, CRAB: Establishing a new generation of services for distributed
analysis at CMS, J. Phys. Conf. Ser., 396(3), 032026 (2012)

[4] J Alwall et al., The automated computation of tree-level and next-to-leading order differ-
ential cross sections, and their matching to parton shower simulations, arXiv:1405.0301
[hep-ph] (2014)

[5] J Balcas et al., CMS Connect, J. Phys. Conf. Ser., 898, 082032 (2017)
[6] O Buchmueller et al., The CMS CERN Analysis Facility (CAF), J. Phys. Conf. Ser., 219,

052022 (2010)
[7] M Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems,

arXiv:1603.04467 [cs.DC] (2016)
[8] D Thain, T Tannenbaum and M Livny, Condor and the Grid, Grid Computing: Making

The Global Infrastructure a Reality, ISBN: 0-470-85319-0 (John Wiley & Sons, 2003)
[9] J Blomer, C Aguado-Sánchez, P Buncic and A Harutyunyan, Distributing LHC applica-

tion software and conditions databases using the CernVM file system, J. Phys. Conf. Ser.,
331, 042003 (2011)

[10] GM Kurtzer, V Sochat, MW Bauer, Singularity: Scientific containers for mobility of
compute, PLoS ONE 12(5): e0177459. (2017)

[11] NVIDIA Deep Learning: https://developer.nvidia.com/deep-learning
[12] J Nickolls, I Buck, M Garland, and K Skadron. Scalable Parallel Programming with

CUDA. Queue 6, 2 , 40-53 (2008)
[13] Singularity Software: https://doi.org/10.5281/zenodo.1308868
[14] E Fajardo Hernandez, OSG and GPUs: A tale of two use cases, to be published in these

proceedings (CHEP2018)
[15] CVMFS-Singularity-Sync OSG scripts to maintain Singularity images in CVMFS:

https://doi.org/10.5281/zenodo.1469012


