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ABSTRACT

Video streaming accounts for a significant amount of traffic on the Internet. Users

expect a high quality of experience with online video streaming. Service and content

providers desire to provide a satisfying experience for end users. Therefore, developing

metrics to measure users satisfaction of such services is crucial. Quality of Experience

(QoE) of a user for a video streaming service is important for content providers. For

video streaming, the DASH (Dynamic Adaptive Streaming over HTTP) standard is one

of the common approaches for streaming used by content providers in which a video

is divided into segments of different bit rates for delivery. In this research, we studied

two inter-related problems for DASH video streaming: 1) in-network caching techniques,

prefetching, and 2) QoE measurement and monitoring.

In the first research direction, we focus on content providers utilizing in-network

caching and prefetching in order to reduce video delivery latency to provide users a higher
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quality of experience and reduce the traffic load on the core network. The issue with cur-

rent prefetching methods is that they do not utilize available resources well; thus, the end

users are not able to receive the best possible QoE. These approaches are either mostly

naive or they are not compatible with the DASH protocol and they are too complex con-

suming too much time and compute resources.

We propose a smart video cache prefetching scheme for segment bitrates. Our

prefetching approach is based on throughput values in the cache that are forecasted using

previous throughput values from clients. Since in a cache environment, multiple clients

contend for video segments in the cache, we assess the cache performance and also con-

sider the impact on QoE for each client during contention. When comparing our scheme

with an existing scheme, results show that our smart prefetching increases the cache hit

rate and reduces the number of unused prefetches for the cache, thereby improving QoE

of the clients.

In our second research direction, we focus on objective QoE, for which a number

of QoE models has been proposed. The limitations of the current models are that the QoE

is provided after the entire video is delivered; also, the models are on a per client basis.

We refer to such models as static QoE models. In many situations, such as live events, en-

semble QoE during the session is important to understand, especially for multiple clients

together, for network and content providers. For this need, we propose two QoE models

to capture QoE periodically during video streaming by multiple clients simultaneously,

iv



which we refer to as Moving QoE (MQoE) models.

Our first model, MQoE RF takes into consideration the nonlinear effect due to

the bitrate gain and sensitivity from the bitrate switching frequency. Our second model,

MQoE SD focuses on capturing the standard deviation in the bitrate switching magnitude

among segments. Then, we study the effectiveness of both the models in a multi-user

mobile client environment. We compared our models with an extension of the Model

Predictive Control (MPC) QoE model (referred to as MQoE MO). Our study shows the

robustness of our MQoE models. The results show how the MQoE models is able to more

accurately capture the overall QoE behavior than the static QoE model and its extension.

v



APPROVAL PAGE

The faculty listed below, appointed by the Dean of the Graduate Studies, have examined

a dissertation titled “Video Streaming Quality of Experience (QoE): In-network Cache

Prefetching and Moving QoE Models,” presented by Sheyda Kiani Mehr, candidate for

the Doctor of Philosophy degree, and hereby certify that in their opinion it is worthy of

acceptance.

Supervisory Committee

Deep Medhi, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Prasad Jogalekar, Ph.D.
Ericsson Inc.

Praveen Rao, Ph.D.
Department of Computer Science & Electrical Engineering

Zhu Li, Ph.D.
Department of Computer Science & Electrical Engineering

Cory Beard, Ph.D.
Department of Computer Science & Electrical Engineering

Beak-Young Choi, Ph.D.
Department of Computer Science & Electrical Engineering

vi



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quality of Experience (QoE); Background . . . . . . . . . . . . . . . . . 1

1.2 HTTP-based Adaptive Bitrate Streaming; Background . . . . . . . . . . 3

1.3 In-network Cache Prefetching; Motivation and Contribution . . . . . . . 5

1.4 Moving QoE Measurement and Monitoring Models; Motivation and Con-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Additional Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Cache Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 QoE Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Smart Cache Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Basic Cache Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Smart Cache Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



4 smart cache Prefetching Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Initial Analysis and Adjustment . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Moving QoE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Diagram Architecture for MQoE . . . . . . . . . . . . . . . . . . . . . . 59

6 Moving QoE Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Environment Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Initial Analysis and Adjustment . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCE LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



ILLUSTRATIONS

Figure Page

1 ABR segment bitrate selection based on network throughput and buffer

status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 High level architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Network topology with clien(s), cache and origin server . . . . . . . . . . 32

4 Forecasting error for Big Buck Bunny (a), Elephants Dream (b), No Traffic 37

5 Forecasting error for Big Buck Bunny (a), Elephants Dream (b), Short

Interval Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Forecasting error for Big Buck Bunny (a), Elephants Dream (b), Long

Interval Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Throughput comparison smart cache vs. client . . . . . . . . . . . . . . . 42

8 Bitrate request smart cache vs. basic cache vs. client . . . . . . . . . . . 45

9 Throughput measurement for clients with smart vs. basic cache. . . . . . 49

10 Latency: smart vs. basic. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11 Bitrate Gain: samrt vs. basic. . . . . . . . . . . . . . . . . . . . . . . . . 52

12 MQoE RF for multiple clients. . . . . . . . . . . . . . . . . . . . . . . . 55

13 MQoE SD for multiple clients. . . . . . . . . . . . . . . . . . . . . . . . 57

14 MQoE Architecture with thee clients n− 1, n, n+ 1 for window m. . . . 59

15 mobile network topology . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



16 Segments in megabytes: BBB vs. ED for the highest representation . . . 62

17 Three clients (car) with different values of α and γ (for BBB) . . . . . . . 65

18 Three clients/Car, Moving QoE models MQoE RF, MQoE SD and MQoE MO

(for BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

19 Three clients: car (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

20 Three clients: car (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

21 Three clients/Car: size in each window for BBB and ED . . . . . . . . . 71

22 Three clients (car): first client’s segments in bytes: BBB and ED . . . . . 72

23 Five clients: car (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

24 Five clients: car (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

25 Five clients/Car: window bytes BBB and ED . . . . . . . . . . . . . . . 76

26 Five clients/Car: first client’s segments in bytes for BBB and ED . . . . . 76

27 Ten clients: car (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

28 Ten clients: car (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

29 Ten clients (car): window bytes BBB and ED . . . . . . . . . . . . . . . 79

30 Ten clients (car): first client segment byte BBB and ED . . . . . . . . . . 79

31 Three clients: train (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . 81

32 Five clients: train (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . 82

33 Ten clients: train (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

34 Three clients: train (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . 85

35 five clients: train (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

36 Ten clients: train (ED) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



37 Three clients (train): window bytes BBB and ED . . . . . . . . . . . . . 88

38 Five clients (train): window bytes BBB and ED . . . . . . . . . . . . . . 88

39 Ten clients (train): window bytes BBB and ED . . . . . . . . . . . . . . 89

40 Three clients: ferry (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . 90

41 Five clients: ferry (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . 91

42 Ten clients: ferry (BBB) . . . . . . . . . . . . . . . . . . . . . . . . . . 92

43 mult-client: MQoE RS, γ = 10 . . . . . . . . . . . . . . . . . . . . . . . 93

44 mult-client: MQoE SD, α = 1 . . . . . . . . . . . . . . . . . . . . . . . 94

xi



TABLES

Tables Page

1 Exponential smoothing error ratio for double client scinatio with 10s and

15s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Throughput error ratios comparison for smart cache (Bandwidth=5 Mbps) 43

3 Cache hitrates in smart and smart schemes (Bandwidth=5 Mbps) . . . . . 45

4 Cache hitrate ratio for all the scenarios . . . . . . . . . . . . . . . . . . . 47

5 Client average throughput (Mbps) with a single client scenario . . . . . . 48

6 Client average throughput (Mbps) with double clients scenario . . . . . . 48

7 Average latency and average bitrate for a single client in basic and smart

cache schemes with and without traffic . . . . . . . . . . . . . . . . . . . 50

8 Average latency and average bitrate for double clinets in basic and smart

cache schemes with a 10s and 15s . . . . . . . . . . . . . . . . . . . . . 50

9 Average bitrate switching: double clients . . . . . . . . . . . . . . . . . . 52

10 Notations used in QoE models. . . . . . . . . . . . . . . . . . . . . . . . 56

11 Sets of weight parameters for MQoE models . . . . . . . . . . . . . . . . 64

12 Average values of segment sizes (in MB) for all the case studies. . . . . . 73

xii



ACKNOWLEDGEMENTS

I would like to thank my research advisor Dr. Deep Medhi for his support and

courage he gave me to achieve my goal. Dr. Medhi was always motivating for me, he

emphasizes the importance of gaining experiences, learning, and growing. He listened

to my ideas and let me explore, experience, and build my ideas. He has such a positive

attitude and personality with creating a very friendly environment for his students. I am

honored to know him and have the chance of working with him.

Besides my advisor, I would like to thank my manager and mentor at Ericsson,

and my co-supervisor, Dr. Prasad Jogalekar for all the help and support he gave me. His

advice and guidance helped me through my research goals.

I also would like to thank my committee members Dr. Praveen Rao, Dr. Cory

Beard, Dr. Zhu Li, and Dr. Baek-Yong Choi for their willingness to serve on my commit-

tee and their insightful feedback.

Most importantly, I would like to thank my parents Heshmat Kiani Mehr and Goli

Majidi for making this possible, and my sisters Shaghayegh, Niloofar, and Nikoo Kiani

Mehr for their constant support and encouragement.

Last, I would like to thank my friends and colleagues who motivated me toward

my goals.



CHAPTER 1

INTRODUCTION

During the past decade, transition of traditional broadcast television to online

video streaming, the advent of the ubiquitous mobile devices, and the increasing demand

for high video quality with leads to the fact that a notable amount of Internet traffic be-

longs to video streaming users. Cisco estimates that by 2022 video streaming volume is

projected to be 82% of all the Internet traffic [13].

In this dissertation, we propose a new in-network caching prefetching to improve

cache performance and user Quality of Experience (QoE) measurements [25], [26]. Then

we propose two Moving QoE models [24] for ISPs and content providers monitoring

purposes.

1.1 Quality of Experience (QoE); Background

Service and content providers desire to provide a satisfying experience for users,

in order to sustain their current users and attract more future users. Therefore, considering

a metric to measure users satisfaction of a given service is crucial.

Traditionally, Quality-of-Service (QoS) used to be the metric to measure the per-

formance of online services. However, QoS is a network-centric metric and indicates the

performance of the network [5]. Therefore, QoS is not powerful enough to fully express

all aspects of a user experience in a given service, specially a video streaming service.
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A user-centric metric is required to measure users satisfaction. Quality-of-experience

(QoE) is used in many areas such as multimedia services and systems ( [17], [30]). QoE

is an extension to QoS and it is not only limited to the use of a system or service, as it

is also related to some other end-to-end factors such as users psychological and environ-

mental settings, and the content itself [12]. QoE metrics are classified into subjective and

objective metrics.

The Mean Opinion Score (MOS) is the de facto metric for subjective QoE assess-

ment. QoE assessment in terms of MOS demonstrate the users real perception. However,

collecting the MOS feedback directly from users is not easy, and it is difficult to auto-

mate the collection of MOS in large-scale systems. To address these problems, several

objective QoE metrics have been recommended by ITU-T video streaming service, as

perceived by the viewer [14].

To support the quantification of QoE by the service provider, QoE models should

thus account for both users perception of video quality and users preferences [57]. The

following are the common objective QoE metrics [ [22], [46]]:

• Bitrate gain: The quality of a video stream based on the encoding rate.

• Bitrate switching events: the count of bitrate codec changes based on network and

buffer conditions.

• Bitrate switching magnitude: amplitude of the Bitrate codec changes based on net-

work and buffer conditions.

• Playback startup delay: The time duration before a video starts to playout.
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• Interruption events: If the download rate falls below the buffers playback rate, the

buffer gets depleted and the player waits for the buffer to be partially filled before

resuming the playback (re-buffering).

• Interruption duration: How long is a stall event in re-buffering.

These metrics are what a video user can directly experience during a video ses-

sion, without knowing about the details behind the scene. However, an acceptable QoE

metric does not always imply that users will have a viewing experience that is considered

pleasant. Based one preferences of users, any of these metrics may have more affect on a

user experience.

The factors that affect QoE metrics and overall QoE evaluation are more of a

concern for content providers and ISPs include the QoS related metrics such as network

bandwidth, delay/latency, jitter; the parameter values for various network entities such

as clients buffer size, segment duration, bitrate codec, cache size, device resolution; and

algorithms such as ABR, prefetching scheme, replacement algorithms etc.

1.2 HTTP-based Adaptive Bitrate Streaming; Background

There are some general video streaming techniques such as real-time video stream-

ing, Real-time messaging protocol streaming, progressive download streaming, and HTTP

based adaptive bitrate streaming. HTTP based adaptive bitrate streaming attained a spe-

cial attention for its scalability benefits. The advantages of HTTP for multimedia stream-

ing include the ability to traverse firewalls/NATs, HTTP-based services do not have to

make any major modifications to the existing web-servers (a server does not need to
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maintain session), and furthermore, the existing Content Distribution Networks (CDNs),

proxies, and caches already support HTTP traffi [22].

Dynamic Adaptive Streaming over HTTP (DASH) for video streaming has been

standardized by ISO/IEC MPEG [6]. Streaming and media companies such as YouTube,

Hulu, and Netflix use DASH for streaming video contents.

DASH streams video contents from traditional HTTP servers. A video that uses

the DASH standard is available with multiple codec representations. Each video repre-

sentation is divided into segments with constant playback duration; this is done in or-

der to enable different representations during the playback of the video at the user end.

In DASH, each video title is associated with a metadata file called Media Presentation

Description (MPD), wherein each segment for a particular resolution is associated with

a Universal Resource Locater (URL). Before playback begins, the client requests and

fetches the MPD file and parses it to determine the available bitrates and URLs for all

segments. A DASH client starts by downloading the first segment, usually with the low-

est available bitrate representation, and uses an Adaptation BitRate (ABR) algorithm to

determine the most suitable bitrate to be requested for each of the subsequent segments

(see Fig. 1). Designing an optimize ABR is a major challenge for video content ser-

vice providers. The most widely used ABR the Dynamic or Hybrid that makes decisions

based on two factors: the network condition represented by the throughput measurements

for the downloaded segments and the current status of the client buffer.
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Figure 1: ABR segment bitrate selection based on network throughput and buffer status.

1.3 In-network Cache Prefetching; Motivation and Contribution

1.3.1 Motivation

A technique that content and service providers utilize in content delivery is caching,

by bringing the contents closer to users to increase the hitrate and finally the end users

QoE. With hitrate rise, users can avoid to route to a long distant congested path to request

a content from an origin server. Bringing the content closer to the user can reduce the

latency, a QoS metric which is very effective on QoE metrics and in some literature it is

part of QoE metrics. So, caching can improve the QoE of video streaming users. How-

ever, cache servers have smaller storage size than that of the main servers. And there are

some methods to utilize cache resources and increasing hitrate:

• Replacement: optimize the storage of cache server by removing some less re-

quired contents. Most popular cache replacement algorithms are First in first out

(FIFO), Least recently used (LRU), Time aware least recently used (TLRU), Least-

frequently used (LFU), and Least frequent recently used (LFRU).

• Prefetching: prefetch a content before a user request it.
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While there are many studies and work for replacement algorithms in cache, there are not

many studies on prefetching a bitrate segment in cache. The reason is that, prefetching

is a very difficult decision with the unpredictable network condition, specially when it is

implemented in another entity other than the client. The most popular work is [33] which

we call it basic prefetching scheme in this dissertation. In addition, prefetching for video

content is more challenging that other contents as they have noticeably larger sizes. Also,

the expectation of the end users in video streaming is very different that other contents.

Low bitrate quality, frequent changes in bitrate, and high latency will significantly create

an unpleasant experience for users. Unlike the other contents the multimedia service is

very time sensitive so users expect smooth play with no interruption and frequent changes

of quality.

The challenge of video content providers is to design a prefetching cache scheme

that can prefetch the correct representation for a next segment request of a client. Other-

wise, the number of misses increases, and resources such as storage will be filled up with

wrong contents. With misses, the load on the backbone links will increase by fetching the

wrong segment bitrates prefetches from the origin server. The resources will be wasted

and it causes even more degradation of cache performance and QoE. Therefore, prefetch-

ing is a very risky process but if it has the right scheme, its benefits are significant. With

enhancing the prefetching in cache, hitrate can decrease the number of unused prefetch

segments, and improves the bandwidth usage of a link that is connected from cache to

video content servers.

When multiple clients simultaneously contend for a particular video from the

6



cache, the overall performance and QoE may be impacted negatively. There are two main

prefetching scheme modes, cache-driven or a client-driven prefetching that each has its

own drawbacks. For example, with cache-driven prefetching scheme, service providers

may not be able to guarantee a premium quality of service with DASH.

1.3.2 Scope and Contributions

This dissertation proposes a smart cache prefetching scheme for DASH video

streaming.

The issue with the previous methods is that they do not utilize the available re-

sources, such as bandwidth of the link, and the users are not able to receive the best

possible QoE. These approaches are not smart enough or they are mostly cache-based or

hybrid (cache assistant) prefetching approaches which are not compatible with a typical

DASH.

We proposed a smart cache prefetching scheme that along with a comprehensive

set of studies on cache, the cache interaction with two clients, it provides an optimized

cache and QoE performance. Firstly, the method increases the hitrate, and decrease

the storage usage, while reduce the load between cache server and origin server link.

Secondly, it improves the QoS and QoE metrics of each user individually. The scheme

prefetches segment bitrate based on forecasting client throughput at the cache entity, by

using previous throughput values from a client. Cache applies each throughput value in a

rate based ABR and prefetches the required video segment with an appropriate represen-

tation.
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The smart cache framework is a modular system including prefetching and re-

placement modules. For the cache to handle multiple clients, we have implemented a

multi-threading cache that allows multiple clients to request the same video in order to

observe cache performance under contention. Having a multi-threading cache allows us

to answer a number of questions. For example, how does the cache function if multiple

different clients request the same video at nearly the same time? How will cache per-

formance and QoE be affected with a traffic on the link among client, cache, and origin

server? Thus, our comprehensive study focuses on understanding the impact that condi-

tions such as these will have on the function of the cache. In this work, we study two

different experiment setup for the network bottleneck. First, implement a bottleneck be-

tween client and cache server. Second, we implement a bottleneck between cache server

and origin server. For the second setup, a replacement algorithm was considered when

the number of clients were added up.

In our smart cache approach, the clients assist the cache ,the DASH client decision

on a bitrate segment is independent from the cache server. It means, client doesn not

align its bitrate decision based on whatever segment bitrate that is already available on

the cache at the moment. The DASH client will recive what it asks for based on the

DASH protocol selection. We propose a smart client-driven cache prefetching scheme to

predict the most accurate segment for clients requests. It may be noted that several works

considered multiple clients in their experiments; however, these works did not study each

QoE metric and the impact of their proposed method on each client. In our work, we

study the performance impact on each client separately.
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1.4 Moving QoE Measurement and Monitoring Models; Motivation and

Contribution

1.4.1 Motivation

Service providers, network providers, device manufacturers, and end users desire

better experience and more economic approach for their experience while save resources

such as network, compute, and storage. A major challenge that video content service

providers face is to understand whether the users are receiving a fulfilling video stream-

ing experience. They can use the QoE metrics and QoE models for optimization of service

delivery (encoding pipeline, load balancing, resource allocation, etc.) to provide a pleas-

ant QoE to the end user while optimize resources usage [9].

There have been a number of works, which proposed QoE models with objective

QoE metrics ( [9], [22]). The metric selection and formulation of a QoE model is the

key point of a strong QoE model. Traditional QoE models use metrics such as Peak

Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) index, Video Quality

Metric (VQM), etc. These metrics do not convey user experience well enough, because

they provide the impairments due to compression or packet losses. The new metrics

express the psychological and emotion aspects of the users expections. The most popular

objective model is MPC [58] where considered a liner relation of bitrate gain, bitrate

switching magnitude and rebuffering duration. However, the choice of QoE model and

metrics depends on the application and the interests of the providers. There are various

parties of video streaming service delivery that benefit from QoE modeling from [9] that

are mentioned below:
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• Network providers: QoE models with important QoE metrics are used by the net-

work providers to detect an issue and to decide the right actions such as resource

allocation, network throttling, load balancing, caching and network provisioning.

• Service providers: The service providers should consider user requirements and ex-

pectations to keep their users satisfied. Therefore, suitable QoE models can provide

an insight into the metrics and their impact on the service, and in turn allow the

service provider to take appropriate decisions to ensure acceptable end user QoE.

• Device Manufactures: Devices have different capabilities and one of QoE factors

is the device screen size. Thus, good QoE models can help device manufacturers

for considering the device features such as display size, display resolution, CPU,

RAM.

• End users: The most important part of the service delivery that will benefit from

an appropriate QoE model is the end user. It is important to provide a service that

meets users requirements and it depends on the QoE metrics and the QoE formula-

tion that define the user satisfaction.

1.4.2 Scope and contributions

In this dissertation, we propose two Moving QoE (MQoE, in short) models for

QoE monitoring that periodically measure the aggregated QoE among multiple clients.

While there are a number of objective QoE models, a limitation of the these models is that

the QoE is provided after the entire video is delivered; also, the models are on a per client

10



basis. For content service providers, observed QoE is important to monitor and understand

ensemble performance during streaming such as for live events or concurrent streaming

when multiple clients are streaming. Since the content providers serve numerous users,

at any instance, the interest is to understand on ensemble how their services are being

received by the users.

Moving QoE (MQoE) model, which in that QoE is measured periodically for

multiple client to inform a controller is formulated in two versions. One version is non-

linear which it depends on the bitrate switching counts as a negative metric. And the other

version is linear which it depends on the bitrate switching magnitude. Then we study the

effectiveness and robustness of both the models in a multi-user mobile client environment,

with the mobility patterns being based on traces such as car, train and, ferry.

In order to study our MQoE MOdels and to mimic the perspective of a content

provider to monitor the video streaming service, we implemented a multi-client environ-

ment accessing video streaming service. Our goal was to consider two aspects in our

study: first one is related to the specific video being streamed and the second one on

user mobility. For the first aspect, we consider the same video being streamed to multiple

clients to conduct a controlled study. Interestingly, the situation of multiple clients access-

ing the same video is also common in practical situations such as when a video lecture is

delivered by an instructor watched by students, or live events when multiple users want

to watch the same event such as a sport event. It may be noted that for delivering live

contents, YouTube also provides API that uses DASH [2]. Considering the same video
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being watched by multiple clients, let us observe whether QoE is being equitably allo-

cated among clients. For the second aspect in our study, we conducted our study of the

MQoE MOdels with mobile clients for users in transit to fully capture the moving QoE

behavior. For this, our work considers three different mobility patterns for the clients to

emulate traveling in a car, ferry or train.

The novelty of our work is that, to our knowledge, we are the first one to present

moving QoE models for video stream monitoring from a content service providers per-

spective. Furthermore, our work helps content providers to apply moving QoE models

to monitor performance on a continual basis. Since in our experience, content providers

give different priorities to different factors, we present two QoE models so that content

providers have the freedom to choose one of the models that suit their needs based on

their preferences. As we show through our work, a static QoE model such as MPC QoE

model is not applicable for use in a content monitoring environment.

1.5 Additional Contributions

There are other work that we collaborated with some colleagues on similar to or

different than the work we present in this dissertation. The first work is a QoE modeling

and ABR evaluation study [57]. The other work is a study of Wi-Fi signal strength and

application throughput which was implemented in the University of Missouri-Kansas City

campus network [20].
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1.5.1 QoE model and DASH ABR algorithm

One approach to improve QoE of the video streaming users is to provide an ABR

algorithm that can make a better segment bitrate representation selection. Most ABR

algorithms are based one the network bandwidth, however the segment sizes vary for a

given bitrate codec representation. So, client only by considering bandwidth changes does

not provide an accurate segment bitrate prediction. One of the previously proposed ABRs,

the Segment-Aware Rate Adatation (SARA) algorithm accurately predicts the download

time for the next segment, then it makes an informed bitrate selection by considering

segment size information from a modified MPD file.

In this work, we implemented and studied the SARA algorithm, on an Android

mobile device running a browser-based video player along with other Rate-based and

Buffer-Based ABRs within three different mobile traffic such as car, ferry, and train. We

evaluated SARA in two different set of experiments, objective and subjective. For objec-

tive evaluation, we developed a new QoE model and measured the QoE of users when

using SARA compared to other ABRs. This QoE model considers QoE metrics such as

bitrate gain, bitrate switching amplitude and interruption ratio. In addition, we created

two reward QoE metrics that help a more accurate QoE evaluation. The score obtained

from the new objective QoE model demonstrates that the SARA algorithm for mobile

clients gives a better QoE among all the other exiting ABR algorithms. Second, we im-

plemented a subjective evaluation among 54 non-expert users where the users watch the

video and rate it. The results showed that SARA for mobile clients outperforms others

ABRs in terms of the Mean Opinion Score (MOS), while achieving improvement in terms
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of the interruption ratio.

1.5.2 Assessing Wi-Fi Signal Strength and Application Throughput in a Campus

Network Environment

Wi-Fi network users in a university campus are students, faculty, staff and visitors.

Due to a variety of reasons, including budgetary issues or physical restrictions, the Cam-

pus Information Services (CIS) Division is limited on the number of Wi-Fi Access Point

(AP) installations in different campus buildings and where they are installed. Sometimes

users complain that they are not getting good Wi-Fi access. The CIS staff members of-

ten use a Wi-Fi analyzer to test the signal strength to determine if additional Wi-Fi APs

should be added, with the general understanding that if the Wi-Fi signal is better, the users

will have a better experience.

In this work, we study and assess the possible relationship between Wi-Fi signal

strength and the application performance in University of Missouri-Kansas City campus

network. We collect our data with a software-based Wi-Fi analyzer along with a script-

ing tool for application performance. We collected data in three different buildings over

multiple floors on our campus network.

We found that there is a statistically conclusive evidence that an association exists

between Wi-Fi signal strength and the application throughput. This association can be

described through a nonlinear regression fit when the server is located within the prox-

imity of the end device. In addition to the broader question on relationship, we sought

answers questions such as: 1) How is the signal strength measured in dBm related to the

application performance for different conditions? and 2) Is there a connection between
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how far the client is from an AP to the application performance?

1.6 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents literature

survey of two problems, in-network cache prefetching schemes and QoE modeling. In

Chapter 3, we present our smart cache framework including the modularized model and

algorithm. The evaluation of this model has been demonstrated in Chapter 4. Next, we

propose a novel Moving QoE for DASH video streaming in Chapter 5 followed by a

comparative evaluation in Chapter 6. We end with a concluding remark in Chapter 7.
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CHAPTER 2

LITERATURE SURVEY

2.1 Cache Prefetching

Numerous studies have been done in order to improve user QoE along with cache

performance, hitrate, and link utilization.

Incorporating the network entities as an assistance to video stream client will add

advancement to the current video streaming delivery and users QoE. Employing cache

entity to improve QoE has been studied in some work with different methods. Poliakov

et al. [43] built a caching-aware rate decision algorithm for the client that has no collabo-

ration with other entities. The algorithm is designed based on a model in the presence of

a cache. Benno et al. [10] presented a framework that applies a client-driven HAS rate-

determination algorithm (RDA); their experiment shows the positive effect of caching on

video quality and its overall benefit to the clients. Mueller et al. [39] propose fair adapta-

tion scheme (FAS), which uses a probe method to identify the available bandwidth for the

next segment by downloading the first few bytes of the next segment. They only consider

two representations.

Cache technique such as replacement and prefetchig can improve the cache perfor-

mance and hitrate immersively, if they are designed well enough for the content providers,

user preferences, and overall configuration such as contents and available resources. There
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are not a plentiful number of works for cache segment bitrate prefetching. Cache prefetch-

ing compared to replacement technique has many risks and uncertainty, because the

prefetching is implemented for a group of remote entities (clients) and each of them has

their own personalized requests and expectations.

The prefetching is based on the information from a client such as video segments,

throughput measurements, latencies and etc.

If the number of cache hit increases, then the cache performance improves. A side

effect of a prefetching algorithm with a low hitrate is that it increases the load on the back

bone from cache server to origin server as for each missed request, cache needs to refer

to origin server and double the effort to deliver the request of the clients.

The two main work on cache prefetching for a video segment bitrates are [33]

and [44]. Liang et al. [33] assumes that there is high probability that a client requests the

same bitrate as the previous bitrate request, so prefetching the next segments is based on

the current bitrate. The issue with this basic method is that it does not utilize the available

resources, such as bandwidth of the link, and a user is not able to receive the best possible

QoE for a segment. Rejaie et al. [44] designed a cache server that prefetches the segments

based on the average bandwidth between the origin server and the cache server. This is

not comparable with a typical DASH adaptation scheme that is based on the throughput

of the link between the client and the cache when there is a cache hit. If a bottleneck is

on the client-cache link, all segment requests will be cache miss.

There are also a few works where the client chooses the bitrates based on cache

information (cache-based), or the client receives assistance from the cache (hybrid). Pham
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et al. [41] propose a client ABR that is assisted by a cache server in order to get better QoE.

The cache monitors the bandwidth from the origin server and sends it to the client. Mok et

al. [37] propose QDASH, a cache that measures the available bandwidth and is responsible

for helping clients to select the most suitable video quality level. Krishnamoorthi et al.

[29] suggest cooperative buffer-aware prefetching in which a client continually shares its

buffer occupancy with the cache, and the cache shares its fragments and segment fetch

timing with the client. The client can thereby give preference to downloading fragments

that are already stored within the cache. Liu et al. [34] propose a joint client-driven

prefetching and rate adaptation algorithm (CLICRA), in which the client sends a signal to

a cache that includes information about the anticipated segment(s). Also, the cache sends

a signal to the client that includes information, such as the caching status and the fetching

time of a segment. The cache affects the client decision for the next segment(s). This does

not match the regular DASH technologies used today, where the client is independent

from cache. In the real network, cache is transparent for a client, client only sends out

a request and expect to receive a response as fast as possible. Furthermore, sending all

those information from the cache to each client who is watching a video is challenging. In

general these method with existence of multiple clients will not be very efficient. Cache-

driven prefetching methods generally have limitations when being used in DASH because

the cache-driven prefetching and client-driven rate adaptation for DASH cannot operate

well together. In summary, the client and the cache are dependent on each other in [34]

where the client follows the cache orders, meaning that the client decision is effected or

based on cache decisions.
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Thus, a client-driven technique can be better as the cache will take care of ev-

erything centrally without giving more loads to the clients or interrupting their regular

process (DASH protocol). We design a smart cache can handle multiple clients and each

client is not aware of the existence of other clients and the cache server. The Clients

do not need modification and they are independent of any cache algorithm and they just

share information with cache server. We propose a smart cache prefetching approach, the

cache follows the client requests, and the client is independent from the cache. the smart

client-driven cache forecasts the most accurate segment for multiple clients. It may be

noted that some works considered multiple clients in their experiments; however, these

works did not study the impact of their proposed method on each client. In our work, we

study the performance impact on each client separately.

2.2 QoE Modeling

As we discussed before, there are two categories of QoE assessment, subjective

and objective. The former is the direct feedback of the users which will be very helpful

to have a sense of real result of opinions of the users in a large scale subjects. However,

this method for evaluating QoE is time consuming and there is a probability that the users

may not always be honest about their answers and they might consider their perspective

for rating, we will discuss more about subjective QoE for our method in the end of this

section.

For the latter one, there have been a number of work, which proposed QoE mod-

els with objective QoE metrics. Some work proposed models to capture the exponential
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relation between the QoE and QoS parameters [23], [47], [7], [48], [49] and [8]. How-

ever, QoS metrics are not sufficient to measure the satisfaction of the users. Hoßfeld et

al. [21] discussed factors that influence a QoE model. Due to the nonlinear relationship

between these metrics, it is not easy to construct a simple model [22]. On the other hand,

there are other approaches formulated a linear parametric model with QoE objective met-

rics. Yin et al. [58] proposed a QoE Model Predictive Control (MPC) approach. This

QoE model was used in assessing QoE for video streaming in the later work [56]. They

considered QoE metrics such as bitrate gain, rebuffering and the difference between the

quality level of consecutive chunks (switching amplitude). Yarnagula et al. [57] formu-

lated a complex parametric QoE model over a number of metrics. De Vriendt et al. [16]

addressed the problem of how to assess QoE of an end user under the form of a prediction

for the MOS. For surveys on QoE models for DASH, see [ [9, 22]]. Wang et al. [53] pro-

posed a model to maximize the QoE by considering the average video bitrate, frequency

of variations and the amplitude of variations. The variation metric is a centralized mea-

sure for the variation of the video quality around the average quality that is denoted as

spectrum equation in [59]. Moldovan et al. [38] proposed a quadratic problem formula-

tion which maximize both service quality and fairness. They define the objective as being

to maximize the average quality, minimize the number of quality switches, and ensure

equal utility (QoE) among users. Xue et al. [55] proposed a model which combines in-

stantaneous qualities and cumulative quality taking into account video segment quality.

The instantaneous quality was obtained using a linear model using Quantization Param-

eter (QP) values and instantaneous rebuffering. Guo et al. [19] proposed a model which
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estimates the overall quality using a linear combination of median and minimum of the

instantaneous quality. The instantaneous quality was obtained from QP values using the

normalized quality vs. inverted normalized quantization step size (NQQ) model. Tran et

al. [52] presented a model considering encoded video quality and quality variation. The

quality of the encoded video is calculated for each segment considering the average QP.

We presented two moving QoE models that can report ensemble QoE in review

windows for multiple clients together on a periodic basis. To our knowledge, we are the

first to propose MQoE models for video stream performance monitoring that can be used

by content service providers. Secondly, the multi-client scenario has rarely been studied

before, which is important to consider for content providers.

Note that our work focuses only on quantitative moving QoE models. On the other

hand, there are many work that implement objective and subjective assessment of QoE.

Subjective QoE, measured using Mean Opinion Score (MOS), is studied for video deliv-

ery [ [57], [36]]. It is also pointed out in [36] that subjective assessments are costly, time

consuming, and not scalable. First, we note that no previous work has studied subjective

QoE from a content service providers perspective. Secondly, subjective QoE assessment,

for moving QoE snapshots, is impractical from a content providers perspective for video

quality monitoring. Consider a content service provider streaming a live event to thou-

sands of end users. If subjects were to be employed to mimic understanding this situation,

a significant number of subjects would be necessary. If monitoring is to be captured, say

every minute for video stream monitoring, then this would require each subject to be re-

minded every minute to record the MOS score, which may potentially require additional
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10 to 15 seconds to record, the user would be distracted from continuing to watch the

video for the next minute. In addition to that, the bias that can happen in a subjective

study, specially with MOS methos and with less number of subject is substantial. The

viewers preferences and expectations are different. In other words, the definition of a

satisfying experience is not similar for all the users. For example, some users prefer con-

tinuous streaming without interruption, although with degraded quality of bitare as a very

satisfying experience, however there are other users that this conditions will not meet their

expectation and they define a satisfying experience with a video stream with high qual-

ity of bitrate but they have a great tolerance for interruptions. Therefore, for subjective

study, psychological factors and individual preferences should be studies, too. Further-

more, fatigue could quickly set in even after a few minutes of scoring, resulting in noisy

measures.

Thus, as we proposed here, a quantitative MQoE approach is a more viable ap-

proach for monitoring video streaming for content service providers. Most of the quanti-

tative models discussed above were formulated for assessing QoE for an individual user

or the QoE is reported at the end of a video session. Secondly, they were not readily

adaptable in a multi-client scenario, especially in a scenario like a live event and on a

rolling basis. Our proposed QoE models fill the void in the current literature.

Live streaming has also been investigated in a number of work on video streaming

[ [35, 51, 54]]. But these works focused on the QoE for a single client, and none are from

the perspective of a content service provider.
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Our QoE models are the first work to address moving QoE (collectively for multi-

ple clients) for video streaming which is more suited for a service provider point of view

monitoring instead of individual client perspective. The benefit of these models is that

the providers can monitor users experiences periodically and keep track of variations with

different conditions of the environment that cause a pleasant or unpleasant experience. By

observing the changes and root cause of the unpleasant changes in users experience. Then

providers can take appropriate actions such as different resource allocation for the sake of

QoE fairness among the users or giving a priority to the premium users. In addition, if the

models are implemented in the clients along with designing a QoE-driven ABR, which is

another challenge for the content providers as we mentioned in the previous section, each

client can achieve QoE improvement in an equitable way or individually.

23



CHAPTER 3

SMART CACHE PREFETCHING

The main goal of caching and its advance techniques is to provide the maximum

hitrate. There are a few client-driven in-network cache approaches for segment bitrate

prefetching that are compatible with DASH protocol. The popular work is [33], which we

refer it as basic approach in this work. This section will briefly discuss the basic approach

and then present the smart cache prefetching.

3.1 Basic Cache Prefetching

Similar to many content cache server, the demonstrated processes for the basic

cache follows these few steps. A client sends a request, then the cache server receives this

request and if the requested content is already stored in the cache server storage (cache

hit), the client request will be served from the cache. Otherwise, cache will ask the origin

server for the content (cache miss). At the time the origin server sends the content, cache

server stores a copy of the content to its storage and sends a copy to the client. In some

cache servers, whenever a cache miss happens, the cache server ask the origin server for

the missed content but without making a copy in its storage. In this case, the client will be

served directly from the origin server. In our algorithm, there is no direct communication

between a client and the origin server.

A caching technique for DASH video streaming purposes are trickier than other
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content caching techniques. A caching technique for DASH videos should consider the

details of the DASH protocol, the segmented video with various bitrates which all are

mostly provided in a DASH MPD file, etc.

In the basic cache prefetching approach, in the beginning of a session, a client

asks for the MPD of a video file that is a must-have file for the desired video. The cache

receives that request and then asks for it from the origin server. The MPD file will be

sent back to the client immediately by the cache. In this step, MPD does not have a very

decisive role for basic cache server and also it does not take up much of its space. Next

the client receives the MPD file, parses it, and starts requesting the video segments.

Basic cache provided a simple solution for prefetching the next segments with the

right bitrate codec representation. Prefetching the next segment request as the same bitrate

as the current segment bitrate request. For example, if a client is asking for segment Sn

with bitrate Bn, then cache will use these information of request n, which will end up

prefetching segment Sn+1 with bitrate Bn. This decision of cache would be the same for

the rest of the segments till the moment that client DASH protocol sees a change in the

network or in its buffer and request another bitrate for the next segment request.

The advantage of this approach is that it is independent of the DASH ABR and it

is very simple and speedy with the least computation power that it can be done on the fly

for each segment request of multiple users. The prefetched segments can be stored in the

cache server before the next segment request from a client arrives at the cache. However,

the prefetches are not accurate most of the time. specially, when a link with a very high

loaded traffic delaying the whole process and affect the next segment bitrate selection of
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Figure 2: High level architecture

the client.

When the bandwidth of the links is very fluctuating, basic cache has difficulty to

make the right decision as it relays purely on the previous segment bitrate requests of the

clien. The cache is not sync to the current status of the client and there is a lag between

actual bitrate any prefetched bitrate of a segment.

3.2 Smart Cache Prefetching

Smart Cache Prefetching motivation is to mitigate the disadvantages of basic

cache prefetching. Smart cache prefetching keeps the computation to the minimum and

increase the prefetching accuracy. The trade-off between accuracy and computation is a

controversial part of cache prefetching scheme designing. Samrt cache framework has

two main components, DASH Request Handler (DRH) and Cache Manager (CM) (see

Fig. 2).

3.2.1 DASH Request Handler (DRH)

DRH includes two modules, MPD Parser and Throughput Collector. DRH is di-

rectly connected to the DASH clients and serves the requests. The client requests the

26



initial MPD file which will go through the cache server and from there to the origin

server. In this framework, MPD file is a must-have for the cache server. DRH transfers

the MPD file to the MPD Parser module in DRH, which parses it and store data in the

Segment-Request Index module. Then similar to basic scheme, cache will send back the

MPD file the client.

Every time that the client requests for a segment, it also includes some information

in the request HTTP header. Client measures the moving average throughputs, Aj , for

j−th request, which is computed based on the previous m segments:

Aj =

∑j−1
k=j−n Sk/n∑j−1
k=j−n Tk/n

=

∑j−1
k=j−n Sk∑j−1
k=j−n Tk

,

j ≥ 2,

j ≥ m.

(3.1)

Where Sk is the segment size of the k-th segment, and Tk is the total time taken

for the client to receive k-th segment from cache. j >= 2, because for the first request,

client and cache do not have any useful information for prefetching yet. If j < m, then

Equation. 3.1 just calculates the mean.

DRH component receives the HTTP header information per client segment re-

quest, including the client smooth throughput value, by using Throughput Collector mod-

ule. Throughput Collector stores the throughput values in the Segment Request Index

along with the client ID, Session-ID, requested video ID, and its related list of bitrates

from the MPD file for the later use.
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3.2.2 Cache Manager (CM)

CM includes the Prefetch Manager (PM) and Replacement Manager (RM). The

PM module in CM has two functions; first it uses the throughput stored in Segment-

Request Index to forecast the client throughput for the next segment that will be requested

by the client. Forecasting is based on an exponential smoothing (with trend) approach.

The forecasting method used by CM is based on exponential smoothing with trend

on the moving average of j−th received throughput value from the client to estimate the

j + 1-th moving average throughput value of the client throughput at the time of cache

prefetching. Using Aj and the forecasted throughput value for the current segment, FITj

, the cache module forecasts the throughput for the next segment (FITj+1). Briefly, the

exponential smoothing with trend is calculated as follows

Fj+1 = FITj + α ∗ (Aj − FITj)

τj+1 = τj + δ ∗ (Fj+1 − FITj)

FITj+1 = Fj+1 + τj+1,

(3.2)

where τj is the trend component for segment j−th, Fj is the forecast value without

trend for segment j−th, Aj is the actual value measured for segment j−th, and FITj is

the forecast value including trend at time j−th. Here, α (0 leα ≤ 1) is the smoothing

constant and δ (0 ≤ δ ≤ 1) is the trend smoothing constant.

Now discussing exponential smoothing without trend, which is similar to Equa-

tion. 3.2, but τ = 0. Considering that Fj + 1 is the future throughput for the (j + 1)-th
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segment given that Fj is the currently forecasted throughput, and Aj is the current ac-

tual throughput from the client for the j-th segment. For the smoothing parameter, α

(0 ≤ α ≤ 1), this relationship is given by

Fj+1 = αAj + (1− α)Fj. (3.3)

PM uses a rate-based ABR (similar to client ABR, without buffer consideration) to

select the appropriate segment bitrate for prefetching. For the very first segment request,

the cache serves this request with the lowest bitrate from the origin server, as the client

would ask for the lowest bitrate representation with its ABR. When the client asks for the

second segment, PM needs a throughput value in order for its ABR to prefetch the second

segment. In this case, we consider the cache throughput value for the second segment to

be the size of the segment divided by the time that it takes for the request to transfer from

the client to the cache plus the time that it takes for the cache to fetch the segment from

origin server. Therefore, the second segment estimated throughput value is calculated as

follows:

Throughput forecast =
S1

∆t1 + ∆t2
,

∆t1 = t2 − t1,

∆t2 = t3 − t2.

(3.4)

Here, t1 is the moment that the client sends the request, t2 is the instant that the

cache receives the request from the client, and t3 is the instant that the cache sends the

segment to the client. The first throughput measurement does not include the transmission
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time between cache server and the client. When client requests for the second segment, it

has the throughput value from 3.1 which can be used in the cache with 3.2 or 3.3.

In the smart cache framework, we also designed a multi processing cache to han-

dle multiple client connections simultaneously. Each connection is served as a separate

process. As a process, client connection has multiple threads, such as prefetching thread

(prefetches a segment from origin server) and current thread (calculates throughput and

bitrate of the prefetching segment). As we mentioned, after the cache calculates the fore-

casted throughput of the next segment, the prefetching method in the cache uses the same

ABR that is used by the client. Thus, PM second function is an ABR similar to the ABR

in the clients to use the forcasted throughput as input and prefetch a bitrate for the next

segment. The client uses a hybrid ABR that is throughput-based and buffer-based, with

a moving average value for throughput. The cache entity only uses the throughput-based

version of the client ABR. As we can see cache is acting as a DASH client itself, measur-

ing throughput and using ABR for bitrate selection. And cache behavior is dependent on

DASH client behavior.

The role of the last module, RM, in the smart cache framework is to determine the

segments that are to be replaced in order to accommodate new segments, especially during

contention from multiple clients. If the number of segments stored in the cache becomes

greater than an initial number, n, then the cache makes the decision to replace segments

using the RM. In our approach, we replace the Least Recently Used (LRU) segment.
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Algorithm 1 smart cache procedure
R: Request from client, α and δ smoothing constants

Function MAIN(R,α, δ, n,Q)
bitrates[]
URLs[]
j ← 2
forecast throughput← 0

while R do
if R == MPD then

bitrates, URLs← PARSE(R)
STORE(bitrates, URLs)

else if R == S1 then
t1 ← HEADER(R)
t2 ← MEASURE TIME()
RECIEVE FROM ORIGIN SERVER(S1)
t3 ← MEASURE TIME()
SEND TO CLIENT(S1)
∆t1 ← t2 − t1
∆t2 ← t3 − t2
forecast throughput← SIZE(S1)/(∆t1 + ∆t2)
S2 ← PREFETCH(forecast throughput)
ADD(S2)
T2 ← 0
FIT2 ← 0
STORE(T2, F IT2)

else
SEND TO CLIENT(Sj)
Aj ← HEADER(R)
forecast throughput← FORECAST(Aj)
Sj+1 ← PREFETCH(forecast throughput)
ADD(Sj+1)
j + +

end if
end while
End Function
Function FORECAST(Aj)

RETRIEVE(FITj , Tj)
Fj+1 ← FITj + α ∗ (Aj − FITj)
Tj+1 ← Tj + δ ∗ (Fj+1 − FITj)
FITj+1 ← Fj+1 + Tj+1

STORE(FITj+1, Tj+1)
return FITj+1

End Function
Function PREFETCH (forecast throughput)

Use ABR with all available bitrates from MPD
return Sj+1

End Function
Function ADD (Sj+1)
if Size(Q) == n then

Pop(Q)
end if
Q← Sj+1

End Function
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CHAPTER 4

SMART CACHE PREFETCHING EVALUATION

4.1 Environment

The smart cache framework is implemented on the Global Environment for Net-

working Innovations (GENI) research testbed [11]. The GENI platform allows us to reg-

ulate the link bandwidths. There are three entities in the implementation: client(s), cache

server, and origin server. In the topology, client(s) is/are connected to a LAN switch. The

in-network cache server is also connected to the same LAN switch. The cache server is

directly connected to the origin video content server Fig. 3.

We used the Apache2 HTTP server as the origin content server. The DASH player

client along with the basic/smart cache server are implemented in Python. The DASH

player uses ABR [1] to determine the bitrate for the next video segment based on the

throughput measurements of the link connected to the cache server and the playback

Figure 3: Network topology with clien(s), cache and origin server
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buffer status of the client.

4.2 Traffic

This work was experimented with two different assumption, bottleneck on the link

between client and cache server (client-cache link) and bottleneck on the link between

cache server and origin server (cache-server link).

4.2.1 client-cache link

The link between the cache server and client is most susceptible to network fluctu-

ations. In order to evaluate the performance of in-network cache, the following scenarios

have been assumed between cache server and a single client:

• In the base scenario, a fixed bandwidth of 5 Mbps is considered on the link between

the client and cache as well as the link between the cache and the video server with

no background traffic. The only traffic that is going through the link is from the

single client that requesting video segments from the cache server.

• In the short interval background traffic scenario, we fixed the bandwidth as in the

base scenario but emulated a congested link between the cache server and the client.

The congestion was generated with a background traffic of multiple short file down-

loads over TCP connection by other clients using the link between the video client

and the cache. These short background spikes in congestion was created within

multiple intervals over the duration of the video session.
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• For the third scenario, we fixed the bandwidth as in the base scenario but generated

long interval background traffic by emulating longer durations of congestion on the

link between the cache server and the client. As in the case with short interval

background traffic, we used multiple file downloads by other clients.

4.2.2 cache-server link

The backbone link between the cache and origin server is the most time consuming

path, cache goes through this path either for prefetching or fetching a content for a client.

In this case, we are onsidering two general scenarios, in the first scenario there is one

client, and in the second scenario there are two clients. While the focus of this part

is on scenarios with multiple clients, results for the single-client scenarios are included

for comparative purposes. Within the first scenario, we tested once with no background

traffic on the links (10Mbps for each link), and then with a UDP background traffic on

the link between the cache and the origin server. We increased the size of the links from

5Mbps in the previous experimental assumption to 10Mbps in these set of experiments.

Because, there are two client competing for the resources and the maximum size of the

video segments is about 4MB.

The double-client scenario is studied only with bottleneck traffic between the

cache and the origin server. The choice of the bottleneck link through background traf-

fic is motivated by prior studies. For example, it has been reported that the cache-server

link with limited bandwidth could cause a bottleneck in the network [33] and [27]. Based

on [29], a simple cache solution is potentially beneficial when the bandwidth bottleneck is
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between the client and the cache. However, caching can be more effective if the bottleneck

is between the cache and the origin server. A common issue that arises when the DASH

technology applies caching technique is that the connectivity between the client and the

cache server will have a higher rate (throughput) than that of the connectivity between

the cache and the server [32]. This causes a cache to consume more time fetching un-

cached segments from the original server [39]. Thus, the ABR in the client, incorrectly

estimates network conditions, which in turn causes wrong quality decisions, ultimately

resulting in a negative effect on QoE [42]. When there are multiple clients contending at

the same cache, this issue is exacerbated. On the other hand, this issue does not happen

in the first set of study when the bottle neck is the access link. Cache existence and its

benefits is observable when there is bottleneck beyond the access network and prefetching

the right contents will save time and resources for the overall framework. With these as-

sumptions bottleneck on client-cache link may improve the cache performance, however,

there would not be much evidence of QoE improvement with cache prefetching. Thus,

in this work, we consider the case of a network bottleneck on a cache-server bandwidth

backbone link.

The background UDP traffic was created by transferring a very large file (1.6 GB)

using UDP socket python code on each of the cache and the origin server machines 40

sec after the first client began its requests. The 40-second interval is chosen based on our

preliminary experiments since by this time, the throughput value has already surpassed

the peak threshold for initial bitrate ramp-up phase. On the other hand, if we generate

the traffic before 40 sec, then the client would stay on the requests with lower bitrate
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for a greater number of segments. Therefore, implementing background traffic has no

significant effect, as the requests would have remained at the low bitrates for a longer

period before the throughput hits the threshold. For all the experiments, we replicated

each of the possible scenarios five times to avoid any artifact from the GENI testbed.

4.3 Dataset

For evaluation, we used the publicly available Big Buck Bunny and the Elephants

Dream DASH videos from the ITEC dataset [31]. For the first study with bottleneck

on the client-cache link, we considered Big Buck Bunny and the Elephants Dream 4sec

palyback duration with 150 and 164 segments, respectively. Each video has 20 different

bitrate codec representations. In the second study, 10 sec and 15 sec segment playback

durations for Big Buck Bunny were selected; while the entire video has 60 segments and

40 segments, respectively (for a total video length of 600 sec). Both datasets have 20 dif-

ferent bitrates (resolutions) for each segment to choose from. The logic behind choosing

longer playback duration was the observability of the results.

4.4 Initial Analysis and Adjustment

4.4.1 First Study

For the first set of experiments with bottleneck on the client-cache link, the ac-

curacy of the forecasting method presented in Equation. 3.3 is dependent on the values

used for α and δ. To determine the best values for α and δ, we evaluated the forecast-

ing method under the mentioned network traffic scenarios using the values α = 0.5, 0.7,
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Figure 4: Forecasting error for Big Buck Bunny (a), Elephants Dream (b), No Traffic

0.8, 0.9 and δ = 0.3, 0.5, 0.7, 0.9 for two datasets Big Buck Bunny and Elephants Dream.

Higher α values indicate that FITj+1 is more dependent on previousAj . The results from

the evaluation of the forecasting methods under different parameters are presented in Fig.

4-6. Based on these evaluations, we see that the accuracy increases as we increase α for

all scenarios.

However, for α , the accuracy in no background traffic scenario for both datasets

increases up to 0.5 and then decreases as seen in Fig. 4a and Fig. 4b. For short Interval

traffic shown in Fig. 5 and long Interval traffic shown in Fig. 6, the accuracy increases

up to 0.9 that is the maximum δ value in the experiment. Considering all the scenarios,

we found that α = 0.9 and δ = 0.7 give the best result for all different network traffic

scenarios, which is used for the studies in the next section. For this study set,there is only

one user involved, so including a replacement algorithm is unnecessary.
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Figure 5: Forecasting error for Big Buck Bunny (a), Elephants Dream (b), Short Interval
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Figure 6: Forecasting error for Big Buck Bunny (a), Elephants Dream (b), Long Interval
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Table 1: Exponential smoothing error ratio for double client scinatio with 10s and 15s

client(playback duration) α=0.5 α=0.7 α=0.9
client1(10s) 13.42 10.74 9.35
client2(10s) 15.83 12.31 10.25
client1(15s) 20.36 15.79 14.22
client2(15s) 17.51 14.13 13.14

4.4.2 Second Study

For the second set of experiments, bottle neck on the cache-server link, the accu-

racy of the exponential smoothing forecasting method (Equation. 3.4) is dependent on the

value used for α. We notice that trend and delta is not very effective in our forecasting ac-

curacy. To determine the best values for α, we evaluate the forecasting method under the

most tense network background traffic, by applying UDP traffic on the cache-server link

for the double-client scenario, with 10s and 15s segment playback duration, using α =

0.5, 0.7, 0.9. See Table. 1 where the error ratios are presented. The accuracy increases

as we increase α for all clients in both the datasets. Based on this initial assessment, we

chose α = 0.9 that has the lowest error ratio for the rest of our study.

It is important to note that the second client has higher error ratio than the first

client. The cause for this difference is most likely since the second client experiences

more traffic on the bottleneck link, which is caused by the presence of the first clients

requests. The other observation is that the 15s segment duration video is found to have a

higher error ratio compared to the 10s segment duration video.

we conducted our study based on the condition that when a second client initiates

a connection, the cache is empty. Therefore, in the double-client scenario, the cache has
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to prefetch the segments for both clients, because the required segments from the second

client that the first client also requests are all removed. To capture the performance penalty

associated with the cache misses, it is necessary to consider a cache policy in which the

cache is cleared for each new client [29].

We consider a 10-segment cache size in our study with the Least Recently Used

(LRU) method in the Replacement Manager. In the double-client scenario, the second

client starts with a short delay of 20 sec than the first client. We observed that when both

clients run simultaneously, the second clients segment requests are mostly cache hits. This

occurs because the second client requests the same segments as the first client, especially

for the first few video segments. In this case, there is not much difference in the results

of single-client and double-client scenarios. However, by injecting a delay for the second

client prior to initiating its connection, we were able to see the effect of cache size on our

final results. From our initial experimentations, we found that the first segment is deleted

in less than 20 sec when the cache size is 10 segments.

We compared the smart cache with other works such as [33] and [29], which the

duty of the cache is to prefetch the next segment of the same bitrate as the current segment

[29]. Although the cache performs a basic function in these works, some may implement

extra cache functions to improve the prefetching scheme, while still maintaining the same

basic function. Overall, in this study we consider the basic concept that is common to

most of the works mentioned in our related work, and we refer to it as a basic prefetching

scheme. Thus, throughout our study, we compared our approach with a basic prefetching

scheme. After showing the result of throughput accuracy with exponential smoothing in
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the above section, in the next section, we study the result of cache performance metrics

such as cache hitrate and its effect on client throughput, the nlater one was considered

for the second study with bottleneck on the core link. Finally, since various metrics are

attributed to QoE [22], we did a QoE study considering the following metrics: average

latency, average bitrate, and average of bitrate switches or oscillations. please notice that,

this evaluation related to the double-client in the second study with the bottleneck on the

cache-server link.

The ABR used at the cache and the client are different, the one implemented in

the cache is throughput-based and the one implemented in the client is a hybrid/dynamic

ABR. Client ABR determines the next bitrate based on the throughput observed for pre-

vious k segments. In our evaluation, we used k = 10 as we found this value to be suitable

after our initial analysis. This value of k is also used by a previous work [50]. Cache

ABR determines the next bitrate based on the throughput forecasted with Equation. 3.3

or Equation. 3.4.

4.5 Comparative Study

4.5.1 First Study

4.5.1.1 Evaluating the Cache Throughput Forecasting

In order to predict the correct bitrate for the next segment at the smart cache, it is

necessary to forecast the throughput for the next segment observed by the client. Accurate

forecasting ensures that the cache is able to prefetch the next segment before it receives the

request from the client. In the current section, we present our evaluation on the accuracy
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Figure 7: Throughput comparison smart cache vs. client

of our forecasting method for estimating client moving average throughput under the three

different traffic scenarios. In an ideal case, both the values of the forecasted throughput

and the actual next throughput value that client observes on the link need to be the same;

however, in practice, it is not exactly the same as there is a ramp up phase and moreover it

highly difficult due to the unpredictable short term fluctuations in the network conditions.

Thus, we concentrate on reducing the error ratio defined as follows:

ERR =

∑j−1
k=j−n |FITj − Aj|∑j−1

k=j−n |Aj|
. (4.1)

In 7. a, we present the comparison of the actual measured throughput at the client

and the throughput forecasted at the cache using our model for the first scenario with

no background traffic for the Big Buck Bunny video. In the base scenario with steady

throughput, we observed that the forecasted value is fairly close to the actual value and

the error ratio given by equation 4.1 was found to be 0.44% across multiple runs. In the

case of the Elephants Dream video, we found the deviation to be 0.49% (Table 2).
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Table 2: Throughput error ratios comparison for smart cache (Bandwidth=5 Mbps)

Video No Background Traffic Short Interval Background Traffic Long Interval Background Traffic
BigBuckBunny 0.44% 1.80% 2.97%
ElephantDream 0.49% 1.76% 2.64%

For the second scenario, short interval background traffic, we see that the through-

put fluctuates between 2.5 Mbps and 4.25 Mbps in short intervals multiple times during

the video session. Even in this case where the throughput fluctuates frequently, we were

able to predict the throughput with high accuracy (see Fig. 7b). For the Big Buck Bunny

video, the forecasted throughput follows the trend in the client throughput with an error

ratio of 1.80%. Similarly, a 1.76% deviation for the Elephants Dream video was observed.

In this scenario, the error ratio increase is not surprising compared to the base scenario

with no background traffic due to the influence of the short duration background traffic.

In case of long interval background traffic 7c, the throughput observed fluctuates between

a much higher range as compared with the second scenario. In this case, the fluctuations

are between 1 Mbps and 4.25 Mbps but are less frequent. The forecasting error ratio

increased to 2.97% and 2.64% for Big Buck Bunny and Elephants Dream, respectively.

This higher increase in error is concentrated to instances where there was a sudden change

in the measured throughput, since the forecasted throughput value is based on the previ-

ous moving average throughput value. As we will demonstrate in the next section, this

increase in the forecasting error does not affect the prediction of the next bitrate signifi-

cantly. Thus, we see that even under varying network conditions and over multiple runs

for different videos, we are able to forecast the throughput for the subsequent segments

with high accuracy.
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4.5.1.2 Analysis of Cache Hits and Misses

Recall that our approach uses a client-driven prefetching method. We compare

our approach with a basic bitrate-based prefetching scheme which is the base of the most

previous works on cache prefetching. This basic prefetch scheme works as follows: the

cache prefetches the next segment of the same bitrate as the current segment [29].

In this section, we analyze the performance of smart cache by considering the

cache-hit rate for the prefetched segments in comparison with a basic prefetch scheme.

We evaluate the cache-hit rate under different scenarios for both the Big Buck Bunny and

Elephants Dream videos. When the client starts the video stream with the ABR, it begins

with the lowest bitrate and gradually increase the bitrate to match the network conditions

until it reaches the highest bitrate supported by the network condition. For the scenario

with no background traffic (Fig. 8a), we can compare the bitrates being prefetched by the

basic scheme and the smart smart scheme with the client requested bitrate. The prefetches

made by the basic scheme lags the bitrate fetched by the client ABR during the initial

ramp-up stage causing multiple cache-misses. Only when the playback reaches the steady

state does the basic prefetching cache scheme start to prefetch successfully. The overall,

success rate for the basic scheme in the current scenario across 10 runs was found to be

87.20% (Table. 3). With smart cache, we are able to leverage the forecasting model to

predict the next bitrate for the prefetch even during the ramp-up phase, giving it a cache

hitrate of 99.33% (Table. 3).

In the second scenario with short interval background traffic, with the congestion

in the link between the client and the cache due to the competing TCP connections, the
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Figure 8: Bitrate request smart cache vs. basic cache vs. client

Table 3: Cache hitrates in smart and smart schemes (Bandwidth=5 Mbps)

Video No Background Traffic Short Interval Background Traffic Long Interval Background Traffic
basic smart basic smart basic smart

Big Buck Bunny 87.20% 99.33% 75.33% 93.2% 71.06% 89.73%
Elephant Dream 88.41% 99.39% 77.92% 93.53% 73.96% 88.35%

ABR observes reduced throughput as the video playback proceeds. In Fig. 8b, we see

the client bitrate request pattern and the cache prefetch request rate for both basic and the

smart cache schemes. In this case, the cache hitrate performance of smart cache is more

than 15% better than the basic prefetching scheme. Finally, the last scenario has a highly

variable throughput due to sudden intermittent background traffic spikes that lasts for few

minutes during playback. Under this scenario, we see that the bitrate prefetched by the

smart cache scheme matches the client bitrate except at the instant of sudden change (Fig.

8c). Even then, the smart cache scheme is able to outperform the basic cache scheme

by a higher margin as compared to the previous scheme (see Table 3). Thus, by making

better predictions, smart cache improves cache hitrate and reduces unnecessary prefetches

that reduces the bandwidth use between the cache and the origin DASH servers. More
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importantly, it also reduces the segment fetch time for the client as most of the requested

segment are served from cache server itself.

4.5.2 Second Study

4.5.2.1 Cache Hitrates

For all the scenarios, the smart cache scheme hitrate is significantly higher than

that of the basic hitrate (see Table 4). Furthermore, for the single-client and double-

client scenarios, the difference in the hitrate for the smart cache compared to the basic

cache scheme increases more for videos with 15s than it does for videos with 10s. On

the other hand, the throughput accuracy error from the smart cache throughput accuracy

section shows that 15s has more error than that of the 10s. The cause of this higher error

ratio may be attributed to the different features of data, such as the fact that there are

fewer segments with larger size and higher bitrates for the 15s than there are for the 10s.

For the single-client scenario, we report results without and with background traffic to

understand how background traffic affects performance. We observe the highest increase

in smart cache hitrate as compared to the basic scheme in the single-client scenario when

the traffic is added to the cache- server link (see Table 4). The smart cache double-client

scenario with a 15s has a same hitrate compared to a 10s (see Table 5). Overall, the smart

cache hitrate increases less when the second client is added to the video fetching process,

as compared to smart cache with a single client. The reason could be that the cache takes

care of two clients at the same time and there is more traffic with the presence of the

second client.
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Table 4: Cache hitrate ratio for all the scenarios

playback duration basic smart increase
10s-notraffic 66.67% 97.33% 45.99%
15s-notraffic 50.00% 97.5% 95.00%
10s-traffic 41.00% 80.00% 95.12%
15s-traffic 27.00% 70.00% 159.26%
10s-Double-Client 52.17% 79.67% 52.71%
15sDouble-Client 41.5% 73.25% 76.51%

4.5.2.2 Client Throughput Measurements

In order to understand the client throughput, it is important to understand that

the increase in the number of misses in the cache server causes the cache to request the

missed segments from the original server, thereby consuming more time and resources for

the client to receive the requested segment. Since there is a small number of misses in the

smart cache scheme, each time that the client requests a segment from the cache, it will

be served by the cache itself. In other words, the cache does not have to go all the way to

the original server to fetch the requested segment and returns it to the client. This effect

will be more prevalent when there is a background traffic on the core link. We found that

the throughput measured by the DASH player is higher with the smart cache scheme than

with the basic scheme. In Table 5, the measured throughput for smart and basic cache for

single-client with 10s are almost similar, because only the first few segments are cache

misses, which have smaller sizes. In the double-client scenarios, the clients that request

15s segments experience less throughput increase when using smart cache than for 10s

segments. The second client for 15s shows the least increase with smart cache compared

to basic (see Table 6). Due to a higher number of misses in the cache, the difference in
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Table 5: Client average throughput (Mbps) with a single client scenario

playback duration basic smart ratio-increase
10s-notraffic 4.17 4.74 13.67%
15s-notraffic 3.73 4.89 31.10%
10s-traffic 3.05 4.13 35.41%
15s-traffic 2.55 3.61 41.57%

Table 6: Client average throughput (Mbps) with double clients scenario

playback duration basic smart ratio-increase
10s-double client1 2.74 3.65 33.21%
10s-double client2 2.54 3.62 43.70%
15s-double client1 2.45 3.06 24.90%
15s-double client2 2.47 2.78 12.55%

throughput increases for the double-client scenario is less when compared to the single-

client scenario, specifically for the second client. Note that, in the basic scheme, the client

must wait for the cache to fetch all of the missed segments from the origin server. The

difference in measured throughput between the two schemes increases by adding traffic

on the outgoing link of the cache. In Fig. 9, we present throughput behavior with time

line shown based on the segment number in the x-axis. The first peak shows that the

throughput measurement is increasing to a threshold while the two clients are requesting

segments and background traffic is running; however, it suddenly drops after 40 sec and

stays steady. After the bottleneck is taken away, the trend increases. However, the two

clients still compete for resources that results in an unsteady behavior.

4.5.2.3 Analysis of Client QoE

Finally, we focus on client QoE by considering the following metrics: average

latency, average bitrate, and average of bitrate switches frequency or oscillations.
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Figure 9: Throughput measurement for clients with smart vs. basic cache.

1) Latency: It has been reported that the time that users wait for the requested

content to be downloaded from the server to local devices can significantly influence user

experience [40]. The user may not always feel the latency in each segment delivery but

the measurement of latency can be a good metric to evaluate the QoE. In all the scenarios,

smart cache displays better QoE than the basic scheme in regards to average latency (see

Table. 7). For the single-client 10s and 15s without traffic, the delay difference between

basic and smart cache is not significant. But for the double-client scenarios, we observe

that for each client the delay of 15s is more than that of the 10s. In addition, the differ-

ence between smart cache and basic for 15s is more than 10s. The second client in both

datasets experiences less difference between basic and smart cache (see Table. 8). Thus,

an important parameter in QoE experience in terms of average latency is the segment

playback duration.

Fig. 10 presents trends on latency for 10s and 15s in the double-client scenarios.

In the basic scheme, the moment that the traffic runs on the cache-server link occurs at

nearly the same time that the client asks for a segment before segment number 15. In the

smart cache scheme, the moment that the traffic runs on the cache-server link occurs at

nearly the same time that the client asks for a segment after segment number 15. This
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Table 7: Average latency and average bitrate for a single client in basic and smart cache
schemes with and without traffic

playback duration
Average latency(ms) Average bitrate(Mbps)
basic smart basic smart

10s-notraffic 5.43 5.20 2.79 2.81
15s-notraffic 7.63 6.51 2.34 2.38

10s-traffic 7.58 6.10 1.64 1.90
15s-traffic 9.41 8.46 0.96 1.01

Table 8: Average latency and average bitrate for double clinets in basic and smart cache
schemes with a 10s and 15s

clients
Average latency(ms) Average bitrate(Mbps)
basic smart basic smart

client1-10s 7.64 7.10 1.63 1.81
client2-10s 7.23 6.82 1.47 1.78
client1-15s 9.83 8.50 0.80 1.13
client2-15s 9.30 8.58 0.75 1.11

is since in the basic scheme the first few segments are cache missed. When after 40 sec

the background traffic is activated on the link, smart cache is already a few segments

ahead of the basic scheme. In the figures, we see that the peak value of latency for the

basic scheme is almost 250 sec, while for smart cache, this is around 150 sec. This may be

attributed to the smart cache having accurately prefetched more of the requested segments

at that time. This latency can change depending on the size of the segment, which means

that if the background traffic happens on higher segment numbers, then we will probably

observe more latency and more difference between basic and smart cache schemes. If the

traffic happens in the beginning of the requests, then the difference will not be significant

because the sizes of the segments are smaller.

2) Average Bitrate Gain: The bitrate metric study shows that for all scenarios,
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Figure 10: Latency: smart vs. basic.

smart cache shows higher gain than the basic scheme (see Table. 7 and Table. 8). Also, the

15s segment duration video shows lower bitrate gain than 10s. Fig. 11 shows additional

details on the requested bitrate of those clients. The first peaks in each of the plots are

related to the moment when the bitrate already hits the link throughput threshold for

ramp-up phase. In a single-client with no background traffic, this peak would be higher

than other scenarios, because there is no traffic to stop it and throttle the link throughput.

We observe that there is a sudden drop after 40 sec, and the throughput measurements

thereafter stay steady on the minimum bitrate. After the bottleneck is taken away, the

bitrate values will have sharp upshifts and this trend functions more smoothly as the two

clients are still running and competing for link resources. The blue line (basic) is behind

or underneath the red line (smart). In 10s, the gap between two schemes is more moderate

than that of 15s; this relationship is also displayed in numeric values in the tables. smart

cache compared to basic in the double-client scenario with 15s displays more gain than

10s.

3) Bitrate Switching: In terms of bitrate switching frequency, we did not observe

any changes in measurement for the single-client scenario without background traffic.

For single-client scenarios with background traffic, the changes are also insignificant. For
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Figure 11: Bitrate Gain: samrt vs. basic.

Table 9: Average bitrate switching: double clients

clients basic smart
Double-10s-client1 31.8 32.4
Double-10s-client2 32.2 32.0
Double-15s-client1 29.0 28.6
Double-15s-client2 30.4 26.4

double-client scenarios, the values for bitrate switching is almost the same except for

15s, where smart cache has less bitrate switching compared to the basic scheme. These

insignificant changes could be due to the fact that the changes we implement are in the

cache itself, and not in the client ABR (see Table. 9). In cases when the smart cache

has higher bitrate switching than the basic scheme, this is related to upshifts. The expe-

rience of users is more negatively affected by downshift switchings than it is by upshift

switchings [15]. [18] shows that with larger segment playback duration, frequent bitrate

switching is not significantly worse than videos with less bitrate switches.

Key Observations: We now summarize key observations with double-clients based

on our study:

• Cache Hitrate: For 10s, smart cache increases the hitrate by 52% and for 15s smart

cache increases the hitrate by 76% compared to the basic scheme.

52



• Client Throughput: With smart cache for 10s, the throughput measurement of

client1 and client2 increase 33.21% and 43.7%, respectively, compared to the basic

scheme. This value for 15s double-client for client1 and client2 increases to 24.9%

and 12.55%, respectively.

• Delay: With smart cache for 10s, delay for client1 decreases by 7.07% while client2

delay decreases by 5.67% compared to the basic scheme. For 15s with smart cache,

delay decreases for client1 and client2 by 13.53% and 7.74%, respectively.

• Bitrate Gain: With smart cache for 10s, client1 and client2 bitrate gain increase

by 11.04% and 21.09%, respectively, over the basic scheme. For 15s, the gain

increases by 41.25% and 48% for client1 and client2, respectively.

• Bitrate Switching: smart cache does not have a noticeable change in bitrate switch-

ing for the first and second client in 10s compared to the basic scheme.

• Findumentally, latency and bitrate gain have a direct relationship. If the bitrate gain

increases, then the latency also increases. However, smart cache shows less latency

increase with higher bitrate gain than the basic scheme.
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CHAPTER 5

MOVING QOE MODELS

In this Chapter, we present our two moving QoE models: MQoE RF (Rate Fre-

quency) and MQoE SD (Standard Deviation). Our first moving QoE model, MQoE RF

(see Fig. 12), considers two QoE metrics: bitrate gain and bitrate switching frequency.

Bitrate gain reflects increase in quality to the end users, it has a positive impact on the

QoE. However, if bitrate switching frequency happens frequently, the end user may be

displeased; that is, this factor negatively impacts overall quality of experience. Thus, our

model rewards the bitrate gain. On the other hand, our model penalizes bitrate switching

frequency metric. To consider the effect of bitrate switching frequency (count of switches)

as a separate metric on QoE, we should consider this metric in a non-linear model. Since

our model focuses on a multi-client environment, both these metrics are considered in

terms of aggregation among all the clients. Secondly, to address for in-flight QoE esti-

mation, we take a window-based approach to provide QoE periodically during a video

session.

To consider the nonlinear relationship between the two metrics over multiple

clients and to modestly penalize for bitrate switching, our model considers adding the

average bitrates received by all the clients, which is divided by the sum of the exponential

smoothing values of the bitrate switching frequency of all clients in each window adjusted

by a weight. The denominator in Equation. 5.1 also accounts for the situation if there are
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Figure 12: MQoE RF for multiple clients.

no switching in a window, in which case the QoE model can still be computed based on

the average bitrate.

If we set ∆t to be the window and the number of active clients to be C, then our

MQoE RF model can be written as (see Table. 10 for the complete list of notations):

MQoE RFC,∆t =

1
C

(
C∑
c=1

Bc,∆t

)

1 +

1
C

(
C∑

c=1
δc,∆t

)
γ

. (5.1)

Here, Bc,∆t represents the average bitrate for client c during the window ∆t, and

δc,∆t represents exponential moving average on bitrate switching frequency, given by:

δc,∆t = (1− ν) ∗ δc,∆t−1 + νNc,∆t. (5.2)

We now explain further the rationale behind our choices. Our assumption is that
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variable description
B bitrate
B average bitrate
K Number of segment
C Number of active clients
∆t time window
δ exponential smoothing of the switching frequency
N number of switching frequency
σ standard deviation
ν exponential smoothing weight (0 ≤ ν ≤ 1)
α, β, γ weights

Table 10: Notations used in QoE models.

window ∆t is a reasonable time window for measurements (see Chapter 6 or further dis-

cussion). Then, Bc,∆t represents the average of all the DASH segments for client c in

∆t. The switching frequency factor in the denominator is exponentially smoothed to even

out any large oscillatory behavior during window ∆t. The parameter γ acts as a scaling

parameter on this bitrate switching frequency. Finally, to account for the possibility of

no switching frequency, especially over multiple windows, that could lead to δc,∆t being

nearly zero, we have added one in the denominator in Equation. 5.1 as the final stabiliza-

tion factor in our MQoE RF model.

Our second moving QoE model, MQoE SD (see Fig. 13), differs from MQoE RF

(Equation. 12) in that it is a linear model that relates the bitrate magnitude with the change

arising in bitrates. That is, the first term in MQoE SD 5.3 is the same as the numerator in

MQoE RF 5.1, which reflects the average of bitrates among all the clients. The standard

deviation of the bitrates of all the clients in a window can be an aggregated value to

capture the switching magnitude during a window; this term is then submitted from the
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Figure 13: MQoE SD for multiple clients.

bitrate term based on a weight. Thus, our second model, MQoE SD, can be written as:

MQoE SDC,∆t =
1

C

(
C∑
c=1

Bc,∆t

)
− α · 1

C

(
C∑
c=1

σ(Bc,∆t)

)
, (5.3)

where σ(Bc,∆t) represents the standard deviation on bitrates in window ∆t for

client c. To contrast our moving QoE models, consider next a static QoE model such as

the original MPC QoE model [58]:

MPC QoE =
K∑
k=1

Bk − β ·
K−1∑
k=1

|Bk −Bk−1|, (5.4)

where Bk is the bitrate of segment k while K is the total number of segments in

a video. Note that such static QoE models consider all segments being delivered in their

QoE calculation. Before we discuss how a static model could be adapted for moving QoE

determination, we point out that we kept the two most dominant terms from [58]: bitrates
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of segments and differences in bitrate from one segment to the next from the original

MPC QoE model. We do not consider two terms from the original MPC QoE model:

the startup delay and rebuffering. The startup delay is an issue only at the beginning of

a video session. Since we are considering a windowed scenario for moving QoE, this

term is relevant only at the beginning in the initial window, but no longer in any other

windows and it is, thus, irrelevant for moving QoE and it is ignored. The other term,

rebuffering, was found to have very minimal effects in a recent extensive study with video

streaming [56]; thus, we also do not consider this term (we will comment on rebuffering

later in Chapter 6 based on our study and point out how rebuffering is indirectly captured

by our MQoE models). Since Equation. 5.4 for observing QoE is for an entire video,

we adapt it for use in each window by computing for the segments transferred in each

window. Assume that in the window ∆t, the number of segments is K∆t, the MPC QoE

model in the window ∆t for client c can be rewritten as:

MPC QoEc,∆t =

K∆t∑
k=1

Bc
k − β ·

K∆t−1∑
k=1

|Bc
k −Bc

k−1|. (5.5)

Thus, over the set of all clients in window ∆t, we get the following moving MPC-

based QoE model, which we refer to as MQoE MO:

MQoE MOC,∆t =
1

C

C∑
c=1

(
K∆t∑
k=1

Bc
k −β ·

K∆t−1∑
k=1

|Bc
k −Bc

k−1|

)
. (5.6)
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Figure 14: MQoE Architecture with thee clients n− 1, n, n+ 1 for window m.

5.1 Diagram Architecture for MQoE

MQoE is an aggregated value among multiple clients and it can be reported every

∆t seconds (See Fig. 14). During a video session, there are multiple MQoE values,

which are calculated each time in a centralized point in the network. If an ISP or content

provider wants to implement MQoE monitoring model, the DASH client protocol would

not be modified for implementation. The users are blind to this monitoring process. The

only task that each client suppose to do, independently of what DASH protocol with

whatever configurations is using, is to send the information about the received bitrates in

a window duration of ∆t (Bc,∆t, σ(Bc,∆t), δc,∆t) to a controller. This controller that is set

up by the providers, receives all the information of each client in each window ∆t. The

controller is responsible to implement the MQoE model on the received data (it can be

MQoE RF, MQoE SD, or MQoE MO). In Fig. 14, the controller is on the server for ease

of understanding. It shows that three clients n− 1, n, n + 1 send information at window

m.
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CHAPTER 6

MOVING QOE MODEL EVALUATION

6.1 Environment Study

To study the MQoE models, we implemented our study environment on the GENI

testbed [3], in which clients access a video from a DASH video server. In this envi-

ronment, we allow multiple clients to simultaneously access the same video to emulate

watching the same live event by a number of users. The raw link bandwidth was set to

10 Mbps. DASH clients were implemented in Python and the video server was based on

Apache HTTP server. For ABR scheme used by the clients is the dynamic/hybrid ABR

algorithm that applies both throughput and buffer signal for bitrate selection based on [1].

For our study, we used Big Buck Bunny (BBB) and Elephants Dream (ED) [28],

two well-known DASH video datasets, which consist of 150 and 164 segments, respec-

tively. Each of these videos has 20 bitrate representations, ranging form 0.045 Mbps

at the lowest resolution for both of the datasets to 3.936 Mbps and 4.066 Mbps at the

highest resolution for Big Buck Bunny and Elephants Dream, respectively. The twenty

representations and the gaps between the representations sequence in both datasets are

Figure 15: mobile network topology
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very similar. Each segment was of 4 sec playback duration. Thus, the entire Big Buck

Bunny video is 10 min long and the entire Elephants Dream video is 11 min. While the

two datasets have very similar bitrate representations, the sizes in terms of bytes of each

segment in a dataset with a specific representation is not the same as the other dataset. In

Fig. 16, we show the segment sizes (in MB) of the highest bitrate codec representation

for each dataset to illustrate this point. For example, for first few segments of Big Buck

Bunny with highest bitrate of 3.936 Mbps has a significant larger size than the first few

segments of Elephants Dream highest bitrate of 4.066 Mbps. We observe similar differ-

ences in the other segments multiple times. The main implication of this observation is

that even if each segment received is from the highest representation, the bitrates are not

related to the segment sizes in bytes. Consequently, MQoE observed for user watching

Big Buck Bunny would be different than for Elephants Dream since the ABR algorithm

depends on the throughput as a factor, assuming all other factors being equal.

To emulate the effect on the clients to experience mobility while traveling and

connected to a wireless network environment as shown in Fig. 15, we used traces on

path behavior dataset provided by Riser et al. [45] while traveling by a car, a train, or a

ferry. We installed Wondershaper [4] on the server machine to throttle the link with these

traffic traces. As noted in [45], with a car, there are frequent fluctuations on bandwidth

availability and also dead time when the signal is not available. On the other hand, due

to length of the videos we studied, our study faces the frequent fluctuation part, but never

reached the dead time mentioned in [45]. With the train trace, there is a large drop in

bandwidth availability at one point during our study, which captures essentially the dead
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Figure 16: Segments in megabytes: BBB vs. ED for the highest representation

time. Finally, for the ferry trace, the ferry was going from one shore to another shore; thus,

the bandwidth availability continued to gradually drop as the ferry moved away from the

departing shore. Due to the duration of the videos we studied, the bandwidth availability

was just about to start to ramp up due to signal strength improving from the other shore

when our videos ended. Thus, the three traces gave us different perspectives on mobility

patterns during the video streaming period and it is instructive to keep this in mind. We

conducted our study in this setting with multiple clients ranging from three clients to ten

clients. Finally, MQoE MOdels for multiple clients are presented by normalizing based

on the maximum value of the MQoE MOdel for a single client for the associated traffic

trace.
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6.2 Initial Analysis and Adjustment

Our initial analysis centered around determining window ∆t, weights associated

with our QoE models, and the limitation of MQoE MO for use in moving QoE moni-

toring. Our first experimentation was to determine the window duration ∆t by varying

the window size. We observed that with a small window size, there are many windows

that have no switching. Sometimes with a higher traffic that causes latency in the client

request, no segment might be transmitted if it is a very tiny window. Based on our initial

trials, the window size of 60 sec was found to be a good window size that has a reasonable

number of segments and switching in each window. The window size was kept at a con-

stant time duration for the rest of our study. Then, in all our study, we consider the first

window for ∆t to be the ramp-up window; thus, we will focus on results from window 2

to window 10 for both the videos. In addition, we can observe ramp-up of the frequency

in the second window as we used exponential smoothing with previous value from the

first window.

For use in Equation. 5.1, exponential smoothing in switching frequency was used

as shown in Equation. 5.2. We found that setting ν = 0.75, which gives more weight

to the newest value of switching frequency, allows us a level of relative stability while

capturing the changes. Thus, this value was used in the rest of our study. We considered

a number of different values for both γ and α used in 5.1 and 5.2, respectively. The

combination of γ and α are categorized into three sets: set0: γ = 25 and α = 0.5; set1:

γ = 10 and α = 1; set2: γ = 5 and α = 1.5.This is summarized in Table 11.

We found that when γ = 25 (from set0), the MQoE RF behavior is similar to the
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sets γ α
set0 25 0.5
set1 10 1.0
set2 5 1.5

Table 11: Sets of weight parameters for MQoE models

bitrates received by the clients; i.e., the bitrate term in the numerator is the dominant term

in 5.1 for MQoE RF at this value of γ. As we reduced γ from 25 to 5, we noticed that

the MQoE behavior changes to the point of being more fluctuating, while giving higher

weights to the denominator in Equation. 5.1; Thus, we show the graphs for three values

of γ at 25, 10, and 5 in Fig. 17a with three clients in car. Similarly, we found that

when α = 0.5 (from set0), then the MQoE SD behavior in Equation. 5.3 is similar to the

bitrates received by the clients. When α increases to 1.5, the MQoE behavior changes

to the point where QoE has higher fluctuation because it is giving more weights to the

second term in Equation. 5.3. Thus, for α, three values 0.5, 1.0, 1.5 are shown in Fig.

17b for three clients in car. From this discussion, it is clear that set0, i.e., α = 0.5 and

γ = 25 essentially reflects the same behavior as bitrates. The parameters, γ and α, are

self-learned parameters. We note that γ between 5 and 25 and α between 0.5 and 1.5 are

the useful ranges for these parameters to account for the associated term. Below or above

these ranges, we observe asymptotic behavior that would not give us any new information.

Consider next the MQoE MO model 5.6. We found that the straightforward ex-

tension of the MPC QoE model 5.4 to moving QoE model 5.6 is problematic at times.

Consider again Fig. 18, which also includes MQoE MO on the graph. From window 8

to 10, the MQoE MO value dropped by 57.0% while the bitrate drop was only 20.03%
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Figure 17: Three clients (car) with different values of α and γ (for BBB)
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(see Fig. 19a). On further investigation, we found that since the number of segments

transmitted during a window can vary (depending on the network condition), it may also

be possible that this number can be quite low as it so happened in window 10. With 5.6,

a large drop is possible in the moving QoE in a particular window. This result also illus-

trates that a static QoE model is not readily usable as a moving QoE model. Thus, for

moving QoE, new models as we proposed here are necessary. In the rest of the paper, we

simply focus on our MQoE models 5.1 and 5.3, and for two sets of α and γ parameters

values: set1 and set2.

6.3 Comparative Study

By considering three mobility traces based on car, train and ferry, our study fo-

cuses on three dimensions: 1) to establish the behavior of the MQoE models as the number

of clients is varied, 2) to understand how the models are impacted as we consider two dif-

ferent videos, and 3) perceived QoE by clients in a multi-client scenario. As noted earlier,

the environment for this study mimics as if the clients are watching a live event. Of the

two videos, most of our discussions from our study centers around scenarios for the Big

Buck Bunny video. We also discuss results for Elephants Dream, in certain cases with

cars, to show the difference in behavior that is a manifestation of the difference between

the two videos in terms of bitrates and segment sizes that we discussed earlier in section

Environment Study. For each scenario, we show a set of figures that represents the av-

erage bitrate, the bitrate exponential switching frequency, the standard deviation of the

bitrate switching magnitude, and the MQoE values for both our models as ∆t changes.
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For some of the scenarios, we present the mean segment size of each window along with

maximum and minimum values of each window during the session for all the clients.

This will show the main reason of difference in bitrate representation selection for the

two datasets and finally the MQoE values while having similar configurations. Then we

provide segment-based size and bitrate comparison for the first client of a scenario for the

two datasets. Next the results are discussed for each of the three mobility trace scenarios:

car, train, and ferry, with more detailed discussions for car. For all trace scenarios, we

studied three situations in terms of the number of simultaneous clients: three, five and ten

clients.

6.3.1 Mobility Trace: Car

6.3.1.1 Three Clients

Consider first three simultaneous clients watching when the Big Buck Bunny video

is streamed. From Fig. 19a, we see that as we go from window 6 to window 7, the

bitrate increases. Along with that, the bitrate switching frequency and bitrate switching

magnitude also increase (see Fig. 19b and Fig. 19c), which affect the MQoE models (see

Fig. 19d) in different ways.

With set1, the bitrate switching frequency and bitrate switching magnitude impact

on both models which cause QoE value drop by 2.43% for MQoE RF and with a larger

drop by 6.88% for MQoE SD. The impact of the magnitude on the linear model is larger

than the impact of frequency on the non-linear model for window 7. These changes

become more severe when the value of α increase and γ decrease where MQoE RF and
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MQoE SD drop by 9.6% and 13.44% for set2, respectively.

From window 7 to window 8 MQoE RF with either value of γ shows an increasing

trend when the bitrate reaches the peak value. It means that for that value of bitrate, the

bitrate switching frequency cannot be much significant for the model to take a different

trend than bitrate. The value of bitrate switching frequency Fig. 19b did not change

notably. However, MQoE SD decreases and with larger values of α from set2, a larger

drop occurs, which is caused by the high value of the bitrate switching magnitude with a

higher weight in 5.3.

Note that in the plots on the standard deviation of the bitrate switching magnitude

(see Fig. 19c and also in later figures), some windows have values equal to zero. This

happens when in a specific window, no bitrate switching occurs. This may also happen if

the latency due to congestion on a link is too high that the number of segments in these

windows is one or less.

Now if we look at the results for the Elephants Dream video (Fig. 20), the metrics,

value and behavior on each window were found to be different than with the Big Buck

Bunny video. Bitrate (see Fig. 20a), unlike the Big Buck Bunny (see Fig. 19a), in the

first three windows has an increasing trend as the standard deviation on bitrate switching

shows some values on those windows. From window 8 to widow 9, while the bitrate

decreases, MQoE SD shows an increasing trend when the standard deviation for bitrate

switching decreases. MQoE RF shows a closer trend to the bitrate as the bitrate switching

frequency has almost the same value for these two windows. From window 9 to window

10, the bitrate has an increasing trend; however, MQoE SD decreases due to the increase
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Figure 19: Three clients: car (BBB)
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Figure 20: Three clients: car (ED)
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Figure 21: Three clients/Car: size in each window for BBB and ED

in bitrate switching standard deviation by almost six times. The MQoE RF still shows

rise for both sets, although the jump is lower than bitrate jump, as the bitrate switching

frequency has been doubled.

We next take a comparative view of the observations from the two different videos.

As we mentioned in the previous section, the bitrate representation of the two videos are

similar; however, segments at the same level of the bitrate representations vary in sizes (in

terms of MB). In other words, similar representations do not mean similar sizes in bytes.

The average, maximum and minimum on the sizes in MB for segments transmitted in

each window for all clients are shown in Fig. 21. For Big Buck Bunny, the average sizes

(in MB) from window 3 to window 6 are close to Elephants Dream. On the other hand,

from the window 1 to window 3 and from the window 7 to window 10, the average sizes

for Big Buck Bunny is higher than Elephants Dream. Table. 12 shows the average values
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Figure 22: Three clients (car): first client’s segments in bytes: BBB and ED

for all the studied cases. This presents the average size of the 10 window for each dataset

wherein Big Buck Bunny is found to be greater than that for Elephants Dream in this for

three clients (in car). It is instructive to compare bitrates for each video, shown here for

the first client along with segment byte sizes chosen; see Fig. 22. This is to illustrate that

the measured MQoE for each video can be noticeably different, which is possible since

the ABR algorithm uses throughput (that depends on the bytes transferred) as a factor in

deciding the bitrate to choose for the next segment.

6.3.1.2 Five Clients

Going from three clients to five clients (see Fig. 23) for Big Buck Bunny, we see

that bitrates have more swings (compare Fig. 23a to Fig. 19a. Both models follow the

pattern of bitrate changes with set1. Same trend can be observed for set2 with MQoE RF
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Scenario Average Value BBB Average Value ED
Car (3 clients) 0.38 0.35
Car (5 clients) 0.26 0.21
Car (10 clients) 0.13 0.11
Train (3 clients) 0.27 0.34
Train (5 clients) 0.17 0.19
Train (10 clients) 0.12 0.10
Ferry (3 clients) 0.33 0.34
Ferry (5 clients) 0.24 0.22
Ferry (10 clients) 0.13 0.11

Table 12: Average values of segment sizes (in MB) for all the case studies.

(where γ = 5), but from window 8 to 9 this trend changes temporally for MQoE SD

(where α = 1.5). The MQoE RF has higher rise compared to MQoE SD for both sets of

weight parameters as the effect of bitrate switching frequency is smaller than the bitrate

switching magnitude. With a larger α, we see a shorter rise for MQoE SD as the effect of

bitrate switching magnitude is too high that MQoE SD does not show a similar trend as

bitrate for these windows.

We note that the bitrate value on the window 8 spikes for Big Buck Bunny (see

Fig. 23a) while for Elephants Dream, it shows a drop (see Fig. 24a). From window 9

to window 10, there is rise in the bitate and bitrate switching frequency and magnitude;

however MQoE SD decreased with both sets of parameters. The reason is that from

window 9 to window 10 there is a very large rise of bitrate switching magnitude. The QoE

value (see Fig.24d) shows smaller drop and rise compared to Big Buck Bunny as the value

of bitrate switching frequency and standard deviation for Elephants Dream change less

for sequential windows than the same metrics in Big Buck Bunny. The average segment

size per window for Elephants Dream is less than that for Big Buck Bunny (see Fig. 25

73



2 3 4 5 6 7 8 9 10

Windows
0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

Bi
tra

te
 G
ai
n 
(M

bp
s)

(a) Bitrate

2 4 6 8 10

Windows
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Bi
tra

te
 S
wi
tc
hi
ng

 F
re
qu

en
cy

(b) Exponential smoothing values of switching
frequency

2 4 6 8 10

Windows
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Bi
tra

te
 S
wi
tc
hi
ng

 M
ag

ni
tu
de

 (M
bp

s)

(c) Standard deviation of switching

2 3 4 5 6 7 8 9 10

Windows
0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Qo
E

MQoE-SD α=1
MQoE-SD α=1.5
MQoE-RF γ=10
MQoE-RF γ=5

(d) MQoE

Figure 23: Five clients: car (BBB)

and Table. 12). Fig. 26 shows first client segments in bytes for the two videos when there

are five clients.

6.3.1.3 Ten Clients

When we go from five clients to ten clients for Big Buck Bunny (see Fig. 27),

the shape of the bitrate swings is notably different while the range of values are smaller

due to higher number of clients. There is a 12.32% rise for MQoE RF from window 5
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Figure 24: Five clients: car (ED)

to window 7 with set1. On the other hand, from window 5 to 6, the MQoE RF with set2

and MQoE SD with set1 and set2, there is an increase in the MQoE value by 14.17%,

3.69%, 3.55%, respectively; then, from window 6 to window 7, these models decrease

by 8.91% 2.75%, 20.76%, respectively. The reason for the drop in MQoE SD is that the

bitrate switching magnitude is much larger in this window compared to previous windows

and this value has a significant effect on the linear model 5.3. At window 7, the bitrate

switching frequency is also large. However, its effect on the nonlinear model 5.1 is not
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Figure 25: Five clients/Car: window bytes BBB and ED
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Figure 26: Five clients/Car: first client’s segments in bytes for BBB and ED
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Figure 27: Ten clients: car (BBB)

as significant as the linear model 5.3. This is an illustration of how our QoE models are

amenable to capturing the sensitivity due to frequency and the magnitude of the switching.

For Elephants Dream video, the bitrate has a large rise on window 7 compared

to other windows. The two models (see Fig. 28d), within any set of wight parameters,

show a very similar behavior while on window 10 they all drop when the bitrate shows

a rise. This drop is moderate for MQoE RF and severe for MQoE SD. The increase in

bitrate switching frequency on window 10 is almost twice that in the window 9 and the
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Figure 28: Ten clients: car (ED)

increase of bitrate switching standard deviation is tripled the value of window 9. Fig. 29

shows that Big Buck Bunny has larger size segments in each window than for Elephants

Dream. In general, the 10-client situation leads to a congested environment, and thus, the

differences are minimized due to competing for link resources by all clients.
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Figure 29: Ten clients (car): window bytes BBB and ED
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Figure 30: Ten clients (car): first client segment byte BBB and ED
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6.3.2 Mobility Trace: Train

6.3.2.1 Three Clients

We next consider our study for mobility being from a train with three clients for

Big Buck Bunny. For this mobility scenario, a large drop in bitrate occurs in the middle

due to a drop in bandwidth availability (see Fig. 31a). More specifically, in window 6, the

operable bitrate drops significantly; during this window, there is no switching to improve

the bitrate. Naturally, QoE for each model also drops in this window. Going from window

6 to window 7, there is a spike in the bitrate, which increases the values for both MQoE

moels with set1. More specifically, we see a larger increase in MQoE RF than MQoE SD.

When α increases with set2, MQoE SD takes a downward trend. In window 7,

both bitrate switching frequency and bitrate switching magnitude have large value. But,

by increasing α for set2, the effect of bitrate switching magnitude on the MQoE SD model

is higher. MQoE RF and MQoE SD, were both able to capture the penalty of the bitrate

switching frequency and the bitrate switching magnitude.

6.3.2.2 Five and Ten Clients

For five clients (Fig. 32 for Big Buck Bunny), the overall behavior is similar to

that of three clients in most windows. However, with ten clients (Fig. 33), we observe a

different shape than three and five clients. From window 6 to window 7, for both set1 and

set2, there is a rise for both models along with the rise represented for the bitrate. This

increase is larger for MQoE RF.

From window 7 to window 8, the bitrate is decreasing slightly. For the model
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Figure 31: Three clients: train (BBB)

MQoE RF with set1, we can see that the QoE value decreases while the bitrate frequency

switching decreases from window 7 to window 8. The reason is that the model receives the

impact of bitrate trend more than the bitrate switching frequency. However, for set2, the

MQoE RF is almost flat as the model receive more impact by bitrate switching frequency.

On the other hand, MQoE SD behaves differently than bitrate. For both sets of the weight

parameters, MQoE SD increases, unlike the bitrate and MQoE RF. This rise means that

the magnitude size is not significant compared to the previous window.
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Figure 32: Five clients: train (BBB)
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Figure 33: Ten clients: train (BBB)
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6.3.2.3 Comparison between Two Videos

For three, five and ten clients on a train watching the Elephants Dream video,

MQoE models generally show somewhat similar patterns (see Fig. 34, Fig. 35, Fig. 36).

On the other hand, for Elephants Dream compared to Big Buck Bunny, there is more

fluctuation of bitrates and, thus, for MQoEs. Based on Fig. 37, Fig. 38 and Fig. 39

that show sizes on windows, for three clients train the area under the curve for Elephants

Dream is larger than that for Big Buck Bunny. For five clients, the two plots of Elephants

Dream and Big Buck Bunny are going through many changes, however, the overall sizes

are not significantly different.

For ten clients train the area under the curve for Big Buck Bunny is slightly larger

than that for Elephants Dream (see Table. 12 for average values).

6.3.3 Mobility Trace: Ferry

For the case of traveling in a ferry, the signal drops gradually as the ferry moves

away from the departing shore, which impacts the available bandwidth. Thus, with all

ferry scenarios with three, five and ten clients, we see the QoE value gradually drops for

both MQoE models along with the bitrate (see Fig. 40-42) for Big Buck Bunny. We do

note a small difference in window 10 for all the scenarios as the bitrate shows a small

increase from window 9 to 10.

With three clients, there is a small difference in MQoE RF compared to MQoE SD

on each ∆t (MQoE RF is higher than MQoE SD). With MQoE RF when γ decreases in

set2, it does not reflect the small peaks of bitrate significantly. However, MQoE SD is
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Figure 34: Three clients: train (ED)
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Figure 35: five clients: train (ED)
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Figure 36: Ten clients: train (ED)
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Figure 37: Three clients (train): window bytes BBB and ED
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Figure 38: Five clients (train): window bytes BBB and ED

88



2 4 6 8 10
Windows

0.1

0.2

0.3

0.4

0.5

siz
es
 (M

B)
BBB
ED

Figure 39: Ten clients (train): window bytes BBB and ED

more sensitive on the magnitude of bitrate switching and shows bumps and dents even

more than the bitrate.

For the five and ten clients also MQoE RF is higher than MQoE SD. For MQoE RF,

the jumps on window 4 and window 7 are significantly higher than MQoE SD. This is

mostly affected by increase of the bitrate on those windows when there are more num-

ber of clients to compete and the value of bitrate switching frequency decreases. There

are high values of bitrate switching magnitude in these windows, which does not let

MQoE SD to rise as much as MQoE RF.

For ten clients, the peaks get smaller when the α increases as the bitrate switch-

ing magnitude is large for these windows; by increasing α (set2), its impact on the linear

model MQoE SD is noticeable. The trend in the case of Elephants Dream is very similar
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(c) Standard deviation of switching
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Figure 40: Three clients: ferry (BBB)

to Big Buck Bunny and, thus, is not shown here. Recall that our model does not explic-

itly consider rebuffering. We found that only in the case of a ferry, we observed some

rebuffering, which occurred as it reached the lowest point of the wireless signal.

Certainly, rebuffering is a factor when there is a dead time. On the other hand, our

QoE models capture this drop indirectly by reporting a lower QoE value and assigning a

zero if there are no segments transmitted at all in a window. Thus, as we postulated early

on, rebuffering does not need to be explicitly captures in the MQoE models.
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(c) Standard deviation of switching
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Figure 41: Five clients: ferry (BBB)

6.3.4 MQoE Comparison with Multi-Client and Fairness

We now discuss how increasing the number of clients impacts MQoE. With a

higher number of the clients, the competition for the resources increases, which causes

each client to get a smaller share of the resources. Smaller shares also causes a QoE

degradation (see Fig. 43, shown for Big Buck Bunny). In the case of cars, MQoE RF with

gamma = 10 (set1), three clients scenario has higher MQoE value than for five and ten

clients. With five clients, the QoE decreases about 36.86% on average compared to three
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Figure 42: Ten clients: ferry (BBB)

clients. With ten clients, the QoE shows a decrease of 53.71% on average compared to

five clients. In the case of the train, regardless of the number of clients, the QoE drops to

the lowest point at window 6. For the rest of the windows, QoE behavior with the train is

showing almost the same pattern as with the car. On average, with five clients, the QoE

decreases by 37% compared to three clients. With ten clients, the QoE shows a decrease

of 47% compared to five clients. With the ferry, we see the decreasing trend from the

starting window to the final window. But the QoE drop for the case with three clients is
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Figure 43: mult-client: MQoE RS, γ = 10

much more significant since the QoE was higher to start at the beginning compared to five

and ten clients scenarios.

We show the results for three, five and ten client scenarios for MQoE SD with

α = 1 in Fig. 44. We observed a similar trend as with MQoE RF. We also analyze how

fairly each client is treated in terms of MQoE. In the case of three clients, for MQoE RF

of each client with γ = 10, the standard deviation was 6.89% compared to the average

among all the clients. With the same weight parameter, for ten clients this value decreased

to 2.52%. The lower deviation indicates that clients are getting fairer share in a congested

environment, although none are getting very high QoE. Recall that all clients watched the

same video in our study. This shows that the ABR does not treat each client equally fairly

except for in a congested environment.
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Figure 44: mult-client: MQoE SD, α = 1
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CHAPTER 7

CONCLUSION

In this Dissertation, we provide solutions for QoE improvemnt with in-network

cache prefetcing and QoE monitoring from ISP and content providers perspective.

In the first work, we propose a smart in-network cache prefetching scheme for

video streaming to prefetch a segment bitrate. Smart cache is a multi-threaded limited-

sized cache server that uses an ABR algorithm for segment bitrate selection in prefetch-

ing. This selection is based on forecasted throughput values calculated with exponential

smoothing in the cache server itself. The forecasted throughput values are based on the

previous moving average throughput values from the clients. This idea has been studied

in two sets of experiments, once with a single client and bottleneck on the access link.

Then, with double clients and bottleneck on the core link along with a cache replacement

algorithm. We compared our scheme with an original basic scheme. The results show that

smart cache increases hitrate in the cache, thereby improving throughput and QoE metrics

of the clients such as average bitrate gain, latency, and bitrate switching frequency.

In the second work, we present two moving QoE models that can report ensem-

ble QoE in review windows on a periodic basis for multiple clients streaming. To our

knowledge, we are the first to propose Moving QoE (MQoE) models for video stream-

ing performance monitoring that can be used by content service providers. Secondly, the

multi-client scenario has rarely been studied before, which is important to consider for
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content providers. Our study shows that such models can be used to understand the QoE

behavior of multiple clients during streaming, especially for a video transmission such as

for a live event. We also found out that a static QoE model such as MQoE MO is not

suitable for moving QoE. Our nonlinear model MQoE RF is preferable when a content

provider wants to capture the bitrate switching frequency in the QoE model. Our lin-

ear model MQoE SD, in general, is useful at capturing the standard deviation of bitrate

switching. Based on our observation, For weight parameters, γ = 10 with MQoE RF and

α = 1 with MQoE SD (i.e., set1) were found to be the best values to use to adequately

capture the bitrate switching frequency and bitrate switching magnitude impact while

keeping quality due to bitrates. Our work is expected to be useful to content providers

to observe variations for different conditions and fairness on QoE received by different

clients so that they can take appropriate actions.
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