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ABSTRACT

Program comprehension is an essential part of software development and mainte-

nance. Traditional methods of program comprehension, such as reviewing the codebase

and documentation, are still challenging for understanding the software’s overall struc-

ture and implementation. In recent years, software static analysis studies have emerged

to facilitate program comprehensions, such as call graphs, which represent the system’s

structure and its implementation as a directed graph. Furthermore, some studies focused

on semantic enrichment of the software system problems using systematic learning ana-

lytics, including machine learning and NLP. While call graphs can enhance the program

comprehension process, they still face three main challenges: (1) complex call graphs

can become very difficult to understand making call graphs much harder to visualize and

interpret by a developer and thus increases the overhead in program comprehension; (2)

they are often limited to a single level of granularity, such as function calls; and (3) there

is a lack of the interpretation semantics about the graphs.
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In this dissertation, we propose a novel framework, called CodEx, to facilitate and

accelerate program comprehension. CodEx enables top-down and bottom-up analysis of

the system’s call graph and its execution paths for an enhanced program comprehension

experience. Specifically, the proposed framework is designed to cope with the follow-

ing techniques: multi-level graph abstraction using a coarsening technique, hierarchical

clustering to represent the call graph into subgraphs (i.e., multi-levels of granularity), and

interactive visual exploration of the graphs at different levels of abstraction. Moreover,

we are also worked on building semantics of software systems using NLP and machine

learning, including topic modeling, to interpret the meaning of the abstraction levels of

the call graph.
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CHAPTER 1

INTRODUCTION

1.1 Program Comprehension

Comprehending the implementation and structure of a system is required before

applying any proper modification or enhancement to the system. Thus, program compre-

hension is an essential and costly activity in software maintenance [118]. Studies report

that program comprehension is an intensive and time-consuming process. Around 60% of

the software engineer’s time is spent in this task [27,122,140]. The developer usually uses

different artifacts to help him understand the system. These artifacts can be divided into

two types: code artifacts and documentation artifacts. Developers often read the system’s

documentation, (i.e., a high-level artifact). However, software documents are often out-

dated, i.e., current documentation does not match the current software implementation.

Thus, code artifact is considered as the only trusted source to understand the software.

Therefore, in this dissertation, we focus mainly on the source code as well as on these en-

tities that can be extracted from the source code and helpful in understanding the source

code.

Program comprehension approaches can be divided into different categories [36].

We describe the most important categories top-down approach [9, 102], bottom-up ap-

proach [120] and a combination of the two [124].
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In the top-down comprehension approach, the software engineer gains an under-

standing of the source code by relying on his prior domain knowledge and experience.

The developer starts with the most abstract problem domain concepts and builds a set of

assumptions or hypotheses. Then, he verifies the validity of his hypotheses by inspecting

the source code and other artifacts. In the end, a hierarchy of assumptions is built until

the low-level hierarchy is matched with the source code.

In the bottom-up comprehension approach, the developer is not familiar with the

problem domain. He starts by reading the source code line by line, understanding the

behavior of small pieces of code, and then grouping these small chunks of source code

to build higher levels of abstraction. This process is repeated until the entire program is

understood [75, 120].

The integrated approach, which involves the top-down, bottom-up methods, is

commonly used when the developer tries to understand a large-scale system. The reason

behind this is that some parts of the source code may be familiar to the developer because

of previous experiences while other parts of the code may be completely new [132].

1.2 Software Analytics

During software development and maintenance activities, a significant amount of

data can be collected including requirements, source codes, bug reports, test cases, exe-

cution traces/logs, etc. However, This data is hard to manage and understand by humans.

Thus, researchers in the field of software engineering (SE) have turned their attention to

studies based on data mining (DM) and machine learning (ML). Applying data mining
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enables the discovery of useful knowledge and hidden patterns from collected SE data.

There are many research topics in software engineering and data mining that can pro-

vide more insight and support decision-making in those areas. As shown in Figure 1, the

intersection between data mining, software engineering, and statistics/math.

Figure 1: Intersection of DM and SE with Other Areas of the Field

The main difference between software analytic and direct software analysis is that

software analytics performs further advanced steps rather than just providing straightfor-

ward insight. As explained by Hassan [54], in order to facilitate decision making, software

analytics must provide visualization and useful interpretation of insights.

1.3 Semantic and Structural Analysis

Since source code is the most reliable and important input for program compre-

hension, several methods and techniques used the source code as the only trusted source
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to understand the software. These techniques can be divided into two different cate-

gories: syntactic and semantic. The syntactic approaches are based on static program

structural information (e.g., classes, methods, and attributes) and its dependencies (e.g.,

inheritance, method calls, references). A number of syntactic-based techniques have been

proposed [60, 90]. The semantic approaches, on the other hand, consider analyzing and

extracting domain knowledge of the system by utilizing the source code comments and

identifier names [64,70,116,125]. In this dissertation, we focus on investigating the com-

bination of using semantic and structural information of programs to support the compre-

hension tasks.

1.4 Static Analysis

In this dissertation, we choose to focus on static analysis to comprehend the soft-

ware system and identify the functionality of the system. The main reason for this is that

by static analysis, we can preserve the overall structure of the system and model it into

different representations such as a call graph. Moreover, we can examine all possible

execution paths, which is not the case in dynamic analysis. Dynamic analysis can only

provide a partial picture of the system, i.e., the results obtained are valid for the scenarios

that were exercised during the analysis. Therefore, obtaining all possible execution paths

of the system is very difficult. Especially, execution paths associated with conditional

statements (if-then-else) may require the developer to provides a set of different inputs.

That is why dynamic analysis suffers from incomplete execution paths.
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1.5 Contributions

The main intent of this dissertation is to support program comprehension using

visual analysis and exploration of a software system. We first show how a system’s call

graph can be used as a starting point for program comprehension by developing an in-

teractive visualization tool that can analyze the source code of a system and visualize its

structure in multi-level of abstractions. Second, We develop a data-driven approach of

static analyzes to mine a system’s execution paths and determine the implementation de-

tail of a system. Many of the execution paths perform similar functionalities and share

a huge number of functions with other paths. Therefore, to manage or handle this large

volume of execution paths, we apply clustering techniques to group these paths based on

similar functionalities they share. Third, To further support the comprehension process,

an interactive clustering-based visualization tool was proposed to facilitate the process

of analysis and exploration of clustered paths. It provides a mapping technique to link

the resulted clusters to the overall system structure using the call graph representation.

Finally, To interpret the meaning of the resulted clusters, we apply topic modeling tech-

niques to understand cluster’s functionality by generating labels that reflect the meaning

of each cluster.

Our overarching goal is to assist software developers in understanding the soft-

ware system from a high level of abstraction to a low level of implementation with the

ability to focus on particular parts of the system individually. To validate our approach

and tool support, we built a framework that implements the execution path mining and the

visualization aspects. It can analyze the codebase of a system and construct the static call
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graph for a system, cluster the execution paths of the call graph into hierarchical abstrac-

tions, and label the clusters according to their major functionality. The framework also

lets the users visualize the structure of the system in multi-level abstractions. Moreover,

it provides different features including filtering, search, and quantitative information to

aid the comprehension process. The framework would assist the developers/maintainers

in the following ways:

• Allow the developers to understand the implementation and the structure of a soft-

ware system using the call graph at multi-level of abstractions.

• Allow the developers to bridge the cognitive gap between the system’s overall func-

tionality and its implementation by automatically mapping high-level system func-

tionality to its low-level implementation using our proposed clustering techniques.

• Allow the developers to visually analyze and interpret the clustered execution paths

by labeling and linking the clustering results to the overall system structure.

Moreover, we conducted a user study of 18 software engineers from more than

11 industries who carried out several tasks using our system and then answered a sur-

vey. The results demonstrate that our approach is feasible to automatically construct

multi-level abstractions of the call graph and hierarchically cluster them into meaningful

abstraction. Figure 2 depicts the high level of the approach workflow. To summarize, the

main contributions of this dissertation include:

• Developer an automated language independent approach for analyzing the source
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code of a system and visualizing its structure in multi-level abstractions using the

call graph [2].

• Develop an automated data-driven approach to bridge the cognitive gap between the

high-level functionality of a software system and its low-level implementation [2].

• To interpret the meaning of the resulted clusters, we apply topic modeling tech-

niques to understand clusters functionality by generating labels that reflect the mean-

ing of each cluster.

• Develop an interactive clustering-based visualization tool to facilitate the process of

analysis, exploration and mapping of resulted clusters to the overall system struc-

ture [2].
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 Call Graph

Caller-Callee
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Source Code 
Files
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Execution Paths List

Feature 
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 static code 
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Topic
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Figure 2: High-level of the Approach Workflow.
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1.6 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes

our attempts in understanding software through visualization. We show how a system’s

call graph can be used as a starting point for program comprehension. We propose an

interactive visualization tool that can analyze the source code of a system and visualize

its structure in multi-level abstractions using the call graph. Chapter 3 of this dissertation

deals with a program comprehension solution that is based on static trace analysis. We

introduce the clustering technique using machine learning to group the execution paths

of a system based on similar functionalities they share to support the comprehension pro-

cess. Chapter 4 addresses the need for path reduction techniques in program compre-

hension. We discuss the limitations of existing solutions and introduce a new reduction

technique that enables analyzing the execution paths of a medium or large-scale software

system. Chapter 5 describes our approach of analyzing and interpreting the meaning of

the clustered call graphs using topic modeling technique along with our visual abstrac-

tion technique of the call graph. Chapter 6 describes the implementation of a visual

clustering-based exploration tool that supports our scalable clustering approach. In other

words, We implemented CodEx, a scalable tool that supports all the aforementioned ap-

plications. We also conducted a user study to assess the usefulness and usability of the

tool.
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CHAPTER 2

MULTI-LEVEL CALL GRAPH FOR PROGRAM COMPREHENSION

2.1 Introduction

Program comprehension is an imperative prerequisite for software reuse, debug-

ging, testing, maintenance, and evolution [29]. In order to facilitate the task of under-

standing the software and its implementation, developers often read the system’s docu-

mentation, i.e., a high-level description of the software system, and then manually map

their understanding of the system to its low-level implementation. However, software

documents are often outdated, i.e., current documentation does not match the current

software implementation [91]. As a software system evolves and increases in size and

complexity, understanding its implementation and structure becomes an even more chal-

lenging and time-consuming task. Manually mapping the high-level functionality to its

low-level implementation is expensive, time-consuming, and error-prone. Therefore, soft-

ware developers use analysis tools to understand and gain more knowledge about the

system’s implementation. One of the techniques used by software developers to under-

stand the functionality and structure of a system is call graphs. A call graph depicts the

system structure in terms of function calls or operational invocations [42, 57, 95]. Call

graphs [94, 112] aid to facilitate software comprehension and operational analysis tasks

and can enhance software-related activities, such as debugging and maintenance [3]. In

the literature [42, 59, 62, 73, 119], various techniques have been proposed to visualize the
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call graph of a system. These approaches are promising but limited in several aspects:

• Visualize a portion of the call graph [59, 73]. Thus can not depict the overall struc-

ture of a system.

• Limited to a single level of granularity (i.e., function level) [42, 119] and thus may

not well support different maintenance tasks requiring understanding either fine or

coarse grain, or both level.

• Generate the call graph in static format [59, 62], which makes the exploring and

understand process difficult.

To overcome these issues, we develop a call graph visualization tool with a dy-

namic, browser-based user-friendly interface. The tool provides a set of features to further

support the comprehension process, keep the amount of information in the graph man-

ageable, and reduce the effort to understand it. Moreover, it provides different levels of

abstraction to aid the developers in understanding the implementation and the structure of

a software system using the call graph.

2.2 Background

In this section, we present a brief background on the topic of call graphs and define

some of the related terms repeatedly used in the rest of the chapters.

Call Graph has been widely used to facilitate understanding the structure and

execution flow of software systems [14, 47, 112]. A call graph can be dynamic [45],

constructed at runtime, or static [94], constructed at compile time. The static call graph
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(a) Source Code (b) Call Graph

Figure 3: Representing Source Code to Call Graph

can be a very useful technique in reverse engineering and software maintenance [77].

A significant advantage of the static call graph over the dynamic call graph is that it

can be constructed without the need of executing the program, and all the dependency

information is gathered directly from the source code of the system, which is not the

case in the dynamic call graph. The dynamic call graph would require the developer to

know what inputs data to provide, and how to execute the system. Moreover, obtaining all

possible execution paths of the system is very hard. Especially, execution paths associated

with conditional statements (if-then-else) may require the developer to provides a set of

different inputs. That is why dynamic call graph suffers from incomplete executions

path [9,37,67]. In contrast, the static call graph represents all possible execution paths of

the system. Our research focuses on static call graphs, and hereafter we use the term ‘call

graph’ to refer to ‘static call graph’ for simplicity unless otherwise distinguished.

In a software system, a static call graph [94] is defined as a directed graph ~G =

(V, E) where V is the set of v entities, and E is the set of edges where each edge, ~e ∈ E,
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represents an entity call (u caller, v callee). In-degree of node v, denoted by deg−(v), is

the total number of edges incoming to node v. The out-degree of a node v, denoted by

deg+(v), is the total number of edges outgoing from node v. Figure 3 depicts a Java code

snippet with its corresponding call graph.

In OOP, call graph is usually used to represent a system in three different levels

of abstraction: Function Call Graph (FCG), Class Call Graph (CCG), and Package Call

Graph (PCG). Each graph represents a different view of the system. They are described

as the following :

• Function Call Graph. Represents the low level of the system by capturing the func-

tion calls. It can be constructed from the caller-callee relationships. For example,

if function v calls function u, then they are represented in a function call graph as

two nodes with a directed edge from v to u.

• Class Call Graph. This graph captures communication between classes, and it

represents a coarse-grained function call graph. For example, given a function in

class A that calls a function in class B, then the class call graph will contain node

A and node B with a directed edge from A to B.

• Package Call Graph. It represents a coarse-grained class call graph. Classes belong

to the same package will be merged as a single node that has the package name, and

parallel edges will be removed.

In this dissertation, we suggest more than three levels. The coarsening could be

further improved by using the package hierarchy to coarsen the graph to more than the
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three levels.

2.3 Related Work

In software engineering research, the study of call graphs, their uses, and func-

tionality have a long history [12, 15, 94]. Several recent works have attempted to use call

graphs to assist software engineers in various phases of software development, such as

testing, maintenance, and understanding of software evolution [14, 128, 134].

2.3.1 Software Modelling

There are many researches in the software visualization area that depict the struc-

ture of the system [17, 89, 119]. Although our visualization tool is mainly developed for

visual exploration of the call graph, it can visualize the system structure in different levels

of abstraction. Several researchers have proposed different visualization tools to help de-

velopers gain a better understanding of the software structure [4,17,66,136]. For example,

Alnabhan et al. [4] proposed a 2D software visualization approach. They used geomet-

ric forms to represent different entities of the source code. For example, classes and

methods are described as rectangles and circles, respectively, and relationships between

the methods are represented by arrows. Displaying all system entities, classes, methods,

and attributes are likely to lead to an overload of information and failing to adequately

represent the software.

Other interesting works exist in this area, including representing a subject program

in 3D. Wettel et al. [136] and Brito et al. [17] used a city metaphor, where classes or

interfaces are represented as buildings and packages are described as districts. The height,
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width, and color of a building reflect different software matrices such as the taller the

building, the higher the number of methods. Similar work by Khalooas et al. [66] used a

room to represent one class, and rooms are grouped together based on the code’s project

file structure. Although these tools have been proved to aid developers to comprehend

the structure of a system, the dependency among the methods and the classes showing the

flow of events in the software system is missing.

2.3.2 Call Graph Visualization

While there are several existing tools that generate call graphs of a system [42,59,

62, 134]. However, these tool use Graphviz [34, 40] for drawing graphs. For example,

Alnabhan et al. [4] proposed a 2D software visualization approach. They used geometric

forms to represent different entities of the source code. For example, classes and meth-

ods are described as rectangles and circles, respectively, and relationships between the

methods are represented by arrows. The generated call graph is represented in a static

format such as SVG, PNG, and DOT format. Graphs can get complex when analyzing

large systems. Thus, graph entities such as nodes, edges, and associated attributes will

likely be overlapping. which requires more effort to understand. Also, the user can not

move a node to resolve the overlapping.

Code2graph [42] is a Python static analysis tool that analyze the source code of

programs written in Python. The tool can automatically analyze and extract the system

structure. Then, construct the static call graph of the system. Finally, construct similarity

matrix of all possible execution paths in the system. The tool renders the call graph using

14



the Graphviz library.

GraphEvo [134] is static analysis tool that captures software evolution using call

graphs. The tool mainly focused on finding the differences among subsequent call graphs

of different versions of the system and colored the added and removed nodes in Green

and Red, respectively, to illustrate the code changes for programs written in Java. The

tool also visualize the call graph using the Graphviz library.

Figure 4: Micro-array Visualization

Other interesting works exist in this area, including interactive visualization for

the call graph. Shah and Guyer [119] propose an interactive call-graph visualization tool

for programs written in Java or C++. Their tool represents the call graph in a grid of pixels

where each pixel or cell represents a function. Figure 4 shows the call graph of a system

that represented in micro-array. The microarray layout is inspired by a DNA microarray

visualization from biology work proposed by Zhang et. al [145].

REACHER [73] is interactive visualization tool implemented as eclipse plugin. It

helps developers explore static call graph paths of the specific method instead of manually
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Figure 5: REACHER’s Call Graph Visualization

traversing calls to understand the control flow. The tool was developed to help answering

a reachability questions such as whether certain code is reachable from other code under

certain conditions. Figure 5 shows the two view components of the tool. The search view

in the upper right, and the call graph view in bottom.

Another tool that is very similar to ours is introduced by lemos et al. [74]. They

proposed SysGraph4AJ (MultiLevel System Graphs for AspectJ). The tool supports vi-

sualization of the system’s structure and structural testing at the unit level. Although

SysGraph4AJ allows users to explore the system in multi-level views, only dependency

among the methods is supported.

Bohnet and Döllner [15] combine the static structure and dynamic analysis prop-

erties in 3D landscape views. The tool extracts dynamic call graph information and allows

the developer to navigate and gain insight into how features are implemented. The dy-

namic call graph would require the developer to know what inputs data to provide, and

how to execute the system. Moreover, obtaining all possible execution paths of the system

is very hard. In contrast, our work focuses on the static call graph of the software system.

16



The static call graph considers all possible execution paths of the system.

These tools are promising but limited in several aspects. (1) limited to a single

level of abstraction (i.e., function level ) and thus may not well support different mainte-

nance tasks requiring understanding either fine or coarse grain, or both levels. (2) visual-

ize a portion of the call graph and does not depict the overall structure of the system. (3)

draw the call graph in a static format which requires more effort to understand. Table 1

summarizes and compares the related work, in addition to our tool CodEx based on six

characteristics explained as follows:

• Abstraction. Refer to the level of abstraction that the tool support to explore the

call graph. low level (e.g., function call graph) or more abstraction levels (e.g., class

and package level)

• Export. Whether the tool supports exporting the graph data or not.

• Visualization. Refer to the the type of the visualization that is used to render the

call graph. Static (e.g., DOT, PNG), interactive (e.g., allow clicking, moving the

entities, etc)

• Language. Programming languages that the tool support.

• Search and Filter. Whether the tool supports the searching feature or filtering the

graph nodes.

• Coverage. Whether the tool supports exploring the complete call graph of a system

, or part of it.
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Table 1: Tool Features for Call Graph Visualization

Feature/Tool Abstraction Export Visualization Language Search and Filter Coverage
Code2Graph [42] function level DOT Static Python None complete call graph
SysGraph4AJ [74] three-level None interactive C++, Java Support subgraph
GraphEvo [134] function level DOT Static Java None complete call graph
Microarray [119] function level DOT interactive C, C++, Java Support complete call graph
REACHER [73] function level None interactive Java Support subgraph
CodEx multi-level GML, Json interactive Language independence Support complete and sub call graph

2.4 Proposed Approach

Our approach consists of five steps. First, The input of our approach is a source

file of the system. Second, we statically analyze the codebase to extract the functions’

relationships. Third, the functions’ relationships are used to construct the call graph.

Finally, visualizing the call graph. Figure 6 depicts the workflow process of constructing

and visualizing a call graph of a system.

Figure 6: Constructing and Visualizing a Call Graph

2.4.1 Source Code Analysis

The first two components in our approach can be done by using an existing anal-

ysis tool. For Java systems, we extract the objects, functions, and their dependencies

by integrating an existing static analysis tool, java-callgraph [44] to generate the caller-

callee list as a text file. The analysis tool uses the Apache Byte Code Engineering Library

(BCEL) to analyze a given .jar file as input.
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For Python systems, While there exist many tools to extract entities and their

dependencies for several programming languages, such as C, C++, and Java, the methods

and tools that address extraction of entities and their dependencies for Python are scarce

and limited in functionality, due to the dynamic nature of Python.

Pyan [59] is an open-source project hosted on GitHub that can automatically gen-

erate statics call graphs for one or more Python modules. Similar to the majority of tools

in this area, Pyan generates DOT files, i.e. graph description language files with the

dot extension, which can be rendered into actual graphs using other visualization tools,

such as GraphViz. Pyan uses the Abstract Syntax Trees (AST) to process trees of the

Python abstract syntax grammar. Using AST helps laying out the codebase structure and

its interactions programmatically. Pyan provides a command-line interface to facilitate its

functionality and can produce self-organized and colored call graphs. Pyan functionality

is limited to a collection of modules inside a single package at a time. However, often,

large open-source projects are structured into multiple hierarchical packages, where some

packages may include modules and other packages, too. In such a case, Pyan can only

process the Python modules at one level of the hierarchy, i.e., it ignores the nested pack-

ages and their modules. This enforces the developer to construct call graphs for every

single package in the system and then manually relate them to each other. This is tedious

and error-prone. Moreover, Pyan does not support the inter-procedural flow of functions

leading to missing edges to the parameter functions.

Another Python static analysis tool, named PyCG [114], has been published re-

cently. It resolves some challenges or limitations of Pyan. For example, Pyan does not
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support some Python’s functionality such as generators, exceptions, and ignores the inter-

procedural flow of functions, parameters, and returns.

ENRE [62] is a framework that supports extracting entities and relations from

Python and Golang programming languages, and it can be extended to support different

programming languages. ENRE uses Antlr [100] as the underlying parser that supports

lexical and syntactic analysis of source code. Antlr generates Parse Trees using the gram-

mar rules of a given language. ENRE supports different formats to output entities and

relations such as CSV, XML, and JSON. Comparing to PyCG, ENRE supports dynamic

relations that can only be precisely resolved at run-time. However, it failed to resolve

some cases of relative imports such as from ..A import B.

The three aforementioned static analysis tools fail to address all challenges leav-

ing opportunities for improvement. Thus, to get the benefit from each one of the analysis

tools, we extend these tools and output the generated caller-callee list in a unified repre-

sentation. Then, merge them into a single file. Later, we parse the file to construct call

graphs of a system.

2.4.2 Unified Representation of Caller-Callee

M:sh3d.applet.Applet:isModified() M:sh3d.model.HomeApplication:getHomes()
M:sh3d.applet.Applet:isModified() M:sh3d.model.Home:isModified()
M:sh3d.applet.SweetHome3DApplet:init() M:sh3d.applet.SH3DApplet:createAppletApp()
M:sh3d.HomeFrameController:displayView() M:sh3d.HomeFramePane:displayView()
M:sh3d.io.AutoRecoveryManager:openRecoveredHomes() M:sh3d.model.Home:getName()

TABLE I: Tool features for call graph visulaztion

- visulaztion - static/dynamic
- search and filter
- navagation
- languge indepadnace
- single level

Figure 7: Part of Unified Representation of Caller-Callee List for SweetHome3D

The first step towards constructing the call graph is to define and extract entities
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and their dependencies. We define functions and objects as entities because considering

only functions will ignore the object-oriented structure of the system [96]. Also, they are

regarded as essential components of traditional systems and represent the functionality of

a system more clearly than other components. Relationships between these entities are

function calls and class instantiating. To extract the objects, functions, and their depen-

dencies, we extended several existing static analysis tools; java-callgraph [44] for Java,

and Pyan, PyCG, ENRE for Python. We output the caller-callee list in a unified represen-

tation. Each edge in the caller-callee list is represented using the below format :

Flavor:Namespace:Identifier(Parameters)

• Flavor represents the entity type, such as method, function, or object.

• Namespace is the fully-qualified name of the entity, which consists of the package

name followed by the class name. It is used to define the scope of the identifier.

• Identifier represents the name of the entity.

• Parameters are the entity arguments.

Figure 7 shows portion of the methods invocations for one of the case study (i.e.,

SweetHome3D) using unified representation.

2.4.3 Call Graph Construction

This phase consists of two main steps: (1) parsing the edges list to construct a

function call graph, then (2) simplifying the function call graph to different levels of

abstraction using the coarsening technique.
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2.4.3.1 Graph Schema

While parsing the caller-callee list, we also extract nodes’ properties and their re-

lationships using a generic graph data structure, NetworkX [48]. This library was used to

manipulate and render the structure of the call graph. Then, we created a JSON schema to

obtain node properties. After constructing the call graph, the results are saved in different

file formats, including GML and JSON. JSON schema is used for visualization of the call

graph. To avoid the entity name conflict problem, we maintain the fully qualified name of

each entity, which consists of the namespace followed by its name and parameters. This is

important for two reasons:(1) avoid the method-name conflict problem, since file, classes,

and method may have identical names in different namespaces and packages. (2) con-

struct a coarse-grained system call graphs using the namespace of methods. Each entity

has the following attributes:

{

"idx": "i"

"id": "fully qualified name of the entity"

"namespace" : "PackageName.ClassName",

"label" : "entity name",

"flavor" : "function/object/class/package"

"successors" : []

"predecessors" : []

}

More attributes are added to the node after constructing the call graph, such as identifying
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the articulation nodes in the graph [58]. An articulation node is a node that disconnects

the graph if removed with all its edges.

2.4.3.2 Coarse-grained Representations

Figure 8: Constructing and Visualizing a Call Graph

Coarsening is a popular type of graph reduction, which can be defined as an ag-

gregation process of graph nodes to identify nodes of the next coarser graph [24]. An

advantage of a multi-level coarsening technique is to facilitate graph data analysis by

merging nodes and edges using specific criteria. In this dissertation, we define our own

criteria to simplify the function call graph into multi-level graphs such as Package and

Class call graphs. Figure 3 illustrates a toy example showing the coarsening technique.

For example, to construct the class call graph, our graph coarsening technique takes the

function call graph as an input and then collapses nodes that have the same namespace

into a single node. Similarly, we construct the package call graph by merging class nodes

with the same namespace, from the class call graph, into a single package node. For large

systems, the coarsen will go beyond package call graph by using the package hierarchy

to coarsen the graph to more than the three levels.
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Algorithm 1 Graph Coarsening

1: G \\ function call graph
2: high \\ longest namespace
3: low \\ shortest namespace
4: procedure COARSENING( G, high, low )
5: G

′ ← G
6: while high > low do
7: high = high− 1
8: G

′
[level]← high

9: for each node ∈ G
′ do

10: level← countDots(node[namespace])
11: if level! = 0 then
12: name← get the substring after last dot in node[namespace]
13: namespace← remove substring after last dot in node[namespace]

14: node[name]← name
15: node[namespace]← namespace

16: saveGraph(G
′
)

2.4.4 Call Graph Visualization

To implement our approach, We develop an interactive exploratory call graph vi-

sualization tool, named CodEx, that can help developers to explore and navigate the call

graph of a system written in Java. However, The tool can visualize the call graph of

any system written in any programming language. To do this, the user would require

any programming language analysis tool and output the method invocation in the unified

representation (see Section 2.4.2)

CodEx presents a new set of features that allow the user to interactively explore

the call graph in different views, with a side panel to facilitate exploring metadata of the

graph and its nodes. We describe these features and demonstrate them with examples

Web-based User Interface. In a website application, a user can open multiple
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Figure 9: Main Interface

tabs side-by-side in the browser to perform any number of tasks. CodEx utilizes this

feature to display different graph levels and views in separate tabs in a browser to help

developers studying each level or view separately.

Nodes Shapes and Colors. Node-link technique is commonly used to visualize

and explore relationships between software system entities [87]. Thus, we used the node-

link technique to represent the call graph of a system. Graph nodes are code coloring

based on namespace. For example, in the case of the function call graph, if two nodes

belong to the same class or file they will assign for the same color. This can help the

developer see how functions/classes of different files/packages interact with each other.

We use the node’s border to identify whether this node entry or exit point. In particular, if

a node has a dashed border then it is an exit point. Similarly, if a node has a bold border
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then this node is an entry point. Another node feature is its shape. We use a circle shape to

represent an entity, and arrows represent relationships between these entities. The triangle

node represents an articulation point, which means removing this node can disconnect the

graph into two or more sub-graphs.

Figure 10: Mini Dashboard

Highlighting Nodes. When the user selects a node by clicking it, CodEx high-

lights the selected node and its neighbors while coloring the rest of the graph with a

transparent gray color. This feature helps developers to focus on particle functions and

their relationships. Moreover, selecting a node opens a side panel showing the metadata

associated with the selected node (see Figure 9)

The user can easily browse the metadata, including type, in-degree, out-degree,
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and graph matrices. Also, clicking on the ’Dependant’ tab will show all the node neigh-

bors while clicking on the ’Required’ tab will show all nodes that call the current function.

As shown in the Figure 9, the user clicked on ’actionPerformed’ node/function. From the

side panel, we can see that The node calls/depends on 11 nodes while it is called by 0

nodes.

Search and Filtering. Figure 9 shows modal with statistic information about

the system and its call graphs, such as the number of nodes, edges, entry points, and exit

points. In addition, a table list all the nodes in the graph with their properties. an advanced

search, and filter features allowing user to search for nodes with specific property. Figure

10 shows 5 out of 6 entry points in the current graph. This modal can be viewed when the

user clicks on the dashboard button in graph view (see Figure 9).

1122

Figure 11: Navigate Between Levels

Navigate between Levels. Figure 11 shows side modal with different levels. Each

level represents a call graph with different abstraction. As shown in Figure 11, the system

has seven different abstraction levels. Level 7 represents the lowest or finer-grained graph
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(i.e., function call graph) while the level 1 represent the most abstract level of the system

call graph.

Saving and Loading. Our visualization tool can save the results and state of each

process in different formats (e.g., GML, JSON, CSV). Moreover, When a call graph is

rendered in the first time, the position of the nodes and edges in the graphs will be saved.

Thus, when the user opens the project again the graphs will be loaded in seconds.

2.5 Evaluation

To illustrate and evaluate the utility of our tool to program comprehension, we first

conduct six case studies to illustrate that our approach and tool are supporting language-

independence. Second, the tool is capable of automatically constructing and visualizing

static call graph of a system in multi-levels of abstraction. Third, we present a quantitative

evaluation of the case studies to assess the cost and efficiency of our tool using real-world

applications. The characteristics of these systems described in Table 2.

Table 2: Subject Systems

System Version Description Language LOC

Detectron 2.0 Object Detection Library Python 11,735
Flask 1.1.2 Web Applications Framework Python 3,315
Keras 2.3.0 Neural-network Library Python 24,620

PHNotepad 3.0 Code editor Java 962
SweetHome 3D 6.2 Interior 2D design Java 104,098

WEKA 3.8 Machine Learning Library Java 324,497
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2.5.1 Case Studies

These case studies are Python and Java open-source projects. The first three case

studies are Python projects, namely Detectron [43], Flask [46], and Keras [25], selected

based on their ranking on GitHub, i.e., the most popular projects. Detectron is an open-

source software system from Facebook that implements state-of-the-art object detection

algorithms. It is written in Python and has a relatively small-size codebase. Flask is an

open-source web micro-framework written in Python. It provides tools, libraries, and

technologies to facilitate web development. Keras is a high-level neural networks API,

written in Python and capable of running on top of TensorFlow [1]. Keras was developed

with a focus on enabling fast experimentation.

The remaining case studies are Java projects. PHNotepad [56] is a code editor

equipped with operational features such as search, auto-completion, and intuitive, easy-

to-use GUI. Although the program system has 962 lines of code, we selected this system

due to its outstanding design and manageable size for manual analysis and verification.

SweetHome3D [35] is a medium-sized, interior design application. The user can design a

house in 2D by drawing the plan of the house, adding furniture and home appliance, and

then preview it in 3D. It comes with many easy-to-use features, including import texture

and furniture, recording videos, and allowing user-customized preferences, such as set-

ting the system language, fonts, and units of measurement. WEKA [39] is open-source

software that provides a set of tools for data mining tasks including data preprocessing,

classification, regression, clustering, association rules, and visualization. It helps to de-

velop machine learning techniques and apply them to real-world data mining problems.
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Table 3: Structure Analysis Results of the Function Call Graph for Each Case Study

Entity Detectron Flask Keras PHNotepad SweetHome 3D WEKA

Nodes 525 370 1,779 36 5,148 14,742
Edges 740 360 2,347 36 9,501 35,575

Entry Point 108 123 844 4 1,517 5,031
Exit Point 207 168 591 28 2,821 4,982

Articulation Point 133 115 376 8 577 2,460
Coarsen Levels 5 5 5 2 3 7

To evaluate CodEx, we first removed the test cases from each case study since they

do not contribute to the overall functionality of the system. Second, For Java projects, our

tool is already integrated with the java analyzer. Thus, the developer can use the jar file

of the system directly as input for our tool. To construct and visualize a system written

in other languages, users have to output the caller-callee list in a specific representation.

Thus, for Python projects, we extend three analysis tools PyCG, Pyan, and ENRE to

output the method invocations in a unified representation (see Section 2.4.2). Then, save

this output as a text file and use it as input for CodEx.

While the main task was to construct and visualize the call graphs, we first illus-

trate that CodEx is capable of extracting useful statistics metadata about the call graph

of the system, presented in Table 3, which can be helpful in understanding the overall

complexity of the system call graph.

The call graphs of the case studies showed that Detectron has 525 nodes, out of

them is 108 functions are entry points and 207 functions are exit points. The call graph

of Flask consists of 370 nodes, out of them is 123 functions are entry points and 168
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functions are exit points. We observed that the number of edges 360 relatively close to

the number of nodes. The Keras case study was the largest in size among the two other

python case studies. In particular, Keras’s case study consists of 1,779 nodes, 2,347 edges.

It has 844 entry points and 591 exit points. For Java case studies, we see that the smallest

case study, PHNotepad, has a similar number of nodes and edges (i.e., 36), 28 of the nodes

are exit posits. SweetHome3D consists of 5,148 nodes, 29% of functions are entry points

while around 55% are exit points. The WEKA case study is the largest in size among

all case studies. It consists of 14,742 nodes, 35,575 edges. It has 5,031 entry points and

4,982 exit points.

2.5.2 Quantitative Evaluation

In order to evaluate the computational efficiency and scalability of CodEx, we

conducted the following quantitative evaluation. Specifically, we computed the time cost

for constructing a multi-level call graph for each system. In particular, we want to measure

the time is needed to construct the low-level graph (i.e., function call graph) until the most

abstract call graph using our coarsening technique for each case study. The results are

summarized in Table 4.

Table 4: Summary of the Quantitative Analysis Results

Entity Detectron Flask Keras PHNotepad SweetHome 3D WEKA

No. Levels 5 5 5 2 3 7
Coarsen Process 0.874 0.757 1.438 0.127 4.426 18.397
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2.6 Conclusion

In this chapter, we show how a system’s call graph can be used as a starting point

for program comprehension by developing presented an automated language-independent

approach for analyzing the source code of a system and visualizing its structure in multi-

level abstractions, equipped with an interactive visualization tool. To illustrate and eval-

uate the utility of our tool to program comprehension, we conduct six case studies to

illustrate that our approach and tool are (1) supporting language-independent, (2) capable

of automatically constructing and visualizing static call graph of a system in multi-levels

of abstraction, and (3) we present a quantitative evaluation of the case studies to assess

the cost and efficiency of our tool using real-world applications.
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CHAPTER 3

STATIC TRACE CLUSTERING: SINGLE-LEVEL APPROACH

3.1 Introduction

As the system evolves over time and its complexity increases, a larger amount of

data, including source code, bug reports, test cases, execution paths, etc, can be generated.

Mining and analyzing software data can give further insight to support decision-making

related to the software development life cycle (SDLC). Especially, during software devel-

opment and software maintenance.

A program’s static execution path is defined as the sequence of method calls.

These calls can be represented as a graph with nodes representing functions and directed

edges representing calls between these functions. The graph derived from a static trace

is known as a static call graph. A static call graph represents the system’s functions and

their interactions. However, with the increasing size and complexity of software systems,

the generated call graphs are typically very large, including thousands of functions and

millions of execution paths. Such large call graphs can have a contrary effect on soft-

ware comprehension; they could be overwhelming and more difficult to understand. In

addition, the call graph is limited to a single level of granularity, such as function calls.

Developers often need to manually map their understanding of the overall functionality of

the system to its low-level implementation captured by the call graph. Manually mapping

the high-level functionality of the system to its low-level implementation is expensive,
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Figure 12: Function Call Graph

time-consuming, and error-prone. Therefore, there exists a cognitive gap between the

high-level functionality of a software system and its low-level implementation.

Many of the execution paths perform similar functionalities and share a big num-

ber of functions with other paths. Therefore, clustering can play a key role in creating

hierarchical abstractions from the low-level function calls to the high-level system archi-

tecture. For example, in Figure 12, two of the execution paths: F1→ F2→ F3 and

F4→ F2→ F3 are considered similar and can be grouped in one cluster although they

are not identical. Iteratively, clustering similar execution paths can bridge the gap between

the source code and the overall system functionality. Thus, helps developers understand

the system functionality at several hierarchical levels of abstraction.

In order to overcome the issue of representing the system’s call graph at a sin-

gle level of granularity, researchers have proposed approaches that can represent the call

graph in multiple abstraction levels [38,41,143]. This can help developers understand the

system and investigate its functionality at several levels of abstraction. However, some of

these techniques cluster the call graphs based on the dynamic execution of the program,

the package structures, or consider only a few execution paths of the software system.

Moreover, little attention has been given to the area of visually examining and interpreting
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these clusters in terms of the call graph. The mentioned clustering approaches visualize

clustering results using flat lists or static hierarchical dendrogram [41]. Which makes it

difficult for users to explore, interpret, and navigate.

This chapter describes a new automatic data-driven technique to extract static

traces of a system and hierarchically abstract these static traces into a multi-level of gran-

ularity.

3.2 Overview of Hierarchical Clustering

Clustering is the process of grouping entities together based on their properties

(i.e., features). It has been applied in many fields such as bioinformatics, image seg-

mentation, document retrieval, and financial analysis [7, 79, 101], where similar objects

are grouped together. Thus, making large datasets more comprehensible. The cluster-

ing approach can be broadly classified into two categories: hierarchical and partitional.

Hierarchical clustering consists of a sequence of nested data partitions in a hierarchical

tree while partitional clustering produces flat clusters with no hierarchy, and requires prior

knowledge of the number of clusters. A popular example of partitional clustering methods

is the K-means algorithm. It is known as one of the most popular partitional clustering

methods [11, 61]. It was actually recognized as one of the top ten algorithms for data

mining [142].

For hierarchical clustering methods, there are two hierarchical clustering approaches,

Divisive clustering (top-down) and agglomerative clustering (bottom-up). We will discuss

and explore hierarchical agglomerative clustering algorithms, since it is widely used for
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modularization and architecture recovery of software systems [82].

Agglomerative Clustering. is one of the most common methods used in software

design. The reason is due to the very similar nature of its work to reverse engineering pro-

cess, where abstractions of software design are recovered in a bottom-up manner [26]. As

shown in algorithm 2. The algorithm starts by considering each data point as a singleton

cluster. Then, it merges the two most similar clusters until it forms a single large cluster.

Algorithm 2 Agglomerative Clustering Algorithm
1: procedure CLUSTERING(dataset)
2: Compute the similarity matrix
3: Let each data point in dataset be a cluster
4: repeat
5: Merge the most similar cluster based on linkage criteria
6: Update the similarity matrix
7:
8: until single cluster remains

Agglomerative Clustering does not require specifying any particular number of

clusters. However, it has different approaches (i.e., linkage) to specify how exactly the

“most similar cluster” is measured. The following are the main types of linkages:

• Single Linkage. Also knows as the nearest neighbor. It is defined as the shortest

distance between a pair of data points in two clusters. Formally, the distance be-

tween two clusters can be identified by taking the nearest point i in cluster C1 from

the closest distant point j in cluster C2 as shown in the following equation.

d(C1, C2) = min(d(C1[i], C2[j])) (1)

• Avarage Linkage. The average distance between each data point in one cluster to
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every point in the other cluster.

d(C1, C2) =
∑
ij

d(C1[i], C2[j])

(|C1| ∗ |C2|)
(2)

• Complete Linkage. Also knows as the farthest neighbor. It is defined as the longest

distance between a pair of data points in two clusters. Formally, the distance be-

tween two clusters can be identified by taking the farthest point i in cluster C1 from

the most distant point j in cluster C2 as shown in the following equation.

d(C1, C2) = max(d(C1[i], C2[j])) (3)

Figure (13.a) illustrates the progression of the agglomerative cluster. Initially,

each point is a singleton cluster. Then, in each step, the two closest clusters are merged.

In the first step, clusters 1 and 3 are picked and these are joined into two-point clusters. In

the second step, clusters 2 and 5 merge into one cluster. In step 3, cluster (2-5) is extended

to a third point, and so on. In step 5, there is only one large cluster remaining. Thus, the

algorithm then stops. As shown in Figure (13.b), the progression of the agglomerative

cluster can be also represented as tree-like (known as Dendrogram).

3.3 Related Work

3.3.1 Software Clustering

Software clustering is one of the commonly used techniques for program compre-

hension. Since source code is the most reliable and important input for program compre-

hension, Several clustering approaches use the source code as the only trusted source to
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(a) Nested Clusters (b) Dendrogram

Figure 13: Agglomerative Clustering

understand the software. Software clustering approaches can be divided into two different

categories: syntactic and semantic. The syntactic approaches are based on static structural

dependencies (e.g., inheritance, method calls, references). A number of syntactic-based

clustering techniques have been proposed [60, 90].

The semantic approaches consider analyzing and extracting domain knowledge

of the system by clustering the source code in terms of comments and identifier names

[64, 70, 116, 125]. Unlike previous software clustering techniques, our approach uses

static execution paths to guide the clustering of source code entities that perform similar

functionality. Execution paths can also reflect the overall system workflow [63].

3.3.2 Clustering Execution Paths

Xin, Qi, et al. [143] proposes FeatureF inder, an approach that aims to identify

the features of a program by clustering its execution paths using a classifier-based algo-

rithm. However, this approach is limited to a single level of granularity (i.e., function
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level). Gharib, et al. [42] introduces code2graph, an static analysis approach that clus-

tering execution paths using the Jaccard similarity coefficient. The similarity between all

possible system paths is represented using a heat-map. However, in earlier work, Gharib,

et al. [41] provided such a trace abstraction technique by clustering execution paths in

a hierarchical fashion to find different levels of granularity and visualize those in a den-

drogram. Similar to this approach, Feng, Yang, et al [38] presents SAGA, an dynamic

analysis approach that clusters the execution paths into multiple levels of granularity.

Sage visualizes the identified clusters in vertically stacked layers, where users may lose

the position of the visible layer due to the lack of a global overview.

Table 5: Comparative Table of Execution Paths Clustering Techniques

Approach Pros Cons

SEGA
Dynamic analysis approach that clusters the execution paths
into multiple levels of granularity

- Cluster paths into multi-level of granularity
- Labeling clusters based on methods names using TF-IDF

- Single level of abstraction (i.e., function level )
- Does not consider all possible execution paths
- Visualizes clusters in vertically stacked layers, where users
may lose the position of the visible layer due to the lack of a
global overview

Code2Graph
Static analysis approach that clusters the execution paths into
multiple levels of granularity

- Depict overall structure of the system
- Cluster paths into multi-level of granularity
- Labeling clusters based on methods names using TF-IDF

- Single level of abstraction (i.e., function level )
- Lack interpretation of the abstraction levels
- Suffer from scalability issues
- Ignore Infeasible path

FeatureFinder
Dynamic analysis approach that cluster execution path using a
classifier to decide relatedness

- Labeling clusters based on methods names using TF-IDF

- Does not consider all possible execution paths
- Single level of abstraction (i.e., function level )
- Lack of hierarchical abstraction
- Lack of a global overview

3.4 Proposed Approach

In this section, we introduce our approach for hierarchically abstracting execution

paths. The overview of our approach presented In Figure 14. The input of our approach is

a call graph of a system, which can be constructed from the method invocation. More de-

tails about constructing and visualization the call graph of a system have been introduced

in Chapter 2. The call graph is a prerequisite to generate all execution paths of the system.

An execution path represents all function calls between an entry point (i.e., function) to an
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exit point in the system. After collecting all the paths, we cluster them into a multi-level

of granularity using the hierarchical clustering technique.

Figure 14: Constructing and Visualizing a Call Graph into Multi-level of Granularity

3.4.1 Execution Paths Extraction

A simple execution path is a list of edges connecting a list of vertices v1, v2, v3, ..., vn

with the restrictions that all edges have the same direction. In addition, none of the edges

or vertices can be repeated.

X

X

Figure 15: Handling Infeasible Paths by Removing Back Edges.

In this step, we need to extract all possible simple execution paths from each

source node s to all target nodes t. Each source node represents an entry point, and each

40



target node represents an exit point in a system. Based on the number of in-degrees and

out-degrees of a node, we can identify the type of the node: A node with deg−(u) = 0 is

called an entry point, and a node with deg+(u) = 0 is called an exit point.

A simple execution path of a graph is a path that does not include any cycles.

We use all simple paths algorithm built-in NetworkX library [48] to extract all simple

execution paths. This algorithm uses a depth-first search to generate the paths in the

graph between the given entry and exit points. However, before that, we extended the

algorithm to break the self-loop to create more entry points and exit points. We also

consider breaking back edges in the graph to remove the cycles. Our criteria for breaking

cycles rely on the order of back edge discovery. For example, in the Figure (15), the edge

(F6, F5) comes before the edge (F5, F6). Thus, the back edge, in this case, is (F5, F6).

It will be not considered when we extract all simple execution paths.

Table 6 shows an example of generated simple paths from the function call graph

in Figure 15. This process results in a list of size P , where P is the total number of paths.

Each path has a list of functions Pi = [f1, f2, ..., fn]. All paths are exported to a CSV

file where each row represents a path.

Table 6: Example of Execution Paths (P :path, f :function)

P1 f1 f2 f3
P2 f1 f2 f7
P3 f4 f2 f3
P4 f4 f2 f7
P5 f6 f5 f3
P6 f8 f7 -

41



3.4.2 Feature Matrix

Before applying software clustering, we need to identify entities to be clustered

where each entity is described by different features. The selection of an entity depends on

the objective of the method. For example, for software modularization, researchers used

several types of entities, such as files [5], classes [10], and methods [113]. Researchers

have also used different types of features to describe these entities such as global variables

used by an entity [93], and procedure calls [5].

Our approach uses execution paths as entities, and method calls are the features

that describe these entities. Before clustering the execution paths using machine learning

techniques, we first preprocess our data and put it in a consumable format. Then, a feature

matrix of size N x M is generated, where N is the total number of entities, and M is the

total number of features. In particular, We encode the paths and features in a one-hot

encoding manner.

Table 7: Example of Feature Matrix

Entity/Feature f1 f2 f3 f4 f5 f6 f7 f8

P1 1 1 1 0 0 0 0 0
P2 1 1 0 0 0 0 1 0
P3 0 1 1 1 0 0 0 0
P4 0 1 0 1 0 0 1 0
P5 0 0 1 0 1 1 0 0
P6 0 0 0 0 0 0 1 1

Table 7 illustrates the entities in the execution paths. Each entity in the feature

matrix has a feature vector, fi = [f1, f2, . . , fn]. These features represent the presence or

absence of a function in a given path. Table 7 shows an example of feature matrix, which
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contains 6 entities (P1–P6) and eight binary features (f1–f8). We notice that f1 is present

in entities P1 and P2, while absent in the rest of entities (P3-P6).

3.4.3 Hierarchical Clustering

Hierarchical clustering is a distance-based algorithm that uses a similarity func-

tion to measure the distance between two clusters, i.e., how close they are. It allows the

developer to explore the data on different levels of granularity. There are two hierarchi-

cal clustering approaches, Divisive clustering (top-down) and agglomerative clustering

(bottom-up). Our approach uses agglomerative hierarchical clustering (AHC) to cluster

the execution paths into hierarchical abstractions.

As shown in Algorithm 3, each path is a singleton cluster, and then the two most

similar clusters are joined at each step until it forms a single large cluster, which contains

all the paths. There are several advantages of using AHC for our approach. AHC process

is more similar to the reverse engineering approach, where the architecture of a software

system is recovered in a bottom-up fashion [139]. Moreover, AHC provides different

levels of abstraction and can be useful for developers to select the desired number of

clusters when the results are valid and meaningful.

Algorithm 3 Agglomerative Clustering Algorithm
1: procedure CLUSTERING( SimMatrix, linkage )
2: cluster ← {}
3: for each p in paths do
4: cluster ← cluster ∪ p

5: while cluster 6= 1 do
6: Join the two closest clusters
7: Update the distance matrix
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Hierarchical clustering does not require specifying the number of clusters. How-

ever, performing this clustering requires two things: (1) similarity measures of execu-

tion paths and (2) the linkage type between two clusters. Several researchers conducted

experiments on a set of systems to compare various similarity measures and linkage

types [6, 30, 82]. They concluded that Jaccard similarity produces more reliable mea-

surements as well as the complete link algorithm. Thus, we present our results by using

the Jaccard as a similarity measure and complete link type.

3.4.3.1 Similarity Measures

Similarity metrics compute a coupling value between two entities. To measure

the similarity between a pair of entities, we used Jaccard similarity [83], which measures

the dissimilarity between two sets. It is widely used in clustering problems, such as text

clustering. It can be calculated by computing the size of the intersections divided by the

size of the union of two sets and then subtracting the result from one, as shown in the

following equation.

d(Pi, Pj) = 1− |Pi ∩ Pj|
|Pi ∪ Pj|

(4)

3.4.3.2 The Linkage Type

Hierarchical Agglomerative clustering comes with different variants to measure

the distance between two clusters, known as linkages. There are three main types of

linkages used in many software architecture recovery techniques [82, 83]. The types in-

clude Single Linkage (SL), Complete Linkage (CL), and Average Linkage (AL). We use

the complete linkage method in our work to measure the distance between two clusters,

44



which is identified by taking the farthest point i in cluster C1 from the most distant point

j in cluster C2 as shown in the following equation.

d(Ci, Cj) = max(d(C1[i], C2[j])) (5)

3.4.4 Converting Cluster to Graph

Hierarchical clustering produces a dendrogram, which illustrates how the AHC

is performed in a bottom-up approach. AHC starts with the low-level execution paths

up to the root, where the linkage algorithm is completed. We have different levels of

abstractions for a given system in the form of a tree. To get a multi-level granularity of

the system call graph, we need first to convert these clusters to graphs. We first extract

cluster data from dendrograms, such as paths that belong to each cluster. This process

results in a list of size C, where C is the total number of clusters. Each cluster has a list

of paths Ci = [P1, P2, ..., Pn]. All clusters are exported to a CSV file, where each row

represents a cluster, and each column represents a path ID. Table 8 lists an example of

extracted clusters from a given dendrogram example.

Algorithm 4 takes the id of a cluster as input to retrieve all the paths that are part of

the cluster. Then each path in the selected cluster will be extracted from the path file. This

can be done by pointing the path’s id to its corresponding line in the path file. Finally,

we pass these paths into G to build a call graph of the cluster. Later, the call graph of the

cluster will be mapped to the original call graph using our visualization tool. (see Chapter

6)

45



Table 8: Example of a Clusters Table (C: cluster, P: path)

C1 P1

C2 P2

C3 P3

C4 P4

C5 P5

C6 P6

C7 P1 P2

C8 P3 P4

C9 P1 P2 P3 P4

C10 P1 P2 P3 P4 P5

C11 P1 P2 P3 P4 P5 P6

Algorithm 4 Cluster to Call Graph Conversion
1: procedure CLUSTER TO GRAPH( cluster id)
2: pathsList← GetClusterPaths(cluster id)
3: G← DiGraph()
4: for path id ∈ pathList do
5: path← GetPath(path id)
6: G.add path([path])

7: return G

3.5 Evaluation

In order to illustrate and evaluate our clustering approach, we developed a web-

based tool, named CodEx (see Chapter 6), and used it to conduct a case study. We first

present the case study to illustrate that our approach and tool are capable of constructing

and generate meaningful hierarchical clusters at different levels of granularity. Second, we

present a quantitative evaluation by conducting six case studies to assess the performance

overhead of clustering execution paths.
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3.5.1 Case Study: PHNotepad

This section presents a case study to illustrate the applicability and usefulness of

our approach. In this case study, we examined if we can generate meaningful hierar-

chical clusters at different granularity levels. We applied our approach to PHNotepad,

a Java code editor written in Java. The software is equipped with operational features

such as search, auto-completion, and intuitive, easy-to-use GUI. Although the program

system has 962 lines of code, we selected this system due to its outstanding design and

manageable size for manual analysis and verification.

Objective. One of the challenges in unsupervised learning algorithms is to eval-

uate whether the used clustering algorithm produces meaningful results. Thus, our first

case study focused on a manageable size subject that enabled us to inspect the results

manually and evaluate their significance. Also, we wanted to examine if our approach

can identify the functionalities of the system.

3.5.2 Results and Discussion

Our tool automatically generates different levels of the call graph for a given soft-

ware system using the coarsening technique presented in the previous chapter (see Section

2.4.3.2). Since PHNotepad has only one package, the tool automatically ignores the pack-

age call graph. Table 9 shows the analysis results for the class and function call graphs.

We notice that the system has a single entry point in the class level graph. Using the

search feature in our visualization tool, it is noted that the entry point is a class called

’SimpleJavaTextEditor’ that contains the main method calling all the other methods
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required to run the application. Since we are interested in the low level, We will ignore

the class level and apply our approach to the function call graph.

Table 9: Call Graph of PHNotepad in Class and Function Levels

Entity Class Call Graph Function Call Graph

Nodes 6 36
Edges 7 36

Entry Point 1 4
Exit Point 3 28

Paths 7 32

We apply three different clustering techniques (AHC, DBSCAN [49, 50] and K-

Mean [53]). The agglomerative hierarchical clustering can capture the overall feature of

high dimensional data. However, The other clustering algorithms do not perform well

on high dimensional data. Thus, we apply dimensional reduction technique called T-

SNE [129] to compute a new low-dimension representation for the data, and compare the

results with dendrogram. In order to determine the number of clusters, we use Calinski-

Harabasz to computes the optimal number of K in the clustering. Figure (16) presents the

scores of different values of K clusters with a range from 2 to 10. The highest Calinski-

Harabasz refers to the optimal value of K. Based on the Calinski-Harabasz index, the K

value of 6 yielded the highest score. Thus, the functional call graph data were clustered

into six groups. Comparing K-Mean to the agglomerative clustering, although both agreed

that cluster 6 is the optimal number, k-Means gets the highest CH score. The reason is

K-Mean used the new representation of the data which in turn improves the score of CH.

For DBSCAN, we set different epsilon values. The optimal epsilon value is 0.4 which

gives us 6 clusters too.
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(a) AHC (b) K-Mean (c) DBSCAN

Figure 16: Comparing Three Clustering Algorithms on PHNotepad’s Paths

Figure 17: Dendrogram of PHNotepad
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Figure 17 shows the result of hierarchical clustering using dendrogram. The ag-

glomerative hierarchical clustering is reasonably close to the software structure of the

system. We notice that Cluster 31 does not group with any other cluster except the last

cluster due to the nature of the algorithm, where all clusters eventually will group to-

gether. We used our tool to visualize the function call graph of Cluster 31 (Figure 18a).

We found that Cluster 31 represents the auto-complete feature for matching brackets.

Also, we observed that this cluster represents a disconnected graph, which is shown as a

singleton cluster in the dendrogram. With more investigation with the function call graph,

we found that these two nodes depend on functions from external libraries, which was

not considered during the call graph construction. For Cluster 35, when we mapped it to

the call graph (Figure 18b), we found that it represents the search feature in PHNotepad.

Cluster 19 (Figure 18c) initially starts as a singleton cluster. This cluster is responsible

of setting the GUI components visible. Later, it merges with Cluster 40 due to sharing a

node, i.e., the main method. Cluster 40 (Figure 18d) handles the initialization of the main

graphical interface of the system.

Our results represent that there are strong relationships between some clusters.

Cluster 46 (Figure 18e) handles the graphical interface of the search feature in the sys-

tem. Cluster 53 (Figure 18f) handles all buttons actions in main interface. Cluster 57

(Figure 18g) handles the auto-complete feature. Cluster 62 (Figure 18h), which is the

root, represents the complete call graph without missing any node or edge.

Our intensive evaluation confirms that the call graph results generated correct

execution paths of the PHNotepad system. Thus, it is demonstrated that the proposed
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(a) Cluster 31 (b) Cluster 35 (c) Cluster 19.

(d) Cluster 40 (e) Cluster 46 (f) Cluster 53

(g) Cluster 57 (h) Cluster 62

Figure 18: Converting PHNotepad clusters from the dendrogram to call graphs. (a) Auto-
completed matching brackets. (b) Representing the search feature action events. (c) Set-
ting GUI components visible. (d) Providing the Main GUI (e) Handling GUI of the search
feature. (f) Handling all buttons’ actions in the main interface. (g) Handling the auto-
complete programming language keywords feature. (h) Presenting the function call graph
of system
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methods can be used for building abstraction automatically by extracting call graphs from

source file and clustering them. In addition, the visualization tool is very useful for further

exploration and comprehension of the automatically generated call graphs. Therefore our

approach is capable of extracting, clustering, and visualizing meaningful representations

of a given software system with minimal user intervention, which ultimately facilitates

and accelerates the overall program comprehension task.

Figure 19: Execution Paths After Reducing Dimensions to 2D Using T-SNE

Figure 19 shows a remarkable result of t-SNE. Cluster assignments with 6 clusters.

Both K-Mean and DBSCAN has similar cluster assignments. All the clusters are quite

clearly separated. The new representation is reasonably close to dendrogram. We can

compare them manually and see how they are very close to their locations in dendrogram.

For Example, in Scatter plot, we see point 31 does not belong to any group as well as in

dendrogram. Also, point 19 in scatter plot looks a little far from their neighbors which we

can identify in dendrogram.
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3.5.3 Execution Time Overhead

We measured the time cost for each process that we applied. Our main goal here

is to measure the amount of time needed to produce call graphs with the multi-level of

granularity. As shown in Table 10, ”Hierarchical Clustering” presents the vast majority

of the processing overhead at each level. This is due to the high computation complexity

of AHC.

Table 10: Time Cost for Each Step in Second

Entity Detectron Flask Keras PHNotepad SH3D WEKA

Call Graph 0.544 0.501 1.118 0.026 0.291 15.996
Execution Paths 6.544 0.950 27.722 0.002 146.390 10169.478

One Hot Encoded 2.525 0.451 17.214 0.001 71.613 9505.750
Hierarchical Clustering 44.841 4.811 93.108 0.686 3211.462 -

Generate Subgraph 0.141 0.102 0.193 0.079 0.459 -
Total 54.595 6.815 139.355 0.794 3430.215 -

By examining the results of PHNotepad shown in Table 10, we observe that the

entire processing time is around 0.7 seconds for constructing the function call graph with

multi-level of granularity. The longest sub-process time, 0.686 seconds, representing

75.8% of the entire processing time, was spent on the hierarchical clustering process. As

for the second most costly process, generate the clustered graph, 0.079 seconds. The time

cost of generating all the 63 clusters is 0.189 seconds. However, the cost would be much

lower if a specific cluster is selected to investigate.

For Python case studies, namely, Detectron, Flask, and Keras, the overall cost of

all processes is around 1 minute, 7 seconds, and 2.3 minutes respectively. By examining

the results of SweetHome3D, we observe that the entire cost of all processes is around
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57.17 minutes. The longest sub-process time, 53.52 minutes, representing (93.62%) of

the overall cost, was taken on the hierarchical clustering process.

By examining the results of the largest in size among all case studies, WEKA.

The time cost of construction the function call graph is around 16 seconds. Generating all

possible execution paths takes around 2.8 hours while encoding all paths takes 2.6 hours.

However, applying the hierarchical clustering process was not successfully completed

due to limited memory and computational resources. We address this problem in the next

chapter by introducing a scalable approach.

3.6 Conclusion

In this chapter, we develop a data-driven approach of static analyzes to mine a

system’s execution paths and determine the implementation detail of a system. Many of

the execution paths perform similar functionalities and share a huge number of functions

with other paths. Therefore, to handle this large volume of execution paths, we apply

clustering techniques to group these paths based on similar functionalities they share.

The goal of our clustering technique is to bridge the cognitive gap between the system’s

overall functionality and its implementation by automatically mapping high-level system

functionality to its low-level implementation. To evaluate our approach, we conduct a

case study using our clustering-based tool, named CodEx. We present the case study to

illustrate that our approach and tool are capable of constructing and generate meaningful

hierarchical clusters at different levels of granularity. Then, we present a quantitative

evaluation of six case studies to assess the performance overhead of the approach
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Table 11: All Possible Execution Paths of PHNotepad

ID Path

0 UI.actionPerformed Find.Find Find.setLayout
1 UI.actionPerformed Find.Find Find.setLocation
2 UI.actionPerformed SupportedKeywords.SupportedKeywords
3 UI.actionPerformed AutoComplete.AutoComplete SupportedKeywords.SupportedKeywords
4 UI.actionPerformed Find.Find Find.setVisible
5 UI.actionPerformed About.me
6 UI.actionPerformed AutoComplete.AutoComplete SupportedKeywords.getbracketCompletions
7 UI.actionPerformed AutoComplete.AutoComplete SupportedKeywords.getbrackets
8 UI.actionPerformed Find.Find Find.setDefaultCloseOperation
9 UI.actionPerformed UI.setTitle
10 UI.actionPerformed About.About
11 UI.actionPerformed Find.Find Find.add
12 UI.actionPerformed UI.dispose
13 UI.actionPerformed SupportedKeywords.setKeywords
14 UI.actionPerformed SupportedKeywords.getJavaKeywords
15 UI.actionPerformed SupportedKeywords.getCppKeywords
16 UI.actionPerformed AutoComplete.AutoComplete UI.getEditor
17 UI.actionPerformed Find.Find Find.setSize
18 UI.actionPerformed About.software
19 SimpleJavaTextEditor.main UI.setVisible
20 SimpleJavaTextEditor.main UI.UI UI.setJMenuBar
21 SimpleJavaTextEditor.main UI.UI UI.add
22 SimpleJavaTextEditor.main UI.UI UI.setTitle
23 SimpleJavaTextEditor.main UI.UI UI.setDefaultCloseOperation
24 SimpleJavaTextEditor.main UI.UI UI.getContentPane
25 SimpleJavaTextEditor.main UI.UI UI.setSize
26 Find.actionPerformed Find.setVisible
27 Find.actionPerformed Find.findNext
28 Find.actionPerformed Find.replaceAll
29 Find.actionPerformed Find.find
30 Find.actionPerformed Find.replace Find.find
31 AutoComplete.insertUpdate AutoComplete.checkForBracket
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CHAPTER 4

STATIC TRACE CLUSTERING: MULTI-LEVEL APPROACH

4.1 Introduction

In an attempt to discover the feature and structure of a software system, traces

clustering has been used in various research works in trace analysis. However, these

researches encounter performance overheads introduced as a result of computing the sim-

ilarities between paths and hierarchically clustering them. Due to this shortcoming, many

of the previous works in this area does not scale well. In recent years, a number of trace

clustering techniques for program understanding have been published [38, 41, 42, 143].

However, these techniques typically consider a huge number of low-level information

(e.g., methods invocation) that may not be needed in a certain domain. Unfortunately, ap-

plying a variety of computational analysis techniques and understanding these low-level

paths is a time-consuming, performance overhead and does not scale well for large sys-

tems. To alleviate the overhead we adopt the multi-level graph partitioning technique.

Unlike these research efforts that cluster low-level paths only, our approach first repre-

sents the low-level information into a function call graph. Then applying the coarsening

technique to abstract or simplify the function call graph (FCG) into multilevel abstraction

graphs. Finally, applying clustering techniques on any coarsen level then projecting the

selected cluster back to the original graph (i.e., FCG).
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4.2 Background

In this section, we present a brief background on the multi-level graph partitioning

technique and define some of the related terms repeatedly used in the rest of this chapter.

Multilevel graph partitions aim to simplify the input graph in order to apply costly

partitioning techniques for a smaller problem. The reason behind this is due to limited

memory and computational resources which prevented them from applying a set of anal-

ysis techniques on the large graph. Several researches have been proven the capability

of multilevel graph partitions to quickly produce partition solutions with low cost for nu-

merous complex real-world applications [23, 65, 133]. This technique consists of three

phases: coarsening, partitioning, and uncoarsening/refinement. Formally, a multilevel

graph works as follows: Consider a graph G0 = (V0, E0). A multilevel graph consists of

the following three phases.

Coarsening Phase: The graph G0 is simplify into a sequence of smaller or coarser

graphs G1, G2, ..., Gn such that |V0| > |V1| > |V2| > ··· > |Vn|. During this process,

vertex matching operations applied to the input graph to create a sequence of coarser

graphs. [55].

Partitioning Phase: Once the input graph is aggregated to a suitable size, the

initial partitioning algorithm is applied. A partition Pn of the graph Gn = (Vn, En) is

computed, and Vn partitions into x parts.

Refinement Phase: Once a partition is computed at the coarsest graph, the coars-

est graph is projected back to the next finer level graph. The partition for the coarsest

graph gives a good starting partition for the next finer level [31]. The partition Pn of Gn
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is projected back to G0 by going through intermediate partitions Pn−1, Pn−2, ..., P1, P0.

4.3 Related Work

Analyzing a large amount of the execution paths causes scalability issues due to

limited memory and computational resources. Thus, researchers have proposed several

reductions and compression techniques to reduce the size of execution paths. Hamou-

Lhaji et al. [51] introduced filtering techniques to reduce the number of execution paths.

Their approach identifies utilities on the class level that have many direct client classes.

Then, filters out the utility components from the execution paths. Similarly, Cornelissen

et al. [28] [29] focused on reducing the stack depth of the execution path. While both

approaches aim at reducing the execution path size, they may omit essential execution

paths. Utility components can play a major role in the overall system implementation by

enabling communication between other classes [85]. Chan et al. [20] reduced the size of

the execution paths using sampling techniques and provided a tool to sample, visualize,

and animate the dynamic traces of the system. Riess [110,111] on the other hand, focused

on reducing the size of the execution paths by encoding the repeated ones. The authors

used a comparative approach to find similar paths in the system and encode them together,

which resulted in reducing the overall size of the paths. In contrast, our approach applies

a coarsening technique to creates multi-level representations of the call graph without

altering the main properties of the system structure and its execution paths.
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Figure 20: Multi-level Trace Clustering Technique

4.4 Projecting Clustered Paths Approach

For a large system, the developer tends to explore the system in a top-down man-

ner [19, 80]. In particular, the developer first analyzes packages and selects a goal pack-

age for further investigation. Then, he/she investigates deeper into the class level and

then function level. Our approach follows the same top-down manner for exploring the

execution paths. If the size of the function call graph is small and easy to understand,

the developer can apply our clustering approach directly to the function call graph. For

a more complicated system, the developer can use our coarsening technique to abstract

the function call graph. This technique produces multi-level call graphs, such as Package

Call Graph and Class Call Graph. For large systems, the coarsen will go beyond package

call graph by using the package hierarchy to coarsen the graph to more than the two lev-

els. After the coarsening has been completed, the user can choose any abstraction level

and apply clustering at any level according to their needs, and then these clusters can be
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projected to finer levels. Thus, enhancing the user’s understanding of the functionality

and organization of the overall system.

Before explaining our approach in more detail, Figure 20 illustrates the overview

of our approach. Start by coarsening function call graph, applying trace clustering on any

coarsen-level, and carried the selected cluster back up to the original function call graph.

Both coarsening and clustering techniques are already proposed in Chapter 2 (see Section

2.4.3) and Chapter 3. Thus, In this chapter, we will discuss our Projection/refinement

technique.

Our approach constructs different levels of the call graph automatically. First, it

constructs a function call graph and then coarsens it into different levels of abstraction

(e.x., class and package call graphs). The developer often start from the most abstract

level and then selects a specific cluster to investigate it further. Then, a refinement tech-

nique is applied to project the clustered graph back to a more detailed call graph (e.g.,

class or function call graph). To do this, we need to inverse the operation of graph coars-

ening, known as graph refinement [31]. In graph refinement, nodes expand back into

their original representations at the finer-level. We should notice that another cluster-

ing and selecting technique can be applied during the projection process. We automate

this process by mapping each node in the clustered graph to its corresponding node at

the finer-level graph using the attribute namespace. We use the attribute namespace to

coarsen call graphs, and therefore, the same attributes are used to expand the node back

to its original representation. The implementation details are presented in Algorithm 5.

The algorithm takes two graphs Gcluster and G as inputs, assuming that Gcluster is
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Algorithm 5 Graph Refinement
1: procedure GRAPH REFINEMENT( Gl(cluster), Gl−1)
2: R← DiGraph()
3: for each edge(u, v) ∈ El−1org do
4: i← u[namespace]
5: j ← v[namespace]
6: if i, j ∈ Vl(cluster) then
7: if (i, j) ∈ El(cluster) or i == j then
8: R.add node(u)
9: R.add node(v)

10: R.add edge((u, v))

11: return R

the selected cluster at the coarsest level l, and Gl−1 is the fine-grained graph of the coarsest

graph. For example, if a cluster is selected from the package call graph, the Gcluster

represents the cluster, while Gl−1 is the class call graph. The algorithm first constructs a

new graph, named R, to obtain the corresponding nodes and edges in both graphs. Each

node in both graphs has several attributes (see graph schema in Section 2.4.3.1). For each

edge (u, v) of G, we use the attribute namespace as a label for both nodes, unamespace and

vnamespace, and check if their labels exist in Gcluster. This condition confirms that both

nodes u and v are in the scope of Gcluster. The second condition is to make sure that

the corresponding edges are only obtained at each iteration. The same algorithm can be

applied to project graph R to the next finer-level. This case is regarded as the function

call graph.
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4.5 Evaluation

In order to illustrate and evaluate our multi-level clustering approach, we devel-

oped a web-based tool, named CodEx (see Chapter 6), and used it to conduct two case

studies. We first present the case study Sweethome3D to illustrate that our approach and

tool are capable of constructing multi-level abstraction of a call graph and clustering them

into hierarchical clusters. Second, we present a quantitative evaluation of two case stud-

ies to assess the performance overhead of both single and multi-level clustering execution

paths. Although the first case study is a mid-size system, its function call graph considers

being complex and harder to visualize and interpret by a developer. Thus, It increases

the overhead program comprehension. In previous chapter, we applied the hierarchical

clustering process on WEKA function call graph. It was not successfully completed due

to limited memory and computational resources. We address this problem in the this

evaluation by adapting multi-level graph clustering approach. By applying our approach,

we have been able to explore the system’s call graphs and alleviate this challenge. Also,

facilitate graph clustering analysis.

4.5.1 Case Study: SweetHome3D

In this case study, we illustrate how we alleviate the challenges of understating

complex call graphs by adopting a multi-level graph abstraction technique. We applied

our approach to SweetHome3D, an interior design application written in Java. The user

can design a house in 2D by drawing the plan of the house, adding furniture and home

appliance, and then preview it in 3D. It comes with many easy-to-use features, including
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import texture and furniture, recording videos, and allowing user-customized preferences,

such as setting the system language, fonts, and units of measurement.

Table 12: Call Graphs of SweetHome3D in Package, Class and Function levels

Entity PCG CCG FCG

Nodes 9 196 5,148
Edges 28 901 9,501

Entry Point 2 10 1,517
Exit Point 2 39 2,821

Objective. In this case study, the system includes two versions: desktop and

applet. Our goal here is to validate the feasibility of our system in helping the developer

to differentiate between the source code of the two different versions, and then further

explore the desktop version. This will illustrate that our approach is useful in bridging the

cognitive gap and facilitating the comprehension task. Also, we evaluate the efficiency of

the proposed abstraction, projection, and visualization techniques in enhancing the overall

comprehension of the software system.

Figure 21: Call Graphs During our Comprehension Process on SweetHome3D
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4.5.1.1 Methodology

This case study showcases the task of understanding a system of multiple pack-

ages. For a medium to a large-sized system, the developer tends to explore in a top-down

manner. The developer starts the program comprehension process by analyzing the pack-

ages of the system, then he/she dives deeper and deeper into the classes, functions, and,

finally, the source code. Similarly, our approach provides a top-down approach to ana-

lyze the system. We start by constructing and analyzing the package call graph, and then

particular clusters are selected for more in-depth analysis. The user can navigate from the

package graph down to the class graph for further investigation. Finally, we repeat the

same process on the class graph to go deeper into a function graph.

4.5.1.2 Results and Discussion

In this section, we analyze the results and report our observations for each level.

Figure 21 depicts the workflow of comprehension process on SweetHome3D. (A) Coars-

ening the function call graph to multi-levels of abstraction. (B) Applying our clustering

approach and select Cluster 83. (C) Uncoarsening Cluster 83 to class-level. (D) Applying

our approach to the clustered graph and select Cluster 985. (E) Uncoarsening the call

graph of Cluster 985 to the function-level. (F) Applying our approach and select Cluster

474. (G) Extract the call graph of Cluster 474.

Package Call Graph. Table 12 shows that the SweetHome3D package call graph

has 9 packages (nodes), 28 edges, and 2 entry points that relate to two main methods. The

first main method runs the desktop version, and the second main method runs the applet
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Figure 22: PCG Dendrogram of SweetHome3D

(a) AHC (b) K-Means (c) DBSCAN

Figure 23: Comparing Three Clustering Algorithms on SH3D’s PCG execution paths

version. The clustering of the package call graph (PCG) generated from the proposed

methods is shown in the form of a dendrogram. The results of the hierarchical clustering

are shown in Figure 22. The dendrogram can be divided into two or four groups.

To evaluate our result we use Calinski-Harabasz score for finding an optimal num-

ber of clusters. as illustrated in Figure 23. AHC result looks similar to what we suggest

earlier. The first-best and the second-best optimal numbers of the clustering are 2 and 4,

respectively. However, K-Means pick 4 clusters as its optimal number. The results for

DBSCAN look more interesting. The following values of Eps (0.4, 0.5, 0.6, 0.7) suggest

4 clusters as optimal value. We further explored the meaning of the four clusters, namely
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Table 13: Structural Characteristics of SH3D’s Call Graphs at Different Levels

Entity PCGorg PCGcluster83 CCG
′

CCGcluster985 FCG
′

FCGcluster474

Nodes 9 5 107 8 301 74
Edges 28 8 247 12 331 73

Entry Point 2 1 3 1 65 1
Exit Point 2 1 30 1 205 71

Paths 44 5 622 10 383 71

Clusters 53, 63, 74, and 84. Figure 24 shows the call graphs of cluster 53,63,74 and 84.

The red node represents the package having a main class for the desktop version, while

the yellow node represents the package having a main method for the applet version.

From Figure 24 we observed that our approach successfully differentiates between

the two versions of SweetHome3D, desktop, and applet. As seen from the dendrogram in

Figure 22, Clusters 53 and 63 were merged into Cluster 64, which represents the applet

version. Similarly, Clusters 74 and 84 were merged into Cluster 85, which represents the

desktop version.

Class Call Graph. With the call graph abstraction and visualization, users can

easily focus on a particular function or part of the system to comprehend the aspects of

the system that they are interested in. Thus, The next step is to go deeper into the class

level. First, we will choose one of the clusters that belong to the desktop version, Clusters

74 and 84. In this scenario, we will investigate Cluster 84 by selecting one of its sub-

clusters (i.e., Cluster 83). Then, convert it to a call graph using the conversion method.

After that, uncoarsening/projecting the cluster graph from the package level to the class

level using our mapping method, as we discussed in Section (4.4).

Figure 21.c shows the class graph. It has five different colors which represent the
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(a) Cluster 53 (b) Cluster 63

(c) Cluster 74 (d) Cluster 84

Figure 24: Call Graphs of Clusters 53,63,74 and 84
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following packages: The green nodes are in the ’io’ package, the yellow nodes are in the

’tool’ package, the blue nodes are in the ’swing’ package, the red represents the ’j3d’

package, and the pink nodes belong to the ’sweethome3d’ package.

Comparing the uncoarsened class call graph (CCG
′) to the original class call

graph (CCG), the number of nodes was decreased by 54%, from 196 to 107, while about

27% of the edges were decreased, from 901 to 247. In addition, CCG
′

is more manage-

able and more specific to a certain domain. Hence reducing the effort to understand it. To

further investigate CCG
′ , we apply our approach to this call graph. Then, we randomly

select a cluster, 985 (see Figure 21.d). This cluster has eight classes from two different

packages (sweethome3d, and io). The green classes are related to reading and setting the

default user preferences in the system.

Function Call Graph. To investigate the function level of the selected cluster, we

project CCG
′
985 to produce a function call graph (FCG985). Figure 21.e shows the result

of uncoarsening the graph. The produced graph has eight different colors that represent

classes, to which functions belong. We notice that the graph has three big star networks.

We apply our approach to see if this call graph can be partitioned further. Our approach

can successfully partition the call graph. For example, Cluster 474 represents one of the

main star networks. Using our visualization tool, we found that the cluster handles the

user preferences functionality, such as setting the system’s language or changing the mea-

surement units. Another interesting observation is that the blue nodes represent the ”set”

methods that belong to class ‘FileUserPreferences,’ while the yellow nodes represent the

”get” methods that belong to another class named ‘DefaultUserPreferences’.

68



4.5.1.3 Execution Time Overhead

To evaluate and compare the performance overhead of both single and multi-level

clustering execution paths, we applied both approaches to SweetHome3D [35], an interior

design application written in Java.

We want to compare the performance between single-level clustering and our

multi-level clustering methods. To do this, We apply the trace clustering approach in

two different methods. The first method is similar to the approaches proposed by us in

Chapter 3 as well as these research [38, 42]. These approaches focused on applying trace

clustering on the low-level (i.e., function level). The second method is our proposed

method which considering clustering different levels of abstraction. To compare the exe-

cution time of these two approaches we consider all the processes that we applied in our

case study. Beginning with construction the call graph till selecting the cluster of interest.

During the comprehension tasks in the SweetHome3D case study, we measured

the time cost for each process that we applied. As shown in Table 14, ”Hierarchical

Clustering” represents the vast majority of the processing overhead. This is due to the

high computation complexity of agglomerative hierarchical clustering.

4.5.1.4 Result and Discussion

In this section, we discuss the evaluation results and our observations. Table 14

shows the execution results of the experiment, This experiment was carried out on a ma-

chine with 2.3 GHz quad-core CPU with 16 GB memory. As we expected, Table 14

shows that our approach is significantly faster than the single-level-based technique with
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Table 14: Performance Comparison Between SL and ML Method for SweetHome3D

Approach Single-Level Multi-Level

Process/Level FCG PCG CCG
′

FCG
′

Call Graph 0.291 0.024 0.170 0.291
Execution Paths 146.390 0.002 0.342 0.854
One Hot Encoded 71.613 0.012 0.474 0.340
Hierarchical Clustering 3211.462 2.171 10.412 6.119
Generate Subgraph 0.459 0.036 0.009 0.077
Total 3430.215 2.245 11.407 7.681

an overall performance of 53.52 minutes versus 21 seconds.

The former single-level-based technique, which relied on function level to cluster

traces, was not easy to explore or navigate its call graph nor hierarchical view due to the

enormous size of nodes, edges, and paths. Our proposed approach, on the other hand,

makes exploring the call graph less complex for developers to comprehend. Moreover,

less rendering time compared to the former approach.

In the multi-level-based technique, we start by analyzing and clustering execution

paths of the most abstract level (i.e., coarsest-level). We observe that the system can be

cluster into two large clusters. Each of which represents the different domains. Figure 22

shows the result of the clustering in the dendrogram. Using our tool to map these clusters

to the call graph, we found that cluster 64 represents the applet version while cluster 85

represents the desktop version. This observation is almost impossible to identify if we use

the single-level-based technique.

By examining the results of SweetHome3D shown in Table 14, we observe that the

entire processing time of applying the single-level method is around 57.17 minutes. The
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longest sub-process time, 53.52 minutes, representing (93.62%) of the entire processing

time, was taken on the hierarchical clustering process.

For the multi-level method, the time cost of the overall process is around 21 sec-

onds. Up to (54%) of all levels belong to CCG
′ . This is due to the large number of

execution paths, which led to an increase in the hierarchical clustering process overhead.

Nevertheless, overall, the time required to run the tool analysis processes, end-to-end, can

be considered efficient comparing to the single-level method.

Our Multi-level method were able to: (1) remove irrelevant information, (2) stay

focused on a certain domain, and (3) reduce computation time due to the smaller call

graph. This will reduce the cognitive effort to understand the call graph of a software

system.

4.5.2 Case Study: WEKA

In this case study, we illustrate how we alleviate the challenges of understating

complex and large call graphs by adopting a multi-level graph abstraction technique. We

applied our approach to WEKA, which is open-source software that provides a set of tools

for data mining tasks including data preprocessing, classification, regression, clustering,

association rules, and visualization. It helps to develop machine learning techniques and

apply them to real-world data mining problems.

Objective. In the previous chapter we try to apply our clustering technique to

WEKA case study. However, we could not complete the clustering process due to memory

limitations and resources. In this case study, we want to see if our multi-level approach
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Table 15: Structural Characteristics of Call Graphs at Different Levels in WEKA

Entity LV L4 LV L4c2439 LV L5
′

LV L5c1516 LV L6
′

LV L6c8146 LV L7
′

Nodes 32 6 58 14 228 22 348
Edges 134 7 129 21 531 24 453

Entry Point 3 1 14 1 108 1 121
Exit Point 3 1 7 1 42 15 125

Paths 1952 4 936 36 5414 60 2526

can be able to explore such a large system without running out of resources and memory,

and with less time.

4.5.2.1 Methodology

Our methodology of this case study is similar to what we did in the SweetHome3D.

In particular, We start applying our coarsening technique that constructs seven different

levels of abstraction. Since it is easy to understand and it is not much different in the

number of nodes and edges between the first three abstract levels, we start analyzing the

fourth coarsest level, and then particular clusters are selected for more in-depth analysis.

The user can navigate from the coarsest graph down to the next finer graph for further

investigation. Finally, we repeat the same process on the finer graph to go deeper into the

next finer level till we reach the function graph. As we mention previously, in this case

study, we are more interested in measuring the performance of applying our approach to

such a large case study. Thus, Table 16 shows the result of analyzing the WEKA system.

we measured the time cost for each process that we applied from the fourth coarsest graph

till we reach the function call graph.
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Table 16: Performance Comparison Between SL and ML Method for WEKA

Approach Single-Level Multi-Level

Process/Level FCG LV L4 LV L5
′

LV L6
′

LV L7
′

Call Graph 15.996 0.039 0.102 0.087 0.045
Execution Paths 10169.478 0.671 0.363 0.926 0.005
One Hot Encoded 9505.750 0.301 0.255 1.153 0.003
Hierarchical Clustering - 37.304 14.169 48.001 5.190
Generate Subgraph - 0.092 0.124 0.043 0.098
Total 3430.215 38.407 15.013 50.21 5.341

4.5.2.2 Result and Discussion

In this section, we discuss the evaluation results and our observations. Table 16

shows the execution results of applying our approach on WEKA system, The experiment

was carried out on a machine with a 2.3 GHz quad-core CPU with 16 GB memory.

By examining the results of WEKA system, we could not complete the cluster-

ing process using the single-level approach due to limited memory and computational

resources. The time cost of construction the function call graph is around 16 seconds.

Generating all possible execution paths takes around 2.8 hours while encoding all paths

takes 2.6 hours.

In contrast, adopting the multi-level abstraction allows us to explore the system at

different levels and alleviate the performance overhead challenges. Table 16 shows that

the multi-level-based technique is significantly faster than the single-level-based tech-

nique with an overall performance of 1.7 minutes.
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4.6 Conclusion

In this chapter, we addresses the need for path reduction techniques in program

comprehension. We discuss the limitations of existing solutions and introduce a new re-

duction technique that enables analyzing the execution paths of a medium or large-scale

software system. we conduct two complex large case studies, we illustrate how we alle-

viate the challenges of understating complex call graph by adopting a multi-level graph

clustering technique. Our multi-level approach were able to: (1) remove irrelevant infor-

mation, (2) stay focused on a certain domain, and (3) reduce computation time. This will

reduce the cognitive effort to understand the call graph of a complex and large software

system.
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CHAPTER 5

TOPIC MODELING FOR CLUSTER ANALYSIS

5.1 Introduction

Clustering the call graph provided multiple abstraction levels that facilitated un-

derstanding the software system at several levels of granularity. However, it was evident

to us, as developers trying to understand the system, that we still needed to investigate

the functions composing each of the clusters in order to understand the overall function-

ality of the cluster. This requirement was indeed the main motivation to provide a proper

labeling technique for the clusters.

Clustering algorithms give no indication or significance of what the clusters are.

Thus, in this chapter, we will analyze and interpret the meaning of the resulted clusters.

Cluster labeling [72] is the process of generating labels for a cluster of interest, that is,

a set of terms that represent a meaningful description to a cluster. It aims to understand

the clusters by generating labels that reflect the meaning of each cluster. This chapter

proposes an approach to automatically provide labels for clustered execution paths that

are presented in previous chapters. It serves as an indicator reflecting the quality as well

as the success or failure of the clustering process. We take a first step towards determining

the suitability of topic models in analyzing software through clustered execution paths by

performing a case study on two systems, SweetHome3D and jMonkeyEngine system, a

3D game development engine written purely in Java. We experiment with two popular
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topic models: LDA, BERT, and a combination of both. We found out all topic models

indeed generate meaningful topics to describe the functionality of a cluster with a marked

improvement for the combined model (BERT+LDA) in respect of coherence score.

5.2 Related Work

A wide variety of topic modeling techniques have been proposed to support var-

ied software engineering activities, including clone detection [68], testing [22], software

evolution, software traceability [8] [126], and many others tasks [21]. Researchers have

also proposed some approaches to support program comprehension.

Maskeri et al. [84] propose an approach that helps new developers to understand

the functionality of large legacy software systems. They use LDA to extract business

domain topics from source code. Tian et al. [127] use topic modeling in open source

repositories to automatically categorize the software systems. The authors extract topics

from several software systems using the LDA model. These topics were grouped based

on their word distributions into meaningful categories that represent different types of

software applications. Savage et al. [117] introduced TopicXP , a visualizing tool for

topic modeling. It helps developers understand the system by extracting and analyzing

unstructured information (i.e. identifiers and comments) from the source and using the

LDA model to automatically generate topics. Wang T, Liu Y [135] introduced JSEA,

Java Software Engineers Assistant. The tool uses LDA-based topic modeling to mine

commented source code to construct a project overview with search capability.

Other interesting works exist in this area, including semantic analysis on execution
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paths. Kuhn et al. [71] proposed an approach that analyzes the execution paths using

an information retrieval technique, namely Latent Semantic Indexing (LSI) [32]. Their

approach considers only method names to represents the execution paths as documents.

They apply LSI on these documents and uses a hierarchical clustering algorithm to cluster

them. To visualize the similarity between paths, they use a grayscale heatmap. The darker

the color, the more similar these two documents.

Another work that is very similar to our approach is the Sage tool [38]. Sage

is a dynamic analysis approach that focuses on building hierarchical abstractions from

function calls. Their approach labels the hierarchical abstraction level (i.e., cluster) with a

proper functionality name based on the frequency of the method names in the cluster. To

provide the most relevant and distinguishing terms for a cluster, they adopt TF-IDF (term

frequency-inverse document frequency) [141] metric and extract the top 20 terms as the

final label set for the cluster.

Our approach differs from previous approaches in two ways. First, We focus on

clustering static execution paths. Second, Our labeling cluster considers not only the

method names to label a cluster but also the comments and the identifiers inside each

method that is part of the cluster.

5.3 Proposed Approach

We have already discussed how a call graph of a system can be clustered into

a multi-level of granularity. Chapter 3 presented clustering algorithms that have been

implemented in CodEx. The algorithm accept a call graph as input and create a clustered
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Figure 25: High-level of Topic Modeling Approach Workflow

call graphs as output. Since our goal focuses on understanding the overall functionality of

the cluster, Figure 25 shows the portion of our overall approach that is related to the topic

modeling part. We first need to select a cluster of interest. Then, we use the unstructured

information (i.e., identifiers and comments) from each method belong to the selected

cluster to help determine the functionality of a cluster. This can be done by tokenizing the

unstructured information and applying preprocessing steps described in 5.4. Then, feed it

into a topic model to generates topics. In the following sections, we discuss more details

of our approach.

5.4 Source Code Indexing

Before applying topic modeling to the clusters, we need to perform several pre-

processing operations. These operations are necessary to improve the quality of the topic
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Figure 26: Source Code Indexing [81]

modeling result. Natural language processing (NLP) techniques are usually used to clean

and remove noise in the source code. Thus, we apply three preprocessing steps described

in the following subsections. The result of this preprocessing is a file where each row

contains the fully qualified name of a method and its tokens. Late, we will use this file to

map each method to the path to which they belong.

5.4.1 Removing Programming Language Keywords

In addition to the syntax information provided in the source code, it also con-

tains unstructured data such as natural language identifiers and comments [86]. These

identifiers and comments have meaningful information about the code and can reflect the

semantics intention of the code [144]. Thus, we isolate identifiers and comments by re-

moving syntax and keywords of programming language (e.g., public, static, for, if, and

int). We also use NLTK toolkit [13] to remove common English language stop words

(e.g., the, it, on, can, set, get) to reduce noise.
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5.4.2 Word Splitting

In this step, we tokenize each word based on common naming practices. To split

multi-word identifiers, we use one of the common ways to split identifiers by follow-

ing programming language naming conventions [33]. In particular, Identifier names are

split into multiple parts based on common naming conventions, including dot separators

(swing.SettingView), CamelCase (SettingView) in Java programming language.

5.4.3 Stemming Identifier

In information retrieval (IR), stemming is the process of stripping affixes (i.e.,

prefixes and suffixes) from words to form a stem [138]. In other words, It reduces the

words to their root form. For example “retrieval”, “retrieved”, “retrieves” reduce to the

stem “retrieve”. Stemming plays an important part in data pre-processing. It reduces

noise in your data by reducing inflectional forms and related forms to the common base

of a word. Thus, it can improve the quality of the topic modeling model. We will be

leveraging Gensim [108,123] package, to perform stemming on the English text. Gensim

is a open source Python library for unsupervised topic modeling. The library also provides

implementations for various text prepossessing algorithms for cleaning the data.

5.5 Topic Modeling on a Cluster of Execution Paths

5.5.1 Latent Dirichlet allocation

In order to apply LDA to a cluster of execution paths, we represent a cluster as

a collection of documents (i.e., execution paths). To understand the clustered execution
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paths, we need to investigate their low-level implementations (i.e, function level). There-

fore, when we select a cluster of interest. Our approach checks the level of granularity

and sees whether this cluster was selected from coarsening level or not. If yes, then we

need to project each path in the cluster back to the function level using our projection

technique described in Chapter 4. After that, we retrieve the tokens of each method in the

path. Specifically, our inputs can be defined as the following:

• A corpus C is a set of documents (i.e execution paths) denoted by C = d1, d2, ..., dn

• A document d, which corresponds to a execution path, is a sequence of words de-

noted by d = f1w1, f1w2, ..., fnwn where wi is the ith word that is part of function

fi. These words defined to be an identifier or a word from a comment.

C =


f1w1 · · · f2w1 · · · fnwn

... · · · ... · · · ...

fmwm · · · fmwm · · · fmwm


For the implementation of the LDA model in this experimental analysis, we used

gensim [107] package. Gensim is a open source Python library for unsupervised topic

modeling. The input of Gensim is a corpus of plain text documents. The library also

provides implementations for various algorithms, including neural word representations

(word2vec [88], fastText [16]), as well as latent semantic analysis (LSA), latent Dirichlet

allocation (LDA), TF-IDF, and Random Projections [78] to discover semantic topics of

documents.
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5.5.2 Contextual Embeddings

LDA users Bag of Words (BoW) document representations as model input. This

type of model based on the co-occurrence of words, and yet, it does not consider the

sequence of words. This drawback makes LDA fail to learn contextual information in

sentences. Thus harder to interpret. In contrast, contextualized language model such

as BERT (Bidirectional Encoder Representations from Transformers) uses word embed-

dings techniques that consider not only the word but also its context. Adding contextual

knowledge to the model can improve coherence of the generated topics.

To do this, we first generate the probabilistic topic assignments for all documents

from the LDA model. Second, we used Pre-trained BERT. It is widely used for many Nat-

ural Language Processing (NLP) tasks. We use the ’sentence-transformers’ [109] package

for document-level embedding. We embed our execution paths into vector space. Third,

we concatenated both vectors. The concatenation process generates a higher dimensional

space, where information is sparse and correlated, Thus, we used an autoencoder to learn

82



a lower-dimensional latent space representation of the concatenated vector. Fourth, we

cluster them to identify their similarity structure in the vector space. Finally, generate the

topics within these clusters.

5.6 Case Study: Sweethome3D

We conducted a case study on the SweetHome3D system to see if our approach

can reflect the meaning of the selected cluster. Also we want to show how the automatic

labeling and multi-level visualization of clustered call graph are complementary to com-

prehend the cluster of a system.

5.6.1 Selecting Cluster of Interest

To be able of selecting a cluster of execution paths, we first used our tool, CodEx.

The tool can automatically analyze the source code of the system, construct call graph

of the system. Then, extracting and clustering its execution paths. After clustering the

system we randomly choice one of clusters and converted to a call graph using CodEx.

The selected cluster is made up from 54 execution paths. In particular, the clustered graph

consists of 29 nodes/functions and 34 edges. Figure 28 depicts the selected cluster in term

of call graph.

5.6.2 Results and Discussion

In this section, we report the main observations for the different experiments that

we performed. We show that adding contextual information to LDA model provides a

significant increase in topic coherence score.
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Figure 28: Clustered Graph Responsible of Reading Furniture Component

Figure 29: Coherence Score of each Model Across Different Number of Topics
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We compute the topic coherence for different number of topics and choose the

model that gives the highest topic coherence score. Figure 29 presents the scores of

different values of K topics with a range from 1 to 9. The highest score refers to the

optimal value of K. Based on the coherence score, the K value of 1 yielded the highest

score for LDA model, while k=3, 2 yielded the highest score for BERT, and LDE+BERT,

respectively.

Table 17: Extraction of Top Ten Keywords with LDA, BERT and LDA+BERT

Model Topic Keywords

LDA T1 furniture resource catalog read bundle piece exception key miss index

BERT
T1 resource furniture bundle catalog read exception piece key miss parse url
T2 resource furniture catalog read bundle piece key default index identify add
T3 resource furniture url size content read catalog exception file entry

LDA+BERT
T1 resource furniture bundle catalog read exception piece key miss parse
T2 resource resource furniture catalog read bundle piece key index exception

5.7 Case Study: jMonkeyEngine

In this section we present a case study to show how our labeling and multi-level

abstraction of call graph techniques simplified the task of understanding the subsystem

structure and functionality of the complex call graph of a program. We conducted a case

study on the jMonkeyEngine system [106]. It is a 3D game development engine written

purely in Java. jMonkeyEngine allows you to develop 3D games on different platform

including desktop, web, and mobile. It consists of 1,705 java file, and has 201,324 LOC

and 122,156 comments.
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5.7.1 Selecting Cluster of Interest

To be able of selecting a cluster of execution paths, we need first to analyze the

source code of the system, construct call graph of the system. Then, extracting and clus-

tering its execution paths. This can be done automatically using CodEx. More details

were described in previous chapters of this dissertation. After clustering the system we

randomly choice one of low-level clusters and converted to a call graph using CodEx. The

selected cluster is made up from 835 execution paths. In particular, the clustered graph

consists of 655 nodes/functions and 773 edges. Without a proper label for this cluster,

developers need to investigate the low-level functions at the source code in order to figure

out the cluster’s overall functionality.

5.7.2 Data Preparation for Topic Models

In this step we first extract all execution paths of the selected cluster. Second,

To convert an execution path into a document, we extract identifies and comments of

each method belong to the path. Third, transform the textual data into a proper format

for the topic models to consume. This can be done by tokenizing the text and applying

preprocessing steps described in the subsection 5.4. The outcome of this process is 835

documents with 915 unique tokens. Finally, we apply LDA, BERT and a combination of

both to understand the functionality of this cluster.
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Figure 30: Coherence Score Across Different Number of Topics

5.7.3 Results and Discussion

In this section, we report the main observations for the different experiments that

we performed. As we expected, adding contextual information to LDA model provides a

significant increase in topic coherence score.

In order to determine the number of topics, we compute the topic coherence for

different numbers of K topics. Figure 30 presents the scores of different values of K topics

with a range from 3 to 14. The highest score refers to the optimal value of K. Based on

the coherence score, the K value of 6 yielded the highest score for all topic models, while

k=5,3,7 yielded the lowest score for LDA, BERT, and LDE+BERT, respectively. Thus,

we chose 6 as the number of topics.

We use WordClouds [92] to represent the generated terms in each topic. This

visualization can assist us to explore textual analysis by identifying words that frequently

appear in each topic. In particular, The more frequently a word appears in the topic, the
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Figure 31: Generating Six Topics Using LDA

bigger it will become. As we can see in Figure 31, We generate 6 topics for the cluster.

Figure 31.a,b and c, shows the top words in topics 1,2 and 3. It appears they contain

tokens about text characteristics and styling. Figure 31.d shows the result of topic 4. It

contains tokens such as vector, matrix, and value. Figure 31.e illustrate topic 5 which it

seems is about rendering audio. Finally, Figure 31.f shows some words about initializing

app state.

To verify the labels and topics we project the clustered call graph to the coarsen

level. Figure 32 shows the projection result. The class level consists of 49 nodes and

89 edges. It has nine different colors which represent the following packages: The green

nodes are in the ′audio.openal′ sub-package, the red nodes are in ′audio′ package, the

blue nodes are in the ′app′ package, the yellow represents the ′app.state′ sub-package, the

purple nodes belong to the ′font′ package, the dark blue nodes are in the ′scene′, while

the pink nodes belong to a sub-package of ′scene.control′. The orange nodes represent

the ′math′, and the magenta nodes are in the ′export′ package. Comparing the topics
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Figure 32: Class Level of Cluster Call Graph

result and the coarsen call graph, we notice that the class level of the clustered function

call graph is reasonably close to generated topics.

We first turn our attention to the first three topics, We can easily map words with

the class call graph since these words are also used as the class name. In particular, words

like block, font and bitmap are also showed in classes names such as BitmapFont,

StringBlock and BitmapTextPage.

Topic 4 deals with various aspects of mathematics such as vector, matrix, quaternion

and rotation. Looking back to the class call graph, we notice that these terms have sim-

ilar or closely related to the name of classes in dark blue and orange nodes. These nodes

belong to scene and math packages.

In Topic 5, We see both words audio and render are large which means they most
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frequently appear in the topic. We notice that these terms have been used as the name of

red and green classes. Similarly, in topic 6, we see large terms, namely ′state′ and ′app′.

These terms are used together as the name of yellow and blue nodes/classes.

We observe that none of the topics shows any words related to export functionally.

Specifically, the purple nodes/classes belong to export package, namely InputCapsule,

OutputCapsule, JmeImporter, and JmeExporter. With more investigation with the

function level of the cluster call graph, we found that only 4 out of 655 functions belong

to the export package. Moreover, after investigating the code level of these functions, we

found out these functions have a short comment or none with a short body and mainly

about reading and writing data.

Table 18: Top Ten Keywords with LDA

Topic Keywords

T1 app state manager initialize attach input render frame gui stats
T2 line head width block previous blank bitmap ellipsis update char
T3 audio source update renderer channel play thread exception data param
T4 vectorf value quaternion rotation result vector matrix math local input
T5 page color letter angle assemble count axis refresh quaternion update
T6 bitmap char color font text character width letter line invalidate

Table 19: Top Ten Keywords with BERT

Topic Keywords

T1 text line color font width letter quad character char bitmap
T2 state app manager attach input initialize call node line enable
T3 audio source update renderer channel param play thread data exception
T4 quaternion rotation angle math value matrix vectorf result axis fast
T5 line head width bitmap char letter invalidate font character quad
T6 app state enable render manager initialize input frame camera vectorf
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Table 20: Top Ten Keywords with LDA+BERT

Topic Keywords

T1 color quad letter page assemble text count update position quaternion
T2 state app manager initialize attach input render text frame gui
T3 quaternion matrix vectorf rotation value math result vector angle local
T4 line head width block bitmap previous blank char ellipsis font
T5 audio source update renderer param channel play thread data exception
T6 color char bitmap font text character width letter line invalidate
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CHAPTER 6

VISUAL EXPLORATION OF SOFTWARE CLUSTERED TRACES

6.1 Introduction

In recent years, a number of trace clustering techniques for program understanding

have been published [38, 41, 42, 143]. However, little attention has been given to the area

of visually examining and interpreting these clusters in terms of the static dependency

graph. Most trace clustering approaches visualize clustering results using flat lists or static

hierarchical dendrogram [41]. Which makes it difficult for users to explore, interpret,

and navigate. Our work on visual clustering goes one step further and argues that it is

not sufficient to just clustering a set of execution paths without facility the process of

exploration for the user. Visualization is an effective way to ease the interaction process

with source code and hence support comprehension tasks. Our premise is that multi-

level graphs clustering and visualizing clusters with the overall system via call graph

supports maintenance activities by reducing comprehension time. We developed a fully

automated visualization tool that supports clustering-based visual exploration tasks for

the execution paths of a system. The tool allows developers to explore, coarsen, and

project the clustered paths in an interactive call graph representation. Although in this

dissertation, we focus on the Java language. However, our approach can be applied to

other programming languages.
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6.2 Related Work

There are many researches in the software visualization area that depict the struc-

ture of system [17] [89] [119]. Although our visualization tool is mainly developed for

clustering-based visual exploration of execution paths, it can visualize the system struc-

ture at different levels of abstraction. However, little attention has been given to the area

of visually examining and interpreting these clusters. In this chapter, we focus on the

most related work to ours that can be categorized into visual clustering in the software

engineering domain.

SDVisu [105] is a tool for clustering-based visual exploration of dependency graph

whose nodes are files and edges are static dependencies between the files. The tool uses

LinLog energy model [97] to cluster the software files. Slob, Govert-Jan, et al [121]

propose exploration tool called Narrator. It takes requirements in the form of user stories

and translates them into an interactive directed graph diagram using Natural Language

Processing (NLP). Another works by Reddivari, et al [104] [103] use visual clustering to

explore how landmarks can be identified via static dependencies.

6.3 CodEx: A Visual Exploration Clustering-based Tool

The visualization tool that we described in Chapter 2 has been extended and in-

tegrated with our clustering approach described in Chapter 3. We named it CodEx. It

consists of three main linked views:
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6.3.1 Graph View

CodEx visualizes the call graph of a system at the different levels of abstraction.

The tool will render the most abstract level first to avoid the complexity of the software

system when first loading its call graphs. Then, the developer will have the choice to

render a finer-level graph in a new tab. This will give the user the ability to explore

and apply analysis tasks on one level while waiting for the other graph to render on the

other tab. Moreover, CodEx provides a set of navigation features that allow the user

Figure 33: Path View

to interactively explore the call graph including zoom in, zoom out and fit the graph

on the screen. When the user clicks on a node, a panel on the right side of the screen

will show up. It shows details including type, in-degree, out-degree, and graph matrices.

Simultaneously, the tool also highlights the selected node and its neighbors while coloring

the rest of the graph with a transparent gray color. It also utilizes the shape and the color

of the node to present different proprieties. More details described in Chapter 2.
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Figure 34: Cluster View

Although node-link representation is commonly used to visualize the call graph of

a system, it tends to become highly cluttered when large numbers of nodes and edges are

visualized. To address this problem, we provide a set of features to filter irrelevant nodes

and edges which allow the amount of information in the graph manageable and easy to

explore. Moreover, we have made several enhancements to further facilitate the process

of exploring execution paths and clusters in the call graph.

To support developers in navigating through traces and identifying path of interest,

CodEx allows the developer to view all or certain paths that belong to a selected node in

the graph. In particle, the tool allows hiding all edges and nodes except those that belong

to selected paths. Figure 33 shows a side panel of the selected node with a list of all paths

that contain the node. The developer can check a path or a set of paths that he wants to

view in the graph. Similarly, with cluster view in the Figure 34. After entering the cluster

number in the search box, the developer can check the checkbox in the side panel to view

only the nodes and edges that belong to the cluster and hide the others.
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6.3.2 Clustering Process View

To make clustering the call graph into a multi-level of granularity easy for the

user, we integrated the pipeline of the clustering process into graph view. Figure 35

shows the modal window listing all the main clustering processes. To view this window

the developer needs to click on the operation button in the top right panel. Each process

has states, action, and execution time. The true state tells the developer that the process is

already executed and the output of this process is ready to download. If the state is false,

then the developer needs to click on the gear icon to execute the process. The estimate

column shows the time taken by the process to complete. To view the clustering results

in dendrogram, the user needs to click on the eye icon, next to the hierarchical clustering

process.

11

22

Figure 35: Clustering Process View
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6.3.3 Hierarchical View

The dendrogram is one of the popular formats for presenting hierarchical clusters.

However, when the size of the graph increases, it becomes difficult to read and identify

clusters, especially when horizontal lines connecting clusters overlap [115]. To overcome

this issue, we extend our visualization tool to view the hierarchical clustering results.

Figure 36 depicts the hierarchical view of the resulted clusters. The top right panel allows

the developer to customize the tree view of the cluster such as the distance between the

nodes and the height between the levels. The bottom right panel views information about

the selected cluster such as the distance and the list of paths or functions that belong to

the selected cluster.

Figure 36: Hierarchical View
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Figure 37: High Level Architecture of CodEx

6.4 Design and Implementation

To implement our visual clustering-based tool, we integrate our clustering ap-

proach described in Chapter 3 and 4 with our call graph visualization tool. Figure 37

shows the high-level architecture of our tool. As we can see the tool consists of five

components.

Graph Analyzer This component is responsible for reading and analyzing the

source code of a system. Then, constructing the caller-callee list. Finally, passing the

caller-callee list to the Graph Contractor component. The Analyzer component has only

Java Analyzer [44]. However, it can be easily extended to support more programming

languages.
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Figure 38: Mapping Clusters to a Call Graph

Graph Constructor This component consists of two main functionality: (1) pars-

ing the edges list to construct a function call graph, then (2) aggregate the function call

graph into multi-levels of abstraction such as class-level and package level. While pars-

ing the caller-callee list, we also extract nodes’ properties and their relationships using

a generic graph data structure, NetworkX [48]. This library was used to manipulate the

structure of the call graph. Then, we created a JSON schema to obtain node properties.

After constructing the call graph, the results are saved in different file formats, including

GML and JSON. We use JSON schema for visualization of the call graph, and GML for

manipulate and projection the call graph.

Trace Clustering provides several functionally including collecting execution

paths, preprocess, encoded and clustering the data into multi-level of granularity using

Agglomerative Hierarchical Clustering algorithm. We implemented with Numpy [52, 98]

and Scipy [130, 131] libraries. The details of implementation of this component was de-

scried in this paper [41] as well as in the Chapter 3.

Cluster Mapper This component is responsible for linking the Hierarchical view

with the Graph view. Figure 38 depicts the process of mapping between the views. When
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Figure 39: File-based Storage System

the cluster/node 52 is clicked, an event with cluster-id is sent to the server. The Cluster

Mapper component will construct a clustered graph by obtaining all the paths that belong

to the selected cluster. Then, pass it to the NetworkX graph object to construct the clus-

tered graph. Finally, it saves the clustered graph in JSON format for visualization. Later,

when the developer inputs the cluster id in the search box in graph view, the tool will read

the file of the cluster and maps it to the call graph of a system.

Data Storage This component is responsible for storing all the data generated

from the above components. Our visualization tool user file storage system, also known

as file-level or file-based storage format, to store and organize the data. When the user

inputs the name of the project and uploads the source file of the project that he wants

to analyze, our system will automatically create a folder for that project. Also, it will
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create a subfolder for each level. Each level will have its own data such as graph and

execution paths data etc. Figure 39 illustrates the structure of CodEx storage system. As

shown in the figure, Project 1 has a setting file and a list of subfolders. The setting file

has configured metadata related to the current project such as the path of the project to

facilitate accessing the project files by telling the computer exactly where the files of the

current project are kept.

6.5 User Study

A basic objective of carrying out user studies is to seek insight into how a specific

technique is useful [69]. Similarly, our user study aims to gain insight into how useful

our approach and tool are based on user experience feedback. Moreover, It can help us

assess the strengths and weaknesses of our visualization tool and can guide future efforts

to improve existing techniques.

In this section, we evaluate the usefulness and usability of our approach and tool

using a user study. The user study involved 18 participants who carried out a set of tasks

and then answered a questionnaire. The questionnaire included 12 questions to assess the

usefulness of the tool and 10 questions to assess its usability using the System Usability

Scale (SUS) [18].

6.5.1 Participants

The user study was conducted by inviting real software engineers with at least

three years of experience to test our tool and then answer the survey. We reached out to

more than 25 software engineers. Only 18 opted to participate in the study. 13 out of 18
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participants mentioned their industries. The participants belong to more than 11 interna-

tional industries worldwide, including Google, Apple, and others. However, we have not

received sufficient responses from our participants regarding their age and gender, and

thus we did not want to include incomplete statistics in the study. Our participants were

experienced (39% more than 5 years; 61% 3 to 5 years).

6.5.2 Procedure

To make the tool accessible to all participants, we deployed it on a Linux virtual

machine (VM) running Ubuntu 18.04 LTS on Azure.

Before the participants started the study, they had to complete several small tasks.

First, they had to sign a consent form. Second, they were asked to answer some questions

to gather demographic information, such as work and level of experience, and assess their

views on the research area. Third, the participants were asked to watch a short video clip

that provides a brief overview of our visualization tool.

To evaluate the tool in this study, participants were provided with a set of software

comprehension tasks and a questionnaire. The tasks were intended to collect data about

the usefulness and the usability of the tool. The given tasks are listed in Table 22. The

subject study was the SweetHome3D application (refer to Subsection 5.2 for more infor-

mation on this system). The participants then completed the questionnaire while using

the tool. The responses of the participants were collected using Google Forms.
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Table 21: Relation Between Tasks and the Activities Defined by Pacione et al.

ID Activity Description Compatible tasks (IDs)

1 Investigating the functionality of the system T5
2 Adding to or changing the system’s functionality T4
3 Investigating the internal structure of an artifact T3
4 Investigating dependencies between artifacts T1,T2
5 Investigating runtime interactions in the system -
6 Investigating how much an artifact is used T1,T2,T4
7 Investigating patterns in the system’s execution -
8 Assessing the quality of the system’s design T1,T2
9 Understanding the domain of the system T5

6.5.3 Tasks

Each participant was asked to perform a set of tasks using our tool. When we

designed our tasks, we kept two main goals at the core of the study: 1) The tasks should

be representative software comprehension tasks, and 2) they should exercise all of the

tool’s features. To achieve the first goal, We designed our comprehension tasks based on

a common comprehension framework from Pacione et al. [99]. They studied several sets

of tasks used in comprehension evaluation literature and software visualization. Table 21

shows that our tasks cover most comprehension activities in Pacione’s framework. The

uncovered activities are mainly concerned with dynamic aspects that are not within the

scope of this dissertation. For the second goal, our tasks covered the major features of the

tool, including searching, investigating, extracting a cluster as a call graph, and projecting

to lower-level.

Table 22 shows the user study tasks with rationales. The first two tasks asked the

participants to determine the entry and exit points of the current graph using the tool’s
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Table 22: Description of the Tasks for the User Study

ID Task Description

T1 Name two packages that have a high fan-out with no fan-in
T2 Name two packages that have a high fan-in with no fan-out.

Rationale. Analysis of dependencies between entities and assessing the quality of
system design are essential to assist in software comprehension.

T3 Find any interesting path in the package level and project it to class level
Rationale. Investigating the internal structure of an artefact is a comprehension task.

T4 Removing the class ‘Transformation’ in the ‘model’ package,
- How many classes will be affected?
- Name all affected class and which package they belong to
Rationale. Impact analysis allows us to estimate how much of an impact such a code
change would have on the system. It can also help estimate the effort that needs to be
made to make such changes.

T5 The source code of SweetHome3D comes with two versions (applet and desktop),
- Find all functions that are used in applet versions
- Find all functions that are shared between these two versions
Rationale. Investigating the functionality of (a part of) the system and understanding
its role on the software is one of the main and useful activities in software comprehe-
nsion for engineers and researchers.
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filtering and search features. In the third task, the participants were asked to analyze and

investigate the resulted clusters and project the cluster of interest using the projection fea-

ture. In the fourth task, the participants were asked to explore the information associated

with a specific node. In the fifth task, the participants were asked to explore part of the

system using a top-down approach supported by the tool.

6.5.4 Questionnaire

Our questionnaire consists of three types of questions including (1) Likert scale

questions to evaluate the usefulness of the tool’s features at different visualization views,

(2) open-ended questions to gain feedback on the design of the tool, and (3) System

Usability Score (SUS) based questions, to evaluate the usability of the tool. The list of

questions and their types are listed in Table 23.

6.6 Results and Discussion

We first report the results of usefulness questions, Q1 to Q10, respectively, and

then discuss the strengths and weaknesses of the tool from user feedback from Q11 and

Q12. Finally, we report and discuss the results of the usability score.

6.6.1 Usefulness

To evaluate the usefulness of the tool, the participants were asked to perform a set

of tasks and answer a survey with the following ten questions, and express their opinions

accordingly. The results are illustrated using a Likert scale in Figure 40.

Q1: This question asks participants about their opinion on the tool’s interface.
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Table 23: User Study Questions and their Types

# Question Type

Q1 The tool’s interface is intuitive and user-friendly Likert Scale
Q2 I would recommend software developers to use this tool Likert Scale
Q3 I would prefer to manually inspect the codebase rather than using this

tool
Likert Scale

Q4 I believe that using this tool can save time and efforts in inspecting the
codebase of a given system

Likert Scale

Q5 The task of identifying a feature that is implemented over multiple func-
tions in the codebase is faster to achieve using this tool rather than man-
ually inspecting the code

Likert Scale

Q6 Filtering by type, searching, retrieving the information, code coloring
and shapes of the nodes were helpful during program comprehension
tasks

Likert Scale

Q7 The generated clustered graphs are beneficial to identify the function-
ality structure of a given system–visually–without having to inspect the
source code

Likert Scale

Q8 The multi-level call graphs visualization is beneficial to understand the
overall of system structure from different views (functions, classes, and
packages).

Likert Scale

Q9 The tool is useful for clustering and visually exploration the execution
paths of a system in both views (i.e., call graph and hierarchical view)

Likert Scale

Q10 Overall, the visualization tool is useful to understand the software struc-
ture

Likert Scale

Q11 Please list any reasons for your answer to the previous question Open-Ended
Q12 Would you like to add other comments? Limitations? Suggestions? Open-Ended

Q1 I think that I would like to use this system frequently Likert Scale
Q2 I found the system unnecessarily complex Likert Scale
Q3 I thought the system was easy to use Likert Scale
Q4 I think that I would need the support of a technical person to be able to

use this system
Likert Scale

Q5 I found the various functions in this system were well integrated Likert Scale
Q6 I thought there was too much inconsistency in this system Likert Scale
Q7 I would imagine that most people would learn to use this system very

quickly
Likert Scale

Q8 I found the system very cumbersome/awkward to use Likert Scale
Q9 I felt very confident using the system Likert Scale

Q10 I needed to learn a lot of things before I could get going with this system Likert Scale
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More than half of the participants, 12 out of 18, agree and strongly agree that the CodEx

interface is intuitive and user-friendly.

Q2: We asked participants whether they would recommend CodEx to other de-

velopers. The responses were positive, and the vast majority agree with this statement,

which represents 94.4% of the participants.

Q3: The goal of this question was to assess whether experienced developers (all

of our participants have more than three years of experience using Java) would prefer

manual inspection of the code over an automated tool that visualizes the code structure

using call graphs. The results show that only one participant strongly agrees with this

statement, 4 participants agree, while five disagree and one strongly disagrees.

While five participants illustrated that they would prefer to inspect the codebase

manually rather than using our tool, upon further investigation and discussions with the

participants, we discovered a discrepancy between our question and what participants

understood from the question. The participants referred to the fact that they would prefer

to inspect the source code directly for debugging and maintenance tasks, which does not

contradict our tool. Our goal of the question was targeted towards the cognitive tasks of

understanding the system’s structure, but not the actual debugging task. Overall, low-level

maintenance tools and high-level analysis tools (ours) are complementary in nature for

supporting the understanding of software systems [137]. The answers from Q4 actually

support this claim, as we explain in the following.

Q4: In this question, we aimed to assess the execution overhead of using CodEx.

16 out of 18 participants agree and strongly agree that using CodEx could save them time
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and effort while carrying out the task of program comprehension. These findings strongly

align with our execution time analysis that was discussed with the illustrative examples

above.

Q5: This question focused on the specific task of identifying the functionality

of a system under investigation. We asked the developers to compare carrying out this

task using CodEx versus manual inspection. The results show that more than half, 61.1%

prefer to inspect the system using CodEx. Thus, CodEx is useful to identify a feature in

the system and all the underlying functions that implement it.

Q6: After asking the participants to explore different features of the system, we

asked them whether or not these features were helpful for program comprehension tasks.

We noticed that the majority, 14 out of 18, agree with this statement.

Q7: This specific question reflects the participants’ opinion on the usability of

generating and visualizing clusters without looking at the source code. Specifically, 13

out of 18 participants agree and strongly agree with this statement. Only two participants

disagree with the statement.

Q8: In this question, we asked the participants if the multi-level call graphs are

helpful to visually understand the system structure from the views of packages, classes,

and functions. As expected, multi-level visualizing of the call graphs seems to be one of

the best features that facilitate overall program comprehension. 10 participants agree, 6

participants strongly agree, and only 2 participants are neutral about this statement. None

of the responses digressed with this statement.

Q9: In this question, we aimed to assess the overall satisfaction of the two main

108



contributions of our tool, i.e., multi-level and hierarchical visualizations of the call graphs.

The responses to this statement included the following: 1 disagree, 2 neutral, 11 agree,

and 4 strongly agree. Overall, about 80% of the participants agree and strongly agree that

multi-level and hierarchical visualizations of the call graphs are useful to understand the

overall structure of a software system.

Q10: In this question, the participants were asked to rate the overall usefulness of

CodEx. The resulting scores show that 88.8% of the participants agreed, while 11% have

neutral responses.

-15 -10 -5 0 5 10 15 20

The tool’s interface is intuitive and user-friendly

I would recommend software developers to use this tool.

I would prefer to manually inspect the codebase rather than using this..

I believe that using this tool can save time and efforts in inspecting...

The task of identifying a feature that is implemented over multiple…

Filtering by type, searching, retrieving the information, code coloring…

The generated clustered graphs are beneficial to identify the function…

The multi-level call graphs visualization is beneficial to understand…

The tool is useful for clustering and visually exploration the execution…

Overall, the visualization tool is useful to understand the software…

I Strongly Disagree I Disagree |   Neutral  |  Agree I Strongly Agree

Figure 40: Likert Scale Representation of the Survey Responses.
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6.6.2 Participants’ Feedback

The questionnaire contains two open-end questions. The participants were asked

to evaluate their overall opinion regarding the tool, provide us feedback that could help

improve the tool and share valuable insights into the difficulties encountered during the

analysis. We summarize and highlight participants’ feedback as follows:

Graph Filtering. Some participants thought that it was challenging to explore

the function call graph. One participant commented: ”The visualization seems slow and

hangs when there are too many nodes and edges.” It is one of the major drawbacks of

node-link representation. It tends to become highly cluttered when large numbers of

nodes and edges are visualized. Several participants suggested an improvement by pro-

viding features to filter/hide irrelevant nodes and edges, which allow the graph to be more

manageable and easy to explore. Some participants suggest that the tool may be more

selectively showing only execution paths containing a particular node.

Lack of Information and Customization. We used some basic software met-

rics such as in-degree, out-degree to help identify components that, for instance, need

to be refactored. However, two participants suggested including more structural data.

One participant commented: ”It would be good to know how many classes there are in

a package.” Some participants suggested ”providing more software metrics data, such as

LOC, WMC, and there should be ways to query and sort, such as by color or size.” An-

other suggestion was made regarding the ability to customize colors or styles of graphs.

One participant suggested adding a brief description that appeared when hovering over

an icon. Another participant suggested an enrichment tool available as a plugin for the
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popular IDEs, including IntelliJ and VS.Code.

6.6.3 Usability

To analyze the usability of the tool, we considered The System Usability Score

(SUS). Figure 41 shows the average value for the System Usability Scores, which is 72.6.

According to a previous study, [76], this score is above the average 68, which can be

interpreted as Good. Although the tool has a ‘Good’ average, the minimum score is 52

among other similar studies.
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Figure 41: The System Usability Score

6.6.4 Threats to Validity

One possible threat to validity is that our tasks may not be designed to be repre-

sentative software comprehension tasks, and they are biased favoring the tool. However,
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in our defense, we had used an established comprehension task framework introduced by

Pacione et al [99]. They studied several sets of tasks used in comprehension evaluation

literature and software visualization. We designed our tasks to cover most comprehension

activities based on Pacione’s framework. The uncovered activities are mainly concerned

with dynamic aspects that we do not consider in our study.

Another possible threat to validity is that the number of subjects in the study is

less than the usual–only one subject system. However, we argue that we used a system

that is well-curated and well-documented of manageable size, which we believe is a good

representative of real software systems. Moreover, a primary concern was to validate

the usefulness of the tool. Therefore, we needed to be able to check the subject system

manually. With our tool implemented and ready to be used, one can conduct several other

use cases, and it is made our future work.
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CHAPTER 7

CONCLUSION AND FEATURE WORK

The main intent of this dissertation is to support program comprehension using

visual analysis and exploration of a software system. Moreover, to assist software devel-

opers in understanding the software system from a high level of abstraction to a low level

of implementation with the ability to focus on particular parts of the system individually.

We highlight some of the significant research contributions of the work described in this

dissertation:

• Develop an automated language-independent approach for analyzing the source

code of a system and visualizing its structure in multi-level abstractions using the

call graph. This allows the developers to understand the implementation and the

structure of a software system using the call graph at multi-level of abstractions.

• Develop an automated data-driven approach that can automatically map high-level

system functionality to its low-level using our proposed clustering techniques. This

helps the developer bridges the cognitive gap between the system’s overall func-

tionality and its implementation.

• Develop an interactive clustering-based visualization tool to facilitate the process of

analysis, exploration, and mapping of resulted clusters to the overall system struc-

ture. This allows the developers to visually analyze and interpret the clustered exe-

cution paths by inking the clustering results to the overall system structure.
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• To interpret the meaning of the resulted clusters, we utilize topic modeling tech-

niques to understand clusters’ functionality by generating labels that reflect the

meaning of each cluster.

The user study that we conducted shows that some of the participants had com-

ments regarding the tool’s design and appearance. Although the majority of them ex-

pressed their interest, few of them suggest more improvement such as extracting and

calculating more software metrics and utilizing the size, shape, and color of a node or

edge to reflect these matrices to give the developer more insight into the complexity of

the software. Thus, our future work will be focused on the issues raised by the partici-

pants and plan to resolve them by adding those new functionalities. We also plan to use

GPU platforms to further reduce the execution time spent on the analysis tasks such as

clustering technique.
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APPENDIX A

GENERATED CALL GRAPHS

In this chapter, we present all the generated function call graphs of six case studies

that were conducted in Chapter 2 using our tool.

Table 24: Structure Analysis of the Function Call Graph for Each Case Study

Entity Detectron Flask Keras PHNotepad SweetHome 3D WEKA

Nodes 525 370 1,779 36 5,148 14,742
Edges 740 360 2,347 36 9,501 35,575

Entry Point 108 123 844 4 1,517 5,031
Exit Point 207 168 591 28 2,821 4,982

Articulation Point 133 115 376 8 577 2,460
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Figure 42: Detectron Function Call Graph
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Figure 43: Flask Function Call Graph
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Figure 44: Keras Function Call Graph
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Figure 45: PHNotepad Function Call Graph
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Figure 46: SweetHome3D Function Call Graph
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Figure 47: WEKA Function Call Graph
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2010.

[138] Wiese, A., Ho, V., and Hill, E. A comparison of stemmers on source code identi-

fiers for software search. In 2011 27th IEEE International Conference on Software

Maintenance (ICSM) (2011), IEEE, pp. 496–499.

141



[139] Wiggerts, T. A. Using clustering algorithms in legacy systems remodularization.

In Proceedings of the Fourth Working Conference on Reverse Engineering (1997),

IEEE, pp. 33–43.

[140] Wilde, N. Faster reuse and maintenance using software reconnaissance. Technical

Report SERC-TR-75F (1994).

[141] Wu, H. C., Luk, R. W. P., Wong, K. F., and Kwok, K. L. Interpreting tf-idf term

weights as making relevance decisions. ACM Transactions on Information Systems

(TOIS) 26, 3 (2008), 1–37.

[142] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan,

G. J., Ng, A., Liu, B., Philip, S. Y., et al. Top 10 algorithms in data mining.

Knowledge and information systems 14, 1 (2008), 1–37.

[143] Xin, Q., Behrang, F., Fazzini, M., and Orso, A. Identifying features of Android

apps from execution traces. In 2019 IEEE/ACM 6th International Conference on

Mobile Software Engineering and Systems (MOBILESoft) (2019), IEEE, pp. 35–

39.

[144] Yang, B., Liping, Z., and Fengrong, Z. A survey on research of code comment. In

Proceedings of the 2019 3rd International Conference on Management Engineer-

ing, Software Engineering and Service Sciences (2019), pp. 45–51.

142



[145] Zhang, L., Kuljis, J., and Liu, X. Information visualization for DNA microarray

data analysis: A critical review. IEEE Transactions on Systems, Man, and Cyber-

netics, Part C (Applications and Reviews) 38, 1 (2007), 42–54.



VITA

Rakan Alanazi completed his bachelor’s degree in Information technology from

Northern Border University (NBU), Saudi Arabia in 2012. Then, he works as a teaching

assistant at (NBU). He obtained his M.S. degree in Computer Science Electrical Engineer-

ing at the University of Missouri Kansas City in Fall 2016. Rakan starts his research with

Dr. Lee in Fall 2018; since then he has published two research papers and one journal.

Rakan has developed several software tools namely, Code2Graph, Medl.Ai, and CodEx.

His research interests include Software Engineering and Machine Learning.

144


