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ABSTRACT

Given the close relationship between protein structure and function, protein struc-

ture searches have long played an established role in bioinformatics. Despite their matu-

rity, existing protein structure searches either compromise the quality of results to obtain

faster response times or suffer from longer response times to provide better quality results.

Existing protein structure searches that focus on faster response times often use sequence

clustering or depend on other simplifying assumptions not based on structure alone. In

the case of sequence clustering, strong structure similarities are often hidden behind clus-

ter representatives. Existing protein structure searches that focus on better quality results
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often perform full pairwise protein structure alignments with the query structure against

every available structure in the searched database, which can take as long as a full day to

complete. The poor response times of these protein structure searches prevent the easy

and efficient exploration of relationships between protein structures, which is the norm

in other areas of inquiry. To address these trade-offs between faster response times and

quality results, we have developed RUPEE, a fast and accurate purely geometric protein

structure search combining a novel approach to encoding sequences of torsion angles with

established techniques from information retrieval and big data. RUPEE can compare the

query structure to every available structure in the searched database with fast response

times.

To accomplish this, first, we introduce a new polar plot of torsion angles to help

identify separable regions of torsion angles and derive a simple encoding of torsion an-

gles based on the identified regions. Then, we introduce a heuristic to encode sequences

of torsion angles called Run Position Encoding to increase the specificity of our encod-

ing within regular secondary structures, α-helices and β-strands. Once we have a linear
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encoding of protein structures based on their torsion angles, we use min-hashing and lo-

cality sensitive hashing, established techniques from information retrieval and big data,

to compare the query structure to every available structure in the searched database with

fast response times. Moreover, because RUPEE is a purely geometric protein structure

search, it does not depend on protein sequences. RUPEE also does not depend on other

simplifying assumptions not based on structure alone. As such, RUPEE can be used effec-

tively to search on protein structures with low sequence and structure similarity to known

structures, such as predicted structures that results from protein structure prediction al-

gorithms. Comparing our results to the mTM-align, SSM, CATHEDRAL, and VAST

protein structure searches, RUPEE has set a new bar for protein structure searches. RU-

PEE produces better quality results than the best available protein structure searches and

does so with the fastest response times.
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CHAPTER 1

INTRODUCTION

Proteins represent the functional end-product within the central dogma of molecular bi-

ology [22], that is, DNA codes for RNA through a cellular process called transcription

and RNA codes for proteins through a cellular process called translation, as illustrated in

Fig. 1. As such, the importance of understanding proteins in the biological sciences can-

not be overstated. A greater understanding of proteins comes with a greater understanding

of life in general.

In bioinformatics, the two most common representations of proteins are as se-

quences of amino acids, referred to as protein sequences, and as sets of 3-dimensional

atomic coordinates that describe their native 3-dimensional structure, the structure they

assume in the environment of the cell. From the advent of sequencing technology, be-

ginning with Sanger sequencing [58] on up to the higher throughput of Next-generation

sequencing [59], a large volume of protein sequences have been collected into sequence

repositories and organized into sequence clusters and classification hierarchies based on

Figure 1: The central dogma of molecular biology (image from BioNinja [20])
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sequence similarities. Proteins with similar sequences often have an evolutionary re-

lationship to each other and similar functions. Thus, newly determined sequences can

be compared to previously collected sequences, using pairwise sequence alignments, to

provide insight into their evolutionary relationships to other proteins in addition to their

function.

Similarly, the 3-dimensional structures of a large volume of proteins have been

determined using X-ray crystallography and nuclear magnetic resonance (NMR), among

other experimental techniques, and stored in the protein data bank [57] (PDB), the global

repository for experimentally determined protein structures. Comparing the 3-dimensional

structure of a protein to that of other protein structures can provide even greater in-

sight into their evolutionary relationships and function than sequence comparisons alone.

(When we use the word “structure” without qualification, we are referring to the 3-

dimensional structure of a protein.)

Determining how one protein structure compares to another, using pairwise struc-

ture alignments, is mostly a solved problem in structural bioinformatics. However, search-

ing for structurally similar proteins among hundreds of thousands of protein structures

has not been adequately addressed. As will be discussed in Section 1.3.3, existing pro-

tein structure searches either compromise the quality of results to obtain faster response

times or suffer from longer response times to provide better quality results. Ideally, a

protein structure search should be fast and ensure quality results. A protein structure

search should be fast for the serendipitous exploration of relations between protein struc-

tures. Moreover, to ensure quality results, all available structures should be considered
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for structure similarity. To satisfy these requirements, we developed RUPEE, a fast and

accurate purely geometric protein structure search combining techniques from informa-

tion retrieval and big data with a novel approach to encoding sequences of torsion angles.

(RUPEE is an acronym that stands for RUn Position Encoded Encoding of residue de-

scriptors, the meaning of which will be made clear later in Chapters 2 and 3.)

For any given protein domain identifier, whole chain identifier, or uploaded PDB

file, RUPEE can search for matches among domains defined in the protein structure

databases SCOPe 2.07 [26], CATH v4.2 [49], ECOD develop210 [17], or among whole

chains defined in the PDB. RUPEE can search these databases using any identifier. For

instance, RUPEE can search SCOPe using a CATH domain identifier. For even more flex-

ibility, RUPEE provides search types for Contained-In and Contains searches in addition

to the Full-Length search type. The Contained-In search type searches for structures that

are contained in the query structure and the Contains search type searches for structures

that the query structure contains. With these containment searches, RUPEE can be used

to search for structure motifs within proteins.

For the remainder of this document, in Section 1.1, we describe the problems

with existing protein structure searches that it is our objective to address in RUPEE. In

Section 1.2, we cover background material on proteins required for understanding the rest

of the paper. In Section 1.3. we discuss some of the most popular existing protein structure

searches. In Chapters 2 to 4, we provide the methods by which we addressed the problems

identified in Section 1.1. In Chapter 5, we provide the results of evaluating RUPEE against

the existing protein structure searches identified in Section 1.3.3. In Chapter 6, we provide
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details on how to use RUPEE at our web site https: //ayoubresearch.com and how to install

and use RUPEE locally. Parts of this document have been adapted from our previously

published papers [5–7] and have been expanded to provide further insights and details.

1.1 Research Objectives

The two major objectives we set out to accomplish in our research are listed below.

• Develop a fast and accurate purely geometric protein structure search with no de-

pendence on protein sequences, cluster representatives, pre-calculated results, and

the exclusive use of secondary structure elements, that performs better than existing

structure searches that do.

• Develop a protein structure search that is sensitive enough for searches on predicted

structures with low sequence and structure similarity to known structures to assist

in the development of protein structure prediction methods.

1.1.1 Purely Geometric Structure Search

To address our first objective, we initially introduced RUPEE with only two search modes

of operation, fast and top-aligned [6]. In Section 5.1, we compare RUPEE fast and top-

aligned search mode results against the mTM-align structure search [25], the secondary

structure matching (SSM) search [44], and the CATHEDRAL structural scan [55] avail-

able at the CATH web site. Fast search mode is significantly faster than the other protein

structure searches we compared to but at the expense of accuracy. Despite this, we showed

that the accuracy of RUPEE in fast search mode is not far below that of some of the best

4



available protein structure searches. On the other hand, both the accuracy and response

times of RUPEE in top-aligned search mode are equal to or better than some of the best

available protein structure searches.

RUPEE stands out as not just another protein structure search, of which there are

many. RUPEE is the first, to our knowledge, purely geometric protein structure search to

achieve comparable results to existing protein structure searches. Existing protein struc-

ture searches often depend on protein sequence alignments to reduce response times since

sequence alignments are much faster than structure alignments. These existing protein

structure searches either (1) perform an exhaustive search using protein sequence align-

ments to obtain a smaller subset of candidate matches on which to perform structure

alignments; or (2) compare the query protein sequence to sequence cluster representa-

tives to reduce the number of structures to compare against the query protein structure.

Being purely geometric, RUPEE does not depend on protein sequences at all. This allows

RUPEE to find structurally similar proteins that do not have similar sequences.

With respect to the use of sequences, while high sequence similarity usually in-

dicates high structure similarity [18], high structure similarity has been observed even

for structures with low sequence similarity since structure is more conserved in evolu-

tion than sequence [35]. While sequence alignments can be used to reduce the number

of structures that have to be examined, RUPEE can examine every structure individually

during a search and does so in a reasonable amount of time. We have found that protein

structure searches that rely on sequence alignments for filtering miss structurally similar

proteins because they do not consider every structure individually.
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Also, existing protein structure searches often will use other techniques that can

negatively impact response time and/or quality of results, such as dependence on (1) clus-

ter representatives, (2) pre-calculated results, and (3) exclusive use of secondary structure

elements. (These techniques are described in more detail in Section 1.3.3.) While us-

ing cluster representative can make the protein structure search faster, any dependence on

clustering, whether clustering protein sequences or protein structures, can limit the sensi-

tivity of a protein structure search. Also, although using pre-calculated results can reduce

response times if a query protein structure has a known structure id, the query protein

structure often does not have such an id, which can lengthen response times significantly.

In addition, some protein structure searches depend on the exclusive use of the orientation

and connectivity of secondary structure elements, which fails to capture the complexity

of loops.

RUPEE does not use cluster representatives or pre-calculated results and thus

avoids the problems identified above with respect to these techniques. While RUPEE

uses secondary structure elements, it does not do so exclusively and thus accounts for

the structure of loops. Thus, unlike existing protein structure searches, RUPEE does not

compromise the quality of results to obtain faster response times or suffer from longer

response times to provide better quality results.

1.1.2 Predicted Structure Search

Determining the structure of a protein is an important step toward understanding its func-

tion. There are approximately 150,000 solved protein structures currently stored in the
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PDB [15], the global repository for experimentally determined protein structures. On the

other hand, UniProt [19], the universal protein knowledgebase, currently provides over 60

million protein sequences. From this, it is apparent that protein structure determination is

moving at a slower pace than protein sequencing and may be serving as a bottleneck in

a variety of research efforts from protein design to drug discovery. Being able to predict

a protein structure from its amino acid sequence would address this problem. However,

protein structure prediction remains a central unsolved problem in molecular biology [1].

CASP is a biannual blind competition for protein structure prediction that began

in 1994 [47]. Progress had been slow until the success of coevolutionary methods in

contact prediction demonstrated in CASP11 [46]. The recent success of AlphaFold at

CASP13 [1] using deep learning combined with coevolutionary methods has renewed

interest in the problem. While AlphaFold’s performance was remarkable, it depends on

the availability of sufficiently large multiple sequence alignments (MSA) for its use of

coevolutionary methods, which may not be available for all target structures. Even when a

large enough MSA is available, AlphaFold as well as traditional physics-based approaches

to protein structure prediction, such as Rosetta [56], have not reached the desired level of

accuracy [1].

As stated above, we initially provided RUPEE with two search modes, fast and

top-aligned, optimizing for response times and quality of results, respectively. Following

the initial release of RUPEE [6], we observed that RUPEE had been used to upload protein

structures that were the output of a protein structure prediction method to identify the most

similar known structures to the predicted structures. For the most part, these uploaded
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protein structures had low sequence and structure similarity to known structures in the

PDB. This low similarity to known structures is to be expected given the limited accuracy

of current protein structure prediction methods.

When searching for structures with low sequence and structure similarity to known

structures, the importance of small differences in structure similarity becomes proportion-

ally larger since they comprise a larger percentage of the overall similarity. While the fast

and top-aligned search modes have no dependence on protein sequences, they often lack

sufficient sensitivity to find the most similar matches for a structure with low structure

similarity to known structures. This lack of sensitivity for RUPEE fast and top-aligned

search modes with respect to low similarity searches are due to the lower accuracy of their

initial structure similarity estimates that are used to filter candidate matches. Recognizing

the need for a fast and accurate purely geometric structure search with more sensitivity

then fast and top-aligned search modes and still having no dependence on protein se-

quences, we added a search mode to RUPEE with increased sensitivity called all-aligned

search mode.

In Section 5.2, again we compare the results of RUPEE against mTM-align [25],

SSM [44] and CATHEDRAL [55], but this time we include all-aligned search mode.

Additionally, this time we also compare to the VAST protein structure search [28] avail-

able at the U.S. National Center for Biotechnology Information (NCBI) web site. For

these comparisons, we use a benchmark derived from protein structure predictions of

free-modelling targets in CASP13 available at the CASP web site [43]. Here, we show

that RUPEE, in all-aligned search mode, is better at identifying similar structures than the
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protein structure searches we compare to using a benchmark drawn from the output of

protein structure prediction methods.

1.2 Background

In this section, we discuss the fundamentals of protein science that are necessary to un-

derstand fully the rest of this document such as what exactly are proteins, the levels of

protein structure, protein folding, and some examples of commonly referenced proteins.

If you are already familiar with this material, you may skip this section.

1.2.1 Proteins

Proteins are a broad class of macromolecules that are involved in numerous cellular func-

tions. Proteins are often referred to as the machinery of the cell because their biological

functions are coordinated along well-defined pathways like an assembly line within a fac-

tory. The protein machinery is instrumental in such functions as DNA replication and

repair, transcription from DNA to RNA and translation from RNA to proteins, and cell

division and death. In fact, the vast majority of enzymes are proteins so proteins are

involved in just about every metabolic pathway.

Proteins are polymers consisting of chains of amino acid monomers. As shown in

Fig. 2, all amino acids have a common structure consisting of an amino group, a carboxyl

group, and a central α-carbon. The different types of amino acids are distinguished by

their R-group. There are 20 types of amino acids that make up proteins, which can be

divided into hydrophobic and hydrophilic amino acids along with some special cases. As

a general rule, hydrophobic amino acids pack together in the core of a protein to avoid
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Figure 2: Amino Acid Molecule (image from BioNinja [20])

contact with the watery environment of the cell, and the hydrophilic amino acids are

scattered across the surface of a protein and are often involved in interactions with other

proteins and macromolecules.

1.2.2 Levels of Protein Structure

Fig. 3 illustrates the 3 levels of protein structure — primary, secondary, and tertiary. The

primary structure is the linear sequence of amino acids that comprise a protein chain, that

is, what we have been calling the protein sequence. When joined together into a protein

chain by way of peptide bonds, the amino acids are more accurately referred to as amino

acid residues, or more simply, residues. The chain of residues, excluding the R-groups, is

often referred to as the backbone or main chain and the R-groups are often referred to as

the side chains. The primary structure of a protein is usually represented as a sequence of

letters indicating the types of amino acids that make up the backbone.

Within the environment of the cell, once the ribosomal machinery translates RNA

to a protein, regular patterns of hydrogen bonds along the backbone produce two common

secondary structure motifs, α-helices and β-strands. Regular hydrogen bonding patterns
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Figure 3: The 3 levels of protein structure (image from BioNinja [20])

between amino acids located 3, 4, and 5 residues apart form α-helices and regular hy-

drogen bonding patterns between residues farther apart form β-strands. The hydrogen

bonds that are responsible for secondary structure are exclusively along the main chain of

amino acids. Fig. 4 shows a more detailed example of the two secondary structure motifs,

α-helices and β-strands, along with lines to indicate the hydrogen bonds.

Tertiary structure is the third level of protein structure and indicates the 3-dimensional

structure of a protein. Whereas secondary structure results from main chain hydrogen

bonding, tertiary structure is a result of hydrogen bonding between side chains in addi-

tion to hydrophobic packing of residues and disulfide bridges between residues containing

sulfur. Furthermore, unlike secondary structure, in most cases tertiary structure does not

consist of regular patterns. In fact, tertiary structure is famously complex and irregular.

When John Kendrew and his coworkers, pioneers in X-ray crystallography, uncovered the

structure of the myoglobin protein in 1962 [24], one is quoted as saying of the structure,

“It’s a horrible object, but beautiful work.” The complexity of protein tertiary structure
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Figure 4: Protein secondary structure hydrogen bonding patterns (image from BioN-
inja [20])

is responsible for the many challenges encountered when indexing, searching, and pre-

dicting protein structures. At the same time, this same complexity is also responsible for

attracting the scientific curiosity of researchers.

Not shown in Fig. 3 is protein quaternary structure. Quaternary structure is the

structure that results from multiple protein chains interacting to form a multi-chain pro-

tein, also called an oligomer. Proteins that consist of multiple chains are referred to as

heterodimers, homodimers, trimers, etc., which indicate their oligomeric structure. For

instance, a heterodimer is composed of two distinct protein chains whereas a homodimer

is composed of two identical protein chains.

1.2.3 Protein Folding

Within the environment of the cell, a linear protein chain assumes its native 3-dimensional

tertiary structure by reaching a thermodynamic minimum by way of hydrogen bond for-

mation, packing of hydrophobic residues, and other side chain interactions. The dynamic

process of a protein assuming its native structure is known as protein folding.
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Fig. 5 is a common way to visualize the potential energy landscape of protein

folding, referred to as the folding funnel. The vertical axis is the potential energy of

the protein structure at a given stage of the folding process. For instance, the potential

energy of the simple linear structure of protein immediately after being translated by the

ribosomal machinery will be somewhere toward the top of the funnel. As main chain

hydrogen bonding occurs, the potential energy will decrease and perhaps reach one of

the potential energy local minima shown about halfway down the folding funnel. Then

perhaps, enzymatic catalysis and the kinetics of the environment within the cell allow

the protein to escape the local minimum and eventually reach its native structure at the

potential energy minimum at the bottom of the folding funnel.

It is important to note that the folding funnel shown in Fig. 5 is only an aid to

visualize the protein folding process. At the bottom of Fig. 5 there are only 2 variables that

determine the energy minimum while in a real scenario there are thousands of variables.

In Chapter 2, we will discuss the most important of these variables, torsion angles.

The question of whether a given protein can fold into more than one type of struc-

ture has been settled by Anfinsen’s principle [3]. Anfinsen’s principle states that a protein

will always fold into its unique native structure, which is the potential energy minimum,

and which is solely determined by its sequence of amino acids. On the other hand, mul-

tiple protein sequences can fold into the same structure since structure is more conserved

in evolution than sequence [35]. This is one way, among many, that nature preserves the

function of a protein in the case of genetic mutations over time.

Although the structure of a protein is determined by its amino acid sequence, as
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Figure 5: Protein folding funnel

of yet, there is no way to determine the structure of a protein from its sequence without

determining its structure through experimental techniques such as X-ray crystallography

and NMR. However, Anfinsen’s principle does raise the possibility, at least in theory, of

predicting the structure of a protein from its sequence of amino acids.

Now that we have discussed protein folding, we can introduce another structure

definition beside the levels of protein structure. A protein domain is a independently

folding unit of a protein chain that often has a well-defined function. A protein domain

can either be a full protein chain or only part of a protein chain. A chain often contains

multiple domains and a domain can occur in a variety of different proteins. A protein

domain can be thought of as a modular structural unit that serves an identical purpose in

a variety of contexts, that is, as part of different types of proteins. In this document, we
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(a) Hemoglobin (b) Insulin Receptor (c) Amyloid Fiber

Figure 6: Example Proteins (images from PDB-101 [51])

will often refer to protein domains since protein structures are more often classified at the

domain level than at the whole chain level in protein structure databases. The exception

to this is the PDB, which stores all chains for all protein structures in fulfillment of its

role as the universal protein structure repository.

1.2.4 Some Example Proteins

Fig. 6 shows 3 important examples of proteins, (a) hemoglobin, (b) an insulin receptor,

and (c) an amyloid fiber. Hemoglobin is a tetramer consisting of 2 pairs of identical

protein chains, one pair is shown in light red and the other in light blue. The dark red

portions are heme molecules bound by each protein chain for a total of 4 heme molecules

per hemoglobin. The heme molecule binds iron, which in turn binds oxygen for transport

throughout the body via the blood.

An insulin receptor is a multi-chain transmembrane protein. Transmembrane pro-

teins are a large class of proteins that crosses the lipid bilayer of the cell membrane.
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Insulin receptors bind the hormone insulin, which triggers a structure change in the cel-

lular portion of the insulin receptor protein signaling the cell to uptake sugar from the

bloodstream for glycolysis. Insulin is responsible for regulating the amount of sugar in

the blood. Diabetes is a disease that results due to a deficiency of insulin, resulting in high

blood sugar levels.

An amyloid fiber is an aggregation of misfolded amyloid-β proteins that result

from incorrectly cleaved fragments of a transmembrane protein known as the amyloid

precursor protein (APP). These amyloid fibers combine to form plaques, which is charac-

teristic of Alzheimer’s disease as will be discussed further in Section 6.3.1.

1.3 Related Work

In this section, we discuss some of the related work that RUPEE uses, extends, or com-

petes with, including protein sequence alignments, protein structure alignments, and pro-

tein structure searches.

1.3.1 Sequence Alignments

Biological sequences are common in bioinformatics. Broadly, there are two types of

biological sequences, sequences of nucleotides called nucleic acids such as DNA and

RNA, and sequences of amino acids, often called protein sequences. For the majority of

this document, we are primarily concerned with protein sequences that define proteins.

Sequence alignment algorithms are the most important algorithms in bioinformat-

ics and among the earliest developed. For the most part, sequence alignments are used to

determine homology for evolutionarily related proteins. Homologous relationships come
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in two varieties, paralogs and orthologs. Paralogous proteins are related proteins from the

same species where one protein is likely a horizontal gene copy from the other that then

evolved separately following the copy event. Orthologous proteins are related proteins

existing in two distinct species where one species evolved from the other and maintained

the same coding gene in evolution with some modifications.

The most common sequence alignment algorithms use the dynamic program-

ming [8] technique from computer science, a bottom-up approach to solving optimization

problems. Dynamic programming can be applied when a problem contains frequently

occurring subproblems. Whereas a top-down approach may end up solving the same

subproblems multiple times, the bottom-up approach solves each subproblem only once

and references the solved subproblems to solve larger subproblems in a tableau fashion.

One of the most frequently cited dynamic programming algorithms is the longest com-

mon subsequence [34] algorithm, which serves as the basis for the slightly more complex

biological sequence alignment algorithms.

The first sequence alignment algorithm developed was the Needleman-Wunsch [48]

(NW) global sequence alignment algorithm. Global sequence alignment seeks to align

two sequences across their full-length. Fig. 7 shows the NW dynamic programming ma-

trix for aligning the two nucleotide sequences GATTACA and GCATGCU. The numbers

in each cell are calculated in order starting from the top left and proceeding to the bot-

tom right going row by row. Aligning matched elements is awarded 1 point. Aligning

mismatched elements is penalized 1 point. Similarly, aligning an element to a gap is pe-

nalized 1 point. The subproblems consist of aligning a prefix from GATTACA with a
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Figure 7: The Needleman-Wunsch dynamic programming matrix for aligning GATTACA
with GCATGCU (image from Wikipedia [65])

prefix from GCATGCU. For instance, aligning the sequence GATTA with the sequence

GCA is a subproblem.

In Fig. 7, the arrows leading from the bottom right to the top left are referred to as

the backward trace. Once all the cells are filled in as described in the previous paragraph,

the backward trace is used to find the optimal solution. The blue arrows indicate matches,

the red arrows indicate mismatches, and the black arrows indicate the introduction of

gaps into the alignment. There may be multiple optimal alignments when aligning two

sequences. In this case, the alignment of GCATG-CU with G-ATTACA and the alignment

of GCA-TGCU with G-ATTACA are both optimal. The dashes represent gaps in the

alignment.

Following the NW global sequence alignment algorithm, the Smith-Waterman [61]

(SW) local sequence alignment algorithm was introduced. The SW algorithm modifies
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the NW algorithm by eliminating all starting and ending gap penalties and finds the opti-

mal score anywhere within the matrix and traces back from that point to the non-negative

starting point. There are some subtleties to the SW algorithm that are out of scope for this

document.

A hybrid between the NW and the SW algorithms is referred to as semi-global

NW sequence alignment [13]. Whereas a local sequence alignment finds where a part of

one sequence aligns well with a part of another sequence, a semi-global sequence align-

ment finds where an entire sequence aligns well with only a part of another sequence. In

Chapter 4 we describe how we use semi-global NW sequence alignments for containment

searches.

Fig. 8 shows the difference between an NW global sequence alignment and a

semi-global NW sequence alignment. Here, we are aligning AGCTTC to AGTCAGT-

GCGTGC, with the shorter sequence along the first column and the longer sequence along

the first row. The only difference between the global alignment and the semi-global align-

ment is that the opening gap along the first row and the end gap along the last row are not

penalized. This allows for the better alignment to be found for the semi-global sequence

alignment shown on the right of Fig. 8 as opposed to the global sequence alignment shown

on the left of Fig. 8.

1.3.2 Protein Structure Alignments

Protein structure alignment, the most accurate method for comparing protein structures,

involves finding a set of spatial rotations and translations for two protein structures that
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Figure 8: Global vs. semi-global sequence alignments

minimizes the sum of the distances between a set of aligned residues. Not all residues

are necessarily aligned in a structure alignment. Traditionally, the root mean squared

deviation (RMSD) between α-carbons of aligned residues is minimized. However, the

RMSD score does not factor in inter-residue distances, alignment length, or the alignment

coverage defined as the percentage of aligned residues. RMSD scores also have some

dependence on the length of the aligned proteins. To address these concerns, another

score, the TM-score [68], is frequently used in the scoring of protein structure alignments.

The TM-score takes all residues into account and normalizes for both coverage and length

of the aligned proteins.

The RMSD of two aligned structure is defined as

RMSD(a, b) =

√√√√ 1

n

n∑
i

‖ai − bi‖2, (1.1)

where a and b are vectors of aligned residues and n is the number of aligned residues. A

perfect alignment will have an RMSD equal to 0.0.
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The TM-score [68] is defined as

TMSCORE(a, b) =
1

l

n∑
i

1

1 +
(
ai−bi
d0

)2 , (1.2)

where again a and b are vectors of aligned residues and n is the number of aligned

residues. l is the normalization length, which can be the length of the query protein, the

length of the target protein or the average length of both proteins being aligned. Finally,

d0 is a constant factor that normalizes the distance between aligned residues so that the

average TM-score is not dependent on the size of the protein structures being aligned. In

contrast to the RMSD, the TM-score is always a value between 0.0 and 1.0 and a perfect

alignment will have a TM-score equal to 1.0.

Structure alignments often favor accuracy over speed because the typical use case

of aligning one protein structure to another does not impose tight response time require-

ments. On the other hand, a protein structure search can involve thousands of comparisons

and accuracy is often balanced against speed. In this case, structure alignments are still

useful for evaluating the results of a search, and this is the approach we take.

For structure alignments, Combinatorial Extensions [60] (CE) and FATCAT [66]

are among the most popular tools, representing rigid and flexible protein structure align-

ments, respectively. CE performs a rigid alignment to minimize RMSD and FATCAT

allows for a constrained number of twists in the protein chain to find a more flexible

alignment before minimizing RMSD.

Besides CE and FATCAT, TM-align [69] and DALI [33] are structure alignment

tools also in wide use, both offering their own distinct approaches to structure alignment.
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Figure 9: Structure alignment of thioredexoin proteins from the human and fly specifies.
The human protein is red and the fly protein is yellow.

TM-align uses a rotation matrix designed to maximize the TM-score rather than minimiz-

ing the RMSD along with dynamic programming to find the best full-length alignment.

DALI compares intra-residue distance matrices between two proteins to find a consistent

set of matched submatrices that is used to align the proteins.

Of the structure alignment tools, CE, FATCAT, TM-align, and DALI, we found

TM-align to be the fastest while also providing high-quality structure alignments. It is for

this reason that we use TM-align for RUPEE when performing structure alignments.

As an example, Fig. 9 shows the TM-align structure alignment between homolo-

gous thioredoxin proteins from the human and fly species.
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1.3.3 Protein Structure Searches

Existing protein structure searches often use a variety of techniques that can negatively

impact response times and/or quality of results, such as dependence on (1) protein se-

quences, (2) cluster representatives, (3) pre-calculated results, and (4) exclusive use of

secondary structure elements. Whereas structure alignments only depend on sequences

of the 3-dimensional coordinates of the α-carbon atoms of each residue, protein struc-

ture searches often introduce a further dependence on protein sequences as mentioned in

Section 1.1.1. To repeat, these existing protein structure searches that depend on protein

sequences either (1) perform an exhaustive search using protein sequence alignments to

obtain a smaller subset of candidate matches on which to perform structure alignments;

or (2) compare the query protein sequence to sequence cluster representatives to reduce

the number of structures to compare against the query protein structure.

Some existing protein structure searches also depend on cluster representatives.

Any dependence on clustering, whether clustering protein sequences or protein structures,

can limit the sensitivity of a protein structure search. A protein structure search that

depends on clustering will compare the query structure to cluster representatives for each

cluster to exclude clusters on which to compare the query structure. We have found that

this approach often misses good matches hidden behind cluster representatives. In the

absence of reliance on protein sequences or clustering, and without sacrificing the quality

of results, response times for existing protein structure searches suffer greatly, often taking

upwards of an hour for searches to complete.

Another weakness of some existing protein structure searches is that they often
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use pre-calculated results to reduce response times. These protein structure searches pre-

calculate the results for protein structure alignments for known protein structures. In this

case, if a known protein structure is used as the query structure, quality results are returned

and response times are fast. However, the most common and useful scenario is to upload

a protein structure as the query structure that does not have a known structure id, in which

case, to obtain quality results, the query can take an hour or more.

Another weakness of some existing protein structure searches is that they depend

on the exclusive use of the orientation and connectivity of secondary structure elements,

which fails to capture the complexity of loops.

The protein structure searches we compare to represent a good mix of existing

approaches. For structure searches that depend on protein sequence clusters, mTM-

align [25] is among the best available and is capable of handling uploaded structures

with the same response-times as for searching on a structure id. SSM [44] is a good ex-

ample of a fast graph-theoretic structure search with no dependence on protein sequences,

clustering, or pre-calculated results. However, the speed of SSM is at the expense of sen-

sitivity since it depends on the spatial orientation and connectivity of secondary structure

elements, which fails to capture the complexity of loops. The CATHEDRAL [55] struc-

tural scan, available at the CATH website [49], also uses a fast graph-theoretic approach

that is more accurate than SSM, but still lacks sufficient sensitivity to identify the most

similar structure matches for low similarity searches. The lack of sensitivity for CATHE-

DRAL, is due, at least in part, to structural clustering, because it only returns results
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for representatives of structural clusters at 35% similarity [49], referred to as s35 repre-

sentatives. Moreover, CATHEDRAL can take upwards of 10 minutes to produce results

against CATH s35 representatives. The VAST protein structure search [28] is similar to

SSM in that it depends on the spatial orientation and connectivity of secondary structure

elements. Although VAST is much slower than SSM for uploaded structures, because of

a dependence on pre-calculated results to speed searches using a known structure id, its

searched database is more recent than that of SSM. If given a known structure id, VAST

can return structural neighbors in seconds using pre-calculated results. However, if up-

loading a PDB file where pre-calculated results are not used, response times for VAST

can exceed 30 minutes.

While we would have liked to compare our results to DALI [32], another popular

purely geometric protein structure search based on inter-residue distances, DALI was

unable to return any results for a majority of the benchmark of predicted structures as

discussed in Section 5.2. DALI also provides a heuristic structure search [32] of whole

chains found in the PDB in addition to a tool for structure alignments using distance

matrices as discussed above. In the case of searching, DALI first identifies matched PDB-

90 cluster representatives and then walks a pre-calculated graph of structural similarities

to identify further matches in the PDB to gradually build up the set of structures similar

to the query structure. DALI is slow in comparison to SSM, and mTM-align has shown

better quality results than DALI [25].

Given the above, there remains a need for a purely geometric protein structure

search that is fast, scalable, and sensitive enough for searches on structures with low
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sequence and structure similarity to known structures. Being purely geometric, RUPEE

does not depend on protein sequences, which allows RUPEE to find structurally similar

proteins that do not have similar sequences. RUPEE also does not use clustering or pre-

calculated results, so it avoids the problems described above associated with the use of

those techniques. While RUPEE uses secondary structure elements, it does not do so

exclusively and thus accounts for the structure of loops. RUPEE also is fast, which will

allow for the serendipitous exploration of relations between protein structures performed

in the trenches. RUPEE also is scalable, which is important given a 10% yearly growth

rate of solved structures deposited in the PDB [57]. As such, unlike existing protein

structure searches, RUPEE does not compromise the quality of results to obtain faster

response times or suffer from longer response times to provide better quality results.
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CHAPTER 2

ENCODING TORSION ANGLES

Within a protein structure, all bond angles and bond lengths are roughly constant. There-

fore, the only degrees of freedom defining the backbone geometry of a protein structure

are the torsion angles joining the amino acids together. Hence, our first step toward a lin-

ear encoding of protein structures is to identify separable regions of permissible torsion

angles to assign labels to each position in a protein chain.

2.1 Torsion Angles

First, from geometry, a dihedral angle is defined as the angle between two planes within

a third plane that cuts the intersection of the two planes by right angles. Fig. 10 shows a

dihedral angle between two planes α and β cut by a third plane.

In chemistry, dihedral angles created by planes defined by the positions of atoms

are more often called torsion angles. From geometry, only 3 atoms are required to define a

Figure 10: A dihedral angle between two planes α and β cut by a third plane colored
orange (image from Wikipedia [64])
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Figure 11: φ and ψ torsion angles along a protein backbone (image from Lehninger prin-
ciples of biochemistry [21])

plane. The φ torsion angle is defined as the dihedral angle between the plane defined by C,

N, and Cα atoms in succession and the plane defined by N, Cα, and C atoms in succession

with the N and α-carbon atoms shared by both planes. The ψ torsion angle is defined as

the dihedral angle between the plane defined by N, Cα, and C atoms in succession and the

plane defined by Cα, C, and N atoms in succession with the Cα and C atoms shared by

both planes.

Fig. 11 shows the φ and ψ torsion angles along a protein chain. As previously

mentioned, since all other bond lengths and bond angles are roughly constant, the φ and

ψ angles are the only degrees of freedom defining the backbone geometry of a protein.

2.2 Plotting Torsion Angles

To identify regions of torsion angles, we randomly sampled 10,000 residues from high-

resolution CATH s35 representatives to account for precision and redundancy, respec-

tively. A Ramachandran [54] plot of the sampled torsion angles is shown in Fig. 12.

The Ramachandran has been the default plot to represent torsion angles along a protein

backbone since its introduction.
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Figure 12: Ramachandran plot of randomly sampled torsion angles

Despite their utility and familiarity, Ramachandran plots represent angular data

using a square plot better suited for scalar data. This leads to the unwieldy arrangement

where the top part of the plot is continuous with the bottom and the left is continuous with

the right. As can be seen in Fig. 12, a single cluster of residues, consisting primarily of

β-strands, appears at all 4 corners of the Ramachandran plot.

The continuity problem with Ramachandran plots was partially addressed in [31]

using wrapped and mirrored plots. Both wrapped and mirrored plots take advantage of

two sparsely populated areas of the Ramachandran plot at φ = 0◦ and ψ = −120◦.

However, with larger samples of torsion angles, the area at ψ = −120◦ becomes less

sparse.

Fig. 13 shows two wrapped Ramachandran plots, where the torsion angles have

been translated to place the sparsely populated regions at the boundaries of the plot to
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avoid cutting off continuous regions of torsion angles. φ < 0◦ is translated to φ + 360◦

and ψ < −120◦ is translated to ψ + 360◦. While the break at φ = 0◦ is indeed sparse, the

break at ψ = −120◦ does appear to create a break in a continuous cloud of torsion angles.

The break at ψ = −120◦ is even more questionable for the glycine (GLY) residues shown

in Fig. 13(B).

Figure 13: Wrapped Ramachandran plots [31] with φ < 0◦ translated to φ + 360◦ and
ψ < −120◦ translated to ψ + 360◦. A) All residues except GLY and PRO residues. B)
GLY residues only.

Fig. 14 shows a mirrored Ramachandran plot, where torsion angles with φ <
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0◦ have been translated to φ + 360◦. To take advantage of the sparse region at ψ =

−120◦, instead of translating points as with the wrapped plots, values along the ψ-axis

are repeated to highlight mirrored torsion angle conformations. To avoid plotting the

same torsion angles more than once, shaded regions are introduced in Fig. 14.

Figure 14: Mirrored Ramachandran plot [31] with φ < 0◦ translated to φ + 360◦. The
axis at ψ = 180◦ is better understood as ψ = ±180◦.

The labeled regions in both Fig. 13 and Fig. 14 were used to identify identical

regions when comparing regions between the two plots. Given that the ψ = −120◦

regions of both types of plots are not entirely empty, using ψ = −120◦ as a break is

not as effective as may have been hoped for. Moreover, translating points outside of the

traditional range of (−180◦, 180◦) may lead to confusion. On the other hand, while the

mirrored plot may be of use for highlighting mirrored conformations, it is unwieldy and
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Figure 15: Polar plot of randomly sampled torsion angles

not generally useful.

The use of a polar plot resolves the continuity problem with the traditional Ra-

machandran plots more elegantly than wrapped and mirrored plots by only requiring one

break in continuity at φ = 0◦. In Fig. 15, we show the same torsion angles appearing in

the Ramachandran plot of Fig. 12 using a polar plot. In this plot, φ corresponds to the

radius r and ψ corresponds to the angle θ in traditional polar plots. Notice the residues

appearing at the 4 corners of the Ramachandran plot now appear in one continuous region

of the polar plot centered at φ = ±180◦ and ψ = ±180◦.
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2.3 Torsion Angle Regions

While the plot of Fig. 15 does solve the continuity problem with the Ramachandran plot,

the torsion angles themselves are not clearly separable just yet. By plotting the torsion an-

gles for helices, strands, and coil individually, separable regions become clear. Therefore,

we divide six of the eight DSSP secondary structure assignment codes defined in [40] into

three groups: helices (‘G’,‘H’,‘I’), strands (‘E’), and bends and coil (‘S’,‘C’). For each

of the three groups, we plotted the torsion angles and identified regions into which they

clustered as shown in Fig. 16. The regions for helices are assigned descriptors 1 to 4, for

strands 5 to 7, and for bends and coil 8 to 10. The other two DSSP secondary structure

assignments codes for turns (‘T’) and bridges (‘B’), are assigned descriptors 11 and 12,

respectively. For each polar plot, there are well-defined continuous regions of torsion an-

gles that remain continuous in the plots. The only exception is found in the bends and coil

plot at ψ = 60◦ between φ = −180◦ and φ = 0◦.

The descriptors shown in Fig. 16 are the basis for our linear encoding of protein

structures as will be described in Chapter 3.
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CHAPTER 3

INDEXING PROTEIN STRUCTURES

Now that we have an encoding for torsion angles as shown in Chapter 2, we first demon-

strate a simple linear encoding of a protein structure. Then, we transform the linear encod-

ing, through several intermediate steps, into a bag of integers and then into a fixed-length

signature of min-hashes [11]. For indexing, in this chapter we work forward, ending with

what is stored in the index. In the next chapter, for searching, we work backward through

the index from the less accurate filtering methods of min-hashing and LSH to the more

accurate final protein structure alignments.

3.1 Linear Encoding of Protein Structures

As an example of our linear encoding, Fig. 17 shows a typical β-turn-β motif annotated

with the residue descriptors for the sequence shown below. The underlined elements in

Equation (3.1) correspond to the underlined elements in Equation (3.2), Equation (3.4),

and Equation (3.7) below to help illustrate the subsequent transformations from descrip-

tors to shingles and finally to min-hashes.

[ 5, 5, 5, 5, 5, 5, 7, 5, 11, 11, 5, 5, 5, 5, 5, 5 ] (3.1)
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Figure 17: β-turn-β motif from CATH domain 1nycA00

3.2 Bag Representation of Protein Structures

Once a linear encoding for a protein structure is obtained, it needs to be further trans-

formed into a representation suitable for fast and scalable similarity comparisons to other

structures. The processing of text documents within Information Retrieval (IR) has long

been used to satisfy these requirements using bag representations. There are two broad

categories of representations for documents, syntactic and semantic, and much of the re-

search applying IR to protein structure search has focused on the latter [4, 14, 67].

The combination of term frequency and inverse document frequency (TF/IDF)

statistics is the most notable example of the semantic approach in IR to document simi-

larity. The TF/IDF statistics are based on the intuition that if a term frequently occurs in a

document but not frequently in all other documents under consideration, then it is likely a

meaningful term useful for describing the contents of a document that it frequently occurs

in. Commonly, in the TF/IDF approach, a vector of TF/IDF weights is used to represent

a document and cosine similarity is used for comparing documents.

The problem with applying the semantic TF/IDF approach to protein structures is

that the highly variable loop regions of protein structures may receive too much weight

and the regular secondary structures such as α-helices and β-strands may receive too
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little weight. While loop regions are important to the overall structure of a protein, the

secondary structure regions are at least as important. In contrast to the semantic approach,

the syntactic approach in IR considers all symbols within a document as equally impor-

tant, with the possible exception of white space.

Given that the semantic IR approaches are not well-suited to protein structure

comparisons, we adapted the syntactic approach to document similarity, originally re-

ferred to as shingling [10], to our linear encoding of protein structure. In the field of

protein structure bioinformatics, this strategy is more often referred to as a sliding win-

dow strategy and the shingles are more often referred to as k-mers. However, we continue

to use the shingle-related terms to remain consistent with the original paper from which

we took the inspiration for our approach.

We transform a linear sequence of descriptors into a multiset of shingles consist-

ing of 3 consecutive descriptors. The overlap between shingles ensures some of the order

information within the original sequence of descriptors is preserved in the bag. By shin-

gling, we obtain a multiset of sequences from a sequence of residue descriptors. As an

example, the sequence of descriptors in Equation (3.1) becomes the following multiset of

shingles.

{ [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 7]

[5, 7, 5], [7, 5, 11], [5, 11, 11], [11, 11, 5], [11, 5, 5]

[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5] }

(3.2)

Next, each shingle s is hashed to an integer shash as shown in Equation (3.3),

where si is the ith descriptor of the shingle s. The hash function used is a simplification of
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the hash function used in the Rabin-Karp algorithm [41]. The prime number 13 is used as

the base since it is large enough to spread the descriptor values out in hash space without

collisions.

shash = s1 × 132 + s2 × 13 + s3 (3.3)

After hashing, the multiset in Equation (3.2) becomes the following multiset of

integers.

{ 915, 915, 915, 915, 917, 941, 1259

999, 2007, 1929, 915, 915, 915, 915 }
(3.4)

This step completes the transformation of a sequence of residue descriptors to a multiset

of integers that still retains some of the order information present in the original sequence.

Notice in Equation (3.4) the value 915, corresponding to the shingle [5, 5, 5], oc-

curs frequently, indicating the presence of β-strands. Since most proteins are dominated

by regular secondary structures, the abundance of shingles for β-strands as well as the

three types of helices, end up dominating comparisons. Moreover, since shingles are

limited in length, this situation allows for structures with many short β-strands to match

structures with fewer long β-strands. The same situation applies to helices.

To address this lack of specificity, we introduced a heuristic we called run posi-

tion encoding (RPE), where a run is a consecutive sequence of identical descriptors. To

distinguish between short and long runs, thereby increasing the specificity of the shingles,

we add a factor of 105 to each shingle hash as a function of the first residue’s position in

38



a run i.

runfactor(i) =

i if i < bl/2c

l − i− 1 otherwise
(3.5)

where i is zero-based and l is the length of the run. Multiplying the run factors by 105

and adding them to the shingle hashes places the run factors as the left-most digits in the

hashes to avoid interference with the digits provided by the hash in Equation (3.3). This

placement is also convenient for visual inspection since the run factors are isolated as the

left-most digits.

The run factors for the sequence in Equation (3.1) are

[ 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0 ]. (3.6)

Applying RPE to the multiset of integers in Equation (3.4) gives

{ 00915, 10915, 20915, 20915, 10917, 00941, 01259

00999, 02007, 01929, 00915, 10915, 20915, 20915 }
(3.7)

where the leading zero run factors are shown for clarity.

The pyramidal approach to the run factors used in RPE preserves matches at the

boundaries between secondary structure runs and loops that would not otherwise be pre-

served in the presence of differences in run lengths of one or more.

Once we have a representation of a protein structure as a bag of integers, similarity

for a candidate pair of structures a and b can be defined as the Jaccard similarity [45] for

multisets,

J(a, b) =

∑
imin(ai, bi)∑
imax(ai, bi)

, (3.8)
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where i ranges over all possible shingle hashes si and ai and bi give the counts of shingle

hash si in structures a and b, respectively.

In applying the Jaccard similarity to sets of RPE shingle hashes, we chose 3 as the

length of the shingles to balance false positives, in the case of shorter shingles, against

false negatives, in the case of longer shingles.

3.3 A Run-Factor Nuance

To see why RPE run factors are calculated at the descriptor level and applied at the shingle

level, consider shingling a list of RPE run factors themselves, which mirrors applying

them at the descriptor level.

The sequence of RPE factors

[ 0, 1, 2, 3, 2, 1, 0 ] becomes

{ [0, 1, 2, 3], [1, 2, 3, 2], [2, 3, 2, 1], [3, 2, 1, 0] }

and with one less element

[ 0, 1, 2, 2, 1, 0 ] becomes

{ [0, 1, 2, 2], [1, 2, 2, 1], [2, 2, 1, 0] }

Notice above, there is not a single shingle match for this one-off difference in run length.

Now consider shingling a list of RPE factors, but this time all elements in the shingle

are equal to the first run factor for the shingle, which mirrors applying run factors at the
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shingle level.

The sequence of RPE factors

[ 0, 1, 2, 3, 2, 1, 0 ] becomes

{ [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3] }

and with one less element

[ 0, 1, 2, 2, 1, 0 ] becomes

{ [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2] }

In the latter case, a one-off difference in run length results in one less shingle match while

still serving to increase the specificity of the shingles.

3.4 Min-Hashing and LSH

In IR, the syntactic bag of shingles representation of documents is used in the near dupe

clustering of documents [12]. One application of near dupe clustering is in the review

stage of electronic-discovery [39], which is the most expensive stage in a discovery pro-

cess. Often millions of documents must be examined by a staff of attorneys to make a

reasonable effort at providing all documents relevant to the discovery request. Grouping

documents into near dupe clusters and assigning all documents within a cluster to a single

reviewer reduces duplication of effort. In e-discovery, the syntactic approach to defining

near dupe documents is necessary since an algorithmic definition of meaning is legally

questionable.

In the case of near dupe clustering, each document must be compared to every
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other document in the collection, taking quadratic time. For this task, min-hashing [11]

and locality sensitive hashing [36] (LSH), described below, can be combined to reduce

this to subquadratic time. Although we do not near dupe cluster protein structures, we

can still leverage the techniques of min-hashing and LSH to speed up protein structure

searches by a large constant factor.

In addition to the near dupe clustering of documents, LSH has been used to group

similar items together in an index for fast query processing. For example, RDF Indexing

on Quads [42] (RIQ) uses LSH to group similar RDF graphs. First, RIQ represents RDF

graphs as vectors. Second, RIQ uses LSH to determine pairs of graphs that exceed a simi-

larity threshold. Third, using the pairs of similar graphs, connected components of similar

graphs are used to determine the grouping of RDF graphs. By using LSH effectively, RIQ

quickly filters out a large number of graphs that do not match the query.

3.4.1 Min-Hashing

At this stage, we have reduced protein structures to multisets of RPE shingles hashes

similar to what is shown in Equation (3.7). Theoretically, we could stop now and sim-

ply compare protein structures by finding the Jaccard similarity between corresponding

multisets of RPE shingles hashes. However, this would involve comparing variable-size

multisets containing potentially hundreds of elements. It would be better to first con-

vert these multisets to fixed-length signatures that can be easily compared and instead of

obtaining the exact Jaccard similarities, obtain good-enough Jaccard similarity estimates

from faster comparisons.

42



Min-hashing is used to create a fixed-length signature for a set of items by re-

peatedly randomly hashing the items, sorting the hashes into a list, and then selecting

the minimum hash in each permuted list. If the same process is performed repeatedly on

a pair of sets, the key result is that the probability of matching min-hashes for any given

random permutation is equal to the Jaccard similarity of the two sets [11]. To approximate

the Jaccard similarity for a given pair of sets, a sufficient number of min-hashes must be

obtained.

The following example and proof are adapted and expanded to our specific use-

case from the book Mining of Massive Datasets [53]. To illustrate min-hashing, we use

the simpler definition of the Jaccard similarity for sets as opposed to the Jaccard similarity

for multisets as shown in Equation (3.8). The Jaccard similarity for two sets a and b is

defined as

J(a, b) =
|a ∩ b|
|a ∪ b|

. (3.9)

First, Table 1 shows the characteristic matrix for the four sets S1, S2, S3, and S4.

The first column contains the possible elements, the second column contains the hash of

each element, and each subsequent column contains a 1 if the set for that column contains

the element for that row or a 0 if not. For example, the set S1 = { a, c, g } and the set

S3 = { e, g }.

Next, Table 2 shows a random permutation of the rows of the characteristic ma-

trix shown in Table 1. For each set, the hash for the first row for which the set con-

tains the corresponding element is defined as the min-hash for that set. For example,

MINHASH(S1) = ha and MINHASH(S3) = he.
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Table 1: Characteristic matrix for sets

Element Hash S1 S2 S3 S4

a ha 1 0 0 0
b hb 0 0 0 1
c hc 1 1 0 0
d hd 0 1 0 0
e he 0 0 1 1
f hf 0 0 0 1
g hg 1 1 1 0

Table 2: Permuted characteristic matrix for sets

Element Hash S1 S2 S3 S4

b hb 0 0 0 1
e he 0 0 1 1
a ha 1 0 0 0
g hg 1 1 1 0
f hf 0 0 0 1
d hd 0 1 0 0
c hc 1 1 0 0

Table 2 shows only one random permutation of the characteristic matrix. If the

matrix is repeatedly randomly permuted n times, the key result is that the probability

of matching min-hashes between any two sets approaches the Jaccard similarity with

increasing n, as stated above. To see this, consider the comparison of the sets S1 and S2

from Table 2 isolated in Table 3 with a new Type column. There are three types of rows;

rows with both 1s are of type X, rows with both 0s are of type Z, and all other rows are of

type Y. In a real example, the rows of type Z would be far more numerous, i.e., the matrix

would be sparse.

From Table 3, let x equal the count of rows of type X, let y equal the count of rows
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Table 3: Comparing permuted rows of sets S1 and S2 from Table 2

Element Hash S1 S2 Type
b hb 0 0 Z
e he 0 0 Z
a ha 1 0 Y
g hg 1 1 X
f hf 0 0 Z
d hd 0 1 Y
c hc 1 1 X

of type Y, and disregard the rows of type Z. Then it is not hard to see that x = |S1 ∩ S2|

and x+ y = |S1 ∪ S2| since S1 = { a, g, c } and S2 = { g, d, c }. Hence, from the Jaccard

similarity for sets defined in Equation (3.9), we have

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

=
x

x+ y
=

2

2 + 2
=

1

2
, (3.10)

as expected.

Now, consider the probability of equal min-hashes for any two sets a and b, that

is, Pr(MINHASH(a) = MINHASH(b)). As we go down the rows of a permuted

characteristic matrix for sets a and b, the probability of encountering a row of type X

before a row of type Y is simply x
x+y

since there are x rows of type X and y rows of type

Y and the total of both types is x + y. From Equation (3.10) above, this is equal to the

Jaccard similarity. This proves the key result that the probability of matching min-hashes

is equal to the Jaccard similarity. To estimate this probability, we need only repeat the

permutations of the characteristic matrix a sufficient number of times to obtain a good-

enough estimate of the Jaccard similarity when comparing min-hash signatures of any

two sets.
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In actual practice, to implement min-hashing, instead of repeatedly permuting

a large data structure such as a characteristic matrix, it is far more practical to define

n number of random hashes and for each hash, in a specific order, store the minimum

hash value as part of the signature for each set. Hence, each set will have a signature

consisting of nmin-hashes and the proportion of matching min-hashes across all positions

will estimate the Jaccard similarity.

In the above example, we only considered estimating the Jaccard similarity for

sets. However, the same methodology can be easily adapted to multisets by converting

multisets into sets. For instance, if some element a belongs to a multiset k times then we

add indexed elements a1, a2, a3, ..., ak to the corresponding set.

In our case, the sets contain indexed RPE shingle hashes, not to be confused with

min-hashes. Following our example from Section 3.2, from indexing the multiset in Equa-

tion (3.7), we obtain the following set

{ 100915, 110915, 120915, 220915, 110917, 100941, 101259

100999, 102007, 101929, 200915, 210915, 320915, 420915 }
, (3.11)

where for the ith occurrence of an RPE shingle hash we prepend the index i to the integer.

For min-hashing the sets of indexed RPE shingle hashes, the hash function we use

for calculating each min-hash is

h = (shash ∗RANDOM PRIMES(i)) mod RANDOM NUMBERS(i), (3.12)

where shash is an RPE shingle hash, i indexes the ith hash function, andRANDOM PRIMES

and RANDOM NUMBERS are arrays that implicitly define the n hash functions. For
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each set and for each ith hash function, all the hashes are calculated as in Equation (3.12)

and the minimum hash is obtained and serves as the ith min-hash for the set.

Finally, for each set of indexed RPE shingle hashes similar to Equation (3.11) we

obtain n = 99 min-hashes from 99 hash functions implicitly defined by theRANDOM PRIMES

and RANDOM NUMBERS arrays. At this stage, we have reduced our representation

of protein structures from variable-sized sets of indexed RPE shingle hashes to fixed-

length signatures. Given the key result above, the Jaccard similarity for any pair of protein

structures can now be estimated by the proportion of matching min-hashes.

3.4.2 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is a general technique of hashing, where items are

hashed from one hash space to another such that items considered close in the former

space are considered close in the latter space. Instead of discussing the general theory

of LSH [36], we describe concretely how it is applied to min-hashing. Again, we follow

the general outline of what is described in Mininig of Massive Datasets [53] adapted and

expanded to our specific use-case.

Following the min-hashing steps described above, we are left with fixed-length

signatures, which, although better than variable-sized sets, still have to be fully com-

pared to estimate the Jaccard similarity of two proteins. If we planned on clustering pro-

teins based on the Jaccard similarity using the min-hash signatures, we would still have a

quadratic problem because the min-hash signature of every protein would have to be com-

pared to that of every other protein. The following LSH technique can be used to reduce
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the clustering problem to subquadratic time. Although we are not clustering protein struc-

tures, we can still reduce our linear search through every available protein structure by a

large constant factor by using LSH to reduce our search for candidate matches to having

to match on only a single value as will be described below. In addition, the technique of

LSH presents new opportunities for the parallelization and distribution of the search.

The idea for applying LSH to min-hashing is to hash disjoint sets of min-hashes

to buckets such that for similar proteins, at least one pair of sets of min-hashes, one from

each protein, will hash to an identical bucket. One way to approach this, as described in

Mining of Massive Datasets [53], is known as the banding technique. For the banding

technique, the min-hash signatures are divided into b bands of r rows and all rows of each

band are hashed to a single hash for that band, which we refer to as a band-hash. Hence,

hashing to an identical bucket is equivalent to matching on a band-hash.

Ideally, for the banding technique, we should use a hash function similar to how

we hashed shingles to shingle hashes in Equation (3.3). However, for data type consid-

erations, we simply sum the min-hashes within a band to calculate the band-hash. While

this compromise may increase the probability of hash collisions, we only use the band-

hashes as the first step to identify candidate matches and so invalid hash matches will be

accounted for downstream in the search process.

For our implementation of the banding technique, we divide the 99 min-hashes in

the signatures, taken in order, into bands of 3 min-hashes each, giving a total of 33 bands.

For each band, the min-hashes it contains are summed to form the band-hash. Table 4

illustrates the banding technique applied to the CATH domain 1nycA00 shown in Fig. 17.
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In Table 4, every 3 rows of min-hashes, taken in order, corresponds to 1 band-hash.

Table 4: Banding technique applied to the CATH domain 1nycA00 shown in Fig. 17

Min-Hashes Band-Hashes
17874515
5627160 24770792
1269117
2978350
9679892 23598363
10940121
9467906
2941545 13247476
838025
. . . . . .
49344
6020442 11609537
762882
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To see why the banding technique works, consider the general case of dividing n

min-hashes into b bands of r rows each. Recalling the key result from Section 3.4.1 above,

for any two protein structures, the probability of matching min-hashes at any specific po-

sition is a ‘good-enough’ estimate for the Jaccard similarity of the two structures. Assume

the Jaccard similarity between two protein structures is s, then the following derivation

holds.

1. The probability of matching min-hashes for all rows of a specific band is sr

2. implies the probability of not matching on all the rows of a specific band is 1− sr

3. implies the probability of not matching on all the rows of all the bands is (1− sr)b

4. implies the probability of matching on all the rows of at least one band is 1−(1−sr)b

Applying this result to our specific case of b = 33 bands and r = 3 rows, for two

protein structures having a Jaccard similarity of s, the probability of a single band match

is 1− (1− s3)33. A graph of this function is shown in Fig. 18. As indicated in the graph,

for a Jaccard similarity of 0.50, the probability of matching on at least one band-hash is

0.9878, which is very high. Furthermore, even for a Jaccard similarity of just 0.275, there

is a 50% probability of matching on at least one band-hash.

By requiring only a single band match to qualify as a candidate protein structure

match, banding allows the problem of finding similar protein structures to be parallelized

across bands since all that is needed for a candidate match is a single band match. This can

be easily scaled up by having separate tables for each band indexed on the band hashes.
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Figure 18: Graph of 1− (1− s3)33

3.5 Index Implementation

Before RUPEE can service a search request, an offline process has to be executed to

index the available protein structures. This index consist of residue descriptor sequences,

RPE shingle hashes, min-hashes and band-hashes stored in a PostgreSQL database. If

a user searches on a structure id, its representation will already be stored in the index.

On the other hand, if a user uploads a protein structure, it will be parsed into a residue

descriptor sequence, RPE shingle hashes, min-hashes, and band-hashes. Aside from the

initial parsing, searching on an uploaded structure is identical to searching by structure

id.

Here, to make the preceding discussion more concrete, we describe some of the ta-

ble structures and provide some example data. For each of the protein structure databases

RUPEE supports, that is, PDB whole chains, SCOPe, CATH, and ECOD, we maintain

separate sets of tables. While it may be natural to store identically structured data from the

different structure databases in the same tables and include a type column to distinguish
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between the different structure databases, we store the data from each structure database

separately because RUPEE structure searches require full-table scans and minimizing the

size of the tables optimizes for response times.

We chose to use PostgreSQL because it is the fastest freely available relational

database that we can find. Moreover, rather than using a NoSQL [38] database for the stor-

age of arrays of residue descriptors, RPE shingle hashes, min-hashes, and band-hashes,

PostgresSQL provides array data types that allow us to minimize the row-overhead of hav-

ing to store each element of these items in its own row, that is, fully normalized. Again,

for the same reason, we maintain separate tables for each supported database, by using

array data types we minimize the size of the tables that have to be scanned during searches

which in turn minimizes the RUPEE search response times.

Fig. 19 shows the table definitions for the RUPEE CATH structure index. The

tables containing metadata information for classification and identification are not shown.

For the table shown in Fig. 19, the corresponding tables for the PDB whole chains,

SCOPe, and ECOD structure databases are identical except for the names. The cath descrs

table stores the residue descriptors, the cath grams table stores the RPE shingle hashes,

and the cath hashes table stores the min-hashes and band-hashes.
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CREATE TABLE cath_descrs
(

cath_id VARCHAR NOT NULL,
descrs INTEGER ARRAY NOT NULL,
coords REAL ARRAY NOT NULL

);
CREATE UNIQUE INDEX

idx_cath_descrs_unique ON cath_descrs (cath_id);

CREATE TABLE cath_grams
(

cath_id VARCHAR NOT NULL,
grams INTEGER ARRAY NOT NULL

);
CREATE UNIQUE INDEX

idx_cath_grams_unique ON cath_grams (cath_id);

CREATE TABLE cath_hashes
(

cath_id VARCHAR NOT NULL,
min_hashes INTEGER ARRAY NOT NULL,
band_hashes INTEGER ARRAY NOT NULL

);
CREATE UNIQUE INDEX

idx_cath_hashes_unique ON cath_hashes (cath_id);

Figure 19: PostgreSQL table definitions for CATH structure index
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Table 5 shows the cath descrs row for the 1nycA00 domain shown in Fig. 17.

We only show the portion of the descrs field corresponding to the list of descriptors in

Equation (3.1) since the entire field value would be quite large.

Table 5: cath descrs row for CATH domain 1nycA00 shown in Fig. 17

Field Values
cath id 1nycA00
descrs . . . 5, 5, 5, 5, 5, 5, 7, 5, 11, 11, 5, 5, 5, 5, 5, 5. . .
coords . . . 12.217, 5.346, 10.729, 12.47, 8.503, 8.658, 15.469,

8.91, 6.274, 14.394, 11.695, 3.857, 11.368, 12.833, 1.876,
11.803, 9.784, -0.418, 12.93, 7.037, 1.936, 11.631, 5.45,
5.163, 12.679, 2.255, 6.852, 10.535, -0.429, 8.456, 11.455,
-2.698, 11.326, 9.406, -5.224, 13.197, 9.543, -5.782, 16.97,
7.092, -7.052, 19.538, 5.401, -6.447, 22.804, 6.815, -9.511,
24.588. . .

Table 6 shows the cath grams row for the 1nycA00 domain shown in Fig. 17. We

only show the portion of the grams field corresponding to the multiset of RPE shingle

hashes in Equation (3.7) since the entire field value would be quite large.

Table 6: cath grams row for CATH domain 1nycA00 shown in Fig. 17

Field Values
cath id 1nycA00
grams . . . 915, 10915, 20915, 20915, 10917, 941, 1259, 999, 2007,

1929, 915, 10915, 20915, 20915. . .

Table 7 shows the cath hashes row for the 1nycA00 domain shown in Fig. 17.

Here, we show all 99 min-hashes and 33 band-hashes for the 1nycA00 domain.
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Table 7: cath hashes row for CATH domain 1nycA00 shown in Fig. 17

Field Values
cath id 1nycA00
min hashes 17874515, 5627160, 1269117, 2978350, 9679892,

10940121, 9467906, 2941545, 838025, 6981121, 7102413,
2643484, 16775743, 1736842, 15713988, 19302649,
3717602, 887203, 7181034, 5644479, 19111656, 1509644,
3821572, 377663, 4014489, 4642950, 1253473, 21260794,
1508421, 5249121, 2759082, 158864, 8801740, 12428835,
16175007, 2088513, 5954522, 409643, 871425, 3416470,
4164386, 7635960, 8558087, 2484202, 12129673, 2390206,
2637883, 5157695, 452539, 4102894, 14017870, 580803,
1049450, 15260004, 4067591, 2091500, 19846484,
2289531, 550418, 3926685, 36435757, 3064676, 665873,
11076678, 527745, 8576108, 4161181, 456387, 2074542,
14305038, 5926958, 1003885, 62451, 1839644, 650257,
7035403, 1152809, 18828272, 4959709, 4331085, 2109837,
5763713, 11331092, 6250302, 1198427, 4868383, 296414,
1584731, 2607598, 11950087, 2931089, 6965705, 439284,
15223139, 7161321, 49344, 6020442, 762882

band hashes 24770792, 23598363, 13247476, 16727018, 34226573,
23907454, 31937169, 5708879, 9910912, 28018336,
11719686, 30692355, 7235590, 15216816, 23171962,
10185784, 18573303, 16890257, 26005575, 6766634,
40166306, 20180531, 6692110, 21235881, 2552352,
27016484, 11400631, 23345107, 6363224, 16142416,
10336078, 22433804, 11609537
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CHAPTER 4

SEARCHING PROTEIN STRUCTURES

Once protein structures have been indexed, as described in Chapter 3, they can be searched

in a variety of ways with trade-offs for speed and quality of results. RUPEE provides

three search modes; fast, top-aligned, and all-aligned. We first discuss the algorithms that

are common to all search modes followed by a detailed discussion of the search modes

themselves. Fig. 20 shows a flowchart for the RUPEE fast, top-aligned, and all-aligned

search modes to help guide the discussion.

Figure 20: Flowchart for RUPEE search modes. It is assumed that descriptor sequences,
shingles and min-hashes for all structures other than the query structure have been stored
via an offline indexing process and are accessible throughout the flowchart.

4.1 Needleman-Wunsch Sequence Alignments

As mentioned in Section 1.3.1, the Needleman-Wunsch algorithm was initially intro-

duced for biological sequence alignments, that is, nucleotide sequences and amino acid

sequences. However, the NW algorithm can be applied to sequences in general and a
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variety of scoring methods can be used to satisfy specific objectives. In our case, we use

NW global sequence alignments of residue descriptors for full-length protein structure

searches and semi-global NW sequence alignments for containment searches. Here we

describe each kind of alignment in detail.

4.1.1 NW Global Sequence Alignments

NW global sequence alignment is a dynamic programming algorithm [8] similar to the

well-known longest common subsequence (LCS) algorithm. Whereas the LCS [30] al-

gorithm only aligns exact matches, NW global sequence alignment allows for aligning

mismatched symbols. Additionally, whereas the LCS algorithm simply optimizes for the

raw count of exact matches, NW global sequence alignment can use different scores for

aligning matches, mismatches, and gaps, besides simply counting exact matches.

For aligning biological sequences, the NW algorithm normally uses a substitution

matrix for scoring along with a fixed penalty for aligning to gaps. For instance, for align-

ing amino acid sequences, aligning a mismatch between almost identical amino acids

may receive a smaller penalty than would be received for aligning widely different amino

acids. As an example of a substitution matrix, Fig. 21 shows the PAM250 substitution

matrix, famously introduced by Margaret Dayhoff in the 1970s.
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Figure 21: PAM250 substitution matrix

Rather than using a substitution matrix for aligning sequences of residue descrip-

tors, we use a simple cost function c, where matches are awarded 1 point and mismatches

are penalized 1 point. The cost function c is defined below for aligning the ith element of

sequence a to the jth element of sequence b. Our fixed gap penalty is 1 point, the same as

for aligning mismatched residue descriptors.

c(ai, bj) =

1 ifai = bj

−1 ifai 6= bj

(4.1)

If we are aligning a sequence of residue descriptors a of length k with a sequence

of residue descriptors b of length l, we initialize the first row and first column of the

0-indexed dynamic programming scoring matrix as shown below. Here, i indexes the

rows of the scoring matrix and j indexes the columns of the scoring matrix. The first row
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and first column scores correspond to the scoring penalty accrued for opening gaps in the

alignment.

S(0, 0) = 0

S(i, 0) = −i for 0 < i ≤ k (4.2)

S(0, j) = −j for 0 < j ≤ l

The rest of the scoring matrix is filled in row by row from the top left to the

bottom right. The dynamic programming recurrence is defined below, where the function

c corresponds to the cost function defined in Equation (4.1) above.

S(i, j) = max


S(i− 1, j − 1) + c(ai, bj)

S(i, j − 1)− 1 for 1 < i ≤ k and 1 < j ≤ l

S(i− 1, j)− 1

(4.3)

As an example, Fig. 22 shows the filled-in scoring matrix for the NW global se-

quence alignment of the residue descriptor sequences 958778 and 9578957585758. The

first row and first column are separated from the rest of the rows and columns with a

dashed line to highlight the scoring for opening gaps. The arrows in each cell indicate

the cells from which the maximum scores for each cell came from. An arrow pointing up

indicates aligning a gap to the residue descriptor for the current row, an arrow pointing

left indicates aligning a gap to the residue descriptor for the current column, and an arrow

pointing diagonally up and to the left indicates aligning the residue descriptors for the

current row and column with each other.
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9 5 7 8 9 5 7 5 8 5 7 5 8

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13

9 -1 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

5 -2 0 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

8 -3 -1 1 1 2 1 0 -1 -2 -3 -4 -5 -6 -7

7 -4 -2 0 2 1 1 0 1 0 -1 -2 -3 -4 -5

7 -5 -3 -1 1 1 0 0 1 0 -1 -2 -1 -2 -3

8 -6 -4 -2 0 2 1 0 0 0 1 0 -1 -2 -1

Figure 22: Needleman-Wunsch global sequence alignment for the residue descriptor se-
quences 958778 and 9578957585758

In Fig. 22, we find an optimal global sequence alignment, of which there may be

several, by following the red arrows back up from the bottom right corner of the scoring

matrix to the top left corner of the scoring matrix. In dynamic programming, this is re-

ferred to as the backward trace. By following the backward trace, we can construct an

optimal global sequence alignment for the two sequences. For the NW global sequence

alignment of 958778 with 9578957585758 we have the following optimal alignment in-

dicated by the red arrows.

95_8__7___7_8

9578957585758

While this alignment would not be considered a good alignment, it is an optimal

global sequence alignment for the two sequences. In the next section, we will find a better

alignment for these two sequences by relaxing the global requirement.
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4.1.2 Semi-Global NW Sequence Alignments

Semi-global Needleman-Wunsch sequence alignment [13] is a modification to the original

NW global sequence alignment algorithm that does not penalize opening and ending gaps

in the alignment for one or both of the sequences. We use semi-global sequence align-

ment that does not penalize the opening and ending gaps for only one of the sequences

being aligned as part of our implementation of containment searches. The sequence of

residue descriptors for which we do penalize opening and ending gaps is aligned within

the sequence of residue descriptors for which do not penalize opening and ending gaps.

For our implementation of semi-global NW sequence alignment, we use the same

cost function c as in Equation (4.1). Again, if we are aligning a sequence of residue

descriptors a of length k with a sequence of residue descriptors b of length l, we initialize

the first row and first column of the 0-indexed dynamic programming scoring matrix as

shown below. We also assume the longer sequence is indexed by j. The only difference

from Equation (4.2) above is that the first row is initialized with all 0s, corresponding to

not penalizing the opening gaps for the longer sequence.

S(0, 0) = 0

S(i, 0) = −i for 0 < i ≤ k (4.4)

S(0, j) = 0 for 0 < j ≤ l

The recurrence for filling in the dynamic programming scoring matrix is almost

identical to Equation (4.3) above except for the kth row indexed by i needs a small mod-

ification to not penalize the ending gaps for the longer sequence. Here is the recurrence
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for filling in the scoring matrix up until the kth row.

S(i, j) = max


S(i− 1, j − 1) + c(ai, bj)

S(i, j − 1)− 1 for 1 < i < k and 1 < j ≤ l

S(i− 1, j)− 1

(4.5)

Here is the recurrence for filling in the scoring matrix for the kth row. The key

difference is that we do not subtract 1 from S(k − 1, j) for the final term in the max

expression, corresponding to ending gaps for the longer sequence.

S(k, j) = max


S(k − 1, j − 1) + c(ak, bj)

S(k, j − 1)− 1 for 1 < j ≤ l

S(k − 1, j)

(4.6)

As an example, Fig. 23 shows the filled-in scoring matrix for the semi-global NW

sequence alignment of the residue descriptor sequences 958778 and 9578957585758. As

in Fig. 22 above, the first row and first column are separated from the rest of the rows and

columns with a dashed line to highlight the scoring for opening gaps. The arrows in each

cell indicate the cells from which the maximum scores for each cell came from. An arrow

pointing up indicates aligning a gap to the residue descriptor for the current row, an arrow

pointing left indicates aligning a gap to the residue descriptor for the current column, and

an arrow pointing diagonally up and to the left indicates aligning the residue descriptors
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for the current row and column with each other.

9 5 7 8 9 5 7 5 8 5 7 5 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 -1 1 0 -1 -1 1 0 -1 -1 -1 -1 -1 -1 -1

5 -2 0 2 1 0 0 2 1 0 -1 0 -1 0 -1

8 -3 -1 1 1 2 1 1 1 0 1 0 -1 -1 1

7 -4 -2 0 2 1 1 0 2 1 0 0 1 0 0

7 -5 -3 -1 1 1 0 0 1 1 0 -1 1 0 -1

8 -6 -4 -2 0 2 2 2 2 2 2 2 2 2 2

Figure 23: Semi-global Needleman-Wunsch sequence alignment for the residue descrip-
tor sequences 958778 and 9578957585758

In Fig. 23, we find an optimal semi-global sequence alignment by following the

backward trace as we did for Fig. 22. For the semi-global NW sequence alignment of

958778 with 9578957585758 we have the following optimal alignment indicated by the

red arrows.

____958778____

957895_7585758

This alignment is considerably better than the previous alignment we found for

the same two sequences using NW global sequence alignment.

4.2 TM-align Algorithm

As mentioned in Section 1.3.2, TM-align [69] is a protein structure alignment tool that

optimizes for the TM-score [68]. Describing the full details of the TM-align algorithm

is out-of-scope for this document. However, we will describe enough of the algorithm

necessary to understand how we use TM-align.
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First, it is important to highlight the difference between a sequence alignment

and a structure alignment. Whereas a sequence alignment attempts to align symbols

between two sequences of symbols, a structure alignment attempts to superimpose the

3-dimensional atomic coordinates of two protein structures as close as possible in space.

However, it should be noted that sequence alignments can be used to give a rough approx-

imation of structure similarity. For example, RUPEE uses sequence alignments of residue

descriptors to identify candidate structures for closer examination.

Second, structure alignment algorithms often determine an alignment of residues

corresponding to the pairs of 3-dimensional atomic coordinates to be superimposed. One

potential misunderstanding is that a structure alignment algorithm does not attempt to

align all the residues of one structure with all the residues of the other. This is easy to

see in the case of different size proteins but it is even the case for equal size proteins.

However, most structure alignment algorithms do attempt to align as many residues as

possible. The alignment length is defined as the number of pairs of aligned residues and

the coverage is defined as the percentage of aligned residues. In addition to inter-residue

distances, most protein structure alignment algorithms optimize for alignment length or

coverage.

In the case of the TM-align protein structure alignment algorithm, the structure

alignment optimizes for the TM-score, which factors in both inter-residue distances and

alignment length. The TM-score is defined as
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TMSCORE(a, b) =
1

l

n∑
i

1

1 +
(
ai−bi
d0

)2 , (4.7)

where a and b are vectors of aligned residues and n is the number of aligned residues. l

is the normalization length, which can be the length of the query protein, the length of

the target protein or the average length of both proteins being aligned. Finally, d0 is a

constant factor that normalizes the distance between aligned residues so that the average

TM-score is not dependent on the size of the protein structures being aligned. The TM-

score is always a value between 0.0 and 1.0 and a perfect alignment will have a TM-score

equal to 1.0.

To approximate the structure alignment with the optimal TM-score, first TM-align

uses a variety of techniques to determine the initial alignment, that is, an alignment of

residues to be structurally aligned in 3-dimensional space. Then, the initial alignment

is improved using an iterative dynamic programming technique similar to that used by

sequence alignment algorithms. However, instead of storing sequence alignment scores

in each cell of the cost matrix, TM-align stores the best TM-score that can be obtained

by superimposing in space the 3-dimensional coordinates of the aligned residues for that

cell.

When filling in the cost matrix, for each cell representing a candidate residue

alignment, the TM-score is calculated with the assistance of the Kabsch [40] algorithm.
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(a) Before translation and rotation (b) After translation and rotation

Figure 24: Kabsch algorithm determines translation and rotation matrices to minimize
RMSD between corresponding points

In general terms, given two sets of 3-dimensional points a and b and a one-to-one map-

ping of points from a to b, not necessarily onto, the Kabsch algorithm determines the

rotation and translation matrices that minimize the RMSD between corresponding points

in the map and returns the RMSD and the transformation matrices as output. Using the

transformation matrices output from the Kabsch algorithm, TM-align superimposes the

structures and calculates the TM-score as shown in Equation (4.7) above. This is done

for every cell and guides the determination of the best residue alignment, transformation

matrices, and TM-score, which are the final output of the TM-align structure alignment

tool.

Fig. 24 demonstrates how the Kabsch algorithm works. In the left plot, the darker

green and red points represent the mapped points. In the right plot, the green points are

transformed by the rotation and translation matrices on top of the red points.

TM-align provides parameters that can speed up the determination of the initial
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alignment of residues, either by inputting a predefined initial alignment or running a re-

duced number of iterations in the determination of the initial alignment. If inputting a

predefined initial alignment of residues, TM-align can also be instructed to stick to that

initial alignment and not attempt to iteratively improve it at all.

4.3 Fast and Top-Aligned Search Modes

Originally, RUPEE just provided two search modes, fast and top-aligned. Both of these

search modes use the results provided by the min-hashing [11] and LSH [36] initial filters

described in Chapter 3 to quickly estimate the Jaccard similarity of a query protein against

all available structures in the searched database, which in the case of ECOD is greater than

600,000 protein structures.

When a RUPEE structure search is executed in either fast or top-aligned search

mode, several parallel tasks are executed corresponding to the 33 bands used for LSH as

described in Chapter 3. These parallel tasks identify candidate matches based on a single

band match. Then, for each candidate match, we estimate the Jaccard similarity using the

min-hashes. In this way, RUPEE quickly compares the query structure to every structure

in the database and returns the top-scoring 40000 protein structures based on the Jaccard

similarity estimates.

Next, regarding the multiset of RPE shingle hashes in Equation (3.7) as an or-

dered sequence of integers, we obtain more accurate similarity scores for the top-scoring

40000 matches by performing NW sequence alignments as described in Section 4.1 using

the hash sequences, where matches are awarded 1 point and mismatches and gaps are
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penalized 1 point.

For fast search mode, after the NW sequence alignments are performed for the top-

scoring 40000 protein structures, full structure alignments using TM-align are performed

on the top-scoring 400 structures and the results are immediately returned sorted by TM-

score.

For top-aligned search mode, after the NW sequence alignments are performed on

the top-scoring 40000 protein structures, we execute TM-align on the top-scoring 8000

matches using a reduced number of dynamic programming iterations for improving the

initial alignments in the TM-align algorithm as described in Section 4.2 and obtain the

top 400 matches. Finally, we execute TM-align using the default number of dynamic

programming iterations on the top 400 matches and return the results sorted by TM-score.

The filter sizes of 40000, 8000, and 400 have been chosen based on the quality

of results and speed. We found that increasing the size of either of these filters results in

only marginal improvements in the quality of results. Given that performing the TM-align

structure alignments is the most time-consuming aspect of the RUPEE structure search,

the marginal improvements gained from larger filter sizes have to be balanced against the

number of TM-align structure alignments performed.

4.4 All-Aligned Search Modes

While fast and top-aligned search modes may be sufficient for searching for known pro-

tein structures [6], the need for greater sensitivity arises when searching with predicted

structures that may only have a maximum TM-score of less than 0.50 when compared
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against all available structures. Furthermore, for fast and top-aligned search modes, the

effectiveness of the containment searches discussed below is limited by the initial filter-

ing using Jaccard similarity estimates, which biases the initial filtering toward full-length

matches. We addressed both of these concerns with the addition of all-aligned search

mode.

In contrast to fast and top-aligned, all-aligned search mode skips the initial step of

using min-hashing and LSH filtering. Instead, all-aligned runs the NW sequence align-

ments on all available structures using the residue descriptor sequences to obtain residue

descriptor sequence alignments rather than just scores as in fast and top-aligned search

modes. The residue descriptor sequence alignments are then passed into TM-align as

the initial alignments and TM-align is set to stick to those initial alignments as described

in Section 4.2. Along with the residue descriptor initial alignments, we pass in the cor-

responding atomic coordinates for the aligned residues, that are stored in the descriptor

tables as described in Section 3.5. Skipping the min-hashing and LSH filtering combined

with initializing TM-align with the NW sequence alignments increases the sensitivity of

RUPEE in all-aligned search mode and can support containment searches at all stages of

processing.

Once the TM-align structure alignments are run on all available structures using

the NW residue descriptor sequence alignments as initial alignments, the top-scoring 8000

are obtained. As is done in top-aligned search mode, we run TM-align with a reduced

number of iterations on these top-scoring 8000 structures to obtain the top-scoring 400

and finally run TM-align with the default number of iterations on these to obtain the final
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results sorted by TM-score.

While running NW sequence alignments on all available structures reduces the

scalability of all-aligned search mode, it is still reasonably fast as will be shown in Sec-

tion 5.2.

4.5 Containment Searches

By default, TM-align normalizes by the length of the query structure, that is, the first

structure passed to it. This normalization is asymmetric since higher TM-scores result

when the query structure is smaller than the target structure and conversely, lower TM-

scores result when the query structure is larger than the target structure. In extreme cases,

high TM-scores can be achieved even when the target structure is 10 times larger than the

query structure so long as the query structure can be aligned somewhere within the target

structure.

When we first introduced RUPEE with fast and top-aligned search modes, the

search was implicitly a full-length search. This fits naturally with the Jaccard similar-

ity estimates returned from the min-hashing and LSH steps since the Jaccard similarity

measures full set similarity, which in this case, translates directly to full-length protein

structure similarity. To match the kinds of measures across all steps, instead of using the

default setting for performing the TM-align structure alignments, we explicitly used the

TM-align option of normalizing by the average length of compared structures.

With the addition of all-aligned search mode, we were no longer bound by the full-

length min-hashing and LSH steps. We recognized that by using alignment normalization
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effectively at each stage, RUPEE can also execute containment searches in addition to

full-length searches. We introduced two kinds of containment searches, Contained-In

and Contains. For both kinds of containment searches, we use semi-global NW sequence

alignments as described in Section 4.1.2. For Contained-In searches, the query structure

is set as the shorter structure indexed by i in Fig. 23 and for Contains searches, the query

structure is set as the longer structure indexed by j in Fig. 23.

Similar to how we use global and semi-global NW sequence alignments for full-

length and containment search types respectively, we apply the same logic to how we

use normalization in the TM-align algorithm to be compatible with the NW sequence

alignments, normalizing by the query structure for Contained-In searches, by the target

structure for Contains searches, and by the average length of structures for Full-Length

searches.

Despite that fast and top-aligned search modes still rely on min-hashing and LSH

for the initial filtering, we have extended the option of containment searches to both

modes. However, for fast and top-aligned search modes, the containment criterion does

not factor into the search until after the min-hashing and LSH initial filtering. This does

limit the efficacy of fast and top-aligned search modes for containment searches; however,

they are still quite effective as will be shown in Section 5.2.

With support for containment searches, RUPEE can be used to search for struc-

tural motifs within proteins or look for matches of smaller structures within larger struc-

tures.

71



CHAPTER 5

RESULTS AND EVALUATION

5.1 Results for Purely Geometric Structure Search

For our first objective, we published the paper ”RUPEE: A fast and accurate purely geo-

metric protein structure search” [6], from which the results in this section are taken. At

that time, we had not yet introduced all-aligned search mode or containments searches,

which were introduced in our later work [7]. Therefore, when we compare RUPEE to

mTM-align normalized by the query structure in Fig. 26 below, RUPEE is at a disadvan-

tage because we did not yet have a way for RUPEE to normalize by the query structure

internally as described in Chapter 4. We addressed this disadvantage in our later work

on RUPEE [7] as described in the next half of this chapter when we use containment

searches in our comparisons to mTM-align to match the normalization method used by

mTM-align.

Protein structure searches can be evaluated using structure alignment scores like

RMSD and TM-score as described in Section 1.3.2 or by comparison of results against

the hierarchy of a protein structure classification database, which usually consists of struc-

tural domains. Among protein structure classification databases for which corresponding

structure searches exist, SCOPe [26] and CATH [49] are the most popular.

For our results, we derived three benchmarks of structural domains, scop d360,

scop d62, and cath d99, for pairwise evaluations against the mTM-align structure search [25],
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the secondary structure matching (SSM) search [44], and the CATHEDRAL structural

scan [55] available at the CATH web site, respectively. To avoid introducing our own

bias, we were careful to derive each benchmark from an existing benchmark used in a

previously published work or an existing list of protein domains provided by an indepen-

dent third party. scop d360 was derived from the d500 benchmark used in [25] filtered for

domains in SCOPe 2.07 for which mTM-align returned 100 or more results. scoo d360

contains domains from 262 distinct folds. Similarly, scop d62 was derived from the d500

benchmark filtered for domains defined in SCOP 1.73 for which SSM returned 50 or more

results. scop d62 contains domains from 53 distinct folds. For all domains contained in

the d500 benchmark, RUPEE returned 100 or more results. The cath d99 benchmark con-

tains 99 superfamily representatives from the top 100 most diverse superfamilies defined

in CATH v4.2 for which CATHEDRAL returned results in less than 12 hours.

We performed pairwise evaluations to ensure the fairness of our comparisons.

First, for domain searches, SSM was working with the SCOP 1.73 database, so accord-

ingly we had RUPEE search on SCOP 1.73 domains to ensure RUPEE did not have more

domains to work with for scoring and precision evaluations. Second, mTM-align was up-

dated to work with SCOPe 2.07 domain definitions but still retained domains from 2.06

that had since been redefined either through mergers or splits in 2.07. On the other hand,

CATHEDRAL presented no such challenges but still required a separate benchmark since

it was working with a distinct set of domains, CATH v4.2.

Benchmark definitions for scop d360, scop d62, and cath d99 can be found in

appendix A.
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Figure 25: Scoring from TM-align structure alignments normalized by the average length
of aligned structures for RUPEE fast and top-aligned search modes sorted by TM-score,
and RUPEE top-aligned search mode sorted by RMSD

5.1.1 Scoring

Fig. 25 shows average cumulative values for each ranked result averaged over all searches.

Both RMSD and TM-score values are shown, provided as outputs from TM-align struc-

ture alignments normalized by the average length of aligned structures. A TM-score

above 0.5 is a good predictor for whether or not two domains are in the same fold [37].

TM-scores greater than 0.17 are considered potentially meaningful whereas TM-scores

less than 0.17 are considered to be due to random alignments [68].

RUPEE fast and top-aligned sorted by RMSD, and top-aligned sorted by TM-

score, performed better than SSM and CATHEDRAL. The scoring in the cath d99 bench-

mark comparisons were notably lower than for the other two benchmarks. This was ex-

pected since CATHEDRAL only returned CATH s35 representatives. Likewise, for this
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comparison RUPEE filtered for s35 representatives to match. Given that the cath d99

benchmark was evaluated against representatives, there were fewer highly similar struc-

tures returned in the results.

In our evaluation, mTM-align faired better than SSM and CATHEDRAL. mTM-

align also performed better than RUPEE fast, although RUPEE fast was still within 0.08

TM-score points of mTM-align at the 100th result, which is notable considering its speed.

For both TM-score and RMSD, RUPEE top-aligned performed better than mTM-

align. For RMSD, RUPEE top-aligned performed better than mTM-align but this can

most likely be attributed to the fact that mTM-align is only sorted by TM-score. If mTM-

align sorted by RMSD, their results likely would be improved. Nevertheless, it is worth

noting that the initial min-hashing and LSH technique used by RUPEE does not explicitly

bias results towards one particular full-length measure.

Fig. 26 again shows average cumulative values for each ranked result averaged

over all searches but only for RUPEE and mTM-align. The difference here is that instead

of normalizing by the average length of the protein structures we show results for TM-

align normalized by the length of the query structure. This time, mTM-align performed

better than RUPEE top-aligned sorted by TM-score.

Taken together, Figs. 25 and 26 show that the results of RUPEE and mTM-align

are roughly equal and where they did differ is a result of the differences in normalization.

As mentioned in Section 1.3.2, Combinatorial Extensions [60] (CE) and FAT-

CAT [66] are among the most popular structure alignment tools, representing rigid and
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Figure 26: Scoring from TM-align structure alignments normalized by the length of the
query structure for RUPEE fast and top-aligned search modes sorted by TM-score, and
RUPEE top-aligned search mode sorted by RMSD

flexible protein structure alignments, respectively. CE performs a rigid alignment to min-

imize RMSD and FATCAT allows for a constrained number of twists in the protein chain

to find a more flexible alignment before minimizing RMSD.

In addition to reporting the RMSD for their determined alignments, CE and FAT-

CAT also return the TM-score. In Fig. 27, we aligned the top-100 scoring results from

RUPEE, mTM-align, SSM, and CATHEDRAL using CE and provide the plots of RMSD

and TM-score across all ranks. Fig. 28 is the same as Fig. 27 with FATCAT used as the

aligner instead of CE.
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Figure 27: Scoring from CE structure alignments for RUPEE fast, RUPEE top-aligned
sorted by TM-Score, and RUPEE top-aligned sorted by RMSD

R
M

S
D

T
M

−
S

c
o
re

1 10 20 30 40 50 60 70 80 90100

0.0

0.5

1.0

1.5

0.80

0.85

0.90

0.95

1.00

rank

vs. mTM (scop_d360)

1 5 10 15 20 25 30 35 40 45 50

0.0

0.5

1.0

0.85

0.90

0.95

1.00

rank

vs. SSM (scop_d62)

1 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0.4

0.6

0.8

1.0

rank

vs. CATHEDRAL (cath_d99)

RUPEE TM−Score RUPEE RMSD RUPEE Fast Compared To

Figure 28: Scoring from FATCAT structure alignments for RUPEE fast, RUPEE top-
aligned sorted by TM-Score, and RUPEE top-aligned sorted by RMSD
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Once again, Figs. 27 and 28 show that RUPEE performs significantly better than

SSM and CATHEDRAL for both RMSD and TM-score. Likewise, the performance of

RUPEE is almost identical to the performance of mTM-align.

5.1.2 Precision

Fig. 29 shows precision (i.e., positive predictive value or PPV) averaged over all searches,

where positive results are defined as domains with the same classification for the indicated

hierarchy level as the query domain. A plot of recall is unnecessary since Fig. 29 provides

precision at specific ranks for identical sets of searches. Hence, recall curves have the

same relative relationships as those shown for precision.
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Figure 29: Precision for RUPEE fast and top-aligned search modes sorted by TM-score,
and RUPEE top-aligned search mode sorted by RMSD

We would expect a structure search to have reasonable precision with respect to

the hierarchy levels of the structure classification it is searching. However, it is not clear

how to define reasonable. On the other hand, if precision is too high, the search provides

little value beyond that provided by the structure classification hierarchy it is searching.

78



Towards the extreme end of high precision, it would be sufficient for a search to return

the best match and from there refer to the hierarchy for additional results.

RUPEE fast and top-aligned sorted by TM-score showed higher precision than

SSM and CATHEDRAL. mTM-align showed higher precision than RUPEE fast. How-

ever, RUPEE top-aligned sorted by TM-score showed equal or higher precision than

mTM-align up to the 50th result and then dropped below that of mTM-align. The lower

precision after the 50th result can be attributed, in large part, to the differences in nor-

malization. A good example of this is for the search on domain d1j6va from scop d360

having 148 residues. After the initial block of closely matched structures, mTM-align

began returning structures within the same fold with more than 200 residues like d1q2la2

and d1q2la3. On the other hand, RUPEE began to look outside the fold to structures like

d2fyxb2 and d2fyxa1 that provided better full-length alignments with respect to both the

query and the target protein.

RUPEE top-aligned sorted by RMSD showed higher precision than for CATHE-

DRAL but lower precision than mTM-align and SSM. Also, RUPEE top-aligned sorted

by RMSD showed lower precision than both RUPEE fast and RUPEE top-aligned sorted

by TM-score. The lower precision for RUPEE top-aligned sorted by RMSD is a direct

consequence of RMSD not being suitable for full-length alignments as discussed in Sec-

tion 1.3.2. For this reason, it is advised to sort RUPEE results by TM-score. RUPEE

top-align provides a sort by RMSD only for the sake of completeness.
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5.1.3 Response Times

Response times to a large degree are a measure of the amount of resources available to an

application. Response times for RUPEE were gathered from the RUPEE web site running

on a single Amazon Web Services (AWS) c5.2xlarge elastic compute (EC2) unit. With

more resources, RUPEE response times can be further improved since TM-align structure

alignments can be run in parallel. For mTM-align, SSM, and CATHEDRAL, we gathered

response times by automating their respective web sites using the Selenium WebDriver

API.

Given that our response time comparisons were made against the respective tools

running in different environments, we did not derive solid conclusions about the efficiency

of the methods themselves. Nevertheless, these response times do fairly compare the user

experience of the respective tools. Moreover, in some cases, the response times differed

dramatically, by an order of magnitude in the case of RUPEE fast search mode.

Fig. 30 shows response times in seconds for the scop d62 and cath d99 bench-

marks. Here, we were able to show RUPEE fast and top-aligned search modes, mTM-

align and SSM on the same plot because scop d62 is a subset of the scop d360 benchmark.

Both plots are shown with a logarithmic scale to include all outliers while still being able

to view the overall trends in response times. We also provided Loess regression curves to

further highlight the overall trends.

In all cases, RUPEE fast search mode was considerably faster than all other searches.

It is also clear that fast search mode was not as sensitive to increasing residue counts in

contrast to RUPEE top-aligned search mode, mTM-align, and CATHEDRAL. Response
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Figure 30: Response times for RUPEE fast and top-aligned search modes. The response
times for RUPEE top-aligned search mode are dominated by TM-align structure align-
ments and do not depend on the sort order.

times for SSM were not affected by residue counts at all and always returned results in

less than 100 seconds but this was at the expense of performance as shown in Fig. 25.

The left plot of Fig. 30 shows that RUPEE top-aligned search mode was faster

than mTM-align for all residue counts. Likewise, the right plot of Fig. 30 shows that RU-

PEE top-aligned search mode was significantly faster than CATHEDRAL for all residue

counts.

The trend of increasing response times for RUPEE top-aligned search mode is a

direct result of the TM-align structure alignments that are performed on the top-scoring

8000 results provided by the NW sequence alignments as described in Chapter 4 and

shown in Fig. 20.
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5.2 Results for Predicted Structure Search

For our second objective, we published the paper ”Protein structure search to support the

development of protein structure prediction methods” [7], from which the results in this

section are taken. Like our earlier work on RUPEE [6] as described in Section 5.1, we

compared response times and the average scores of ranked results for each rank across a

set of benchmark structures to those of mTM-align [25], SSM [44], CATHEDRAL [55],

and VAST [28]. However, this time we included results for RUPEE all-aligned search

mode, and instead of using a benchmark of known protein structures, we used a bench-

mark derived from structure predictions submitted to CASP13.

Again, like our earlier work on RUPEE [6] as described in Section 5.1, we com-

pared to each structure search individually to reduce sources of systemic error in our eval-

uation. Each comparison to mTM-align, SSM, CATHEDRAL, and VAST is discussed

in its own section below. We also compared all three RUPEE search modes to an ex-

haustive search using full TM-align structure alignments on every available structure. For

comparing RUPEE to the exhaustive search, we used both a benchmark of protein struc-

ture predictions and a benchmark of known protein structures to illustrate differences in

performance based on benchmark difficulty.

5.2.1 Benchmarks

To evaluate the results of RUPEE against mTM-align [25], SSM [44], CATHEDRAL [55]

and VAST [28] for the case of providing support for the development of protein struc-

ture prediction methods, we derived our initial benchmark from structure predictions
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Table 8: Top 10 performing CASP13 prediction groups ranked by the Assessors formula
(GDT TS + QCS) applied to free-modeling targets

Number Name
043 A7D
322 Zhang
145 QUARK
089 MULTICOM
261 Zhang-Server
224 Destini
498 RaptorX-Contact
197 MESHI
354 wfAll-Cheng
196 Grudinin

submitted to CASP13. To ensure the benchmark was challenging, we only considered

predictions submitted for all 25 single-segment free-modeling (FM) target domains in

CASP13 [43]. To ensure the benchmark was not too challenging, we only considered

the first designated predictions of the top 10 performing groups ranked by the Assessors’

formula (GDT TS + QCS) applied to free-modeling targets. We called this benchmark

casp d250 since it consists of 250 structures, corresponding to 25 target domains for each

of the top 10 performing groups. The top 10 performing CASP13 prediction groups are

shown in Table 8.

While the casp d250 benchmark does have some redundancy given that every 10

structures are structure predictions for the same target domain, Fig. 31 shows there is

some variability within each group of 10 structure predictions for each target. In order

to measure variability, we determined the SCOPe superfamily corresponding to the best

search result for each of the 250 benchmark structures and then counted the number of
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Figure 31: The target count for each count of distinct SCOPe superfamilies within each
group of 10 predictions for the same target

distinct superfamilies in each group of 10 structures for each target structure. In Fig. 31,

we show the target count for each count of distinct SCOPe superfamilies within a group of

10 predictions for the same target. The average number of distinct SCOPe superfamilies

within a group of 10 predictions for the same target is 4.32.

The difficulty of the casp d250 benchmark presented challenges for some protein

structure searches. While we would have liked to compare our results to DALI [32], an-

other popular purely geometric protein structure search based on inter-residue distances,

DALI was unable to return any results for a majority of the benchmark structures. On

the other hand, mTM-align, SSM, CATHEDRAL, and VAST returned results for all but

a few missed structures. To avoid comparing against potential bugs, when there were

missed structures for a specific comparison, we created a new benchmark for that com-

parison that excludes the missed structures from our initial casp d250 benchmark. For

all benchmarks structures, we required that at least 100 results were returned, except for

mTM-align, which only returned 10 results for a majority of structures. The benchmark
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names indicate the number of structures included in the benchmark and appear in the title

of each plot below.

All benchmark definitions for this section can be found in Appendix B. We uniquely

identify each benchmark structure using the format 〈target〉TS〈group〉-〈domain〉. For in-

stance, the prediction submitted by the AlphaFold team named A7D and numbered 043

for the second domain in the target T0960 is referred to as T0960TS043-D2.

5.2.2 Scoring

To evaluate scoring fairly, in addition to the search types Contained-In, Contains and

Full-Length that all depend on the TM-score as described above, we added the additional

search types Q-score [44] and SSAP-score [50] to RUPEE to perform comparisons to

SSM and CATHEDRAL using their native scores, respectively. The additional search

types demonstrate the pluggable nature of RUPEE. Although we still use TM-align for

all internal structure alignments after the initial filtering and NW sequence alignments,

we can easily apply different scores to the alignments provided by TM-align besides the

TM-score.

For the TM-score comparisons, we normalized by either the length of the query

structure or the average length of the structures being compared. For the TM-score plots,

in the vertical axis, we use (q) to indicate normalization by the length of the query struc-

ture or (avg) to indicate normalization by the average length of the two structures.
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Figure 32: Plot of the best scores returned by RUPEE all-aligned and mTM-align for
structure searches for each casp d250 benchmark structure

5.2.2.1 Scoring vs. mTM-align

In Fig. 32, we compare the average TM-scores [68] of the top 100 results for each rank

across the casp d250 benchmark for RUPEE and mTM-align [25], searching whole PDB

chains deposited in the PDB as of 2020-08-28. We used the RUPEE Contained-In search

type to search by TM-score normalized by the query structure, identical to the scoring

used by mTM-align. All TM-scores were calculated using TM-align [69].

mTM-align only returned 10 results for 96 benchmark structures and returned 100

or more results for only 85 benchmark structures. For the first 10 results, mTM-align

did better than RUPEE fast and top-aligned and stayed within 0.02 TM-score points of

RUPEE all-aligned but then dropped off precipitously. In Fig. 32 we did not cut off the

plot after 10 results because that would have been unfair to RUPEE to not highlight the

problem that mTM-align had with respect to the number of results it was able to return for

difficult searches. Since protein structure search results usually contain blocks of highly
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similar structures within the same fold, it is important to return a sufficient number of

results to show structures from multiple folds, especially when attempting to validate that

a predicted structure is within the neighborhood of the expected fold.

Since the performance of mTM-align was almost as good as RUPEE all-aligned

for the first 10 results, we examined the relationship between the scores more closely. In

Fig. 33 we show a point for each casp d250 benchmark structure corresponding to the

best score for that structure from both RUPEE all-aligned and mTM-align. In Fig. 33,

the points below the diagonal indicate a higher score for RUPEE and the points on the

diagonal indicate equal scores. From Fig. 33, it is clear that mTM-align performs well for

searching on structures that have higher structure similarity to known structures. On the

other hand, the performance of mTM-align quickly declined when the TM-scores dropped

below 0.77. This further highlights that RUPEE has more sensitivity in comparison to

other protein structure searches for identifying similar structures to predicted structures

that have low sequence and structure similarity to known structures.

87



0.2

0.4

0.6

1 10 20 30 40 50 60 70 80 90 100

result ranks

T
M

−
s
c
o

re
 (

q
)

All Top Fast mTM−align

RUPEE vs: mTM−align
benchmark: casp_d250
structure database: PDB chains
RUPEE search type: Contained−In

Figure 33: RUPEE vs mTM-Align. Comparison of average TM-scores for result ranks
from 1 to 100 across the casp d250 benchmark

5.2.2.2 Scoring vs. SSM

In Fig. 34, we compare the average Q-scores [44], a measure of full-length structure

similarity, of the top 100 results for each rank across the casp ssm d248 benchmark for

RUPEE and SSM [44], searching the SCOP v1.73 domains. We calculated our own Q-

scores for SSM because we observed the scores that SSM provided were wildly incorrect

in many cases. For instance, a large set of results all started with a block of perfect

matches with a Q-score of 1.0 and RMSD of 0.0, which is clearly impossible given that

we were searching with predicted structures. We did not observe this problem with SSM

when searching on known protein structures. To be fair, we sorted the top 100 results

from SSM by the calculated Q-score.
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Figure 34: RUPEE vs SSM. Comparison of average Q-scores for result ranks from 1 to
100 across the casp ssm d248 benchmark

As shown in Fig. 34, all RUPEE search modes performed better than SSM at all

ranks.

5.2.2.3 Scoring vs. CATHEDRAL

In Fig. 35, we compare the average SSAP-scores [50] and TM-scores [68] of the top 100

results for each rank across the casp cathedral d247 benchmark for RUPEE and CATHE-

DRAL [55], searching the CATH v4.2 domains. For comparing to CATHEDRAL, we

filtered by CATH s35 cluster representatives since that is all that CATHEDRAL returns.

We included the TM-score in our comparisons because the SSAP-score [50] is not well-

documented and supported as a measure of full-length structure similarity. We used the

cath-ssap tool provided in the cath-tools suite [23] to calculate the SSAP-scores and we
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Figure 35: RUPEE vs CATHEDRAL. Comparison of average SSAP-scores (left) and
TM-scores (right) for result ranks from 1 to 100 across the casp cathedral d247 bench-
mark

used TM-align to calculate the TM-scores, normalized by the average length of the com-

pared structures. To be fair, we sorted the top 100 results by the compared score for both

comparisons.

As shown in Fig. 35, both RUPEE top-aligned and all-aligned performed better

than CATHEDRAL at all ranks for SSAP-scores and TM-scores. Additionally, RUPEE

fast search mode performed better than CATHEDRAL for both scores at all ranks except

the top 10 results, where RUPEE fast performed roughly equal to CATHEDRAL. It is

remarkable that RUPEE top-aligned and all-aligned performed better than CATHEDRAL

using the SSAP-score native to CATHEDRAL.
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Figure 36: RUPEE vs VAST. Comparison of average TM-scores for result ranks from 1
to 100 across the casp vast d199 benchmark

5.2.2.4 Scoring vs. VAST

In Fig. 36, we compare the average TM-scores of the top 100 results for each rank across

the casp vast d199 benchmark for RUPEE and VAST. We queried VAST by the VAST-

score, a measure of full-length structure similarity [62] like the TM-score. However, we

were not able to duplicate the VAST-score ourselves for our internal alignment scoring

and so did not provide an additional search type as we did for the Q-score and the SSAP-

score. Instead, we used TM-align to calculate the TM-scores, normalized by the average

length of the compared structures. Therefore, in our comparison to VAST, we can only

conclude that RUPEE is better than VAST with respect to TM-score and in so far as TM-

score is a good measure of structure similarity, this comparison is useful. To be fair, we

sorted the top 100 results from VAST by the calculated TM-score.
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For RUPEE, we searched whole PDB chains deposited in the PDB as of 2020-08-

28 whereas VAST searched the molecular modeling database (MMDB), which augments

familiar PDB structures with knowledge annotations. It was not clear what version of the

PDB VAST searched. Despite possible differences in the structural databases searched, it

was the case that all the VAST results for our benchmark structures did match structures

contained in the PDB as of 2020-08-28.

As shown in Fig. 36, all RUPEE search modes performed better than VAST at all

ranks for TM-scores.

5.2.2.5 Scoring vs. Exhaustive

In Fig. 37, we compare the average TM-scores of the top 100 results for each rank across

two different benchmarks for RUPEE against the results of an exhaustive search. For both

benchmarks, RUPEE searched the same structure database, the SCOP v2.07 domains,

consisting of more than 250,000 structures. The easier benchmark, scop d360, is the

benchmark of known proteins structures that we used in our previous work on RUPEE [6].

The harder benchmark, casp d250, is the benchmark of protein structure predictions from

above. For scop d360, the difference between RUPEE all-aligned and top-aligned is less

than 0.01 TM-score points, whereas for casp d250, all-aligned is 0.01 to 0.02 TM-score

points better than top-aligned across all ranks except for the first 10.

Notably, for the scop d360 benchmark, RUPEE top-aligned and all-aligned per-

formed roughly equal to the exhaustive search. However, for the more difficult casp d250

benchmark, the exhaustive search performed better than RUPEE all-aligned by roughly
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Figure 37: RUPEE vs Exhaustive. Comparison of average TM-scores for result ranks
from 1 to 100 across the scop d360 (left) and casp d250 (right) benchmarks

the same amount all-aligned is an improvement over top-aligned.

The right of Fig. 37 suggest that RUPEE all-aligned is more suitable than RUPEE

top-aligned for searching on protein structure predictions. However, for known protein

structures, the performance of top-aligned is almost identical to all-aligned.

5.2.3 Response times

In Fig. 38, we compare the user response times of all the RUPEE search modes against

mTM-align and SSM. We gathered these response times by automating the structure

search web sites using the Selenium WebDriver API. Hence, our comparison of response

times only considers the user experience rather than the computational cost of the re-

spective structure searches. When automating web sites, we never issued more than one

request at a time. The RUPEE web site runs on a single Amazon Web Services (AWS)

c5.2xlarge elastic compute (EC2) unit. In Fig. 39, we compare the response times of all
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benchmark: casp_ssm_d248
structure database: SCOP v1.73
RUPEE search type: Full−Length
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Figure 38: RUPEE vs mTM-align and SSM. Comparison of response times, in seconds,
across the casp d250 (left) and casp ssm d248 (right) benchmarks, respectively

the RUPEE search modes against the exhaustive search using both the scop d360 and the

casp d250 benchmarks. We gathered these response times from RUPEE running on a

desktop computer equipped with an AMD RYZEN 5 3600X 6-Core 3.8 GHz CPU with

12 hyperthreads of execution. We included all data points in the plots for completeness

and we use a logarithmic scale and Loess regression curves to highlight the overall trends.

Even considering the difference in the number of structures between the PDB

chains database and the SCOP v2.07 database, the difference in user response times for

all-aligned in the left plot of Fig. 38 and all-aligned in the right plot of Fig. 39 are dis-

proportionate. This difference in response times suggests the RUPEE web site response

times can be significantly improved with a modest increase in computing resources.

On the left side of Fig. 38, we see that response times for mTM-align are a little
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Figure 39: RUPEE vs Exhaustive. Comparison of response times, in seconds, across the
scop d360 (left) and casp d250 (right) benchmarks

faster than response times for RUPEE all-aligned. However, as expected from our previ-

ous work on RUPEE [6], response times for fast and top-aligned are better than those for

mTM-align. Surprisingly, response times for all the RUPEE search modes are faster than

response times for SSM. Response times for RUPEE searching against the SCOP v1.73

domains are faster than for searching against PDB chains because there are fewer than

100,000 structures in SCOP v1.73.

Both plots in Fig. 39 are roughly the same, indicating that the benchmark diffi-

culty does not affect response times for RUPEE. Not surprisingly, response times for the

exhaustive search are roughly one order of magnitude greater for residue counts less than

300 and approaching two orders of magnitude greater for residue counts above 300.

Unfortunately, we were not able to collect response times for the CATHEDRAL
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and VAST structure searches. In the case of CATHEDRAL, we decided to collect re-

sponse times after collecting the search results. When we returned to the CATHEDRAL

search to collect response times, it was no longer processing requests and has remained in

this state for several weeks. Nevertheless, response time comparisons with CATHEDRAL

were completed in our previous work on RUPEE [6], and it was found that CATHEDRAL

was the slowest among the structure searches we compared to. In the case of VAST, the

search routinely returned with an error. However, the VAST request ids remained valid,

so we ended up using automation to periodically check on the status of the request ids

but were not able to collect exact times of completion. Additionally, we were not able to

serialize our request to VAST because of this issue.

5.2.4 Sample Structure Alignments

Fig. 40 shows the structure alignments of the top-scoring full-length structures matches

that RUPEE identified that none of the other protein structure searches we compared to

identified. While we recognize that mTM-align, SSM, CATHEDRAL, and VAST may

have performed equal to or better than RUPEE on some benchmark structures, RUPEE

performs better on average as was shown in Figs. 33, 34, 35, and 36.

Fig. 40 illustrates qualitatively the types of difficult matches RUPEE has no prob-

lem with finding despite the complexity of the loops. We believe it is these types of

difficult matches that would be of interest to researchers investigating protein structure

prediction.
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Figure 40: Red structures are CASP predictions. (a) T0960TS354-D2 aligned with
2lyxA00 found in CATH v4.2. (b) T0980s1TS043-D1 aligned with 6ahqC found among
whole PDB chains. (c) T0990TS089-D3 aligned with 1w07A01 found in CATH v4.2. (d)
T1000TS043-D2 aligned with 6u7lD found among whole PDB chains.
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CHAPTER 6

USING RUPEE

6.1 Using the RUPEE Web Site

Here we describe how to use the RUPEE protein structure search available at our web site

https://ayoubresearch.com. First, we describe the search criteria. Then, we

provide a walkthrough of an example search. In the next section, we will describe how to

install and use RUPEE locally.

6.1.1 Search Criteria

Fig. 41 is a screenshot of the available search criteria. Fig. 42 shows the file upload

element that appears in place of the Structure Id criterion when the PDB File option is

selected.
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Figure 41: RUPEE search criteria

Figure 42: PDB File upload option
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6.1.2 Search Database

The databases available for searching, along with their corresponding versions, are shown

in Table 9.

Table 9: Databases available for searching with RUPEE

Database Version
PDB Chain as of 2020-08-28
SCOPe 2.07
CATH v4.2
ECOD develop240

6.1.3 Search By

You can search by a structure id or an uploaded PDB file.

Search By Structure Id

The structure id can be any SCOPe, CATH, or ECOD domain identifier or a PDB

id and PDB chain id concatenated together for identifying whole chains within the

PDB. The structure id does not have to match the database type you are searching

— this is a feature of RUPEE that arose naturally when implementing the upload

PBD file feature.

Search By PDB File

When uploading a PDB file, only the first chain of the first model is considered.

Additionally, all backbone atoms (i.e. N, CA, C, and O) should be present for the

search to be effective. If you want to find structures similar to a given domain, then
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upload the domain. If you want to find structures similar to a protein chain, then

upload the chain and search the PDB Chain database.

6.1.4 Search Filter

The available search filters change dynamically based on the selected search database and

search by criteria. SCOPe, CATH, and ECOD are hierarchical classifications. CATH

designates a representative domain for each grouping at each level of the CATH hierarchy

whereas SCOPe and ECOD do not (or at least we are not aware of this being the case).

On the other hand, whole PDB chains are not classified into a hierarchy at all. Given

the above, the SCOPe, CATH, and ECOD databases allow you to filter the search results

by differences from the query structure for different hierarchy level classifications. In

addition to filtering by different classifications, the CATH database allows you to filter

by hierarchy level representatives. Currently, search filters are not provided for searching

the PDB Chain database. Search filters allow for the discovery of structural similarities

between differentially classified domains while preventing the results from being buried

by known similarities.

6.1.5 Search Type

6 search types are available for searching. The first 3 are the recommended search types.

Q-Score and SSAP-Score were provided for comparisons to SSM and CATHEDRAL,

respectively, in our most recent paper [7] as described in Section 5.2. The RMSD score is

provided for its ubiquity.
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Full-Length

Return structures similar to the full-length of the query.

Contained In

Return structures that contain the query structure.

Contains

Return structures similar to a fragment of the query structure.

RMSD

Search on RMSD. Ubiquitous and generally useful.

Q-Score

Search on an SSM-specific score for RUPEE comparisons to SSM.

SSAP-Score

Search on a CATHEDRAL-specific score for RUPEE comparisons to CATHE-

DRAL.

To avoid too many trivial matches, the Contains search type is limited to structures

no less than one third the size of the query structure. Containment searches will also

return many structures similar to the full-length of the query structure since that is trivial

containment.
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6.1.6 Search Mode

Fast

For Fast mode, the top-scoring 40000 structures are obtained from the initial fil-

tering with min-hashing and LSH. Then, a simplified Needleman-Wunsch residue

descriptor sequence alignment between the query structure and the filtered struc-

tures is performed. Matches are awarded 1 point and mismatches and gaps are

penalized 1 point. Finally, full TM-align structure alignments are performed on the

top-scoring 400 structures and the results are returned sorted based on the Search

Type criteria.

Top-Aligned

For Top-Aligned mode, the top-scoring 40000 structures are obtained from the ini-

tial filtering with min-hashing and LSH. Then, a simplified Needleman-Wunsch

residue descriptor sequence alignment between the query structure and the filtered

structures is performed. Matches are awarded 1 point and mismatches and gaps are

penalized 1 point. Following the NW sequence alignments, the top-scoring 8000

structures are obtained and TM-align structure alignments are performed using a

reduced number of iterations. Finally, full TM-align structure alignments are per-

formed on the top-scoring 400 structures and the results are returned sorted based

on the Search Type criteria.
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All-Aligned

All-Aligned mode skips the min-hashing and LSH steps and instead, for each struc-

ture in the searched database, performs the simplified Needleman-Wunsch algo-

rithm to obtain a residue alignment that is used as the initial alignment in a modified

TM-align algorithm that does not attempt to find initial alignments by other means.

This allows RUPEE to apply the modified TM-align to all available structures in

a reasonable amount of time, typically between 5 and 10 minutes. Following the

modified TM-align structure alignments, the top-scoring 8000 structures are ob-

tained and normal TM-align structure alignments are performed using a reduced

number of iterations. Finally, full TM-align structure alignments are performed

on the top-scoring 400 structures and the results are returned sorted based on the

Search Type criteria.

6.1.7 Example Search

Fig. 43 shows the criteria for an example full-length top-aligned search on the CATH do-

main 1eudA01 against the CATH v4.2 database filtered by superfamily representatives.

Fig. 44 shows the top 10 scoring search results for the example search from Fig. 43. The

left columns C, A, T, and H correspond to the CATH hierarchy designations Class, Ar-

chitecture, Topology, and Homologous superfamily, respectively, for the result domains.

The far right column has links where the user can view the text alignments or the 3d align-

ments for the results. In addition, the user can download PDB files for the alignments for

viewing in an external viewer.
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Figure 43: Example search using CATH domain 1eudA01 filtered by superfamily repre-
sentatives

Figure 44: Top 10 scoring search results for CATH domain 1eudA01 filtered by super-
family representatives
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Fig. 45 shows the text alignment for 1eudA01 and 2g6tA01 from the results in

Fig. 44. The output for the text alignment is simply the exact output provided by the TM-

align structure alignment tool [69] that is used internally for the final structure alignments.

Fig. 46 shows the 3d alignment for 1eudA01 and 2g6tA01 that is produced by the same

alignment file that can be downloaded separately by clicking the pdb link in the search

results.

Figure 45: Text alignment of CATH domains 1eudA01 and 2g6tA01
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Figure 46: 3d alignment of CATH domains 1eudA01 and 2g6tA01
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6.2 Installing and Using RUPEE Locally

Here we describe how to install the PostgreSQL, build RUPEE locally from the GitHub

repository at https://github.com/rayoub/rupee, and run the RUPEE command-

line interface (CLI) for administering and using the RUPEE protein structure search.

In addition to searching the PDB Chains, SCOPe, CATH, and ECOD databases

like at the RUPEE web site at https://ayoubresearch.com, you also can search

a local file system directory for convenience. For the DB_TYPE parameter defined be-

low, the local file system directory DB_TYPE value is DIR. To keep things simple, we

assume the local file system directory use-case until we get to Section 6.2.6 below, where

we describe how to download and import the PDB Chains, SCOPe, CATH, and ECOD

databases.

As for software dependencies, Java 8 and an installation of PostgreSQL 9.4 or

above are required. The instructions below assume you are operating within a BASH

shell under Ubuntu, the most popular version of Linux. However, all of the commands

below can be run in other versions of Linux with minor alterations.

Fig. 47 shows the top-level directories of the RUPEE GitHub repository. When

we refer to directories below, we are referring to the directories shown in Fig. 47.

6.2.1 Update Parameters

The first thing you should do is find the Constants.java file in the rupee-search Java

project and update the DB_NAME, DB_USER, and DB_PASSWORD Java constants. The

DB_USER should be the user name of the logged in Linux user that intends to run the
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Figure 47: RUPEE GitHub repository directories

RUPEE application. For everything below, it is assumed the database name is ‘rupee’ and

the user name is ‘ruser’.

6.2.2 Database Installation

At the command prompt, execute the following command to install PostgreSQL:

> sudo apt-get install postgresql

6.2.3 Database Creation

To manage PostgreSQL, you do not need the ‘postgres’ user password. Assuming you

have root permissions, it is preferable to use >sudo su to become the ‘postgres’ user

and then create your own user. First, create your PostgreSQL user with the following

commands:

> sudo su postgres

postgres> createuser -s -P ruser
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Next, create the PostgreSQL database and exit as the ‘postgres’ user:

postgres> createdb -O ruser rupee

postgres> exit

Now, locate the pg hba.conf file in the PostgreSQL installation directories. Its

location will vary. You should add the uncommented line below. The existing comments

within the file are shown to provide context. This is a necessary step to access the database

from the Java app using password authentication.

# TYPE DATABASE USER ADDRESS METHOD

# password and auth for personal databases

local RUPEE ruser md5

Reboot your computer to restart the PostgreSQL service with the new configura-

tion. At this point, you should now get familiar with the PostgreSQL psql command line

utility, which is the easiest way to manage a PostgreSQL database.

Navigate to the db/ directory and login to the rupee database by executing the

following command:

> psql rupee

Finally, within the psql prompt, execute the following command:

\i y_create_all.sql
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6.2.4 Maven Build

The simplest scenario is when you have a single directory of PDB files containing single

chains. First, in the Constants.java file, edit the DIR_PATH constant to point to the local

directory containing the PDB files you wish to search. In the same Constants.java file, edit

the DATA_PATH constant to point to a local directory containing an upload/ subdirectory.

Then, build the 3 Java projects in this order:

1. rupee-tm

2. rupee-core

3. rupee-search

To build, execute the following command from the root directory of each project:

> mvn clean package install

6.2.5 rupee-search Application

Once built, navigate to the rupee-search/target/ directory and issue the command shown

in Fig. 48.
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Figure 48: RUPEE CLI Help

The following table briefly describes the options shown in Fig. 48.

Table 10: RUPEE command line options

Option Description
-i parse PDB files in the data directories and populate grams tables
-h min-hash grams in the grams tables and populate the hashes tables
-s search for similar structures with a db id
-u search for similar structures using a file path
-? prints the available options

The following table provides a key for the optional parameters shown in Fig. 48.

Table 11: RUPEE command line option parameters

Parameter Definition
〈DB TYPE〉 DIR | SCOP | CATH | ECOD | CHAIN
〈SEARCH MODE〉 FAST | TOP ALIGNED | ALL ALIGNED
〈SEARCH TYPE〉 FULL LENGTH | CONTAINED IN | CONTAINS
〈REP#〉 TRUE | FALSE
〈DIFF#〉 TRUE | FALSE

To process the PDB files at DIR_PATH, execute the following commands:

> java -jar rupee.jar -i DIR

> java -jar rupee.jar -h DIR
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Ignore the warnings, or alternatively, suppress the warnings using the java option

-Dlog4j.configurationFile=log4j2.xml. The log4j2.xml file should be in

the root of the target directory.

Once the data is done processing, you can now search. Fig. 49 shows the execution

of an example search along with some of the top-scoring results. The first row of the

results are the column headers. For searching a local directory, replace SCOP with DIR

and use the file name as the DB_ID.

Figure 49: RUPEE CLI example search of SCOPe using the domain d1euda1

6.2.6 Importing the CHAIN, SCOPe, CATH, and ECOD databases

Some files, especially data files, are too numerous or too large to include in the GitHub

repository. The hidden .gitignore file list the files and directories that have been explicitly

excluded from the repository.

6.2.7 db/

This directory contains SQL definition files. All files except files prefixed with x or y

contain SQL definitions.

The files prefixed with x are used for populating tables and should only be run
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when parsed data files are present. Please note, the x files contain hard-coded ref-

erences to file locations that should be changed to match your Linux home directory.

Unfortunately, the PostgreSQL COPY command does not accept relative directories.

6.2.8 data/

This directory contains all data files and scripts used in parsing the files.

The subdirectories shown in Table 12, along with brief descriptions, are excluded

from the repository entirely so you must create them. These directories will hold the PDB

files. You can create them now or create them as you go. Do not extract the downloaded

archive files unless explicitly stated.

Table 12: RUPEE GitHub excluded data directories

Excluded Directory Description
data/pdb/pdb/ From /pub/pdb/data/structures/all/pdb at ftp.wwpdb.org
data/pdb/obsolete/ From /pub/pdb/data/structures/obsolete/pdb at ftp.wwpdb.org
data/pdb/bundles/ From /pub/pdb/compatible/pdb bundle at ftp.wwpdb.org
data/chain/pdb/ parsed pdb files containing whole chains
data/scop/pdb/ parsed pdb files based on scop definitions
data/cath/pdb/ parsed pdb files based on cath definitions
data/ecod/pdb/ parsed pdb files based on ecod definitions
data/upload/ directory used for temporary storage of uploaded pdb files

First, the data/pdb/ local directory has to be populated with files downloaded from

the wwpdb FTP site. If using FileZilla, you should set the connection timeout to at least

1000 seconds in the Edit-Settings dialog. Click the data/pdb/ local directory to select

the destination for the files. Click the /pub/pdb/data/structures/all/pdb/ remote directory
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containing the files you want to download. It will take a few minutes to obtain the direc-

tory listing and may even appear non-responsive. Once you have obtained the directory

listing, right-click the pdb/ remote directory and select download. This also will create

the pdb/ local directory under the data/pdb/ directory if it has not already been created.

If the data/pdb/obsolete/ local directory is not already created, then create it now.

To populate the data/pdb/obsolete/ local directory, the actions are different from above

because the remote files are organized into subdirectories. First, if using FileZilla, se-

lect the data/pdb/obsolete/ local directory and select the /pub/pdb/data/structures/obso-

lete/pdb/ remote directory. Then, go to the Server-Search Remote Files dialog. For

search conditions, add a filename ends with ent.gz rule and click search. It should take

about 10 minutes for the search to complete. Once the search is complete, in the Search

dialog, select all files to be downloaded using Ctrl-A. Right-click and choose download.

Choose to flatten remote paths and click OK.

If the data/pdb/bundles/ local directory is not already created, then create it now.

Like the obsolete files, the remote files are organized into subdirectories. First, if using

FileZilla, select the data/pdb/bundles/ local directory and select the /pub/pdb/compati-

ble/pdb bundle/ remote directory. Then, go to the Server-Search Remote Files dialog.

Remove all search conditions that may already be present and click search. It should take

about 10 minutes for the search to complete. Once the search is complete, in the Search

dialog, select all files to be downloaded using Ctrl-A. Right-click and choose download.

Choose to flatten remote paths and click OK.

The archive files in the /data/pdb/bundles/ local directory do have to be extracted.
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To extract, while in the /data/pdb/bundles/ directory, execute the following commands:

> gunzip *.gz

> find . -name "*.tar" -exec tar xvf {} \;

Once downloaded, the files can be processed to populate the remaining data/pdb/

directory in addition to the data/chain/, data/scop/, data/cath/ and data/ecod/ directories.

The data/pdb/ directory must be processed first followed by the data/chain/ directory.

Then the remaining directories can be processed independently. The following is what to

do in each directory with it set as your working directory.

6.2.9 data/pdb/

If you downloaded the PDB data on the date of MM/DD/YYYY, then your version is

‘vMM DD YYYY’ and needs to be passed as the argument to the do all.sh bash script.

Below is an example:

> ./do_all.sh v08_28_2020

This script chops bundle files and puts them in the data/pdb/chopped/ directory.

Next, files are created in the data/pdb/chain/ directory that define the chains present in the

PDB files, including bundle files and obsolete files. The passed in version is used to name

these definition files.

6.2.10 data/chain/

Using the same version as above, type the following command:

> ./do_all.sh v08_28_2020
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6.2.11 data/scop/, data/cath/, and data/ecod/

Simply type in the following command in each directory in any order:

> ./do_all.sh

6.2.12 Final Remarks

You may need to get more familiar with the do all.sh scripts. When a script errors out

midway through, carefully comment out the completed lines, address the issue, and run

again. Sometimes a modified do all.sh script is checked in with some lines commented

out. Before an initial run make sure all lines are uncommented.

If you have successfully processed one of the data directories, you can now exe-

cute searches with the rupee-search application.

6.3 Case Studies

Protein structure plays a major role in modern medical research. The aggregation of

amyloid-β proteins is a critical factor in the pathogenesis of Alzheimer’s disease [29]. A

mutation in the α-synuclein protein causes an error in folding, the process by which a pro-

tein assumes its 3-dimensional shape, and is believed to be a major factor in Parkinson’s

disease [52]. Another protein structure topic dominating popular discussion today is the

current COVID-19 global pandemic, the disease caused by the infamous SARS CoV-2

spike protein.

In this section, we will demonstrate how the search capabilities of RUPEE can be
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used to investigate some of the protein structures central to Alzheimer’s disease, Parkin-

son’s disease, and the COVID-19 global pandemic. While we do not expect the findings

we present here to be groundbreaking discoveries, we do believe that the search tech-

niques we present will provide adequate guidance to investigators on how to make their

own discoveries using the RUPEE protein structure search as an invaluable tool.

6.3.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is characterized by the presence of plaques between and tangles

within the neurons of the brain. The plaques are formed from aggregates of misfolded

amyloid-β proteins that result from incorrectly cleaved fragments of a transmembrane

protein known as the amyloid precursor protein (APP). These amyloid-β proteins first

accumulate into a few stacked β-sheets and then into longer fibers of stacked β-sheets,

which then combine to form the amyloid plaques. The tangles are formed from misfolded

tau proteins within the neurons that then form fibrils and eventually aggregate in a less

orderly manner into tangles rather than fibers and plaques. In both cases of plaques and

tangles, misfolded proteins aggregate into deposits within the brain that interfere with the

normal function of the brain, contributing to the symptoms of dementia that are associated

with AD.

Fig. 50 shows SCOP domain d3nyla , the APP E2 domain, aligned with SCOP

domain d3fzfb1, a Spectrin repeat-like domain within a family of molecular chaperones.

We found this match by running a full-length search on the d3nyla domain against the
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Figure 50: SCOP domain d3nyla (blue) aligned with SCOP domain d3fzfb1 (green)

Figure 51: Search criteria used to find the d3fzfb1 match shown in Fig. 50

SCOP database in all-aligned search mode using the Different Fold filter. When normal-

ized by the length of the d3fzfb1 domain, the TM-score is quite high at 0.721. However,

as a full-length match, the TM-score is only 0.555. Although the resemblance of the

APP E2 domain to Spectrin repeat-like domains has already been noted as a surprising

similarity [63], it appeared among the top-scoring results for our search criteria.

Fig. 51 shows the criteria used to find the d3fzfb1 match shown in Fig. 50. Fig. 52

shows the top-10 results returned for the criteria shown in Fig. 51.
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Figure 52: Search results returned for the criteria shown in Fig. 51. d3fzfb1 is #3

A more surprising similarity that we have not found in a previously published

paper is shown in Fig. 53, which shows SCOP domain d3nyla , the APP E2 domain,

aligned with SCOP domain d5vxka , the Invasin ipaD domain from the bacteria Shigella

flexneri. The Invasin ipaD domain is used for host cell pore creation and penetration.

We found this match by running a contained-in search on the d3nyla domain against the

SCOP database in all-aligned search mode using the Different Fold filter. Once again, this

match appeared among the top-scoring results for our search criteria. In this case, the

TM-score as a full-length match is 0.631, even higher than the match shown in Fig. 50.

Fig. 54 shows the criteria used to find the d5vxka match shown in Fig. 53. Fig. 55

shows the top-10 results returned for the criteria shown in Fig. 54.
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Figure 53: SCOP domain d3nyla (blue) aligned with SCOP domain d5vxka (green)

Figure 54: Search criteria used to find the d5vxka match shown in Fig. 53

Figure 55: Search results returned for the criteria shown in Fig. 54. d5vxka is #2
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6.3.2 Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the presence of Lewy bodies, aggregates of

misfolded α-synuclein proteins, within neurons of the brain. The presence of Lewy bod-

ies also characterizes another form of neurodegenerative disease known as Lewy Body

Dementia (LBD). Lewy bodies are believed to interfere with dopamine receptors and

acetylcholine production. Dopamine regulates everything from movement and fine motor

control to mood and sleep. Acetylcholine is critical to learning and memory function.

Lewy body interference with dopamine regulation and acetylcholine production is be-

lieved to be responsible for the common symptoms associated with PD.

Fig. 56 shows SCOP domain d1xq8a , a Human α-Synuclein protein, aligned

with SCOP domain d1l6lc , a Human Apolipoprotein, a lipid binding protein involved in

the transportation of lipids. We found this match by running a full-length search on the

d1xq8a domain against the SCOP database in all-aligned search mode. When normalized

by the length of the d1l6lc domain, the TM-score is notably 0.567. However, as a full-

length match the TM-score is only 0.439. Fig. 56 highlights the highly conserved α-helix

lipid-binding motif shared by both proteins that have been previously noted in a review of

synucleins [27].

Fig. 57 shows the criteria used to find the d1l6lc match shown in Fig. 56. Fig. 58

shows the top-10 results returned for the criteria shown in Fig. 57.

A more surprising similarity that we have not found in a previously published

paper is shown in Fig. 59, which shows SCOP domain d1xq8a , a Human α-Synuclein

protein, aligned with ECOD domain e4wsnl3, the C-terminal domain of a proteasome
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Figure 56: SCOP domain d1xq8a (blue) aligned with SCOP domain d1l6lc (green)

Figure 57: Search criteria used to find the d1l6lc match shown in Fig. 56
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Figure 58: Search results returned for the criteria shown in Fig. 57. d1l6lc is #3

Figure 59: SCOP domain d1xq8a (blue) aligned with ECOD domain e4wsnl3 (green)

regulatory protein involved in the breakdown of proteins marked for destruction. We

found this match by running a full-length search on the d1xq8a domain against the ECOD

database in all-aligned search mode. In this case, the TM-score as a full-length match is

0.496, higher than the match shown in Fig. 56. We were only able to find this match by

using a cross-database search with an entry from the SCOP database against the ECOD

database, a useful and convenient feature of RUPEE.

Fig. 60 shows the criteria used to find the e4wsnl3 match shown in Fig. 59. Fig. 61
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Figure 60: Search criteria used to find the e4wsnl3 match shown in Fig. 59

shows the top-10 results returned for the criteria shown in Fig. 60.

6.3.3 SARS

Severe Acute Respiratory Syndrome (SARS) is the condition associated with a class of

viruses known as coronaviruses. In 2002, a SARS outbreak began in China and spread

to 4 other countries. The coronavirus associated with this first outbreak of SARS was

called SARS CoV. In 2019, another SARS outbreak occurred in China and quickly spread

throughout the world, becoming a global pandemic. The coronavirus associated with this

second outbreak of SARS was called SARS CoV-2 and the associated disease has been

given the name COVID-19.

As shown to the left of Fig. 62, the most prominent feature of the SARS CoV and

SARS CoV-2 viruses are the now infamous spike proteins spread across the surface of the

virion particles. The spike proteins are responsible for both binding to cellular receptors

and fusing the virion particle with the cell for the injection of the genetic material. To the

right of Fig. 62, a ribbon representation of a spike protein is shown binding to the ACE2
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Figure 61: Search results returned for the criteria shown in Fig. 60. e4wsnl3 is #2
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Figure 62: SARS virion particle and associated spike proteins (Photo Source: Tyler Star-
r/Bloom Lab and Alissa Eckert/MSMI; Dan Higgins/MAMS)

cellular receptor at the site of the receptor binding domain at the end of the spike protein.

Fig. 63 shows PDB chain 6m17E, the receptor binding domain for SARS CoV-2,

aligned with PDB chain 3bgfS, the receptor binding domain for SAR CoV. We found

this match by running a full-length search on the 6m17E PDB chain against the PDB

chain database in all-aligned search mode. This match is not a surprise and only serves

to highlight the strong similarity between SARS CoV and SARS CoV-2 spike protein

receptor binding domains. As a full-length match, the TM-score is high at 0.928.

Fig. 64 shows the criteria used to find the 3bgfS match shown in Fig. 63. Fig. 65

shows the top-10 results returned for the criteria shown in Fig. 64.

On the other hand, a more surprising match is shown in Fig. 66, which shows

PDB chain 6m17E, the receptor binding domain for SARS CoV-2, aligned with SCOP

domain d2dehf , a Dodecin-like lumichrome binding domain-like protein subunit from

the Thermus thermophilus bacteria. We found this match by running a contains search on
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Figure 63: PDB chain 6m17E (blue) aligned with PDB chain 3bgfS (green)

Figure 64: Search criteria used to find the 3bgfS match shown in Fig. 63
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Figure 65: Search results returned for the criteria shown in Fig. 64. 3bgfS is #6

the 6m17E PDB chain against the SCOP database in all-aligned search mode. When nor-

malized by the length of the d2dehf domain, the TM-score is 0.532. While this match is

a bit messy and may not be functionally relevant, it demonstrates a remarkable similarity

that we were only able to find by using all-aligned mode using a cross-database search

with an entry from the PDB chain database against the SCOP database. We anticipate the

flexibility offered by cross-database searches will prove useful for investigators interested

in discovering previously unknown structural similarities.

Fig. 67 shows the criteria used to find the d2dehf match shown in Fig. 66. Fig. 68

shows 10 results starting at #25 returned for the criteria shown in Fig. 67. We decided

to start the results in Fig. 68 at #25 because the earlier results were dominated by SARS

receptor-binding domains. When performing a cross-database search using RUPEE, it is

not possible to filter these highly similar domains out. RUPEE does not support filters

for cross-database searches because the query structure and the structures in the searched

database do not belong to the same classification hierarchy.
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Figure 66: PDB chain 6m17E (blue) aligned with SCOP domain d2dehf (green)

Figure 67: Search criteria used to find the d2dehf match shown in Fig. 66
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Figure 68: Search results returned for the criteria shown in Fig. 67. d2dehf is #30
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CHAPTER 7

CONCLUSION

As shown above, a purely geometric big data approach to protein structure search can

compete with the best available protein structure searches. Nonetheless, there remains

room for improvement and opportunities for future work.

7.1 Room for Improvement

7.1.1 Containment Searches

While containment searches for all-aligned search mode consider the containment crite-

rion at every step in the search process, as shown in Fig. 20 from Chapter 4, this is not

the case for containment searches in fast and top-aligned search modes due to their de-

pendence on min-hashing and LSH for the initial filtering, which filters for full-length

matches only. While fast and top-aligned search modes do use the containment crite-

rion for the top-scoring 40000 structures returned from the min-hashing and LSH initial

filtering, many legitimate containment matches are inevitably missed.

One improvement for RUPEE would be to incorporate the containment criterion

into the min-hashing and LSH step. While not specifically designed for containment

searches, the initial min-hashing and LSH step does operate fast enough, within seconds,

that it presents the possibility of executing multiple min-hashing and LSH lookups within
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the context of a single search. For instance, protein structures could be broken into mul-

tiple overlapping fragments with each successive fragment having a 75% overlap with

the previous fragment. The protein structure fragments can then be indexed as described

in Chapter 3. Then, when a Contains search is executed, the query structure can be frag-

mented in the same manner and for each fragment separate min-hashing and LSH lookups

can be executed to identify candidate structures that are contained in the query structure.

We have tried the idea of overlapping fragments to implement containment searches

and have found it to be effective. However, we do not have the resources to offer this at

our web site, which as previously mentioned is running on a single AWS elastic compute

unit.

7.1.2 Results Threshold

One possible weakness for RUPEE is that it only returns the top 400 results. With more

resources, this number can be increased but there remains a need for some kind of cut-off.

Without a cut-off, the RUPEE search would reduce to performing full TM-align protein

structure alignments on all available structures, which can take several hours and even as

much as a full day for larger proteins. Nonetheless, in most search use-cases, having to

look past the first few hundred results usually indicates an ineffective search strategy.

To account for the limited number of results, RUPEE provides search filters that

can be used for exploring structure space more efficiently. For the SCOPe, CATH, and

ECOD protein structure databases, the user can instruct the search to only return domains

that differ from the query structure at a chosen hierarchy level classification. Additionally,
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for the CATH database, the user can filter results based on hierarchy level representatives.

Since RUPEE does not rely on sequence clusters or pre-calculated results, these kinds

of filters are easy to implement, do not reduce the number of returned results, and allow

for the discovery of unexpected structural similarities across classification hierarchies.

Expanding the list of available search filters could further increase the utility of RUPEE.

7.1.3 Loop Regions

Another challenge for RUPEE is to effectively encode the loop regions of proteins. For

short loops containing simple motifs such as the β-turn-β motif shown in Fig. 17, shingle

matches correctly factor into RUPEE similarity comparisons. However, for longer and

more complex loops, random matching and mismatching of shingles takes a toll further

down in the list of ranked results. In one experiment, for longer loops, we truncated the

center of the loops, leaving only a maximum of 5 residues at the start and end of each

loop. We treated the truncated loops as normal gaps and did not shingle across the gaps.

In this experiment, RUPEE only performed marginally worse than normal, providing one

piece of evidence that longer loops are not being encoded as effectively as we would like.

7.1.4 Gene and Protein Names

Currently, when not uploading a PDB file, RUPEE requires a structure id. This structure

id must be a valid PDB id followed by a chain identifier or a valid id from either SCOP,

CATH, or ECOD protein structure classification databases. On the other hand, RUPEE

does not accept common gene and protein names. This can lead to confusion for the

casual user who may have a common gene or protein name in mind but does not have a
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specific structure id. For instance, a user may want to view proteins similar to the SARS

CoV-2 spike protein and types in ‘sars cov-2 spike.’ In this case, the user will receive an

‘Invalid Structure Id’ error. A better response would be to present a pop-up dialog to the

user with valid PDB ids that correspond to the common name entered by the user. This

also would be instructive for the user, who will discover that there will usually be multiple

structure ids for a given common gene or protein name.

For RUPEE, as with most research projects, there is room for improvement. With

that in mind, we are always ready to consider any suggestions users and other researchers

may want to contribute.

7.2 Future Work

7.2.1 Standalone Version

RUPEE has been used by users from around the world including China, France, Greece,

India, Italy, Mexico, Switzerland, Turkey, and the United States. In the United States,

RUPEE has been used by researchers at Rockefeller University in New York City, the San

Diego Supercomputer Center, the National Institute of Health in Bethesda, and the Dana-

Farber Cancer Institute in Boston. In particular, researchers from the Dana-Farber Cancer

Institute have expressed interest in a standalone local version of RUPEE to integrate into

their protein structure prediction pipeline. We suspect that the use of RUPEE would

increase if a standalone local version was available.
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While RUPEE can be installed locally by cloning the GitHub repository and work-

ing through the README file, or alternatively, working through Section 6.2 in this docu-

ment, the process is quite involved. For instance, a PostgreSQL database has to be created

and populated with data obtained from several sources available on the web. Additionally,

several BASH and AWK shell scripts have to be run for the initial parsing of the data and

3 Java projects have to be compiled and run to process the data after setting up several

configuration files.

A standalone local version of RUPEE should limit the dependencies described

above as much as possible. A copy-and-paste installation would be ideal. For this to hap-

pen, the data layer would have to be either based on flat-files or a pre-populated database

like SQLite. Since the size of these files exceed GitHub limits, they would have to be

served via an FTP server or as large objects in AWS S3 storage in the cloud. Further,

we would have to ensure no operating system dependencies are inadvertently introduced.

Since Java is ubiquitous, this version of RUPEE would likely be a Java 8 console appli-

cation that can also be automated for integration into a workflow.

7.2.2 Flexible Structure Alignments

We also have considered creating a more flexible version of RUPEE by using a more

flexible protein structure alignment tool that accounts better for topological permutations

and twists in the protein chain. Using a more flexible protein structure alignment along

with a purely geometric protein structure search may allow RUPEE to be more effective

at detecting remote homology.
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Topological permutations such as circular permutations, segment-swapping, and

changing secondary structures within homologous proteins are not uncommon [2]. As

mentioned in Section 1.3.2, the FATCAT [66] protein structure alignment tool allows for

a constrained number of twists in the protein chain to find a more flexible alignment

before minimizing RMSD. Furthermore, to complement CE [60], CE-CP [9] was created

to allow for circular permutations in CE protein structure alignments.

Since RUPEE depends on rigid TM-align structure alignments in its final step,

it can be thought of more specifically as a rigid protein structure search. However, for

fast and top-aligned search modes, the min-hashing and LSH steps impose no strict order

requirements beyond the 3-residue sequences that are used to define the shingles. With a

little work, and with the use of a flexible protein structure alignment tool in the final steps,

a flexible version of the RUPEE protein structure search could be created.

As mentioned in Chapter 1, while high sequence similarity usually indicates high

structure similarity [18], high structure similarity has been observed even for structures

with low sequence similarity since structure is more conserved in evolution than se-

quence [35]. The case of high structure similarity coupled with low sequence similarity

is either an instance of convergent evolution or remote homology. Several computational

methods have been proposed for detecting remote homology in protein sequences [16];

however, a structural approach using the RUPEE protein structure search to detect remote

homology may be more effective.

The combination of topological permutations and remote homology that can only

be detected through structural similarity would require a flexible and purely geometric
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protein structure search. With modifications to RUPEE to allow for the option of a flexible

structure search together with its current purely geometric approach, perhaps RUPEE

can be used to address this combined problem effectively and find new and interesting

evolutionary relationships between proteins.

7.2.3 Drug Discovery

The process of drug discovery for a particular disease begins with target identification,

which typically identifies a protein as the target molecule that plays a role in the disease.

Once a target protein has been identified, a library of small molecule drug candidates are

screened to determine if they bind with the target. A suitable drug will bind the target

in some manner, possibly causing an allosteric change in the target structure or simply

preventing other molecules from binding the target. In this manner, the function of a

protein in a disease can be disrupted.

Currently, drug discovery is a process burdened with high financial costs, high

attrition rates, and slow time to market. Identifying proteins that are structurally similar

to the target protein may help identify drug candidates that bind the target because if they

are known to bind the structurally similar proteins they may bind the target. RUPEE full-

length searches can be used to identify those structurally similar proteins, and RUPEE

containment searches can be used to focus the search on identifying proteins containing

substructures that are similar to possible binding sites on the target protein.
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7.3 Final Remarks

With the 10% yearly growth rate of solved structures deposited in the PDB [57], the need

for a fast, scalable, and accurate protein structure search is growing as well. Using run

position encoded shingles of residue descriptors combined with min-hashing and LSH,

we have shown that RUPEE in fast search mode can provide good results in seconds

running on a single AWS elastic compute unit. Currently, RUPEE in fast search mode is

the fastest available protein structure search providing the demonstrated level of accuracy.

For RUPEE in top-aligned search mode, we have shown that a purely geometric big data

approach to protein structure search can produce results equal to or better than the current

state of the art protein structure searches that variously depend on protein sequences,

clustered sequences or structures, pre-calculated results, or the exclusive use of secondary

structure elements. Further, for RUPEE in all-aligned search mode, we have shown that

RUPEE effectively addresses the problem of searching on protein structure predictions

and is uniquely suited to support the development of protein structure prediction methods.

Considered together, these accomplishments confirm that the RUPEE protein structure

search can serve as an invaluable component of any bioinformatics toolkit.

In addition to RUPEE, we have introduced two items that may find wider appli-

cability. The first item is the introduction of a new polar torsion angle plot that maintains

the continuity of permissible torsion angle regions while maintaining the familiar torsion

angle ranges used in Ramachandran plots. The second item is the run position encoding

heuristic, which may find wider applicability due to its simplicity and generality.
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APPENDIX A

BENCHMARKS OF KNOWN PROTEIN STRUCTURES

A.1 scop d360

d1a1ca_,d1a92b_,d1ao6b1,d1b0ea_,d1bhaa_,d1bspa_,d1bwza1,d1bzqd_,

d1c1ba2,d1c3pa_,d1c81a_,d1cklf1,d1d5nc1,d1d6ha1,d1d8la1,d1de0a_,

d1di0c_,d1djwb2,d1e0ca1,d1e9ha_,d1egya_,d1ek1a2,d1f9qa_,d1ffxa_,

d1fh9a_,d1fmta2,d1fyfa1,d1fyfa2,d1g3it_,d1g63i_,d1gg3b2,d1gk8k_,

d1gqme_,d1gtea4,d1gvra_,d1gztd_,d1hnvb_,d1hzyb_,d1i7pa2,d1ia2a_,

d1ii2a2,d1ik4f_,d1isba2,d1iwao1,d1j6va_,d1jdya3,d1jeqa1,d1jh2a_,

d1jjid_,d1jrqb2,d1jxja2,d1jyzm3,d1k9jb_,d1kkmb_,d1kkmj_,d1kooc1,

d1kpsc_,d1kq4a1,d1krbc2,d1ksda1,d1l6kj_,d1lcpa1,d1liwa6,d1lvha_,

d1m80a3,d1mokc1,d1mpsh1,d1mwia_,d1ndqa_,d1ni6c_,d1nkza_,d1nzwb_,

d1o1cv_,d1odsf_,d1ogcd_,d1oh9a_,d1ojna2,d1p9ka1,d1perl_,d1pf9i3,

d1px3b4,d1q4qf_,d1q6za1,d1q86d_,d1qb8a_,d1qj3b_,d1qrqa_,d1qs7c_,

d1qvrc3,d1r67a1,d1roma_,d1s5ma_,d1sbka1,d1sg9a_,d1smyk2,d1srgb_,

d1sw6b_,d1sxua_,d1szsa1,d1th8a1,d1tjta2,d1tkab1,d1tkba3,d1tr9a1,

d1ttob_,d1tyzd_,d1tzyd_,d1u9ma_,d1uc8a1,d1uf5a_,d1uj1b_,d1uj4a1,

d1upla_,d1v1tb1,d1v54u_,d1vq5d1,d1w7ab2,d1w7vd2,d1wpua_,d1x0sa_,

d1x1yd1,d1x92b1,d1xckd1,d1xmzb1,d1xn2c_,d1xnwe2,d1xuoa_,d1xvaa_,

d1xyla_,d1y3be2,d1y69k1,d1yf1c_,d1ygcl_,d1yhut_,d1yima_,d1yl4w1,
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d1yo6c_,d1yq2a4,d1ywhm3,d1z25a3,d1z3qa_,d1zcfg_,d1zdja_,d1zqqa4,

d220la_,d2avyh1,d2b66k2,d2b7aa_,d2b9nf1,d2b9no1,d2bb3a1,d2bfea1,

d2bm4a1,d2bq8x_,d2bsqc1,d2c64a2,d2c9lz1,d2ds0a_,d2dtyd_,d2dxia2,

d2e1va2,d2f3fa_,d2fdsa1,d2fk3c1,d2fugu1,d2g7ga1,d2gdub2,d2gjwd2,

d2gmqa1,d2hbxb_,d2hd1a_,d2hh2a_,d2hhhc2,d2idrb_,d2igad1,d2itjb_,

d2iw6b1,d2j31a1,d2j62b2,d2juaa1,d2lq7a1,d2noea1,d2nuwa_,d2o1ba_,

d2ofea_,d2oqef1,d2pf2a2,d2plsf2,d2puga2,d2q7qh_,d2qbij1,d2qbra_,

d2qexc1,d2qp1s1,d2quea_,d2ripa1,d2rmaq_,d2uxcg1,d2uynb_,d2v4eg_,

d2v6ma2,d2v7xa2,d2vggb2,d2vv6d_,d2vy0b_,d2wipa1,d2wipc1,d2wogb_,

d2x7yb_,d2yzdg1,d2z0ac1,d2z27b_,d2z4ng1,d2zfzd_,d2zwib_,d3a5cc3,

d3abmi_,d3aend_,d3ah3b_,d3anzi1,d3aofb_,d3ayzb_,d3b6oa_,d3bc5a1,

d3bp9f_,d3bwia_,d3bzub2,d3c6qb_,d3cjbg1,d3cojc2,d3d5dp1,d3dh1b1,

d3dllw1,d3dugf2,d3dyab_,d3e6kb_,d3ej8a_,d3f1sa_,d3f3yb_,d3flqa_,

d3foub_,d3fvlc_,d3g3cb1,d3guag1,d3gw1a_,d3gw9b_,d3h66b_,d3h90c2,

d3hjjc_,d3hlib_,d3hqpf2,d3ikab_,d3is3a_,d3k3ai_,d3k8ca_,d3kfab1,

d3kpbd_,d3l7uc_,d3l7zd2,d3m5ka_,d3mg8r_,d3n6fb_,d3ne4a_,d3nfdf_,

d3nvya2,d3nyxa1,d3o92b_,d3ohuf_,d3om5a_,d3ozqa1,d3pwsb2,d3q6ja3,

d3q7jb1,d3qpkb3,d3qu1b_,d3r83a_,d3resb_,d3so1c_,d3tbla1,d3tcrb_,

d3ubnc_,d3ujeb1,d3umld_,d3uwlb_,d3uyta_,d3vdba5,d3w7ob_,d3wefb_,

d3wrta_,d3wyla_,d3ximd_,d3ziaf3,d4a1ua_,d4a75g1,d4au0a_,d4b1tb_,

d4b7ba_,d4b7qd_,d4bpzb1,d4cqli_,d4d2oa_,d4d8gb1,d4db5a_,d4e4nb_,

d4f5lb1,d4fkwa_,d4frtb_,d4h0ta2,d4hhyd1,d4hx6a1,d4i5bb1,d4ii4b1,

141



d4isob_,d4iuaa1,d4ixzc_,d4j7xa_,d4jarc1,d4jcfa_,d4jhxc2,d4jyka2,

d4jyox_,d4k1wc2,d4k64c1,d4kv5a_,d4ltco_,d4lzwb_,d4mq6b_,d4mswc_,

d4mv6a2,d4mw5b1,d4napb_,d4nbjh_,d4nhzc2,d4otaa_,d4p3ya3,d4pd4f_,

d4pitb1,d4pvma_,d4q1la_,d4q1sy_,d4q2va_,d4qseb_,d4qv0c_,d4qv4o_,

d4qv5e_,d4qv8l_,d4qzwy_,d4r17d_,d4ryva_,d4tvab4,d4u39g1,d4unwa_,

d4xheh1,d4xkdf_,d4yuya_,d4zgla_,d5acra_,d5cpya_,d5rlaa_,d7ccpa_

A.2 scop d62

d1ao6b1,d1b0ea_,d1brwa1,d1bspa_,d1bzqd_,d1c1ba2,d1cklf1,d1d8la1,

d1di0c_,d1dm5c_,d1e9ha_,d1egya_,d1f9qa_,d1fyfa1,d1g3it_,d1gg3b2,

d1gqme_,d1hc7c3,d1hnvb_,d1i6hf_,d1ia2a_,d1isba2,d1iwao1,d1j6va_,

d1jrqb2,d1jxja2,d1kkmj_,d1kpsc_,d1ndqa_,d1nzwb_,d1o1cv_,d1ogbb1,

d1pf9i3,d1px3b4,d1qj3b_,d1qrqa_,d1rhgc_,d1roma_,d1s5ma_,d1srgb_,

d1szsa1,d1tyzd_,d1tzyd_,d1v1tb1,d1v54u_,d1xyla_,d1zdja_,d1zqqa4,

d1zr4e2,d220la_,d2c64a2,d2f4vp1,d2igad1,d2iw6b1,d2nvqi2,d2oqef1,

d2puga2,d2rmaq_,d3ximd_,d4otaa_,d5rlaa_,d7ccpa_

A.3 cath d99

1bxoA02,1byiA00,1hdoA00,1jfbA00,1k5nA01,1l3kA01,1lqtB02,1n3lA01,

1n5uA03,1nkiA00,1nwwA00,1nz0D00,1psrA00,1r0mA01,1rl6A02,1rtqA00,

1swyA00,1unqA00,1vimC00,1wmwB00,1xmkA00,2bw4A01,2dkjA02,2fvyA01,

2nrlA00,2o9sA00,2ob3A00,2oizA01,2osxA01,2rbkA01,2vb1A00,2vxnA00,
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2w8tA01,2wn9D00,2wurA00,2ylbC00,2zcmA00,3a02A00,3dlcA00,3e2oA01,

3go9A02,3goeA00,3h7iA02,3hj4A02,3iohA00,3kffA00,3ks3A00,3ku3A02,

3ku3B00,3lqbA00,3nbcA00,3sovA02,3t5tB01,3u7qA02,3uljB00,3w5hA01,

3wh2A00,3ziyA03,4bj0A00,4cayB00,4cbuA01,4cvrA00,4d3tA02,4d3tA03,

4dd5A01,4ep4A00,4f1vA02,4fvyA01,4g1qA04,4k8gA02,4l8aA00,4mf5A02,

4mtuA00,4oh7A02,4pf3A00,4r2xD00,4ua6A00,4unuA00,4xemA01,4yapA01,

4z8jA00,4zflD00,5a71A00,5avdA02,5cgqB01,5cphA00,5dp2A01,5dzeA00,

5hyvA02,5ibnA00,5jbxB01,5jryA01,5jryA02,5k8sB00,5kvsA02,5lvoA01,

5lvoA02,5m17A00,5sy4A00
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APPENDIX B

BENCHMARKS OF PROTEIN STRUCTURE PREDICTIONS

B.1 casp d250

T0953s1TS043-D1,T0953s1TS089-D1,T0953s1TS145-D1,

T0953s1TS196-D1,T0953s1TS197-D1,T0953s1TS224-D1,

T0953s1TS261-D1,T0953s1TS322-D1,T0953s1TS354-D1,

T0953s1TS498-D1,T0957s2TS043-D1,T0957s2TS089-D1,

T0957s2TS145-D1,T0957s2TS196-D1,T0957s2TS197-D1,

T0957s2TS224-D1,T0957s2TS261-D1,T0957s2TS322-D1,

T0957s2TS354-D1,T0957s2TS498-D1,

T0960TS043-D2,T0960TS089-D2,T0960TS145-D2,T0960TS196-D2,

T0960TS197-D2,T0960TS224-D2,T0960TS261-D2,T0960TS322-D2,

T0960TS354-D2,T0960TS498-D2,T0963TS043-D2,T0963TS089-D2,

T0963TS145-D2,T0963TS196-D2,T0963TS197-D2,T0963TS224-D2,

T0963TS261-D2,T0963TS322-D2,T0963TS354-D2,T0963TS498-D2,

T0968s1TS043-D1,T0968s1TS089-D1,T0968s1TS145-D1,

T0968s1TS196-D1,T0968s1TS197-D1,T0968s1TS224-D1,

T0968s1TS261-D1,T0968s1TS322-D1,T0968s1TS354-D1,

T0968s1TS498-D1,T0968s2TS043-D1,T0968s2TS089-D1,

T0968s2TS145-D1,T0968s2TS196-D1,T0968s2TS197-D1,
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T0968s2TS224-D1,T0968s2TS261-D1,T0968s2TS322-D1,

T0968s2TS354-D1,T0968s2TS498-D1,

T0969TS043-D1,T0969TS089-D1,T0969TS145-D1,T0969TS196-D1,

T0969TS197-D1,T0969TS224-D1,T0969TS261-D1,T0969TS322-D1,

T0969TS354-D1,T0969TS498-D1,T0975TS043-D1,T0975TS089-D1,

T0975TS145-D1,T0975TS196-D1,T0975TS197-D1,T0975TS224-D1,

T0975TS261-D1,T0975TS322-D1,T0975TS354-D1,T0975TS498-D1,

T0980s1TS043-D1,T0980s1TS089-D1,T0980s1TS145-D1,

T0980s1TS196-D1,T0980s1TS197-D1,T0980s1TS224-D1,

T0980s1TS261-D1,T0980s1TS322-D1,T0980s1TS354-D1,

T0980s1TS498-D1,T0986s2TS043-D1,T0986s2TS089-D1,

T0986s2TS145-D1,T0986s2TS196-D1,T0986s2TS197-D1,

T0986s2TS224-D1,T0986s2TS261-D1,T0986s2TS322-D1,

T0986s2TS354-D1,T0986s2TS498-D1,T0987TS043-D1,

T0987TS043-D2,T0987TS089-D1,T0987TS089-D2,T0987TS145-D1,

T0987TS145-D2,T0987TS196-D1,T0987TS196-D2,T0987TS197-D1,

T0987TS197-D2,T0987TS224-D1,T0987TS224-D2,T0987TS261-D1,

T0987TS261-D2,T0987TS322-D1,T0987TS322-D2,T0987TS354-D1,

T0987TS354-D2,T0987TS498-D1,T0987TS498-D2,T0989TS043-D1,

T0989TS043-D2,T0989TS089-D1,T0989TS089-D2,T0989TS145-D1,

T0989TS145-D2,T0989TS196-D1,T0989TS196-D2,T0989TS197-D1,

T0989TS197-D2,T0989TS224-D1,T0989TS224-D2,T0989TS261-D1,
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T0989TS261-D2,T0989TS322-D1,T0989TS322-D2,T0989TS354-D1,

T0989TS354-D2,T0989TS498-D1,T0989TS498-D2,T0990TS043-D1,

T0990TS043-D3,T0990TS089-D1,T0990TS089-D3,T0990TS145-D1,

T0990TS145-D3,T0990TS196-D1,T0990TS196-D3,T0990TS197-D1,

T0990TS197-D3,T0990TS224-D1,T0990TS224-D3,T0990TS261-D1,

T0990TS261-D3,T0990TS322-D1,T0990TS322-D3,T0990TS354-D1,

T0990TS354-D3,T0990TS498-D1,T0990TS498-D3,T0998TS043-D1,

T0998TS089-D1,T0998TS145-D1,T0998TS196-D1,T0998TS197-D1,

T0998TS224-D1,T0998TS261-D1,T0998TS322-D1,T0998TS354-D1,

T0998TS498-D1,T1000TS043-D2,T1000TS089-D2,T1000TS145-D2,

T1000TS196-D2,T1000TS197-D2,T1000TS224-D2,T1000TS261-D2,

T1000TS322-D2,T1000TS354-D2,T1000TS498-D2,T1001TS043-D1,

T1001TS089-D1,T1001TS145-D1,T1001TS196-D1,T1001TS197-D1,

T1001TS224-D1,T1001TS261-D1,T1001TS322-D1,T1001TS354-D1,

T1001TS498-D1,T1010TS043-D1,T1010TS089-D1,T1010TS145-D1,

T1010TS196-D1,T1010TS197-D1,T1010TS224-D1,T1010TS261-D1,

T1010TS322-D1,T1010TS354-D1,T1010TS498-D1,

T1015s1TS043-D1,T1015s1TS089-D1,T1015s1TS145-D1,

T1015s1TS196-D1,T1015s1TS197-D1,T1015s1TS224-D1,

T1015s1TS261-D1,T1015s1TS322-D1,T1015s1TS354-D1,

T1015s1TS498-D1,T1017s2TS043-D1,T1017s2TS089-D1,

T1017s2TS145-D1,T1017s2TS196-D1,T1017s2TS197-D1,
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T1017s2TS224-D1,T1017s2TS261-D1,T1017s2TS322-D1,

T1017s2TS354-D1,T1017s2TS498-D1,T1021s3TS043-D1,

T1021s3TS043-D2,T1021s3TS089-D1,T1021s3TS089-D2,

T1021s3TS145-D1,T1021s3TS145-D2,T1021s3TS196-D1,

T1021s3TS196-D2,T1021s3TS197-D1,T1021s3TS197-D2,

T1021s3TS224-D1,T1021s3TS224-D2,T1021s3TS261-D1,

T1021s3TS261-D2,T1021s3TS322-D1,T1021s3TS322-D2,

T1021s3TS354-D1,T1021s3TS354-D2,T1021s3TS498-D1,

T1021s3TS498-D2,T1022s1TS043-D1,T1022s1TS089-D1,

T1022s1TS145-D1,T1022s1TS196-D1,T1022s1TS197-D1,

T1022s1TS224-D1,T1022s1TS261-D1,T1022s1TS322-D1,

T1022s1TS354-D1,T1022s1TS498-D1

B.2 casp ssm d248

Same as casp d250 excluding:

T0968s1TS261-D1,T0989TS043-D1

B.3 casp cathedral d247

Same as casp d250 excluding:

T0953s1TS498-D1,T0969TS498-D1,T0980s1TS498-D1

147



B.4 casp vast d199

Same as casp d250 excluding:

T0953s1TS498-D1,T0968s1TS196-D1,

T0969TS196-D1,T0969TS354-D1,T0975TS043-D1,T0975TS089-D1,

T0975TS196-D1,T0975TS261-D1,T0975TS322-D1,T0975TS354-D1,

T0975TS498-D1,

T0980s1TS224-D1,T0980s1TS261-D1,T0980s1TS322-D1,

T0986s2TS354-D1,

T0987TS089-D2,T0987TS145-D2,T0987TS261-D2,T0987TS322-D2,

T0987TS354-D2,T0987TS498-D2,T0989TS145-D2,T0989TS196-D2,

T0990TS043-D3,T0990TS089-D1,T0990TS089-D3,T0990TS145-D1,

T0990TS196-D1,T0990TS196-D3,T0990TS197-D1,T0990TS224-D1,

T0990TS224-D3,T0990TS261-D1,T0990TS261-D3,T0990TS322-D1,

T0990TS322-D3,T0990TS354-D1,T0990TS498-D3,T0998TS043-D1,

T0998TS089-D1,T0998TS145-D1,T0998TS196-D1,T0998TS261-D1,

T0998TS322-D1,T0998TS354-D1,T0998TS498-D1,T1010TS043-D1,

T1010TS089-D1,T1010TS261-D1,T1010TS354-D1,

T1021s3TS043-D1
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