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ABSTRACT 

The hippocampus, an area in the temporal lobe of the mammalian brain, participates in the 

storage of personal memories and life events. As such traumatic memories and the 

consequent symptoms of post-traumatic stress are thought to be stored or at least processed 

in the hippocampus. While a fundamental understanding of a traumatic memory is still 

elusive, studying the physiology and functional properties of the hippocampus are an 

essential first step. Towards that goal, I developed a detailed computational model of the 

hippocampus. The model included the important effects of the neuromodulator 

Acetylcholine that switches the hippocampal network between the memory encoding state 

and the memory retrieval state. In the first study, I examined the mechanisms for 

controlling runaway excitation in the model. The results indicated different mechanisms 

for controlling runaway excitation in the memory encoding state as opposed to the memory 

retrieval state of the circuit. These findings produced the first functionally-based 

categorization of seizures in animals and humans, and may inspire specific treatments for 

these types of seizures. The second study examined the underpinnings of the rhythmic 

activity of the hippocampus. These oscillations in the theta range (4-12 Hz) are theorized 

to play a major role in the memory functions and in processing sequences of events and 

actions in both place and time. We found the generation of theta rhythmic activity to be 

best described as a product of multiple interacting generators. Importantly, we found 

differences in theta generation depending on the functional state of the hippocampus. 

Finally, the third study detailed the rules of the complex interactions between these 

multiple theta generators in the circuit. Our results shed more light on the role of specific 

components in the hippocampal circuit to maintain its function in both health and disease 

states. 
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CHAPTER 1: INTRODUCTION AND OBJECTIVES 

 

1.1 Background and Motivation 

Survivors of traumatic events can suffer emotional consequence for decades, caused by the 

memories encoded in their brains. The hippocampus, an area in the temporal lobe of the 

brain, is intimately associated with the storage of personal events, and is believed to be 

important for the storage and persistence of traumatic memories. 

 

A mechanism for the storage and recall of series of events emerged after the discovery of 

place cells in the hippocampus. These neurons respond selectively to position in space 

(O’Keefe and Dostrovsky 1971), and the sequential activity of a few of them can are 

present a trajectory in space. More recent research has also expanded this view to a general 

ability to learn and retrieve sequences of events in both space and time (Poldrack and 

Rodriguez 2003; Eichenbaum 2000). The ability to store sequences of events in their spatial 

context underlies the hippocampal involvement in episodic memory. 

 

Storage and retrieval of memories impose opposite constraints on the hippocampal circuit 

(Marr 1971). Acetylcholine, a cholinergic neuromodulator, can modulate the function of 

the hippocampus based on its slowly changing levels. High levels set the dynamics of the 

network to optimize the encoding of new information whereas low levels optimize for 

retrieval of previously stored information (Michael E. Hasselmo, Wyble, and Wallenstein 

1996; M E Hasselmo, Schnell, and Barkai 1995). 
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To serve as a sequence generator, the hippocampus must represent sequences in a way that 

allows each step to activate or retrieve the next step in the sequence. Neurons in the 

hippocampus are richly interconnected through recurrent connections, making them 

capable of exciting each other. If step of a sequence was encoded by the activity of a 

neuron, then its outgoing connections can activate the next neuron in the sequence. This 

setup up is believed to be the substrate of the ability to store and recall sequences of activity, 

however, it also leaves the circuit prone to runaway excitation where neurons begin to 

excite each other exponentially through the rich recurrent connections. This dissertation 

describes work that examines the specific mechanisms in the hippocampal circuit that 

contains such runaway excitation. 

 

Another important mechanism to encode sequences in time and space is to have an internal 

clocking device. Whether the hippocampus functions this way is still a controversy, but its 

activity does manifest rhythmically at theta (4-12 Hz) and gamma frequencies (> 30 Hz). 

This dissertation uses the same computational model to also examine the underpinnings of 

these oscillations.  

 

Another highly studied yet elusive aspect of hippocampal function is the oscillatory activity 

recorded from the hippocampus during periods of activation. The dominant oscillatory 

frequency is in the 4-12 Hz band (labeled ‘Theta’ band) and the >30 Hz ‘gamma’ band (for 

review see, Buzsáki 2002; Buzsáki and Wang 2012). 



 3

This dissertation focuses on the modeling and analysis of the hippocampus at a cellular and 

systems level, to address some of the questions about runaway excitation and oscillatory 

activity.  The following section details the organization of this dissertation. 

  

1.2 Chapter Overview and Objectives 

 Chapter 2 – The rich recurrent connectivity between hippocampal neurons 

underlies the ability of the hippocampal CA3 region to retrieve previously learned pattern 

of activity (Marr 1971), but also leaves the area vulnerable to runaway excitation resulting 

in seizure episodes (aberrant spread of excessive electrical activity through brain tissue). 

The goal of our first study is to elucidate mechanisms that maintain this excitatory activity 

under control.  

We found that distinct circuit mechanisms were responsible for controlling runaway 

excitation in the memory encoding circuit vs the memory retrieval circuit. These findings 

represent a fundamentally new approach to categorizing seizures based on the functional 

state of the brain. In support of our findings, we found disordered rats that show seizures 

only when required to learn their way around a novel environment. 

 Chapter 3 – Theta rhythms in the 4-12 Hz are the predominant oscillatory 

signature of the hippocampus. Their origins and function remain unknown. We used our 

hippocampal model to shed light on the generation of theta rhythmic activity in the 

hippocampus during spatial navigation and active exploration. Our results revealed a 

multitude of mechanisms active simultaneously and interactively to generate and 

maintain theta rhythmicity in the hippocampus. Additionally, we found again that there 
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are differences between the memory encoding and memory retrieval circuits that also 

extend to how they generate rhythmic activity. 

 Chapter 4 – We found the hippocampus to have multiple mechanisms acting in 

concert to generate its rhythmic activity. In this study we sought a deeper understanding 

into the rules that govern which mechanisms can substitute for one another and more 

interestingly, which mechanisms can interfere compete with other mechanisms. Towards 

that goal we presented a new conceptualization of mechanisms into categories including 

resonant and synchronizing mechanisms. This conceptual delineation enabled us to better 

predict the effects of inactivating certain mechanisms in experiments.  

 Chapter 5 – Summary and conclusions are presented to provide a coherent high-

level picture of our work. 

 Appendix – Provide material that describes the mathematical details of our 

hippocampal model. 
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CHAPTER 2: Intrinsic mechanisms stabilize encoding and retrieval 

circuits differentially in a hippocampal network model  

Ali Hummos, PhD student1, 2, Charles Franklin, PhD student3, Satish S. Nair, Professor1, 3 
1 Informatics Institute, 2 Department of Psychiatry, 3 Department of Electrical & 

Computer Engineering, University of Missouri, Columbia, Missouri. 
 

Abstract  

Acetylcholine regulates memory encoding and retrieval by inducing the hippocampus to 

switch between pattern separation and pattern completion modes. However, both 

processes can introduce significant variations in the level of network activity and 

potentially cause a seizure-like spread of excitation. Thus, mechanisms that keep network 

excitation within certain bounds are necessary to prevent such instability. We developed 

a biologically realistic computational model of the hippocampus to investigate potential 

intrinsic mechanisms that might stabilize the network dynamics during encoding and 

retrieval. The model was developed by matching experimental data, including neuronal 

behavior, synaptic current dynamics, network spatial connectivity patterns, and short-

term synaptic plasticity. Furthermore, it was constrained to perform pattern completion 

and separation under the effects of acetylcholine. The model was then used to investigate 

the role of short-term synaptic depression at the recurrent synapses in CA3, and inhibition 

by Basket cell (BC) interneurons and oriens lacunosum-moleculare (OLM) interneurons 

in stabilizing these processes. Results showed that when CA3 was considered in isolation, 

inhibition solely by BCs was not sufficient to control instability. However, both 

inhibition by OLM cells and short-term depression at the recurrent CA3 connections 

stabilized the network activity. In the larger network including the dentate gyrus, the 

model suggested that OLM inhibition could control the network during high cholinergic 
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levels while depressing synapses at the recurrent CA3 connections were important during 

low cholinergic states. Our results demonstrate that short-term plasticity is a critical 

property of the network that enhances its robustness. Furthermore, simulations suggested 

that the low and high cholinergic states can each produce runaway excitation through 

unique mechanisms and different pathologies. Future studies aimed at elucidating the 

circuit mechanisms of epilepsy could benefit from considering the two modulatory states 

separately. 
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Introduction 

The hippocampus plays an important role in memory storage and retrieval. Through the 

process of pattern completion, the CA3 region of the hippocampus aids in the retrieval of 

previously learned memory traces even from partial cues or noisy inputs (Marr, 1971). In 

contrast, the dentate gyrus (DG) functions to separate neural representations of similar 

memories (pattern separation), via a different circuit, to optimize their storage and later 

retrieval (Marr, 1971; for review, see Hunsaker and Kesner, 2013). 

The recurrent connections in the hippocampal CA3 region are implicated in the retrieval 

of memories (Marr, 1971). However, it is also known that networks with high levels of 

recurrence are inherently unstable (Marr, 1971; Miles and Wong, 1983, 1987; Cossart et 

al., 2005; Beyeler et al., 2013). Excitatory activity in CA3 can be amplified and 

propagated throughout the network, creating a seizure-like response. 

Furthermore, projections from DG to CA3 through the mossy fibers (MF) can also result 

in runaway excitation (Lawrence and McBain, 2003). Acetylcholine (ACh) has been 

proposed as a regulator of the circuit with high levels favoring pattern separation, and 

low levels facilitating pattern completion (Hasselmo et al., 1995). The neuromodulator 

ACh has a prominent role in encoding new memories and high cholinergic levels are 

induced by novelty and active exploration (Barry et al., 2012). It alters the circuit 

dynamics by lowering the synaptic efficacy at the recurrent connections in CA3 and by 

boosting transmission at MF synapses from DG to CA3. This combination, together with 

other effects on synapses and cell excitability, allows the network to encode separated 

representations of the current input while reducing interference from previously encoded 

memories (Hasselmo et al., 1995). These separated neuronal representations of memories 
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are created in DG and subsequently transmitted to CA3 through the sparse but powerful 

mossy fibers (Henze et al., 2002). Therefore, though the recurrent connections are 

suppressed during encoding, the impinging current from DG through these “detonator” 

synapses can also destabilize the CA3 network (Lawrence and McBain, 2003).  

Computational models of pattern separation and completion in the hippocampus  have 

provided an important conceptual framework of how these processes might be regulated 

in the hippocampus (Treves and Rolls, 1992; Hasselmo et al., 1995) and have been 

validated experimentally (Rolls and Kesner, 2006; Leutgeb et al., 2007; Neunuebel and 

Knierim, 2014). Recent models have extended these results using spiking neurons 

(Meeter et al., 2004; Nolan et al., 2010). These models focused on the mechanisms and 

dynamics of memory storage and retrieval, and handled the instability in the network 

indirectly using a number of techniques such as normalizing total network activity 

(Treves and Rolls, 1992), using abstract models of feedback inhibition and attractor 

dynamics (Hasselmo et al., 1995), explicitly limiting the number of active cells (Meeter 

et al., 2004), and excluding recurrent connections from the model (Nolan et al., 2010). 

In the present study, we explicitly focus on intrinsic hippocampal mechanisms such as 

short-term plasticity (Abbott and Nelson, 2000), and interneurons (Lawrence and 

McBain, 2003), to investigate their roles in controlling neuronal excitability and the 

pathological states they might engender. Towards this end, we developed a biologically-

realistic model of the hippocampus that included principal cells and two of the most 

common interneurons, basket cells (BC) and oriens lacunosum-moleculare (OLM) cells 

(Vida, 2010). Both interneuron types are well-studied and are differentially modulated by 

ACh (Lawrence et al., 2006). We matched experimentally reported behaviors, including 
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neuronal excitability, synaptic current dynamics, network spatial connectivity patterns, 

and short-term synaptic plasticity. The model suggested that OLM and BC inhibition and 

short-term synaptic plasticity contribute differently to network stability. Additionally, 

pattern separation and completion circuits in the hippocampus might produce instability 

through different dynamics, consequently requiring different mechanisms for their 

stabilization. 

Methods 

We developed a biologically realistic network model of the hippocampus that included 

networks for entorhinal cortex (EC), DG, and CA3 regions. The model is described next 

with the mathematical details and additional experimental data used provided in 

supplementary materials. The model was implemented using the NEURON software 

package (Carnevale and Hines, 2009). The code will be made available upon publication 

via the ModelDB public database (http://senselab.med.yale.edu/ModelDB/). 

Single cell models 

The model cells in CA3 were pyramidal cells and two of the most abundant interneuron 

types, BC and OLM cells (Vida, 2010). The model cells in DG were granule cells, BC, 

and Hilar Perforant Path-associated (HIPP) cells. 

Single neurons were modeled using the Izhikevich formulation (2003, 2010). This 

formulation provides a reduced-order model that preserves many of the neuro-

computational properties of more detailed biological models. We provide an overview 

below on how model neurons were matched to the salient features of electrophysiological 

recordings (Fig. 1). Section S2 in the supplementary materials has further experimental 
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data considered in developing the single cell models, and a listing of the model equations 

and parameters used. 

For CA3 pyramidal cells, the resting membrane potential was set to -75 mv, spike 

threshold to -53 mv, and peak action potential voltage to 29 mv, as reported by Brown 

and Randall (2009). The remaining cell model parameters were tuned to match responses 

to both long and short current injections (Fig. 1, Table S1; Brown and Randall, 2009). 

Similarly, in developing the DG granule cells model, resting membrane potential, 

threshold, and peak action potential were set using data from Staley et al., (1992) and the 

model was then tuned to match current injection responses (Fig. 1, Table S1; Staley et al., 

1992). OLM model passive properties were estimated from Ali and Thompson (1998), 

and the behavior of the cells was matched to current injections from the same study. In 

particular, we matched the spike frequency adaptation, the prominent slow after-

hyperpolarization potential (AHP, Fig. 1), sag response, and rebound spikes (Fig. S1). 

For BC model, membrane properties (Table S1), current injection responses (Fig. 1), and 

finally current vs. firing rate relationship (Fig. S2) were matched to data reported by Buhl 

et al., (1996). Due to the striking similarity of OLM and HIPP cells (Katona et al., 1999), 

we used the same model for both cell types. 

Neurons in the model had membrane potential values drawn from a random distribution. 

The initial voltage was drawn from a normal distribution with a mean 5 mv lower than 

their resting potential, and with a standard deviation of 10 mv. These values maintained 

the network stability at the beginning of simulations.  
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Network structure and connectivity 

The rat hippocampus contains approximately 1.6 million cells (Hosseini-Sharifabad and 

Nyengaard, 2007). For computational efficiency, the numbers were scaled down while 

maintaining reported ratios (see section S3.1 of supplementary materials). The model DG 

region had 384 granule cells, and 32 each of BC and HIPP interneurons, while the model 

CA3 region contained 63 pyramidal cells and 8 each of BC and OLM interneurons 

(Seress and Pokorny, 1981; Kosaka et al., 1987; Baude et al., 2007; Hosseini-Sharifabad 

and Nyengaard, 2007).  

The entorhinal cortex provides inputs to the hippocampus through the perforant pathway 

that projects to the entire hippocampal formation. The standard view describes a 

unidirectional connectivity with a direct pathway from EC to CA3 and an indirect 

pathway through DG (Fig. 2A, B) (Naber et al., 1997; Witter, 2010). The perforant path 

projections follow a lamellar organization across the longitudinal axis of the 

hippocampus, as follows: Lateral and posterior parts of the EC are connected to the 

dorsal parts of CA3 and DG, while the medial and anterior parts of EC project to the 

ventral parts of CA3 and DG. This lamellar organization transitions gradually from one 

extreme to the other on the longitudinal axis of the hippocampus, and a single neuron in 

EC can project to about 25% of the longitudinal length of CA3 (Witter, 2010). 

Projections from DG to CA3 (the indirect pathway) also follow a similar longitudinal 

organization; however, these projections target a more limited longitudinal extent (Fig. 

2A, C; Witter, 2010). 

Model cells were distributed in 3D space separated into the three regions, EC, DG, and 

CA3, with dimensions that approximate the respective dimensions of the rat hippocampus 
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(see section S3.2 of supplementary materials). Projections from EC to both pyramidal 

cells and BCs in DG and CA3 followed a lamellar pattern where neurons were most 

likely to connect to neurons in the center of their longitudinal neighborhood with a 

decreasing probability towards the periphery. This spatial connectivity was modeled 

using a Gaussian connection probability function that depended on the longitudinal 

distance between the two cells to be connected (Fig. 2C, D). The Gaussian function had a 

peak probability value of 0.4 and a standard deviation of 3 mm for the perforant path 

projections to both pyramidal and BCs in CA3 (Fig. 2C). Perforant path projections to 

DG had similar values as listed in table S3. 

Similarly, MF projections from DG to CA3 followed the same lamellar pattern but with a 

more limited longitudinal extent by setting the standard deviation of the Gaussian 

probability function to 2 mm (Fig. 2C). In addition, to preserve the sparseness of the MF 

connections from DG to CA3, each DG granule cell connected to a maximum of two 

CA3 pyramidal neurons (Rolls and Kesner, 2006). Projections from DG granule cells to 

CA3 BCs are more diffuse and out-number projections to CA3 pyramidal neurons by a 

ratio of 10:1 (Acsady et al., 1998). Accordingly, DG projections to BC followed a 

Gaussian distribution with a peak probability of 0.2 and standard deviation of 3 mm (Fig. 

2D). Recurrent CA3 connections generally reveal no spatial organization (Wittner et al., 

2007), and therefore were distributed homogenously with a fixed probability of 0.3. 

The dendritic projecting OLM cells are thought to be involved in feedback inhibitory 

loops (Maccaferri, 2005) and while they have a more limited axonal arborization (Buhl 

and Whittington, 2007) they make many more synapses compared to BCs (Sik et al., 

1995). In contrast, BCs have a more diffuse axonal arborization with the highest 
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connection probability to pyramidal cells in their immediate neighborhood and a 

decreasing connection probability towards the periphery of their axonal arbors (Sik et al., 

1995). Similarly, BCs project to neighboring OLM cells (Bartos et al., 2010). As before, 

we used a Gaussian function to approximate these spatial probabilities (Fig. 2E). We also 

assumed that BC projections to both pyramidal cells and to OLM cells shared the same 

spatial domain. Section S3.2 of supplementary materials has additional details. 

In the reverse direction, OLMs receive reciprocal connections from the same pyramidal 

cells they projected to, in line with their function as local feedback cells (Maccaferri, 

2005). On the other hand, principal cells in both DG and CA3 projected homogenously to 

BCs with a fixed probability of 0.15, consistent with the lack of specific topography 

reported at these projections (Wittner et al., 2006). 

The network was constructed by generating connections randomly between cells while 

observing the connection probabilities and the spatial patterns of connectivity described 

above and in section S3.2 of supplementary materials. For each experiment, we 

performed 10 random initializations of the network and averaged the results. The spatial 

connectivity patterns are summarized in table 1, and parameters for synapses are listed in 

tables S3 and S4. Spontaneous firing rates of pyramidal cells in CA3  (Mizuseki et al., 

2012) and granule cells in DG (Bower and Buckmaster, 2008) were matched to 

experimental reports in the full network. 

Synaptic currents 

Synaptic currents were modeled using the kinetic models described by Destexhe et al. 

(1998). The synaptic currents AMPA, NMDA, GABAA, and GABAB were modeled and 
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their dynamics such as rise and decay time constants and delays were matched to 

available literature. In particular, CA3 pyramidal cell AMPA currents were fastest for MF 

inputs from DG and slowest for perforant path inputs from EC, while recurrent CA3 

inputs from other pyramidal cells had intermediate values, as summarized in table 1 

(Hoskison et al., 2004; Tóth, 2010). Additionally, inhibitory currents from OLM had 

slower dynamics compared to those from BC (Table 1; Bartos et al., 2010). Equations 

implemented are described in detail in section S4.1 in the supplementary material and 

parameters used are listed in tables S3 and S4.  

Synaptic weights were assigned in accordance with literature where available (see tables 

1, S3, and S4). The MF synapses were adjusted so that a train of spikes arriving at the 

synapse could cause a CA3 neuron to fire while a single spike could not (Henze et al., 

2002). Recurrent CA3 collaterals were assigned a low initial weight, as an approximation 

of data showing that action potentials have a transmission probability of 4% at those 

synapses (Miles and Wong, 1986). Synapses from CA3 pyramidal to interneurons were 

set at a higher level considering that action potential transmission occurs at a ~60% 

success rate (Miles, 1990; Gulyás et al., 1993). Connections between granule cells and 

DG interneurons were adjusted to achieve sparse DG firing (Bower and Buckmaster, 

2008). These assigned synaptic weights are listed in tables 1, S3, and S4. Synapses had 

initial weights chosen from a uniform random distribution, with a range from 50% to 

100% of the assigned weight value. 

Long-term synaptic plasticity 

Classical Hebbian associative long-term potentiation (LTP) was shown at the perforant 

path synapses to DG (Bliss and Lomo, 1973) and to CA3 (Do et al., 2002; McMahon and 
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Barrionuevo, 2002). On the other hand, the characteristics of MF potentiation are 

controversial (Bliss et al., 2007), and so we only modeled short-term plasticity in the MF 

connections, as described below. 

At GABAergic synapses, many forms of synaptic plasticity exist (for a review, see 

Maffei, 2011). Woodin et al., (2003) reported that activation of pre- and post-synaptic 

neurons in the hippocampus lead to LTP if the pre- and post-synaptic spikes were within 

20ms of each other, LTD if within 50ms, and no change if longer. They also found this 

plasticity to be dependent on activation of postsynaptic L-type voltage dependent calcium 

channels (VDCCs). 

To reproduce these experimental findings, long-term postsynaptic plasticity was 

implemented using a learning rule that used the concentration of a post-synaptic calcium 

pool at each modifiable synapse (Kitajima and Hara, 1997; Shouval et al., 2002; Li et al., 

2009; Kim et al., 2013a, 2013b). 

At excitatory synapses in our model, calcium entered post-synaptic pools via NMDA 

receptors, whereas at inhibitory synapses, calcium entered through VDCCs, and in 

addition, the postsynaptic pool also received Ca2+ from internal stores upon GABAB 

receptor stimulation (Gaiarsa et al., 2002). Such as scheme has been in other models by 

our group (Li et al., 2009; Kim et al., 2013a, 2013b). For both types of synapses, the 

synaptic weight depressed when calcium concentration of the pool was above a lower 

threshold and increased if the concentration exceeded an upper threshold. Equations and 

details related to the learning rule are provided in section S4.2 of the supplementary 

materials. 
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Short-term synaptic plasticity 

In addition to long-term plasticity, model synapses also exhibited short-term synaptic 

plasticity that used the formulation proposed by Varela et al. (1997). We modeled the 

pronounced short-term facilitation at MF (Toth et al., 2000) and the frequency-dependent 

synaptic depression reported at the recurrent CA3 connections (Fig. 3; Hoskison et al., 

2004).  

In CA1, projections from pyramidal cells display short-term facilitation at synapses 

contacting OLM cells (Ali and Thomson, 1998), and short-term depression at those 

contacting BC cells (Ali et al., 1998). In the other direction, inhibitory currents from 

OLM cells to pyramidal cells show no short term facilitation or depression (Maccaferri, 

2005), while inhibitory currents from BCs to pyramidal cells show depression (Hefft and 

Jonas, 2005). Equations and parameter values used to model these short-term plasticity 

patterns are provided in section 4.2 and table S5 of the supplementary materials, and 

model traces are compared with available experimental recordings in figure 3. 

Acetylcholine effects 

The neuromodulator acetylcholine activates two main classes of receptors, both of which 

are present in the hippocampus: muscarinic receptors that are coupled with a G-protein 

signaling cascade, and nicotinic receptors that are fast ionic channels. The hippocampus 

receives widespread volume transmission of cholinergic inputs from the septum-diagonal 

band complex (Woolf, 1991). To implement the effects of ACh on model neurons and 

synapses, we used a variable ‘ACh’ to represent the ACh level. The variable ACh had 

discrete values of 0 (low), 1 (baseline), and 2 (high). 
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Cholinergic stimulation has differential effects on synaptic transmission of different 

pathways in the hippocampus (Barry et al., 2012). Synaptic transmission through the 

perforant pathway projections to CA3 is suppressed by 50%, compared to a suppression 

by 85% at the recurrent connections in CA3 (Hasselmo et al., 1995; Kremin and 

Hasselmo, 2007). On the other hand, MF transmission is enhanced by 49% (Vogt and 

Regehr, 2001). 

To model ACh effects on synapses, AMPA synaptic currents were scaled by the value of 

ACh. A parameter bACh determined the direction and magnitude of ACh effects on a 

particular synapse. Values of bACh for different synapses were set according to 

experimental results as summarized in table 1. The specific equations used to model these 

are listed in section S5.2 of supplementary materials. 

In addition to the synapse specific effects, cholinergic stimulation enhanced cellular 

excitability and depolarized the resting membrane potential of principal cells, eliminated 

AHP, decreased spike frequency adaptation and induced rhythmic burst activity (Misgeld 

et al., 1989; Bianchi and Wong, 1994). Furthermore, effects on interneurons were 

subtype-dependent (McQuiston and Madison, 1999a, 1999b). Muscarinic stimulation of 

OLM interneurons depolarized the resting membrane potential, and lowered both spike 

frequency adaptation and AHP (Lawrence et al., 2006). In contrast, PV-BCs express low 

levels of nicotinic ACh receptors, and respond to muscarinic receptor activation with a 

limited resting membrane potential depolarization (Cea-del Rio et al., 2010; Cobb and 

Lawrence, 2010). 
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Effects of ACh on neurons were modeled by linearly scaling the neuronal model 

parameters by the ACh level as shown in figure S4 and detailed in section S5.1 of the 

supplementary materials. This setup produced a different set of parameter values for 

model neurons at low, baseline and high levels of ACh as listed in table S2. Considering 

the slow dynamics of ACh effects (onset time constant approximated between 1 and 2 s; 

Hasselmo and Fehlau, 2001), ACh level was set to a given value at the beginning of each 

experiment and had no dynamics. 

Inputs and data analysis 

Recordings from the hippocampus reveal a low spontaneous firing rate of 0.50 ± 0.78 Hz 

in CA3 (Mizuseki et al., 2012) and similar rates in DG (Bower and Buckmaster, 2008). 

Principal cells in CA3 and DG received random Poisson inputs to generate the 

spontaneous firing rates reported in vivo in the network. 

To test the robustness in response to a wide range of input intensities, the network was 

challenged with 30 trials of increasing levels of input from EC. Each trial had a duration 

of 500 ms at the beginning of which a number of EC neurons were selected to receive 

one action potential each. Starting with trial 1 where one EC neuron was stimulated, one 

additional neuron received input for each subsequent trial until 30 neurons were 

stimulated at trial 30. This input structure was created so that a gradually increasing 

number of EC neurons fired one action potential at the beginning of the trial. This EC 

input was transmitted through the perforant pathway to the downstream CA3 and DG 

regions. For each neuron in CA3, the number of spikes fired during each trial was 

recorded, and the neuron was considered active if it had a z-score higher than 2.58 (p < 
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0.01, two tails), where z = (firing rate - mean spontaneous firing rate)/SD. For each 

experiment, we report the ratio of active to inactive neurons in CA3 to follow the 

dynamics of how rapidly cells are recruited into the pool of active cells, as intensity of 

input from EC increases. 

Simulation details 

The model was developed using the NEURON package and run on a PC with an Intel i7-

core processer with an integration time-step of 0.1 ms (Carnevale and Hines, 2009). The 

recorded spike times were then analyzed using MATLAB (Mathworks). 

As mentioned above, cell models had membrane potential values drawn from a random 

distribution. Additionally, network connectivity and initial synaptic weights were also 

drawn from random distributions. Accordingly, for each experiment, 10 simulations with 

different random initializations of the network were considered. Numbers reported in 

results are averages ±SD over data from these 10 different runs. 

Model tuning and validation 

The overall model was developed in stages: the single cell models, the properties of 

glutamatergic and GABAergic synapses, the intrinsic connections between cells, 

plasticity in appropriate connections, and, finally, neuromodulator effects. The following 

approach was used for modeling each of the above: (1) The experimental literature was 

mined, both to constrain the model and derive criteria to assess whether the model 

successfully reproduced the particular phenomena being modeled; (2) Iterative “tuning” 

of model parameters was performed until the model’s behavior matched experimental 

observations; and (3) Validation of the model, which took two forms. First, the ability of 
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the model to reproduce the experimental data considered in its development. Second, the 

ability of the model to reproduce a set of experimental observations it was not designed 

to reproduce. The tuning and validation procedure used are described next. 

Model Tuning: To further constrain the model and assess its functional capacity, we tuned 

it to perform pattern separation and pattern completion. The additional tuning required 

was mainly to adjust connection weights and LTP thresholds (Tables S3 and S4), to 

ensure practical neuron activity levels and synaptic learning rates.  

Following Hasselmo et al. (1995), we ran the network through an encoding phase under 

high levels of ACh (= 2). In this encoding phase, an input pattern was constructed to 

consist of 10 randomly selected EC neurons (pattern 1), and the network was then 

presented with this input pattern for five 500 ms trials. For each trial, EC neurons in the 

pattern received inputs for 250 ms at 12 Hz.  

After the encoding phase, we tested for retrieval in response to 10 input patterns that had 

decreasing amounts of overlap with the encoded pattern 1. The 10 probe patterns, 

numbered 2 to 11, were constructed as follows. Pattern 2 contained nine of the neurons in 

pattern 1 and an additional neuron selected randomly. Similarly, pattern 3 shared eight 

neurons with pattern 1 and included two other neurons selected randomly. With this 

logic, Pattern 11 had no neurons in common with pattern 1. To test for retrieval, all long-

term plasticity was inactivated and we examined the output retrieved in response to probe 

patterns 2 to 11 under the lowered (retrieval) level of ACh (= 0). 

In each retrieval trial, one of the eleven patterns was presented at EC, and the number of 

spikes each neuron fired during the trial was recorded. Subsequently, to form a trial 

“output” pattern for each area, the spike counts from all its principal cells were populated 
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into a vector that was normalized to a length of one. The correlation between the outputs 

of any two trials was then assessed by taking the dot product of the two corresponding 

output vectors. This correlation measure has a minimum value of 0 indicating that the 

two output patterns being compared had a non-overlapping set of neurons firing in each. 

Conversely, a correlation level maximum value of 1 indicates that the two vectors had the 

same set of neurons firing at the same rates. 

For each area in the model, we calculated pair-wise correlation comparisons between the 

output from pattern 1 and the output from each of the patterns from 1 to 11. Figure 4 

shows these pair-wise correlation values for EC, CA3 and DG averaged from 10 different 

randomly constructed model networks. Inputs arrived directly at EC neurons, thus, EC 

correlation levels reflect the similarity between input patterns. Correlation between CA3 

output patterns were above EC correlation (Fig. 4A), indicating that CA3 was engaged in 

retrieval of stored patterns. For instance, input pattern 3 had a correlation of 0.8 with 

input pattern 1, whereas in CA3, the output from pattern 3 had a correlation of 0.98 with 

pattern 1, indicating that even for dissimilar inputs CA3 retrieved output that are more 

similar to the learned pattern 1. Thus, even with changes in the sensory input, CA3 may 

still retrieve a previously learned memory pattern. On the other hand, DG outputs 

revealed lower correlation relative to inputs, indicating that DG was predisposed to create 

distinct neuronal representations (Fig. 4A). 

These results are consistent with computational theories of the division of labor between 

DG and CA3 (Treves and Rolls, 1992; O’Reilly and McClelland, 1994; Hasselmo et al., 

1995; McClelland and Goddard, 1996) and recent experimental evidence (Lee and 

Kesner, 2004; Leutgeb et al., 2007; Bakker et al., 2008; Neunuebel and Knierim, 2014). 
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Model validation: Cholinergic transmission has been implicated in the modulation of 

activity in CA3 with high ACh favoring pattern separation and low ACh levels favoring 

pattern completion (Hasselmo et al., 1995; Rogers and Kesner, 2003; Meeter et al., 

2004). Accordingly, to validate the model, we examined the effects of different levels on 

ACh on the dynamics during retrieval, and compared the results to reports in the 

literature. Averaged results from 10 random initializations of the network demonstrated 

that CA3 outputs in response to probe patterns 1-11 had significantly lower correlation 

levels to the encoded pattern 1 under high levels of ACh compared to low ACh levels 

(Fig. 4B), while DG correlation levels remained unchanged (not shown). These 

observations are in agreement with previous models (Hasselmo et al., 1995; Meeter et al., 

2004; for review, see Newman et al., 2012) and experimental results (Ikonen et al., 2002; 

Rogers and Kesner, 2003, 2004). 

Limitations: The Izhikevich neuron model formulation focuses on the dynamics around 

the resting state of the neuron and our modeling efforts aimed at reproducing the current 

injection responses such as spiking dynamics, adaptation and bursts. Model resting 

membrane potentials, threshold voltage, and peak action potential were matched to 

experimental values, but the input resistance was not. As cited, we did match current 

injection responses and so feel that the firing dynamics were modeled well. The 

Izhikevich formulation also allows for other currents to be added, further improving 

single cell characteristics, if required.  

Also, we note that synapses from DG granule cells to CA3 parvalbumin-BCs exhibit 

short-term synaptic facilitation (Szabadics and Soltesz, 2009). However, inputs from MF 

to other types of interneurons such as Cholecystokinin-BC exhibit short-term depression. 
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Therefore, we assumed that the combined input from DG to both populations of BC cells 

would then effectively have no short-term dynamics. Accordingly, the MF synapses to 

BCs in the present model did not have any short-term plasticity.  

Results 

Our network model included the CA3 and DG regions of the hippocampus, with EC 

providing inputs to both regions (Fig. 2). The model also incorporated the effects of 

cholinergic modulation proposed by Hasselmo et al. (1995) and showed similar dynamics 

discussed next. 

Under high levels of ACh, the DG formed distinct representations of input patterns, 

mainly due to the large numbers of DG granule cells. High ACh levels caused granule 

cells to fire at a higher rate through a more depolarized membrane potential, lower spike 

frequency adaptation, and lower AHP. This increased rate, combined with the prominent 

short-term facilitation at MF synapses, allowed high ACh levels to enhance the flow of 

information from DG to CA3. Furthermore, the high cholinergic state also suppressed 

synaptic transmission at the inputs from EC to CA3 and at the recurrent synapses in CA3; 

thereby decreasing any interference produced by similarity to any previously learned 

patterns during the encoding of new patterns. Additionally, the abundant connections 

from DG to CA3 BCs further increased the level of inhibition on CA3 pyramidal cells 

and reduced the activation of previously encoded memory patterns. In contrast, during the 

retrieval of stored patterns in the low cholinergic state, granule cells fired at a lower rate 

reducing their influence over CA3 pyramidal cells considerably. Low levels of ACh also 

boosted inputs to CA3 cells from EC and from other CA3 neurons. These effects 



 24

facilitated the retrieval of previously learned patterns as also shown in previous models 

(Barkai et al., 1994; Hasselmo et al., 1995; Hasselmo and Wyble, 1997). 

The control that ACh exerts on the firing rate of granule cells, combined with the 

profound MF short-term facilitation, allowed ACh to gate the synaptic transmission from 

DG to CA3 effectively. Although this mechanism has been speculated based on 

experimental results (Vogt and Regehr, 2001), our model functionally implemented this 

particular mechanism and incorporated it into the framework established by Hasselmo et 

al. (1995) and Hasselmo and Wyble (1997).  

During the development of the model, runaway excitation was a common phenomenon 

(Hasselmo et al., 1995). To prevent this spread of excitation we included several 

candidate mechanisms that were successful at stabilizing excitatory activity in the model 

without affecting the ability to encode and retrieve patterns as shown in figure 4. After 

developing and validating the model (fig.3), we used the model in its baseline state (prior 

to training with pattern 1), to investigate the specific roles of these intrinsic mechanisms 

in preventing runaway excitation after turning off plasticity and setting ACh to ‘medium’ 

level. We devised the following method for this analysis: EC neurons were projected to 

CA3 at increasing levels of activity, over 30 trials, as follows. Selected EC neurons were 

stimulated to fire one action potential at the beginning of a given trial. Starting with one 

neuron stimulated during trial 1, one additional EC neuron received stimulation for each 

trial, until thirty distinct neurons were stimulated during trial 30 (see Fig. 5A). This study 

resulted in several findings discussed in the following sections. We repeated the analysis 

using the model after it had learned pattern 1, and found similar results, as we describe 

later. 
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Recurrent connections create seizure-like instability 

To characterize the unstable dynamics in CA3 created by its recurrent connections, DG 

was turned off and OLM and BC interneurons were disconnected. Additionally, short-

term depression was removed from the recurrent connection synapses, all long-term 

plasticity was blocked, and ACh was set at the baseline ‘medium’ level. The EC neurons 

were then projected to CA3 at increasing levels of activity, over 30 trials. A typical EC 

firing pattern throughout the experiment is shown in figure 5A. Responses of CA3 

neurons were then recorded without (Fig. 5B, D1) and with the recurrent connections in 

place (Fig. 5C, D2). As expected, CA3 population firing rate increased linearly with 

increasing inputs from EC, when the recurrent connections were disabled (Fig. 5E). In 

contrast, the population firing rate showed a sudden non-linear increase when the 

recurrent connections were present (Fig. 5E). These results are consistent with 

observations from earlier models (Traub et al., 1987). 

While the population firing rate was helpful in detecting instability in the level of 

excitation, from a computational perspective, it is not the only relevant measure. We are 

interested in the ability of the model to form patterns of activity in response to inputs. A 

pattern is formed meaningfully, when only a subset of neurons are active. Towards this 

end, we quantified the ratio of neurons that were “active” for each input trial. A neuron 

was considered active in a trial if its z-score was higher than 2.58 (see methods). As 

expected, the activity ratio curve demonstrates the instability caused by recurrent 

connections (Fig. 5F) and the shape of the curve illustrates the difficulty recurrent 

connections pose in a model. Low inputs produce little response, and high inputs produce 

an unstable firing pattern where all cells fire, resulting in a very limited range for forming 
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distinct patterns of activity, i.e., limited capacity to handle variations in input level. 

Furthermore, the addition of recurrent connections changed the frequency at which bursts 

of different sizes occurred and caused a peak where bursts of four action potentials were 

more likely to occur (Fig. 5G).  

Basket cells fail to control instability 

As a first step to investigate the control of neuronal excitability in the CA3 network, we 

activated the fast spiking BCs in CA3, i.e., examined the behavior of the recurrent CA3 

network with only BCs added. Considering the importance of BC firing rates at different 

levels of input, in addition to matching current injection behavior of BCs, we also 

matched the input-firing frequency curve for one of the BC interneuron reported by Buhl 

et al. (1996) (Figure S2). The reader is also reminded that connections in both directions 

from BC to pyramidal and vice versa exhibited short-term synaptic depression (Ali et al., 

1998; Hefft and Jonas, 2005). Therefore, in this experiment, OLMs remained 

disconnected, short-term depression and long-term plasticity were blocked, and ACh was 

at the baseline ‘medium’ level. The network was tested with three levels of BC-to-

pyramidal cells weights; low, medium, and high, with the weight values 0.1, 3, and 6 

respectively.  

Contrary to expectations, inhibition by BCs was unable to prevent instability in the CA3 

network (Fig. 6A), and merely shifted the curve of the ratio of active neurons to the right 

with minimal effect on the profile of exponential increase. Even for high levels of BC 

inhibition, the minimal decrease in slope was not sufficient to stabilize the network 

during encoding and retrieval. We also determined the ratio of active BCs using z-scores 
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(Fig. 6B). Interestingly, despite receiving direct inputs from pyramidal cells that 

increased exponentially with number of trials, BCs continued to respond linearly with 

trials due to short-term depression at the pyramidal-to-BC synapses. 

OLM interneurons and short-term depression in recurrent connections can control 

instability 

We then asked whether OLM cells by themselves could provide the inhibition 

characteristics required to contain the instability in the CA3 network. To isolate the 

effects of OLM cells, we kept the same conditions as in the previous section except for 

disconnecting BCs and connecting OLM cells instead. As noted in methods, OLM cells 

received input from pyramidal cell with synapses exhibiting short-term facilitation (Ali 

and Thomson, 1998). This CA3 network was tested with low, medium and high levels of 

OLM inhibition (OLM to pyramidal weights 0.1, 3, 6, respectively). Despite their slow 

dynamics, OLM cells were surprisingly effective in controlling the instability (Fig. 7A). 

Higher levels of OLM inhibition moved the curve for the ratio of active pyramidal cells 

closer to linearity and decreased its slope below the curve for inputs increase (Fig. 7A). 

In addition, recruitment of OLM neurons into the ‘active’ pool showed a sudden 

nonlinear jump even for high levels of OLM inhibition during which pyramidal cells 

showed a near linear increase (Figs. 7A, B). This increased recruitment permitted OLM 

cells to contain instability in CA3 responses effectively. 

To allow a qualitative comparison with results from optogentic silencing of BC and OLM 

cells in vivo (Royer et al., 2012), we calculated the change in the occurrence of bursts of 

different sizes when either OLM or BC inhibition was lowered from high to low. 
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Consistent with experimental findings (Royer et al., 2012), lowering OLM inhibition 

significantly increased the occurrence of bursts of five or more action potentials, whereas 

lowering BC inhibition modestly increased the frequency of bursts of two action 

potentials (Fig. 7C).  

Next, we tested the effects of short-term depression in the recurrent CA3 connections as 

the sole stabilizing mechanism. For this, we disconnected BC and OLM cells and tested 

low, medium and high levels of short-term depression (d1 = 0.9, 0.7, 0.5, d2 = 0.98, 0.92, 

0.86, respectively; equations in section S4.2 in supplementary materials). Note that the 

short-term depression parameters for medium levels were obtained by matching 

experimental recordings of recurrent CA3 connections (Fig. 3, Hoskison et al., 2004). 

Similar to the effects of OLM inhibition, simulations revealed that higher levels of short-

term depression also decreased the rate of CA3 pyramidal cell recruitment below the rate 

of input increase (Fig. 8A). The magnitude of this effect was sufficient to increase the 

input range at which the model can form patterns to support encoding and retrieval.  

Finally, activating either OLM inhibition or short-term depression alone at their 

‘baseline’ levels, which were matched to experimental recordings, was not sufficient to 

reduce the rate of activity increase in CA3 below the rate of input increase at EC, and 

rather, higher than experimentally reported levels were necessary. Accordingly, a test 

with both mechanisms active at the experimentally reported ‘baseline’ levels revealed 

that the presence of both mechanisms reduces the rate of recruitment of pyramidal cells 

effectively (Fig. 8B).  
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High and low cholinergic states require different stabilizing mechanisms 

The findings so far indicated that while BCs were incapable of stabilizing the CA3 

network at baseline (medium) levels of cholinergic transmission, both inhibition by OLM 

cells and short-term depression at the recurrent connections did effectively control the 

instability. Our interest however extends to stabilizing the network in both low and high 

cholinergic states, where network instability might be more likely. Therefore, we next 

investigated the role of OLM inhibition and short-term depression in the full network, 

including DG, with all synapses and mechanisms active.  

Recruitment of CA3 pyramidal cells was accordingly evaluated at low and high ACh 

levels, with either OLM inhibition or recurrent connections short-term depression active. 

Model runs revealed that for the low ACh case, short-term depression at the recurrent 

connections was the critical mechanism to maintain stability (Fig. 9A1) and the effect of 

OLM cells was no longer sufficient (Fig. 9A2). In contrast, for the high ACh case, short-

term depression at the recurrent CA3 connections was by itself ineffective (Fig. 9B1), 

and OLM cells were the necessary mechanism to maintain stability (Fig. 9B2). 

To further investigate these results, we looked at the distribution of burst sizes in CA3 

and DG without the stabilizing effects of OLM inhibition and short-term depression 

(Figs. 10A, B). Interestingly, both low ACh and high ACh caused enhanced bursting in 

CA3, though with different patterns and different mechanisms, as follows. High ACh 

levels significantly enhanced MF transmission causing large currents to arrive at CA3 

pyramidal cells. This pattern of excitation generated burst sizes that were distributed 

evenly but also included very long bursts of 20 and 30 action potentials. It is noteworthy 
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that applying a similar analysis as above to DG cells revealed that in response to high 

ACh, a limited number granule cells fired bursts of five to six action potentials, and 

consistent with the reported sparse activity in DG (Bower and Buckmaster, 2008), most 

granule cells were silent (fired 0 action potentials, Fig. 10B). Thus, these very long CA3 

bursts were not merely transmitted from the upstream DG region, but rather were likely a 

product of the large excitatory currents arriving from MF synapses, combined with the 

ACh effects on CA3 pyramidal cells including membrane depolarization, reduced 

frequency adaptation, and reduced AHP.  

The recurrent CA3 connections contributed but were not the main cause of runaway 

activity in CA3 during high ACh levels, and as expected, adding short-term depression to 

these connections did not correct the instability. In contrast, OLM inhibition mainly 

affected longer bursts of action potentials (Fig. 7C), making it suitable to control these 

very long bursts. The effects of three different levels of OLM inhibition on the 

distribution of burst sizes revealed an effective reduction in the occurrence of bursts with 

more than seven action potentials (Fig. 10C).  

On the other hand, compared to baseline levels, low ACh levels shifted the CA3 firing to 

higher burst sizes. The pattern of enhanced excitation was similar to that generated by the 

recurrent connections (Fig. 5G), though larger in magnitude, due to the enhanced 

transmission at recurrent connections induced by low ACh. 

The increase in average burst size caused by the enhanced recurrent connections was 

moderated by short-term depression at these synapses returning the network into a stable 

state (Fig. 9A1), whereas in the case of OLM interneurons, their slower dynamics 
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resulted in their inhibitory currents arriving after many CA3 pyramidal neurons had 

discharged bursts of action potentials (Fig. 10D). This revealed a critical result where the 

ability of OLM cells to contain the instability created by the CA3 recurrent connections 

depended on the strength of the synaptic transmission at the recurrents. Lower ACh 

reduced the cholinergic suppression of the recurrent connections and caused excitatory 

activity to spread rapidly between pyramidal cells well before OLM inhibition arrived 

(Fig. 10D), whereas at baseline ACh levels, OLM cells were able to fire in time to 

prevent pyramidal cells from exciting themselves into a runaway state. 

We also considered whether the “trained” network (with pattern 1 encoded) might behave 

differently. To check this, we compared the stability profile of the trained network to the 

naïve network. In response to increasing inputs from EC the trained network had a 

slightly faster activation of CA3 pyramidal cells, but was otherwise identical in behavior 

(data not shown). 

Taken together, these findings suggested that low ACh levels enhance CA3 recurrent 

connections leading to more sustained bursting in pyramidal cells, and short-term 

depression at these recurrent connections moderates this excitatory activity, whereas high 

ACh levels result in very long burst sizes that are optimally controlled by OLM inhibition 

(Fig. 11).  

Discussion 

We developed a biophysical model of the hippocampal DG and CA3 regions by matching 

biological data including single cell behavior, synaptic dynamics, connectivity patterns, 

and short- and long-term synaptic plasticity. Furthermore, the model was constrained to 
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reproduce the experimentally reported roles of CA3 and DG in pattern completion and 

separation, respectively. The recurrent connections in CA3 promote runaway excitation, 

and our results suggested that OLM inhibition and short-term depression at the recurrent 

connections were effective in preventing this instability, while BC inhibition by itself was 

not. In addition, our model extended the previously established distinctions between the 

low and the high cholinergic circuits (Hasselmo et al., 1995) by demonstrating different 

destabilizing and stabilizing mechanisms in these circuits (Fig. 11). An implication of 

these findings is that different forms of seizure activity could develop in each circuit 

through unique mechanisms.  

Biologically constrained model of pattern completion and separation 

Pattern separation and completion in the hippocampus is one of the most prominent 

computational theories that has been modeled extensively (Treves and Rolls, 1992; 

O’Reilly and McClelland, 1994; Hasselmo et al., 1995, 2002; Hasselmo and Wyble, 

1997; Meeter et al., 2004; Kunec et al., 2005; Cutsuridis et al., 2010; Nolan et al., 2010). 

The role of cholinergic modulation in these processes has also been modeled using firing-

rate neuron models (Hasselmo et al., 1995; Hasselmo and Wyble, 1997) and spiking 

neuron models (Barkai et al., 1994; Meeter et al., 2004). Hasselmo et al. (1995) 

considered the explosive growth of excitation in CA3, and revealed that cholinergic 

modulation itself along with local feedback inhibition aided in stabilizing the network. 

Our network model extended previous work by adding components matched to 

neurophysiological data including two types of interneurons and short-term synaptic 

plasticity. The addition of these mechanisms allowed for a more detailed analysis of their 
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role in stabilizing excitatory activity in CA3 during low and high cholinergic states of the 

network.  

In particular, short-term synaptic plasticity influenced the behavior of the model 

considerably. Based on in vitro studies, Vogt and Regehr (2001) suspected that due to the 

pronounced short-term synaptic facilitation at the MF synapses, cholinergic modulation 

can indirectly control MF synaptic transmission by modulating the firing rate of DG 

granule cells. Our model included these dynamics and showed an intact ability to encode 

and retrieve patterns of activity as regulated by cholinergic modulation (Fig. 4). 

Furthermore, short-term plasticity in the local connections between pyramidal cells and 

interneurons shaped the role of interneurons in stabilizing the CA3 network, and short-

term depression in the connections between pyramidal cells themselves acted as a robust 

stability mechanism. 

 

Depressing synapses limit efficacy of BC interneurons 

Considering their rapid dynamics and fast inhibition, BC interneurons appeared well 

positioned to stabilize the network. However, our findings indicated that BC inhibition in 

a network of EC and CA3 merely shifted the CA3 input-output curve linearly and could 

not limit the unstable exponential growth in the recruitment of CA3 pyramidal cells (Fig. 

6). These results are consistent with recent recordings from CA3 by Beyeler et al. (2013) 

that revealed a very limited role for perisomatic inhibitory currents in moderating the 

recruitment of hippocampal pyramidal neurons. In addition, a different study showed that 
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an increase in PV-BC inhibitory drive was insufficient to reduce the generation of 

epileptic discharges in a mouse model of epilepsy (Wyeth et al., 2010). 

In our model, this inability of BC cells to control excitation was due to two factors. First, 

both BC-to-pyramidal (Hefft and Jonas, 2005) and pyramidal-to-BC connections (Ali et 

al., 1998) displayed short-term synaptic depression. Such dynamics render BC inhibition 

less relevant at higher firing rates during long bursts of action potentials that occur at the 

onset of instability. Second, compared to OLM cells, BCs receive less connections from 

pyramidal cells (Buhl and Whittington, 2007) and also provide fewer connections to 

pyramidal cells (Sik et al., 1995). The model suggests that these dynamics could explain 

the reported biological findings (Wyeth et al., 2010; Beyeler et al., 2013). 

While our results showed that BCs did not have a significant role in stabilizing the CA3 

network, preliminary results from a separate study indicated that they have a prominent 

role in selecting neurons in a hippocampal ensemble (unpublished data). Further studies 

are needed to clarify their role in the network.  

Nonlinear mechanisms play a critical role in stabilization 

Activity in CA3 when using only BCs suggested the need for a nonlinear mechanism 

where suppression of excitation remains modest during low activity levels but increases 

steeply as activity level increases. While depressing synapses at the recurrent collaterals 

seemed ideally suited for this task (Sussillo et al., 2007), OLM interneurons were not 

obvious candidates. Although they provide nonlinear inhibition due to their facilitating 

inputs, OLM cells exhibit slow membrane dynamics and slow inhibitory currents, project 

to dendrites, and receive limited direct input from sources other than pyramidal cells 
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(Maccaferri, 2005). However, the model showed that they were effective in limiting the 

spread of activity at baseline levels of synaptic transmission in recurrent connections.  

More specifically, the ability of OLM inhibition to maintain stability of the network was 

dependent on the level of ACh. At low ACh levels, OLM inhibition failed to stabilize the 

network mainly due to the rapid spread of excitation through the recurrent connections. 

Due to the slow dynamics of OLM cells, their inhibitory current arrived at pyramidal 

cells after excitation has already spread through the network (Fig. 10D). In contrast, at 

baseline ACh levels, the recurrent connections were relatively suppressed and excitation 

spread at a slower rate. Therefore, at baseline ACh levels, OLM inhibition arrived in time 

to prevent the spread of excitation between cells and consequently maintained the 

stability of the network. Finally, at high ACh levels, the recurrent connections were 

highly suppressed and were not relevant to network instability. Strong inputs arrived 

through MF from DG granule cells leading to extended bursts in CA3, and OLM 

inhibition was well positioned to reduce these bursts and prevent runaway excitation.  

Two distinct circuits in the hippocampus 

While the presence of two circuits for encoding and retrieval in the hippocampus is well-

established (Treves and Rolls, 1992; O’Reilly and McClelland, 1994; Hasselmo et al., 

1995), our results extend this perspective. The existence of different dynamics and 

stability mechanisms revealed a more pronounced distinction between the two circuits 

(Fig. 11). While both circuits utilize the same physical implementation, the roles of the 

different components change significantly. In addition to the differences in stability 
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mechanisms reported here, a different study using our model suggested a parallel 

distinction in oscillatory mechanisms between the two circuits (unpublished data).  

These findings suggested that failure of different mechanisms might be implicated in 

hyperexcitability or seizure-like behavior in the hippocampus during different levels of 

cholinergic transmission. Considering that levels of ACh are primarily increased with 

novelty and active exploration (Barry et al., 2012), our model predicts that certain types 

of seizures are induced by novelty and other types may be facilitated by familiarity. 

Indeed, rats receiving Domoic acid (an excitatory neurotoxin) during development go on 

to develop a “novelty-induced seizure-like syndrome” (Doucette et al., 2004; Perry et al., 

2009). In these studies, rats developed stereotypical chewing, clonus, and other seizure-

like behaviors when placed in a novel Morris water maze. Reports related to a possible 

familiarity-induced syndrome have numerous references to the ‘déjà vu’ phenomenon (an 

intense feeling of familiarity that precedes seizures in humans). However, the relationship 

between this phenomenon and the actual seizure-behavior remains poorly understood 

(Martin et al., 2012), which limits any conclusions about the direction of causality. 

Nonetheless, our model further predicts that the novelty-induced seizures would be a 

reflection of dysfunction of inhibitory interneurons, while the familiarity-induced 

counterpart could be due to pathology of excessive excitatory transmission at the 

recurrent collaterals. 

Conclusions 

Findings from our computational model shed light on how intrinsic hippocampal 

mechanisms might stabilize activity in CA3 during pattern completion and separation 
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phases. Specifically, nonlinear mechanisms such as depressing synapses at recurrent CA3 

collaterals or inhibition by OLM interneurons were suited to prevent runaway excitation 

whereas inhibition by BC interneurons was insufficient. Pattern encoding and pattern 

retrieval occur through distinct circuits in the hippocampus with different destabilizing 

and stabilizing mechanisms. These results raise the possibility that different clinical 

interventions may be required to prevent seizure behavior during distinct modulatory 

states of the hippocampal network.  
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Figures 

 

Figure 1 Matching neurons to biological recordings 

In vitro current injection recordings of the cell types and their matching model cells. 

Current injections used in both experimental recordings and model are displayed 

underneath each pair of recordings and model traces. Sources for the experimental data: 

CA3 pyramidal cell (Brown and Randall, 2009), DG granule cell (Staley et al., 1992), 
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OLM cell (Ali and Thomson, 1998), and basket cell (Buhl et al., 1996). The parameter 

values for the model cells are in table S1 of supplementary materials. 

 

 

Figure 2 Network 3D structure and CA3 local circuitry. 

A) Schematic of the network implemented showing the modeled regions EC, CA3 and 

DG with their dimensions, cell numbers, and lamellar connectivity pattern. Neurons in 

EC are more likely to send connections to DG and CA3 neurons in their longitudinal 

vicinity. Similarly, DG granule cells in the same longitudinal neighborhood are likely to 

project to CA3 neurons in the same lamella. Cells were compacted into three sheets of 
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cells, in the radial dimension, representing stratum-pyramidale in CA3 and the granular 

layer in DG. 

B) Schematic with details of CA3 internal circuitry. Excitatory connections terminate in 

arrows and inhibitory ones in black filled circles. 

C) Gaussian connection probability functions. The longitudinal organization of EC inputs 

to CA3 is compared to DG inputs. Inputs from DG had a more focused pattern of 

connectivity (see table S3 for parameter values).  

D) Projections from MF to BCs had a wider longitudinal extent, compared to the ones 

from MF to CA3 pyramidal cells (pyr). 

E) The probability of an interneuron connecting to a pyramidal cell depended on the 

distance between the two in the longitudinal and transverse planes. Note that probability 

for the OLM domain exceeded one to ensure that OLM cells made dense connections in 

their immediate neighborhood. 
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Figure 3 Matching short-term plasticity to experimental recordings.  

Short-term plasticity was modeled using equations proposed by Varela et al., (1997) and 

parameter values were obtained by matching model to experimental recordings. Note that 

depending on available data, some panels display the post-synaptic cell membrane 

potential and others display the synaptic current. Parameter values used to reproduce data 

are listed in table S5.  

A) Mossy fiber synaptic facilitation (Toth et al., 2000). (Scale bars: 50 ms, 100 pA). 
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B) CA3 Pyramidal cell to OLM interneuron (Ali and Thomson, 1998). (Scale bars: 20 

ms, 1 mv). 

C) CA3 Pyramidal cell to BC interneuron (Ali et al., 1998). (Scale bars: 30 ms, 0.5 mv). 

D) BC interneuron to CA3 pyramidal cell (Hefft and Jonas, 2005). (Scale bars: 50 ms, 

100 pA). 

E, F) Recurrent CA3 connections stimulated at 50 Hz, and 20 Hz, respectively (Hoskison 

et al., 2004). Note that these connections displayed paired pulse facilitation, a 

phenomenon not included in our synapse model. Therefore, responses to the first stimulus 

in the train appear larger than the recordings. (Scale bars: 20 ms, 0.5 mv in E; 50ms , 0.5 

mv in F). 
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Figure 4 Pattern completion and separation in CA3 and DG.  

The network learned pattern 1 for five trials under high levels of ACh. Subsequently, 

long-term plasticity was inactivated to test retrieval in response to inputs patterns 1 to 11. 

Output spikes were recorded at EC, CA3 and DG, and correlation was calculated between 

the output from pattern 1 and the output from each of the test patterns. Results were 

averaged over data from 10 randomly constructed networks and shaded areas indicate 

standard deviation. 
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A) Correlation of output patterns produced at EC, CA3 and DG in response to probe 

patterns 1-11. The correlation between input pattern 1 and the probe patterns at EC is 

shown as a reference point. Correlation values at CA3 pyramidal neurons lie well above 

the input correlation indicating a tendency towards pattern completion in CA3. 

Conversely, DG correlation values lie below input correlation levels indicating pattern 

separation. 

B) The effects of low vs. high levels of ACh during retrieval on correlation levels in 

CA3. 
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Figure 5 The effects of recurrent connections on excitation within CA3.  

At the beginning of each trial, a stimulus of one action potential was delivered to a 

number of randomly selected of EC neurons, which projected to CA3.  The number of 

EC neurons stimulated increased with each trial.  The DG region and other cell types in 

CA3 were disconnected, with ACh at baseline levels and no short- or long-term 

plasticity.  
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A) Spike raster plot of EC neurons in response to structured inputs for 30 trials from a 

representative network. Each trial had a 500 ms duration, and for each trial, an increasing 

number of randomly selected EC neurons received a synaptic stimulus generating one 

action potential.  As can be seen in the plot, only one EC neuron fired on trial 1 in the 

first 500 ms, two fired during trial 2, and so on, ending in 30 neurons firing on trial 30 in 

the last 500 ms of the simulation. 

B) Spike raster plot of CA3 pyramidal neurons without the recurrent connections in 

response to the input presented at EC across 30 trials. 

C) Spike raster plot of CA3 from a representative network with recurrent connections 

restored. Spikes are shown for the 30 trials of the experiment. 

D) Membrane voltage traces from a representative neuron in the network without 

recurrent connections (D1) and with recurrent connections (D2).  The traces show the 

membrane voltage response during trials 22 to 25, with arrowheads marking the 

beginning of each trial th.   

E) Population firing rate histogram for CA3 without recurrent connections (dashed line) 

and with recurrent connections (solid line). Firing rate was calculated for each trial by 

averaging trial spike count from all CA3 pyramidal neurons and dividing by trial 

duration.  

F) Ratio of active to inactive neurons in EC (dotted diagonal line), in CA3 without 

recurrent connections (dashed line) and in CA3 with recurrent connections (solid line). 
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Results are averages of data from 10 networks with different random seeds, and shaded 

areas represent standard deviation.  

G) Changes in distribution of different burst sizes with and without recurrent 

connections. The distribution was obtained by pooling action potential counts from each 

neuron in each trial. The data were averaged from running 10 initializations of the 

network, and presented as a percentage of the total neuron-trial count for each burst size. 

Inset shows a schematic with model components used in this experiment. Active 

components are shown in dark lines, while inactive components are shown in light gray 

lines. RC: recurrent connections. 
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Figure 6 Effects of BC interneurons on the stability of CA3 pyramidal cells.  

The ratio of neurons activated was measured in CA3 in response to increasing EC input 

over 30 trials. Diagonal line in graphs denotes the rate of input increase at EC. Inhibition 

by BCs was the only stability mechanism in this experiment, and short-term depression at 

recurrent connections and inhibition by OLM cells were inactivated.  

A) Ratio of active pyramidal neurons for three different levels of BC-to-pyramidal 

inhibition. Compared to low BC inhibition, medium inhibition shifted the activity ratio 

curve modestly to the right, without a substantial decrease in its maximum slope. 
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Furthermore, BC inhibition higher than optimized for the pattern separation and 

completion network did not effectively lower the slope of the curve.  

B) The ratio of active BC interneurons showed a linear response with increase in EC 

inputs, with little difference between the three levels of BC inhibition. Inset shows a 

schematic with model components used in this experiment. Active components are shown 

in dark lines, while inactive components are shown in light gray lines.  
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Figure 7 OLM interneurons stabilize CA3 and control burst size.  

The network was tested over 30 trials with increasing amounts of EC inputs, denoted by 

the diagonal line. Short-term depression at recurrent connections was blocked and BC 

interneurons inactivated.  
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A) The ratio of active CA3 pyramidal neurons at three different levels of OLM inhibition.  

B) The ratio of active OLM interneurons for low, med, and high OLM-to-pyramidal 

inhibition showed a nonlinear OLM response. The response of OLM cells continued to be 

nonlinear even with high inhibition where CA3 pyramidal cells show a controlled near 

linear response.  

C) The percentage change in the occurrence of different burst sizes when inhibition level 

is lowered from high to low, for BC inhibition (dashed line) and OLM inhibition (solid 

line).  
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Figure 8 Recurrent connections short-term depression stabilizes CA3 activity. 

A) The effect of short-term depression (three levels) at the recurrent connections on the 

ratio of active cells in CA3 with increasing input from EC. Both OLM and BC were 

inactivated. Baseline or ‘med’ values were obtained by matching experimental data 

(Hoskison et al., 2004) (d1: 0.7, d2: 0.92) and then low (d1: 0.5, d2: 0.86) and high (d1: 

0.9, d2: 0.98) levels were created symmetrically around the baseline values. Higher levels 

of short-term depression stabilized CA3 responses and the curve of ratio of active cells 

became closer to linear and dropped below the curve for the inputs. (STD: short-term 

depression). 
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B) The effects of experimentally matched levels of OLM inhibition or of short-term 

depression alone compared to the case when both mechanisms were simultaneously 

active. 

 

 

 

Figure 9 The encoding circuit is stabilized by OLM inhibition and the retrieval 

circuit is stabilized by short-term depression at the recurrent CA3 connections.  

Ratio of active CA3 pyramidal cells was evaluated for low and high ACh levels with 

either short-term depression or OLM inhibition activated at three levels.  
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A) The effects of three different levels of short-term depression at the CA3 recurrent 

connections (A1), and of OLM inhibition (A2) under low levels of ACh.  

B) With high ACh, short-term depression at the CA3 recurrent connections had little 

effect (B1) while OLM inhibition was critical to the stability of the network (B2). 

 

 

 

Figure 10 Distinct patterns of excitation during encoding and retrieval levels of 

ACh.  

Both CA3 and DG networks received increasing inputs from EC without the stabilizing 

effects of short-term depression or inhibition from CA3 interneurons. The occurrence of 

bursts of different sizes was calculated across neurons and trials, and is presented as a 
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percentage of all neurons and trials for each burst size. The distribution of burst sizes was 

considered for low, med, and high levels of ACh.  

A) The occurrence of different burst lengths in CA3 under low, med, and high levels of 

ACh. Low levels of ACh shifted the peak in burst sizes towards longer bursts (peak 

shifted from five to eight action potentials). Whereas high levels of ACh leads to more 

distributed burst sizes with a long tail including extended bursts (> 20 action potentials).  

B) Same analysis as in (A) applied to DG granule cells revealed that these very long 

bursts were not simply transmitted from DG. High levels of cholinergic transmission in 

DG caused an increase in the frequency of short bursts in a limited number of granule 

cells.   

C) OLM interneurons were activated in the encoding network (ACh=2) and the 

distribution of burst sizes was considered at three different levels of OLM inhibition. 

Higher levels of OLM inhibition reduced the occurrence of extended bursts. 

D) Excitation spread in CA3 network preceded OLM inhibitory current during low ACh 

levels. One trial is depicted with 20 EC neurons receiving one action potential at time 0. 

A spike raster plot of CA3 pyramidal cells is shown overlaid with an example of OLM 

inhibitory current as measured from the soma of a pyramidal cell. Not all pyramidal cells 

fired in response to the EC stimulus. A few neurons started firing late (Arrows), 

indicating a di-synaptic source of input from other pyramidal cells. OLM inhibition did 

not arrive in time to prevent the secondary spread of excitation to these neurons.  
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Figure 11 Summary of stabilizing mechanisms in low, med and high cholinergic 

states. 

Connections are suppressed (dotted arrows) or enhanced (thick arrows) from baseline 

(normal arrows) by ACh levels. Connections promoting runaway excitation (indicated by 

*) were the recurrent CA3 connections in low and med ACh states, and MF in high ACh 

states. On the other hand, mechanisms maintaining network stability (indicated by gray 

shaded area) were short-term depression in low and med ACh states, and OLM in med 

and high ACh states.  
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Abstract 

Hippocampal theta oscillations (4-12 Hz) are consistently recorded during 

memory tasks and spatial navigation. Despite several known circuits and structures that 

generate hippocampal theta locally in vitro, none of them were found to be critical in 

vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external 

input from medial septum or entorhinal cortex. We investigated these discrepancies that 

question the sufficiency and robustness of hippocampal theta generation using a 

biophysical spiking network model of the CA3 region of the hippocampus that included 

an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-

lacunosum moleculare (OLM) cells. The model was developed by matching biological 

data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic 

plasticity, neuromodulatory inputs, and the three-dimensional organization of the 

hippocampus. The model generated theta power robustly through five cooperating 

generators: spiking oscillations of pyramidal cells, recurrent connections between them, 

slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons 

and pyramidal cells subnetwork, and non-rhythmic structured external input from 

entorhinal cortex to CA3. We used the modeling framework to quantify the relative 

contributions of each of these generators to theta power, across different cholinergic 
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states. The largest contribution to theta power was that of the divergent input from the 

entorhinal cortex to CA3, despite being constrained to random Poisson activity. We 

found that the low cholinergic states engaged the recurrent connections in generating 

theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. 

These findings revealed that theta might be generated differently across cholinergic 

states, and demonstrated a direct link between specific theta generators and 

neuromodulatory states. 

 

Introduction 

 Slow oscillations at theta frequencies (4-12 Hz) are consistently recorded in the 

hippocampus during working memory tasks, spatial navigation, and storage of episodic 

memory [for review, see 1,2]. The hippocampus is capable of generating its own theta 

rhythm when isolated in vitro [3,4], and several structures and circuits have been 

identified as potential intrinsic generators of hippocampal theta [for review, see 1,2]. 

However, experiments aimed at confirming the role of these structures individually have 

invariably revealed conditions where the structures made no contribution to hippocampal 

theta. For instance, the slow firing oriens-lacunosum moleculare (OLM) cells, which lock 

closely to theta rhythm in vivo [5], were proposed as generators of the rhythm, using 

computational models [3,6]. However, later experiments showed that OLM cells possess 

modest resonance at theta frequencies [7], and their silencing in vivo did not diminish 

theta activity [8]. As a second example, computational models have suggested a 

contribution to hippocampal theta from intrinsic membrane conductances such as the 

spike-frequency adaptation currents [9–13], or the h-current [3,6,14–17]. Spike-frequency 
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adaptation currents remain difficult to investigate experimentally, while a genetic 

knockout of the h-current (HCN1 channels) did not disrupt theta [18,19]. A third theta 

generator implicated by models is the recurrent excitatory connections between 

pyramidal cells [9,10,20–23]; experiments again revealed persistent theta oscillations 

despite disruption of this excitatory glutamatergic transmission in CA1 [24,25]. These 

observations might indicate a cooperative interaction between the proposed generators of 

theta, but previous modelling studies have typically focused on a limited set of these 

generators, and several questions remained unanswered, such as the extent to which each 

generator contributes to theta power, and whether their relative contributions change in 

different behavioral or neuromodulatory states. 

In addition, despite the presence of these intrinsic hippocampal generators, 

external input plays a major role and hippocampal theta is severely attenuated in vivo by 

disruption of the input from the medial septum [26–30] and from the entorhinal cortex 

(EC) [31]. The contribution of input from medial septum and EC to hippocampal theta is 

assumed to be a consequence, solely, of the rhythmic nature of these external inputs, or 

the specific delays in the feedback loops formed between these external inputs and the 

hippocampus [32], but the hippocampus also receives input with less prominent rhythmic 

modulation, (for e.g. from the lateral EC, compared to the medial EC [33]). Non-

rhythmic random spiking arriving through divergent afferent projections to an area has 

been implicated in oscillations in models [34–36] and in experiments involving the 

olfactory cortex [37], but has not been investigated for the hippocampus. Modeling 

allowed us to dissociate and examine how the non-rhythmic component of input from the 

medial septum and EC might also contribute to hippocampal theta. 
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We used our previously developed biophysical computational model of the 

hippocampus [38] that included principal cells and two types of interneurons, to shed 

light on the cooperative interactions amongst the various intrinsic theta generators, and to 

examine their relative contributions to the power of hippocampal theta, across 

neuromodulatory states. The model included neuromodulatory inputs, spatially realistic 

connectivity, and short-term synaptic plasticity, all constrained by prior experimental 

observations. To isolate the role of the non-rhythmic component of medial septal and EC 

inputs in generating theta, we used an input layer of neurons (referred to henceforth as 

‘EC’) excited by random noise constrained by realistic hippocampal unit firing rates. We 

demonstrated five generators of theta power in our model, as previously reported in the 

literature, and found that these generators operated simultaneously and cooperatively and 

no one generator was critical to the theta rhythm. We then quantified their relative 

contribution to theta power using tractable analysis that maintains relevance to 

experiments. The non-rhythmic external input had the highest contribution to theta 

power, which is consistent with the significant drop in theta power following removal of 

medial septum [29] or EC inputs [31] to the hippocampus in vivo. Contributions from two 

theta generators were dependent on cholinergic state. Low cholinergic states engaged the 

recurrent connections amongst pyramidal cells for theta generation, while high 

cholinergic states utilized the OLM-pyramidal cells subnetwork, indicating that the low 

and the high cholinergic states had distinct mechanisms for theta generation, with specific 

cholinergic effects fostering the engagement of certain theta generators. 

Results 
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We investigated theta generating mechanisms in the hippocampus using our 

published biophysical model that included networks for entorhinal cortex (EC), dentate 

gyrus (DG), and CA3 regions, and their interconnections [38]. The single cell models in 

the network were developed using the Izhikevich formulation [39] and matched to 

experimental recordings (Fig. 12, see Methods for references and details). Cells were 

distributed in 3D space and connected following experimentally reported hippocampal 

spatial organization with lamellar connectivity between regions (see Methods). Basket 

cells (BCs) received input from EC, DG and CA3 pyramidal cells, while oriens-

lacunosum moleculare (OLM) cells were reciprocally connected to pyramidal cells ( Fig. 

12A, see Methods). Synaptic currents had values for rise and decay time constants 

obtained directly from published experiments (see Methods), and also exhibited short-

term synaptic plasticity (Fig. 12D-I). The model was constrained further to perform 

pattern separation and completion, and was validated by its ability to match the effects of 

acetylcholine (ACh) in biasing the CA3 network towards pattern separation [details in 

38].  

Results reported below represent data averaged over 10 instantiations of the 

network with different random seeds for initial cell membrane potentials, synaptic 

connections, synaptic weights, and random external inputs. To examine the non-rhythmic 

component of medial septal and EC input, we used an input layer with 30 spiking neurons 

with no spike-frequency adaptation (referred to as ‘EC’). External input arrived as 

Poisson spikes to either this layer or directly to pyramidal cells depending on the 

experiment setup, at rates constrained to produce reported firing rates of hippocampal 

place cells during active locomotion [44; see Methods for details]. 
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Poisson spikes input generates theta oscillations in the model  

The full model (Fig. 13A) generated theta rhythmic activity, in response to 

external input in the form of Poisson spikes arriving at EC cells. Poisson inputs arrived at 

a rate of 15 Hz chosen to match experimentally recorded hippocampal firing rates (see 

Methods, Fig. 12C1), but theta activity was robust over a range of input rates tested (5-

100 Hz). Oscillatory activity was discernible in a spike raster plot of CA3 pyramidal cells 

from an example run, with multiple vertical groupings indicating synchronized firing 

(Fig. 13B1). The population firing rate, calculated using a 20 ms sliding window (Fig. 

13B2), and the membrane voltage traces of two example neurons from the same run 

showed grossly rhythmic activity (Fig. 13B3, 4). The population power spectrum of CA3 

pyramidal cells, averaged across 10 network instantiations, showed a consistent peak in 

the theta band (Fig. 13C). Spiking activity of both inhibitory slow-spiking oriens-

lacunosum moleculare (OLM) cells and fast-spiking basket cells (BC) also had a theta 

spectral peak (Fig. 13D1, 2), consistent with interneurons locking to theta rhythm in vivo 

[5]. The power spectrum of EC neurons spikes showed no distinct peaks confirming that 

the network received random Poisson-distributed inputs from EC (Fig. 13D3). Finally, 

the DG area of the model, which contains granule cells reciprocally connected to the slow 

inhibitory HIPP interneurons, and basket cells, also generated its own theta rhythm (Fig. 

13D4). 

Previous studies have suggested multiple potential theta generators in the 

hippocampus  [1,49], so we examined which generators were engaged in our model by 

studying sub-networks with only a set of model components active during a specific run. 

Since rhythmic theta activity was also generated in DG (Fig. 13D4), inputs from DG to 
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CA3 were also disconnected in the studies reported below. Similarly, since the h-current 

is capable of producing theta resonance in any model sub-network [50–53], it was also 

removed, and the remaining cell currents were tuned again to match current injection data 

in figure 1, without an h-current (cell parameters in Methods, as previously published 

[38]). 

Pyramidal cells display theta spiking oscillations 

The simplest case examined had isolated pyramidal CA3 cells (Fig. 14A). The 

cells were completely disconnected, and each received a distinct train of Poisson spikes, 

at rates drawn from a lognormal distribution (to reproduce place cells firing rates, Fig. 

12C2). While their spiking activity appeared grossly random (Fig. 14B), the power 

spectrum of the population, averaged over 10 instantiations of the model, peaked in the 

theta range (Fig. 14C1). To investigate the underlying mechanisms, we considered the 

relationship between this power spectrum peak and the spike-frequency adaptation of 

pyramidal cells. The reader is reminded that this version of the model lacks an h-current, 

but focuses on modeling spike-frequency adaptation. In the Izhikevitch cell model, spike-

frequency adaptation current is modeled by the second current ‘u’ (see Methods). A 

spike-triggered average of this current showed that it builds up after a spike or burst of 

spikes and decayed slowly going back to its baseline in about 90-100 ms (Fig. 14C2). 

Hence, these cells had the highest probability of spiking again only after decay of the 

adaptation current, as confirmed by the inter-spike interval distribution peaking around 

90 ms (Fig. 14C3). This predominance of spikes occurring at theta intervals reflects a 

coherence resonance [54,55], which, in this context, can be defined as an oscillatory 

response, and a power spectrum peak (resonance), optimized by random perturbation in 
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an adaptive cell. In other terms, the predominance of theta interval spiking could be 

interpreted as noise-induced “spiking oscillations”, as opposed to subthreshold 

oscillations. We will use the term “spiking oscillations” in this manuscript. 

To further explore the relationship between spike-frequency adaptation and 

spiking oscillations, we lowered the time constant of adaptation from 100 ms to 25 ms 

(the parameter ‘a’ of the Izhikevich cell increased from 0.01 to 0.04, for this experiment, 

see Methods). We observed that the spiking oscillations shifted to higher frequencies 

around 17 Hz (Fig. 14D1). The adaptation current decayed faster following a spike and 

the cells fired at shorter intervals (Fig. 14D2, 3). The adaptation time constant in our 

model cell (100 ms), chosen to match the current injection data from Brown and Randall 

[40, Fig 1], was comparable to the time-constant of adaptation recorded from 

hippocampal pyramidal cells (126 ms) [56]. Increasing the resting membrane potential of 

the cells had similar effects (not shown), due to the interaction of the potential with the 

spike-frequency adaptation current.  

The reported power spectrum peak (Fig. 14C1), which might be labeled as 

“spurious correlations” in digital signal processing, closely reflects basic properties of the 

cells that make up the network. The independent firing of neurons may not be a 

‘mechanism’ of theta oscillations, due to absence of coordinated network activity. But 

such spiking activity can contribute to LFP once received by local cells, and should 

contribute to theta power measured from neuronal tissue. We next show how other 

network structures can exploit these spiking oscillations to generate robust theta activity. 
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Divergent projections from EC produce theta oscillations 

A novel finding from the model was that divergent projections from EC exploited 

the spiking oscillations cited in the previous section to produce theta activity, in a 

disconnected population of pyramidal cells. In this experiment, CA3 pyramidal cells 

received inputs from EC, but remained disconnected from each other (Fig. 15A). All 

other cell types (OLM cells, BCs, and DG granule cells) remained inactivated, so 

pyramidal cells had no means of communicating with one another. EC cells were devoid 

of any rhythmicity (see Methods and Fig 3D3) and received Poisson spikes as external 

input, while CA3 pyramidal cells received input exclusively through the projections from 

EC.  On average, each pair of CA3 pyramidal cells shared 19% of their projecting EC 

cells. 

In this configuration, pyramidal cells spiking patterns appeared remarkably 

organized (Fig. 15B), despite the absence of local connectivity in CA3. The power 

spectrum of the cell population confirmed rhythmic activity in the theta range (Fig. 15C), 

with a power peak much higher than the power peak of independently firing pyramidal 

cells in figure 14. The spatially divergent projection from EC to CA3 (see methods) 

causes pyramidal cells in CA3 to have a degree of shared (correlated) input, and 

synchronizes the theta firing produced by their spiking oscillations. This mechanism has 

been reported in the generation of gamma oscillations in the piriform cortex [37]. 

Projections from individual EC cells to CA3 followed a Gaussian function of the 

longitudinal distance, creating neighborhoods in the longitudinal dimension [see 

Methods; ,57]. To examine its possible role, we removed the longitudinal organization by 

allowing EC cells to connect to any CA3 cell irrespective of their longitudinal location, 
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while keeping the total number of connections constant. This randomization redistributes 

correlation across neuronal pairs, removing high input correlation between neighboring 

CA3 cells and the low input correlation for distant ones, and instead produces consistent 

correlation levels between all pairs of neurons at an average value. We observed the same 

power spectrum peak in the theta range (not shown), indicating that the specific 

longitudinal organization was not critical for the synchronized theta firing in CA3. 

Nonetheless, examining spiking coherence, as a measure of neuronal synchrony, showed 

that longitudinal organization created local areas of synchrony (Fig. 15D). 

Recurrent connections and spike-frequency adaptation interact to generate theta 

oscillations 

We then investigated whether the excitatory connections between pyramidal cells 

in our model might synchronize their firing, as reported in previous computational studies 

[9,10,20,22,23,58]. For this experiment, the only active network components were CA3 

pyramidal cells and the recurrent synapses connecting them (Fig. 16A), and the h-current 

in pyramidal cells remained inactivated.  

External inputs were applied directly to CA3 pyramidal cells instead of EC cells 

because the EC-CA3 pathway may have an independent role in the generation of theta 

rhythms, as discussed above. Power spectra averaged over 10 network instantiations 

showed a robust peak in the theta band (Fig. 16B). This variation of our model closely 

resembles previous models [9,10,21,58,59], where spike-frequency adaptation interacts 

with the recurrent connections to produce theta oscillations.  
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Pyramidal-Interneuron sub-networks generate theta through two mechanisms 

We next examined the role of interneurons in rhythm generation. A sub-network 

of pyramidal cells reciprocally connected to a population of OLM cells generated robust 

theta oscillations (Fig. 17), and varying the weight of the synapses from pyramidal to 

OLM cells illustrated two theta mechanisms in this sub-network. In the first case, with 

weak pyramidal to OLM cells synapses (weight set to 2, Fig. 17A), OLM cells fired 

sparsely and sent inhibitory currents to pyramidal cells at a rate much lower than theta 

frequency (Fig. 17B). However, theta oscillations emerged (Fig. 17C) because of the 

pyramidal cells spiking oscillations, and the sporadic OLM inhibition acting as a 

common input [60]. In our model, any two pyramidal cells shared, on average, 32% of 

their OLM inputs. A spike-triggered average of OLM inhibitory currents showed minimal 

association with pyramidal cells spikes (Fig. 17D1). Pyramidal cells continued to display 

the highest probability of firing at around 90 ms after a spike, when their adaptation 

current decayed to baseline (Fig. 17D1, 2). Similar “excitation-dominated” oscillations 

were shown in reduced models of this circuit [61]. 

In the second case, with strong pyramidal to OLM cells synapses (weight set to 6, 

Fig. 17E), OLM cells fired near theta frequencies and generated theta-locked inhibitory 

currents in pyramidal cells (Fig. 17F). OLM inhibition associated closely with pyramidal 

cells spikes, and shifted the pyramidal cells inter-spike interval peak to around 110 ms, to 

coincide with the trough of OLM inhibition (first trough at 110 ms and second around 

220 ms). 

In contrast, the BC-pyramidal cells sub-network is viewed as a generator of 

gamma oscillations [for review, see 62]. In a simulation that had only BCs and pyramidal 



 68

cells and their interconnections (Fig. 18A), our first unexpected finding was that this sub-

network did not generate any rhythmic activity (Fig. 18B1). We discovered that two 

characteristics of the connections between BC and pyramidal cells prevented an 

oscillatory coupling: short-term depression [46,47], and the lower connection probability 

compared to that of OLM-pyramidal connections [63,64]. We observed that removal of 

short-term depression and increase of connection probability (doubling) were both 

required for oscillatory activity (Fig. 18B2-4). The second unexpected finding, however, 

was that this oscillatory activity was in the theta range (Fig. 18B4). 

As demonstrated in the OLM-pyramidal sub-network, weak pyramidal to BC 

drive can potentially produce sporadic BC inhibition with the sole effect of synchronizing 

the theta spiking oscillations of pyramidal cells, independent of the specific properties of 

BC inhibition. But, even with a higher pyramidal to BC connection weight (set to 6), we 

continued to observe theta oscillations (Fig. 18C-F). To explore the lack of gamma 

activity, we examined the spike-triggered average of both the adaptation current and the 

BC inhibitory current in pyramidal cells. To generate gamma activity, pyramidal cells are 

expected to spike again as BC inhibition decays, however, the ISI distribution showed 

that cells are most likely to spike again after their own adaptation current decays (Fig. 

18F). Thus, pyramidal cells adaptation dominated the dynamics of the sub-network due 

its slower dynamics, thereby generating oscillations that depend primarily on the 

dynamics of pyramidal cells rather than the dynamics of inhibitory synapses. Similar 

pyramidal cells driven oscillations has been seen in a model of the neocortex [65]. Of 

note, there was an emerging peak at around 17 Hz in the power spectrum of pyramidal 

cells (Fig. 18E2, indicated with arrow). An upcoming study of this model investigates the 
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role of background synaptic input in enhancing and shifting this peak to gamma 

frequencies, similar to the findings of Economo and White [65]. 

Theta generators have different relative contributions across cholinergic states 

Next, we examined the effects of inactivating individual theta generators, across 

different cholinergic states. We started with the full model with external random inputs 

arriving at EC (DG area and the h-current remained inactive). We then inactivated each 

theta generator individually and observed changes in the relative theta power (ratio of 

power in the 4-12 Hz range to the entire spectrum from 0 to 250 Hz). To inactivate the 

spiking oscillations of pyramidal cells we removed spike-frequency adaptation by 

lowering the adaptation time constant to 10 ms (cell parameter ‘a’ set to 0.1, see 

Methods) so that it recovered promptly after each spike. The contributions of the 

recurrent connections, OLM cells, and BCs were removed by inactivating the 

corresponding synapses. To remove the effects of the projections from EC, we replaced 

them with direct random inputs to CA3 pyramidal cells that achieved the same firing rate 

(input rates drawn from a lognormal distribution with mean (± SD) of 50 Hz ± 40 in 

baseline ACh, 20 Hz ± 20 in low ACh, and 60 Hz ± 50 in high ACh). 

In the baseline cholinergic state, removing EC projections had the most profound 

effect on relative theta power. This large drop in relative theta power suggests a 

prominent role for the non-rhythmic component of external input from medial septum or 

EC in the generation of hippocampal theta in vivo (Fig. 19A), considering that EC 

activity was dominated by non-rhythmic input (see Methods). The relative contribution of 

EC projections was followed by that of the recurrent connections, and then OLM cells 

(Fig. 19A). Interestingly, inactivating the spiking oscillations of CA3 pyramidal cells had 
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minimal effects on relative theta (Fig. 19A), presumably due to compensation by the 

other generators. Removal of BC inhibition slightly raised relative theta (Fig. 19A), due 

to lowered feedforward inhibition from EC (average pyramidal cell firing rate increased 

from 7 Hz to 9 Hz). 

We repeated the analysis for the low and high cholinergic state networks. 

Acetylcholine (ACh) state affected the cells and synapses of the network and took values 

from 0 (lowest) to 2 (highest, see Methods). The low cholinergic state increased the 

impact of removing the recurrent connections and decreased the impact of removing 

OLM cells (Fig. 19B). The high cholinergic state produced the opposite effects (Fig. 

19C). To focus on CA3 dynamics, DG was not included in the simulations in figure 19. A 

separate simulation examined the effects of adding DG input and showed a significant 

increase in CA3 relative theta power only in high cholinergic states (relative theta 

increase in low cholinergic state: 0.01, p < 0.5, med: 0.02, p < 0.5, high: 0.15, p < 0.05). 

These inactivation results are suggestive but not conclusive, due to compensatory 

changes in the network, so we examined the effects of ACh on these specific theta 

generators in isolation (Fig. 19D, E). The sub-network of recurrently connected 

pyramidal cells generated the highest theta power in the low cholinergic states (Fig. 

19D2), whereas the OLM-pyramidal cells sub-network had its theta peak in the high 

cholinergic states (Fig. 19E2). A similar analysis of the EC induced oscillations showed 

no significant relationship between cholinergic modulation and theta power. 

Cholinergic stimulation in the model had several effects on the neurons and 

synapses of the network (see Methods). We ran simulations by isolating individual 

cholinergic effects and allowing only one effect to be expressed in each run. Cholinergic 
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suppression of the recurrent connections, and the cholinergic depolarization of pyramidal 

cells impaired theta generation in the recurrently connected pyramidal cells sub-network 

(Fig. 19D3). While it was initially counterintuitive as to why depolarizing pyramidal cells 

would impair theta generation, we noted that raising the resting potential in our model 

also controlled the dynamics of the spike-frequency adaptation current (see eq. 2), and 

adaptation is required for theta generation in a recurrently connected network 

[9,10,21,58]. Cholinergic effects on OLM cells (depolarization and reduced spike-

frequency adaptation) enhanced theta in the OLM-pyramidal cell sub-network, but 

cholinergic effects on pyramidal cells (depolarization, and enhanced burstiness) had an 

even steeper effect (Fig. 19E3), presumably due to the short-term facilitation at the 

pyramidal to OLM synapses. These effects were mediated by enhanced OLM cells firing 

rates (Fig. 19E4). 

In summary, the inactivation of individual theta generators had a variable impact 

on theta power as a factor of the state of cholinergic neuromodulation. The recurrent 

connections played a major role in the low cholinergic state while OLM-pyramidal cells 

sub-network played a more substantial role in the high cholinergic state.  

Discussion 

A biophysical model of the hippocampus provided an integrative understanding of theta 

generation and, for the first time, examined five cooperative generators of theta activity. 

Furthermore, it helped reveal variable engagement of the theta generators in different 

neuromodulatory states. The model was developed by matching biological data including 

single cell behavior, synaptic dynamics, connectivity patterns, and short-term synaptic 

plasticity. In a previous study, the model parameters were constrained to replicate pattern 
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completion and separation behavior in the hippocampus, and subsequently validated by 

testing the model’s ability to reproduce the effects of ACh in biasing the CA3 network 

towards pattern separation [38]. The model was used here as previously published with 

no changes in parameters (available at the public site ModelDB; see Methods). The 

present study sheds light on several underlying mechanisms involved in theta generation, 

as discussed below. 

Multiple solutions, one rhythm  

Earlier reviews speculated several intrinsic theta generators in the hippocampus 

[1,49]. Our results are consistent with this account, and further provide a tool to examine 

the relative contributions of each generator and to shed light on how the generators 

cooperate and compensate for one another. The exceptional robustness of hippocampal 

theta generation suggested that the rhythm can be considered as an intrinsic property of 

the network. Consequently, any experimental manipulation or brain state that generates 

sufficient excitation in the hippocampus may produce theta oscillations, non-specifically. 

This is consistent with experimental reports of oscillatory activity being generated by 

simply enhancing neuronal excitability by distributed electrical excitation [66], or by 

raising extracellular potassium concentration [67]. 

The abundance of theta generators suggests that designing studies to establish the 

necessity or the sufficiency of one factor to theta rhythms might be difficult in 

experiments. For example, in a recent study, optogentic silencing of OLM cells in vivo 

did not diminish theta activity [8]. In light of our results, this lack of effect on theta 

rhythm is expected, and is not evidence against a role for OLM cells in theta rhythm 

generation. In fact, within the integrative framework presented here, disruption of theta 
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after a particular generator is inactivated would warrant a closer inspection, since causes 

for the absence might include extreme neuromodulatory states, or diminished excitation 

below a minimum threshold.  

The robustness of theta generation might seem to contradict the presence of other non-

theta states. However, it is important to note that we constrained the firing rates 

distribution to match that of place cells during locomotion, a state characterized by 

prominent theta activity. In addition, we expect neuromodulation to strongly influence 

the repertoire of oscillatory states in the hippocampus. 

Relative contributions of different generators  

We quantified the relative contributions of theta generators by inactivating each 

individually and assessing the relative drop in theta power (Fig. 19A-C), generating 

several relevant insights. For example, we found that generators can have a variety of 

interactions such as compensating for inactivated generators, as exemplified by the 

network’s ability to compensate for the removal of pyramidal cells resonance (Fig. 19A, 

C). Importantly, we also showed that removal of the divergent projections from EC to 

CA3 produced the highest drop in theta power (Fig. 19A, C), suggesting that despite the 

local circuit theta generators, external input amplifies the rhythm substantially. The fact 

that our model EC neurons lacked rhythmic properties (Fig. 13C3) highlights a role for 

solely the strength of the external input, i.e., without a frequency-modulated component. 

This observation is of relevance when considering the substantial drop in hippocampal 

theta observed after inactivating external input from EC [31] or the medial septum [29]; 

external input strongly synchronizes hippocampal rhythms. Our results provide a more 

nuanced interpretation of these experimental findings [29,31], where receiving external 
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signals, even if randomly distributed, synchronizes hippocampal rhythms. This expands 

our understanding of the role of these external inputs beyond the interpretation that 

hippocampal theta is dependent on receiving theta-modulated external input from either 

the medial septum or EC. Computational modeling in this case allowed us to delineate 

two effects of external input that might be difficult to dissociate experimentally and 

suggested that both random input as well as frequency-modulated input have independent 

contributions to hippocampal theta.  

Significantly, this methodology sheds some light on the mechanisms most crucial 

to theta generation across neuromodulatory states. We previously showed that the low 

and the high cholinergic states engendered run away excitation via distinct pathways, and 

also differed in the mechanisms that contained such aberrant excitation [38]. The present 

study revealed parallel differences and extended this perspective to suggest that the two 

circuits also differ fundamentally in how they generate rhythmic activity, consistent with 

the suggested role of neuromodulation in profoundly reconfiguring neuronal circuits [68–

70]. This conceptual delineation might be more tied to the underlying mechanisms 

compared with the categorization of theta into atropine-resistant and atropine-sensitive 

forms [71]. Furthermore, using this framework, more detailed conductances-based 

models might reveal how specific neuronal conductances are involved in theta generation 

across cholinergic states, since these specific currents are the targets of cholinergic 

modulation either directly (for e.g. m-current) or indirectly (e.g. h-current, through 

changes in resting potential). 
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Intrinsic theta generation with no local connectivity 

An interesting observation from the model was that a power spectrum peak could 

be detected in the activity of a population of disconnected and independently firing 

neurons [Fig. 14; ,72]. Indeed, the power spectrum of summed independent signals is 

proportional to the autocorrelation function of individual neurons [73, page 184]. A novel 

finding from the model was to demonstrate that these correlations, though sometimes 

disregarded as an artifact, had the highest impact on theta power, when entrained by 

shared extrinsic input from EC (Fig. 19A). 

Coordinated activity through input correlations has been observed experimentally 

in the olfactory cortex [37], but has not been studied in the hippocampus. The spatial 

divergence of the projections between layers causes cells in the target layer to share many 

of the same inputs. So, although the EC inputs themselves are not correlated per se, their 

spatial projection to CA3 pyramidal cells results in the latter having correlated inputs. 

Since CA3 pyramidal cells had spiking oscillations at theta, this sharing of inputs caused 

coherent firing at a similar phase, generating coherent theta oscillations [74], despite the 

absence of any local connectivity. Any resonant process in CA3, such as the h-current in 

pyramidal or OLM cells or the OLM-pyramidal cell subnetwork [3,6,14,15], can be 

organized by the shared external input, to generate robust rhythmic activity. While the 

observed oscillations had a wide-based spectral peak, the architecture of the hippocampus 

with multiple layers providing divergent projections from one to the next [57] can 

amplify this effect at each layer, resulting in a robust method for generating rhythms.  
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The role of pyramidal-interneuron sub-networks in oscillatory activity 

Computational models of theta generation emphasized the role of OLM cells, and 

in particular their h-current, in rhythm generation [3,6,14,15], but recent evidence has 

suggested a more modest h-current in OLM cells [7]. To reconcile these findings with 

computational models, we simulated the OLM-pyramidal cells sub-network with 

inactivated h-current (to take the recent findings to their extreme) but still observed theta 

generated through two other mechanisms. First, their slow inhibition can form a theta-

generating feedback loop with pyramidal cells (Fig. 17A-D) [14,15,20,58]. Second, OLM 

cells can generate theta by merely synchronizing the activity of the theta resonant 

pyramidal cells (Fig. 17A-D). Simulating this sub-network with an active h-current 

enhanced theta power as shown in previous models [3,15,75]. 

We propose considering these two mechanisms and the h-current as three distinct 

mechanisms in the OLM-pyramidal sub-network, probably operating simultaneously to 

maintain theta rhythmic activity. Another mechanism that is relevant to purely inhibitory 

networks is theta generated by a population of recurrently connected OLM cells sharing 

inhibitory input [14], but our model lacked the necessary OLM to OLM connections to 

test the presence of this mechanism.  

In the model pyramidal-BCs sub-network, two modifications were necessary to 

obtain oscillatory activity (Fig. 18A, B). The connection probability between the two cell 

populations had to be increased above our initial estimates, similar to previous modeling 

studies [15]. While this might be an issue of modeling at a lower scale compared to 

biology, it might suggest a lower participation of BCs in oscillatory activity, compared to 

OLM cells, since they send and receive relatively fewer connections to and from 
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pyramidal cells [63,64]. In addition, we show that increased connectivity was not 

sufficient by itself to produce oscillatory activity, but suppression of short-term synaptic 

depression, a cholinergic effect [76], was also required (Fig. 18B3, 4). 

While fast inhibition is associated with the generation of gamma oscillations 

[61,62,77], a prediction of the model is that the BC-pyramidal cell sub-network can also, 

indeed, support the generation of ~8 Hz rhythmic activity in states with active spike-

frequency adaption in pyramidal cells (Fig. 18). This behavior might be modulated in 

states where spike-frequency adaptation is suppressed [for e.g., by neuromodulation 78–

80]. We also observed an emerging peak around 17 Hz which might be a precursor to 

gamma-range oscillations when the network is subjected to sufficient background activity 

[65].  

Putting it all together 

Rhythmic oscillations in multiple frequency bands are associated with the functioning 

of most nervous systems, and are a topic of intense research. Underlying such oscillatory 

activity are complex interactions at multiple levels including individual neurons, local circuits, 

and neuronal systems. The multitude of generators and interactions amongst areas makes the 

system particularly difficult to investigate experimentally. We believe that our study 

contributes to the rapidly growing literature in neural oscillations. Specifically, we suggest how 

activity in any region could be studied as being comprised of three components, 

an intrinsic ability of the region to generate oscillations, a random non-rhythmic 

extrinsic component that coordinates oscillations generated intrinsically in the region, or/and a 

frequency-modulated rhythmic extrinsic component that specifically entrains neurons in the 

region to a particular frequency. This idea holds, in general, to both other forms of oscillations 
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and other brain regions. Moreover, it could be relevant to other biological phenomena 

involving oscillations.  

We suggested how the role of the intrinsic biophysical mechanisms in such 

complex oscillatory systems can be studied using a biologically realistic model. We 

devised a simple and experimentally practical approach through serial inactivation of 

individual rhythm generators across neuromodulatory states. This simplified approach 

yielded significant insights showing that different neuromodulatory states may engage 

different theta generators. Additionally, we showed that external input can have a 

prominent contribution to theta power in the hippocampus, but also that the hippocampus 

is not solely dependent on this external input being theta-modulated. 

The model makes five experimentally testable predictions. First, stimulation of 

EC in an in vitro preparation of the hippocampus is sufficient for generating oscillatory 

activity in CA3 even in states with diminished local synaptic transmission in CA3. 

Second, OLM cells can generate theta activity via at least two mechanisms: 

synchronizing pyramidal cells with a common inhibitory signal, and pacing theta activity 

through slow inhibitory feedback loops. Third, BCs reciprocally connected to pyramidal 

cells are capable of generating theta activity by virtue of spike frequency adaptation in 

pyramidal cells. Fourth, since the spiking oscillations demonstrated in model pyramidal 

cells relies on their ubiquitous spike-frequency adaptation, neuromodulators that affect 

this adaptation should significantly modify resonance characteristics in biological cells. 

Fifth, while impairment of any single theta generator might not disrupt rhythmic activity, 

conditions can be set up through neuromodulation to emphasize one generator over the 

others. For example, inactivation of OLM cells would have a larger effect in high 
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cholinergic states, while inactivation of recurrent connections would affect theta 

prominently in low cholinergic states. Modern tools, such as optogentics, with the ability 

to control specific pathways, would facilitate experimental testing of these predictions. 

 

Methods 

Single cell models 

The model cells in CA3 were pyramidal cells and two of the most abundant 

interneuron types, BCs and OLM cells [81]. The two types of interneurons are on 

extreme ends of many cellular attributes such as spiking patterns, inhibition dynamics 

and post-synaptic target compartments, and so their inclusion captures a wide range of 

interneuronal dynamics. The model cells in DG were granule cells, BC, and hilar 

perforant path-associated (HIPP) cells.  

Single cell models were developed using the Izhikevich formulation [39,82]. The 

equations for a model neuron were as follows: 
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where v is the membrane potential of the cell, u is a recovery variable, vt is the 

‘instantaneous threshold’ beyond which the cell will fire an action potential, vr is the 
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resting membrane potential, I is the current injection, k is a constant used to adjust the 

input resistance and rheobase, vpeak is the threshold above which a spike is deemed to 

have occurred and the membrane potential is reset, and a, b, c, and d are parameters used 

to tune the behavior of the system to model the neuro-computational properties of the 

desired cell. While the NEURON environment is typically used for Hodgkin-Huxley cell 

models, we developed a biophysical cell model in NEURON and implemented the 

Izhikevich formulation by adding a current modeled by the two equations. 

This formulation provides a reduced-order model that preserves many of the 

neuro-computational properties of more detailed biological models. We provide an 

overview below of how model neurons were developed to match salient features in 

electrophysiological recordings (Fig. 1), with parameters used listed in table 1. For CA3 

pyramidal cells, the resting membrane potential was set to -75 mV, spike threshold to -53 

mV, and peak action potential voltage to 29 mV [40]. The remaining cell model 

parameters were tuned to match responses to both long and brief current injections (Fig. 

1) [40]. Similarly, in developing the DG granule cells model, resting membrane potential, 

threshold, and peak action potential were set using data from Staley et al., [41] and the 

model was then tuned to match current injection responses (Fig. 1) [41]. Passive 

properties for the OLM model were estimated from Ali and Thompson [42], and the 

behavior of the cells was matched to current injection responses from the same study. In 

particular, we matched the spike frequency adaptation, the prominent slow after-

hyperpolarization potential (AHP), sag response, and rebound spikes (Fig. 1). For the BC 

model, membrane properties, current injection responses (Fig. 1), and finally current vs. 

firing rate relationship were matched to data reported in Buhl et al., [43]. Due to the 
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striking similarity of OLM and HIPP cells [83], we used the same model for both cell 

types. EC cells are known to display theta rhythmicity [31] . So, to examine the non-

rhythmic component of EC input and its interaction with the intrinsic generators of theta 

in the hippocampus, we excluded oscillatory dynamics in EC cells by using generic non-

adapting spiking cells [82].  

Despite the significant heterogeneity of neurophysiological values reported across 

studies, our model neurons preserve the most salient cellular features in relative terms. 

For example, OLM interneurons fire at a slower rate than basket cells [81], and CA3 

pyramidal cells burst more than granule cells of the dentate gyrus [84]. Such relative 

attributes of the cells are well-preserved in our model, irrespective of the particular set of 

neurophysiological values chosen. Other experimental data considered in developing the 

single cell models can be found in Hummos et al. [38]. Initial membrane potential values 

were drawn from a normal distribution with a mean equal to the resting membrane 

potential and a standard deviation of 10 mV. The h-current in pyramidal and OLM cells 

is known to have a role in theta generation [for review, see 2], so we added an additional 

slow current to our pyramidal and OLM cells tuned to match the subthreshold oscillations 

that the dynamics h-current produces [16]. The additional current equation took the form: 

	 ݄݀
ݐ݀
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where h is the h-current value, and ah, bh are parameters used to tune the behavior 

of the cell and took the values of 0.04 ms-1 and 10 for pyramidal cells and 0.03 ms-1 and 

3.5 for OLM cells. A reset parameters dh was added to the value of h each time the cell 
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spiked and took a value of 1 for both pyramidal and OLM cells. These values were 

chosen to match the subthreshold resonance reported in literature for these two cell types 

[16]. 

Network structure and connectivity 

The rat hippocampus contains approximately 1.6 million cells [85]. For 

computational efficiency and to maintain minimum model complexity, the numbers were 

scaled down while maintaining reported ratios [38], as in our previous models [86–89]. 

The model DG region had 384 granule cells, 32 BCs, and 32 HIPP interneurons, while 

the model CA3 region contained 63 pyramidal cells, 8 BCs, and 8 OLM cells [85,90–92]. 

The model EC region had 30 regular spiking cells. 

  The entorhinal cortex provides inputs to the hippocampus through the perforant 

pathway that projects to the entire hippocampal formation. The standard view describes a 

unidirectional connectivity with a direct path from EC to CA3 and an indirect path 

through DG (Fig. 12A, B) [57,93]. The perforant path projections follow a lamellar 

organization across the longitudinal axis of the hippocampus, as follows: Lateral and 

posterior parts of the EC are connected to the dorsal parts of CA3 and DG, while the 

more medial and anterior parts of EC project to the ventral parts of CA3 and DG [57]. 

This lamellar organization transitions gradually from one extreme to the other on the 

longitudinal axis of the hippocampus, and a single neuron in EC can project to about 25% 

of the longitudinal length of CA3 [57]. Projections from DG to CA3 also follow a similar 

longitudinal organization; however, these projections target a more limited longitudinal 

extent [57]. 
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Model cells were distributed uniformly in 3D space separated into the three 

regions, EC, DG, and CA3, with dimensions that approximate the respective dimensions 

of the rat hippocampus [38]. Projections from EC to both pyramidal cells and BCs in DG 

and CA3 followed a lamellar pattern where neurons were most likely to connect to 

neurons in of their longitudinal neighborhood with a decreasing probability towards the 

periphery. This spatial connectivity was modeled using a Gaussian connection probability 

function that depended on the longitudinal distance between the two connected cells. The 

Gaussian function had a peak probability of 0.4 and a standard deviation of 3 mm for the 

perforant path projections to both pyramidal cells and BCs in CA3. Perforant path 

projections to DG had similar values (see [38]). 

Similarly, the mossy fiber projections from DG to CA3 followed the same 

lamellar pattern but with a more limited longitudinal extent by setting the standard 

deviation of the Gaussian probability function to 2 mm. In addition, to preserve the 

sparseness of the mossy fiber connections from DG to CA3 [57], each DG granule cell 

was limited to contacting two CA3 pyramidal neurons. Projections from DG granule cells 

to CA3 BCs are more diffuse and out-number projections to CA3 pyramidal neurons by a 

ratio of 10:1 [94]. Accordingly, DG projections to BC followed a Gaussian distribution 

with a peak probability of 0.2 and standard deviation of 3 mm. Recurrent CA3 

connections reveal relatively more diffuse spatial organization [95,96], and were 

therefore distributed homogenously with a fixed probability of 0.3. 

  The dendritic projecting OLM cells are thought to be involved in feedback 

inhibitory loops [97] and while they have a more limited axonal arborization [98] they 

make many more synapses compared to BCs [63]. In contrast, BCs have a more diffuse 
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axonal arborization with the highest connection probability to pyramidal cells in their 

immediate neighborhood and a decreasing connection probability towards the periphery 

of their axonal arbors [63]. Similarly, BCs project to neighboring OLM cells [99]. As 

before, we used a Gaussian function to approximate these spatial probabilities. We also 

assumed that BC projections to both pyramidal cells and to OLM cells shared the same 

spatial domain (Remove statement or add to figures or explain why it did not contribute 

much?). In the reverse direction, OLMs receive reciprocal connections from the same 

pyramidal cells they projected to, in line with their function as local feedback cells [97]. 

On the other hand, granule cells in DG and pyramidal cells in CA3 projected 

homogenously to BCs with a fixed probability of 0.15, consistent with the lack of specific 

topography reported at these projections [100].  

The network was constructed by generating connections randomly between cells 

while maintaining the connection probabilities and spatial patterns of connectivity 

described above. The spatial connectivity patterns and parameter values are summarized 

in table 2 (also see [38]).  

Synaptic currents 

Synaptic currents were modeled using the kinetic model described in Destexhe et 

al. [101]. AMPA, NMDA, GABAA, and GABAB currents were modeled and their 

dynamics such as rise and decay time constants and delays were matched to available 

literature [38]. In particular, CA3 pyramidal cell AMPA currents were fastest for the 

mossy fiber inputs from DG and slowest for perforant path inputs from EC, while 

recurrent CA3 inputs from other pyramidal cells had intermediate values [48,102], as 
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summarized in table 2. Additionally, inhibitory currents from OLM had slower dynamics 

compared to those from BC (Table 2) [99,103].  

Synaptic weights were assigned in accordance with literature where available. 

The mossy fiber synapses were adjusted so that a train of spikes arriving at the synapse 

could cause a CA3 pyramidal cell to fire while a single spike could not [109]. Recurrent 

CA3 connections were assigned a low initial weight, as an approximation of data 

showing that the transmission of action potentials had a probability of 4% at those 

synapses [110]. Synapses from CA3 pyramidal cells to interneurons were set at a higher 

level to reflect the fact that action potential transmission occurs at a ~60% success rate 

[111,112]. Connections between granule cells and DG interneurons were adjusted to 

achieve sparse DG firing [113]. Synapses had initial weights chosen from a uniform 

random distribution of values between 50% and 100% of the assigned weight value. All 

associated equations and parameter values are described in Hummos et al. [38]. 

Activity-dependent plasticity 

For this study, long-term plasticity was excluded from the synapses. Model 

synapses, however, exhibited short-term synaptic plasticity that used the formulation 

proposed by Varela et al. [114]. We modeled the pronounced short-term facilitation at 

mossy fibers [45] and the frequency-dependent synaptic depression reported at the 

recurrent CA3 connections [Fig. 13D-I; ,48]. We extrapolated from data in CA1 where 

projections from pyramidal cells display short-term facilitation at synapses contacting 

OLM cells [42], and short-term depression at those contacting BC cells [46]. In the other 

direction, inhibitory currents from OLM cells to pyramidal cells show no short-term 

facilitation or depression [97], while inhibitory currents from BCs to pyramidal cells 
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show depression [47]. Model traces are compared with available experimental recordings 

in figure 12. Additional details and equations related to the implementation of short-term 

synaptic plasticity can be found in Hummos et al [38]. 

Acetylcholine effects  

The hippocampus receives widespread volume transmission of cholinergic inputs 

from the septum-diagonal band complex [115]. To implement the effects of ACh on 

model neurons and synapses, we used a variable ‘ACh’ to represent the ACh state. The 

variable ACh had values of 0 (low), 1 (baseline), and 2 (high). 

  Cholinergic stimulation has differential effects on synaptic transmission of 

different pathways in the hippocampus [116]. Synaptic transmission through the 

perforant pathway projections to CA3 is suppressed by 50%, compared to a suppression 

by 85% at the recurrent connections in CA3 [107,117]. On the other hand, the mossy 

fibers transmission is enhanced by 49% [118]. To model ACh effects on synapses, 

AMPA synaptic currents were scaled by the value of ACh. A parameter bACh 

determined the direction and magnitude of ACh effects on a particular synapse. Values of 

bACh for different synapses were set according to experimental results as summarized in 

table 2 (also see Hummos et al. [38]). 

In addition to the synapse specific effects, cholinergic stimulation enhanced 

cellular excitability and depolarized the resting membrane potential of principal cells, 

eliminated AHP, decreased spike frequency adaptation and induced rhythmic burst 

activity [78,79]. Furthermore, effects on interneurons were subtype-dependent [119,120]. 

Muscarinic stimulation of OLM interneurons depolarized the resting membrane potential, 

and lowered both spike frequency adaptation and AHP [121]. In contrast, PV-BCs 
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respond to muscarinic receptor activation with a limited depolarization in resting 

membrane potential [122,123]. Effects of ACh on neurons were modeled by linearly 

scaling the neuronal model parameters by the ACh state as detailed in Hummos et al. (see 

fig. S4 in [38]). Considering the slow dynamics of ACh effects [onset time constant 

approximated between 1 and 2 s; ,124], ACh state was set to a given value at the 

beginning of each experiment and had no dynamics. 

Inputs and data analysis 

For the full model and sub-circuit cases considered, either EC cells or CA3 

pyramidal cells (identified in the figures) received external input as trains of Poisson-

distributed spikes, triggering an influx of AMPA and NMDA currents into the cell. We 

studied two model cases: one with external input arriving at EC, and the other with input 

arriving directly at CA3 pyramidal cells. The two types of inputs differed in the weight of 

the associated input synapses, and the base rate of the Poisson spike trains arriving at 

these synapses. Input to EC arrived at synapses with a 100% spike transmission rate to 

ensure that EC firing pattern was dictated by the Poisson input, whereas input to CA3 

pyramidal cells had a lower weight value with parameters matching the EC to CA3 

synapses (Table 2). 

To determine the base rates of the Poisson processes generating these input trains, 

we considered place cells in CA3. Place cells respond to certain areas in the environment 

and their firing rates approximate a lognormal distribution [44] with an average of ~7 Hz 

[125]. In our model case where external inputs arrived at EC, each EC cell received a 

unique train of Poisson input spikes at a base rate of 15 Hz, which produced firing rates 

in CA3 pyramidal cells with a lognormal distribution and an average of 7 Hz (Fig. 12C1). 
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In the model case where external inputs arrived directly to CA3 pyramidal cells, the input 

rates to different cells had to be drawn from a lognormal distribution (average: 50 Hz, 

standard deviation: 40 Hz), to produce firing rates with a lognormal distribution (Fig. 

12C2) that matched experimental data. 

For spectral analysis, we summed the spikes of all cells of each type in a region 

(e.g., CA3 pyramidal cells) in 0.1 ms bins and computed the fast-Fourier transform of the 

resulting vector, using the Matlab function psautospk.m [126], with a moving window of 

size 1024 ms, and overlap of 512 ms. Spike data was used in spectral calculations as a 

proxy for LFP as used in network models [e.g., 127–129], with the assumption that these 

spikes are received by a downstream local neuron and translated into membrane currents 

that generate an LFP signal.  

The coherence measure used was implemented as described by Wang and 

Buzsaki [72]. Briefly, the coherence measure reflects synchrony between the spike trains 

of two neurons (two spikes are synchronous if occurring within 5 ms of each other). The 

population coherence is the average coherence across all neuron pairs to give a measure 

between zero (minimum synchrony) and one (maximum network synchrony). Oscillatory 

activity tends to synchronize the network making coherence a good measure of 

oscillations. 

  The model was developed using the NEURON software package [130] and run on 

a PC with an Intel i7-core processor with an integration time-step of 0.1 ms (key results 

were also verified with a time-step of 0.01 ms). The code is available as part of our 

previous publication via the public database ModelDB at Yale University. The recorded 

spike times were then analyzed using MATLAB (Mathworks, Inc.). All simulations ran 
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for 5 seconds except for the experiment in figure 14, where single neuron spike data was 

analyzed over a 30 second period. 
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Tables 

 

Table 1: Model cells parameter values 

a for the burst response to brief current pulse, c was -53  

b for OLM interneurons, c and vpeak were dependent on the recovery variable u, where c 

was incremented by (10 * u) and vpeak was decremented by (30 * u) to produce the 

stereotypical shape of OLM firing. 

 

Table 2: Summary of synaptic properties used in the CA3 network model. 

 EC input Recurrent Pyr to 

OLM 

Pyr to BC OLM to 

pyr 

BC to pyr 

Spatial 

connectivity 

Diffuse 

[57] 

Homogenous 

[96]  

Reciprocal 

[97]  

Homogenous 

[100]  

Dense, 

compact 

[102]  

Light, 

diffuse 

[98] 

Parameters 

Cell types 

C 

(pF) 

k a 

(1/ms) 

b c 

(mV) 

d  vr 

(mV) 

vt 

(mV) 

vpeak 

(mV) 

CA3 pyr 24 1.5 0.01 2 -63 a 60 -75 -58 29 

GC 24 1 0.015 3 -62 3 -73 -53 32 

O-LM 80 1.5 0.003 10 -65 b 30 -68 -53 30 b 

BC 16 1.5 0.9 2 -80 400 -65 -50 28 
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Synaptic Delay 

(ms) 

5 

[104,105] 

2 [48] 0.9 [103] 0.9 [103] 0.8 [103] 0.8 [103] 

AMPA or 

GABAA 

rise/decay time 

constants (ms) 

1.7/10.9 

[102] a 

1.1/5 [48] 0.27/0.57 

[103] 

0.27/0.57 

[103] 

2.8/20.8 

[99] a 

0.21/3.3 

[99] a 

NMDA or 

GABAB 

rise/decay time 

constants (ms) 

25/300 

[102]  

25/300 [102] 25/150 

[102,106] 

25/150 

[102,106] 

11.1/125 

[101] 

11.1/125 

[101] 

Weight 2 0.4 3 3 3 3 

Short-term 

synaptic 

plasticity 

None Depressing 

[48] 

Facilitating 

[46] 

Depressing 

[46]  

None Depressing 

[47] 

bACh -0.5[107] -0.85 [107]  None None None -0.5 [108] 

 

bACh: a unit-less value determining the direction and magnitude of ACh effects on 

synapses (see Methods) 

a We calculated the rise time constant from the reported 20-80% rise time or 10-90% rise 

time, see Hummos et al. [38]. 

 

Figures 
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Figure 12: Network synaptic connections, titration of external input synapses, and the 

dynamics of short-term plasticity.  

A) Schematic showing the full model. Abbreviations: Pyr, pyramidal cells; OLM, oriens-

lacunosum moleculare cells; BC, basket cells; EC, Entorhinal cortex; DG, dentate gyrus. 

B) In vivo distribution of CA3 place cells firing rates as the rat crossed their place field. 

Reproduced from [44]. C1) The distribution of CA3 pyramidal cells firing rates in the 

model case where random trains of synaptic inputs arrived at EC cells at a base rate of 15 

Hz. C2) The distribution of CA3 pyramidal cells firing rates in the model case where 

random trains of synaptic inputs arrived at CA3 pyramidal cells at base rates drawn from 

a lognormal distribution with an average of 50 Hz and a standard deviation of 40 Hz. D-I: 
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Synaptic model responses match those in experimental recordings. D) Mossy fiber 

synaptic facilitation [45]. (Scale bars: 50 ms, 100 pA). Parameter values used to 

reproduce data are listed in Hummos et al. [38].  E) CA3 Pyramidal cell to OLM 

interneuron [42]. (Scale bars: 20 ms, 1 mV). F) CA3 Pyramidal cell to BC interneuron 

[46]. (Scale bars: 30 ms, 0.5 mV). G) BC interneuron to CA3 pyramidal cell [47]. (Scale 

bars: 50 ms, 100 pA). H, I) Recurrent CA3 connections stimulated at 50 Hz, and 20 Hz, 

respectively [48]. Note that these connections displayed paired pulse facilitation, a 

phenomenon not included in our synapse model. Therefore, responses to the first stimulus 

in the train appear larger than in the recordings. (Scale bars: 20 ms, 0.5 mV in E; 50 ms, 

0.5 mV in F). 

 

 

 

Figure 13 Model network displayed theta rhythmicity.  

External inputs arrived at EC cells in the form of Poisson spikes with a base rate of 15 

Hz, chosen to reproduce place cells firing rates (see Methods). A) Network schematic 
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showing the entire model. External input represented by box with random spike trains. 

B1) Spike raster plot from an example instantiation of the network. B2) Population firing 

rate calculated using a 20 ms sliding window and B3, 4) two membrane potential traces 

of neurons from the same network instantiation. C) The population power spectrum of 

CA3 pyramidal cells averaged from 10 network instantiations showing a peak at around 6 

Hz. We sampled spike counts from the cell types considered, in 0.1 ms bins, and 

calculated the Fourier transform of the resulting vector, using a window length of 1024 

ms. Shaded areas represent SD. D) Power spectra from four populations of cells in the 

model showed a peak around 6 Hz: (D1) OLM cells, (D2) BCs, (D3) EC, and (D4) DG. 

 

Figure 14 Disconnected pyramidal cells show theta spiking oscillations.  

A) Schematic of this experiment with isolated pyramidal cells each receiving a unique 

train of Poisson spikes with base rates derived from a lognormal distribution (mean 50 Hz 

SD 40 Hz, chosen to reproduce place cells firing rates). B1) Spike raster plot of 

pyramidal cells showing grossly random firing. B2) Population firing rate calculated 

using a 20 ms sliding window. B3, 4) Example membrane voltage traces from two 

neurons. C1) The power spectrum of the spiking activity of pyramidal cells as a 
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population showing a peak at 8 Hz. C2) the spike-triggered average of the ‘u’ current of 

the Izhikevich model that captures the spike-frequency adaptation of the cells. C3) The 

inter-spike interval distribution of pyramidal cells. D) Same as in C, but with the time-

constant of adaptation lowered from 100 ms to 25 ms, resulting in a power spectrum peak 

at 17 Hz, to demonstrate the relationship between the spiking oscillations, adaptation 

current, and the spiking dynamics of pyramidal cells. 

 

 

 

Figure 15 Divergent projections from EC to CA3 produced theta oscillations. 

A) Schematic of this experiment where the only active connections were the projections 

from EC to CA3 pyramidal cells. Model EC neurons lacked any rhythmicity and on 

average, each EC neuron projected to about 20% of CA3 pyramidal cells (see Methods). 

B1) Spike raster plot and (B2) population firing rate from one example network. C) The 

population power spectrum of CA3 pyramidal cells averaged over 10 network 

instantiations showed a wide based peak in the theta band centered around 9 Hz. D) 

Pairwise coherence between pyramidal cells is inversely related to the distance separating 

them (dashed black line), but this relationship is lost when EC neurons were connected to 

pyramidal cells randomly irrespective of the longitudinal distance (solid red line). 
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Figure 16 Recurrent connections produced theta oscillations.  

A) Schematic of the minimal network used for this experiment with only pyramidal cells 

and the synapses connecting them. B1) Spike raster plot and (B2) population firing rate 

from one example network. Note that in this sub-circuit, the oscillations are easier to 

identify visually in the firing rate plot. C) The population power spectrum of CA3 

pyramidal cells averaged over 10 network instantiations shows a peak at 8 Hz. 
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Figure 17 Pyramidal-OLM cells network generates theta through two mechanisms. 

A) Schematic showing the pyramidal-OLM cells network with weak pyramidal to OLM 

synapses (weight set to 2), used in panels B-D. B) Spike raster plot of OLM spikes (B1). 

The OLM inhibitory currents received by one example pyramidal cell (B2). Note that 

inhibitory currents occur at a frequency much lower than theta. Spike raster plot of 

pyramidal cells spikes (B3). C) The population power spectrum of OLM cells (C1), and 

pyramidal cells (C2). Spectrum averaged from 10 instantiations of the network, shaded 

areas represent SD. D1) The pyramidal cell spike-triggered average of the adaptation 

current (dashed red line) and received OLM inhibition (solid blue line). Note that OLM 

inhibition showed a poor association with pyramidal cells spikes. D2) the inter-spike 

interval distribution of pyramidal cells remains largely unchanged from freely spiking 

pyramidal cells (compare with Fig. 14C3). E) Schematic showing the network with 
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strong pyramidal to OLM synapses (weight set to 6), used in panels F-H. F1) Spike raster 

plot of OLM spikes. F2) The OLM inhibitory currents received by one example 

pyramidal cell. F3) Spike raster plot of pyramidal cells spikes. G) The population power 

spectrum of OLM cells (G1), and pyramidal cells (G2). H) The pyramidal cell spike-

triggered average (H1) of the adaptation current (dashed red line) and received OLM 

inhibition (solid blue line). Note the close association between OLM inhibition and 

pyramidal cells spikes. Note that OLM inhibition changes the distribution of the 

pyramidal cells inter-spike intervals (H2), creating a peak around 110 ms. Power 

spectrum peaks: C1,2: 6 Hz. G1,2: 8 Hz. 

 

 

 

Figure 18 The role of BCs in theta rhythm generation. 
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A) Schematic of this network with only pyramidal and basket cells active. B) In the 

original state, the sub-network failed to generate a significant spectral peak (B1, beyond 

the small theta peak expected from isolated pyramidal cells activity, see Fig. 14). 

Oscillations remained absent after either removing short-term depression (B2) or 

doubling connection probability in both directions (B3). Both interventions were 

necessary to produce robust oscillatory activity (B4). C) Schematic of the network with 

strong pyramidal to basket cells synapses (weight set to 6), used in panels D-F. Note that 

short-term depression remained inactivated, and connectivity doubled for this experiment 

as well. D) Spike raster plot of BC spikes (D1). The BC inhibitory currents received by 

one example pyramidal cell (D2). The spike raster plot of pyramidal cells spikes (D3). E) 

The population power spectrum of BCs (E1), and pyramidal cells (E2), arrow pointing to 

a small emerging 18 Hz peak. F) The pyramidal cell spike-triggered average (F1) of the 

adaptation current (dashed red line) and received BC inhibition (solid blue line). Note the 

BC inhibitory current peaking sharply and then decaying back to average around 40 ms. 

F2) The inter-spike interval distribution of pyramidal cells. Power spectrum peaks: B1-3: 

8 Hz. B4: 8 Hz, 18 Hz. E1: 6 Hz, 23 Hz. E2: 6 Hz, 18 Hz. 
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Figure 19  Relative contributions of individual theta generators across cholinergic states. 

A) Starting with the full EC and CA3 circuits we inactivated each individual generator 

and observed the changes in relative theta power (power in the 4 to 12 Hz range divided 

by the entire spectrum 0 to 250 Hz). To normalize, all values were divided by the relative 

theta power in the full model. Error bars indicate SD. B) The effects of inactivating 

individual generators in the low cholinergic state, and C) high cholinergic state. D) In the 

recurrent connections sub-network (D1), relative theta power decreased with higher 

cholinergic states (D2). A breakdown of cholinergic effects (D3) revealed that this was 

mainly mediated by the cholinergic suppression of the recurrent connection transmission 

(RC suppression) in addition to the cholinergic depolarization of pyramidal cells (Pyr 

depolarize). ACh in increments of 0.1. E) Schematic of the OLM-pyramidal cells 
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network (E1). Relative theta increased with cholinergic state (E2) and a breakdown of 

cholinergic effects (E3) shows that cholinergic suppression of spike-frequency adaptation 

in OLM cells (OLM adaptation), and OLM cells depolarization (OLM depolarize) 

enhanced theta power in the network. In addition, the cholinergic pyramidal cells 

depolarization (Pyr depolarize) and enhanced burstiness (Pyr burstiness, lower c and d 

parameters of Izhikevitch model) enhanced theta in this network with a steeper slope. 

These effects were associated with enhanced OLM cells firing rates (E4). 
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CHAPTER 4: Interplay of resonant and synchronizing generators in a 

hippocampal theta model 

 

Ali Hummos, PhD student1, Satish S. Nair, Professor1, 2 
1 Informatics Institute, 2 Department of Electrical & Computer Engineering, University of 

Missouri, Columbia, Missouri. 
 

Abstract  

Rhythmic activity characterizes neuronal processing in multiple brain areas. Study of 

rhythms indicate the involvement of a multitude of rhythm generators, likely through a 

variety of mechanisms. Considering the multitude of involved mechanisms in rhythm 

generation, inactivation of circuit components can produce complex and unpredictable 

results. We use computational modeling to examine interaction between circuit 

components that participate in rhythm generation. We distinguish between resonant 

components and synchronizing components and demonstrate that this categorization 

permits predicting the rules of which components can interfere with one another and 

which can substitute for one another. Resonant mechanisms inherently produce rhythmic 

signals as a product of their dynamics and include spike-frequency adaptation, slow 

inhibition, rhythmic external input, and slow neuronal currents. Synchronizing 

mechanisms promote coordinated activity and include inhibitory feedback, non-rhythmic 

external input, and recurrent excitatory connections. Some circuit components can 

provide both resonance and synchronization. We found the most robust rhythm 

generation to require at least one resonant component and one synchronizing component. 

We found that pyramidal cells adaptation can interfere with theta produced by slow 

inhibition, and fast inhibition can either substitute for or interfere with rhythm generation 
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by slow inhibition, depending on the cholinergic state. These results begin to shed light 

on the conflicting evidence produced by studies inactivating circuit components, and also 

predicts circuit states where inactivating a component known to participate in rhythm 

generation might paradoxically enhance rhythmic activity. We conclude that effects of 

component inactivation can only be predicted in the context of what other components 

are present and on the neuromodulatory state of the circuit. 

 

Introduction 

The hippocampus is a well-studied and easily accessible part of the brain with a wealth of 

physiological data and computational models. It displays a prominent slow rhythmic 

activity in the theta band (4-12 Hz) (Vanderwolf, 1969). In rodents, evidence points to a 

hippocampal role in navigation, both spatial (O’Keefe and Dostrovsky, 1971) and 

temporal (Pastalkova et al., 2008; MacDonald et al., 2011), but also in encoding and 

retrieval of episodic-like memories (Steckler et al., 1998; Mumby et al., 2002; Eacott and 

Norman, 2004; Fortin et al., 2004). 

The hippocampal theta rhythm is understood to be generated intrinsically, through a 

number of mechanisms (Kocsis et al., 1999; Buzsáki, 2002; Hummos and Nair, 2017), 

and also entrained from external input. Theta oscillations can be driven by medial septal 

and entorhinal cortex input in vivo, as found in experiments that inactivated the external 

input altogether, i.e., both its non-rhythmic and its rhythmic components (Petsche et al., 

1962; Brazhnik and Vinogradova, 1986; Stewart and Fox, 1990; Vinogradova, 1995; 

Boyce et al., 2016). While multiple mechanisms are suspected, biological and theoretical 

studies of hippocampal oscillations have typically focused on individual intrinsic 
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oscillatory mechanisms, and the individual contributions of the multiple intrinsic 

mechanisms to theta activity are not well understood. 

The rise of optogentic tools, and detailed realistic computer models, popularized 

inactivation studies that aim to ‘dissect’ rhythm generating circuits in the hippocampus, 

by inactivating one component at a time and observing changes rhythmic activity. While 

these studies generated multiple insights, divergent findings have been reported (Table 

1). For instance, despite in vitro reports of a role for the slow inhibition from oriens-

lacunosum moleculare cells (OLM cells) in theta generation (Pouille and Scanziani, 

2004; Gloveli et al., 2005), in vivo optogentic inactivation of slow and fast inhibitory 

cells (OLM, and BC) revealed no role in ongoing theta activity (Royer et al., 2012). 

However, an in vitro study showed no role for OLM cells but rather inactivation of BCs 

severely attenuated theta activity (Amilhon et al., 2015). Nagode and colleagues (2014), 

on the other hand, found no effect from inactivating BCs on CA1 theta activity, but a 

reduction in CA3 gamma activity. A highly detailed model of CA1 region confirmed 

attenuation of theta with BCs inactivation but found no contribution from OLM cells 

(Bezaire et al., 2016). Computational models have suggested a contribution to 

hippocampal theta from intrinsic membrane conductances such as the spike-frequency 

adaptation currents (Crook et al., 1998; Fuhrmann et al., 2002; Hu et al., 2002; Gigante et 

al., 2007; Augustin et al., 2013), or the h-current (Gloveli et al., 2005; Rotstein et al., 

2005; Orbán et al., 2006; Zemankovics et al., 2010; Neymotin et al., 2013a; Rotstein, 

2015). Spike-frequency adaptation currents remain difficult to inactivate experimentally, 

while a genetic knockout of the h-current (HCN1 channels) did not disrupt theta (Nolan 

et al., 2004; Giocomo et al., 2011). 
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These inconsistent results highlight the need for a deeper understanding of how the 

multiple mechanisms of theta interact. We used our previously developed model, that 

showed a multitude of interacting theta generators, to discover more specific rules that 

govern how the generators might substitute for others in some cases, and under what 

conditions. For this, we suggest that the approach should distinguish between network 

components that generate oscillatory resonance from those that synchronize neuronal 

activity (Table 2). By considering this distinction, we were able to better describe the 

effects of inactivating one component, in the presence of other components, and to 

describe several minimal circuits for robust rhythm generation. We also found that theta 

generators can also compete and interfere with each other, and the model predicts 

conditions under which inactivation of one theta generator can paradoxically enhance the 

power of ongoing theta activity. 

 

Results 

We used our previously published computational model of the hippocampal CA3 

network that included pyramidal, OLM, and basket cells, modeled using the Izhikevich 

formulation (Izhikevich, 2003), with cellular characteristics matched to physiological 

data. The model had synapses with realistic dynamics and short-term plasticity. 

Physiologically recorded place cells showed firing rates that were lognormally distributed 

(Mizuseki and Buzsáki, 2013), so our model pyramidal cells received Poisson inputs at 

rates drawn from a lognormal distribution, to match physiological firing patterns. The 

model reproduced the physiological aspects of theta rhythmic activity in the hippocampus 

(Mizuseki et al., 2012; Mizuseki and Buzsáki, 2013). 
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In the present study, we inactivated components of the circuit individually or in 

combination, to discern their effect on the theta rhythm.  Expectedly, these inactivation 

runs led to variations in firing rates. To allow for an interpretable comparison of spectral 

power peaks across experimental conditions, we added a constant current injection to 

each cell to bias their activity level. The amplitude of these current injections was 

adjusted across experiments to maintain a realistic average firing rate for pyramidal cells 

as a population, keeping it within the reported 7 Hz reported for place cell activity in vivo 

(Mizuseki and Buzsáki, 2013). The application of a bias current maintained the 

lognormal distribution of firing rates and we only matched the average firing rate for the 

population (see Methods, current injection values are given in figure legends).  

In examining as many potential network components involved in rhythm generation, we 

found it useful to describe components as either resonance generators or synchronizing 

mechanisms. This distinction has parallels with current understanding of rhythmic 

activity generation in a single neuron where neuronal currents are categorized into 

resonant and amplifying currents. Another helpful distinction between ‘resonance 

generators’ and ‘current generators’ was previously considered in literature (Buzsáki, 

2002). 

OLMs and slow currents in pyramidal cells are the resonant mechanisms in CA3 

To identify the resonant components of our model, we began with isolated pyramidal 

cells, with their slow currents (adaptation and h-current) inactivated. Pyramidal cells also 

received unique Poisson input and had no correlations in their external input. We then ran 

simulations with only one model component activated including the recurrent 

connections, BCs, non-rhythmic correlated external input from EC, OLM cells, and 
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pyramidal cells slow currents. The results showed that only OLM cells and the pyramidal 

cells slow currents produced a peak in theta range (Fig. 21), indicating that the two 

components are the resonant components in this network. Recurrent connections, and 

input from EC enhanced power in the delta range (2-6 Hz). 

 

Resonant mechanisms can substitute for or compete with one another 

Resonant mechanisms are defined as network components possessing dynamics 

consistent with rhythmic activity at certain frequencies.  It follows from this definition 

that one resonant mechanism, at a minimum, is critical for the generation of oscillatory 

activity in the corresponding oscillatory band. To test this hypothesis in our model, we 

considered that the OLM-pyramidal cells loop and the slow currents in pyramidal cells 

(adaptation and h-current) are the only two active resonant mechanisms.  

We ran experiments with four combinations of model components. First, the full model 

with all components of the CA3 network active. Second, we inactivated OLM cells 

(denoted “-OLM”), and third we activated OLM cells back on again and inactivated slow 

currents in pyramidal cells (denoted “-sPYR”), through decreasing the time constant of 

the adaptation current to 10 ms (from 100 ms), and removing the h-current. The last 

experiment was to inactivate both OLM cells and slow currents together (denoted “-

Both”). Power spectra of these experiments showed that the presence of either resonant 

mechanisms, OLM-pyramidal cells or slow current, was sufficient to produce theta 

rhythmic activity, whereas inactivating both abolished all theta activity (Fig. 22B). These 

results are made more evident by calculating the relative power in the theta band (Fig. 

22C, power in the 4-12 Hz range divided by power in the 0-50 Hz range). The firing rate 
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was kept within 0.5 Hz of the physiologically reported value of 7 Hz (Fig. 22D, see 

Methods).  

In this experiment other synchronizing mechanisms of theta remained intact, such as the 

recurrent connections and the reciprocal inhibition to BCs. But in the absence of any 

resonant mechanisms rhythm generation fails. This suggests a rule of a minimum of one 

resonant mechanism to generate rhythms.  An interesting interaction observed indicated 

that pyramidal cells slow currents has the potential to compete with OLM-pyramidal cell 

ability to generate rhythmic activity. The observation that theta power increases with the 

activation of pyramidal cells slow currents indicates potential interference between 

resonating mechanisms (Fig. 22B, C) 

Cholinergic states separate resonant mechanisms functionally, and reduce interference. 

We found that there is a potential for interference between the two resonant mechanisms 

in our model. Our previous findings indicated that different cholinergic states engage 

different theta mechanisms (Hummos and Nair, 2017), accordingly, we theorized that by 

functionally separating the two mechanisms, cholinergic modulation might reduce the 

interference between the two resonant mechanisms. 

For this experiment, we performed the four experimental conditions (full model, OLM 

inactivated, slow currents inactivated, both inactivated) in three cholinergic states, low, 

med, and high (by setting the ACh variable to 0, 1, and 2 respectively, see Methods). 

Examination of relative theta power in these conditions revealed that in the extremes of 

cholinergic modulation (low and high), the pattern of slow currents interfering with OLM 

generated theta disappeared (Fig. 23). 
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Interactions between slow and fast inhibitory cells in theta generation 

We next considered interactions between interneuronal subtypes in theta generation 

across cholinergic states. We examined the OLM-pyramidal cells and the BC-pyramidal 

cells subnetworks and ran experiments with other synchronizing mechanisms inactivated 

(recurrent connections were inactivated, and non-rhythmic external input was substituted 

with direct Poisson inputs to pyramidal cells).  

In the baseline cholinergic state, both mechanisms appeared to have an additive effect on 

producing theta spectral peak. Inactivating either subtype of interneurons produced a 

moderate drop in theta power. We have previously shown that the OLM-pyramidal cells 

subnetwork becomes increasingly engaged in theta generation in high cholinergic states 

(Hummos and Nair, 2017). Here we observed that at increasing cholinergic levels, OLM-

pyramidal subnetwork is becoming more engaged in generating higher levels of theta 

power, meanwhile, BCs effects remained the same. In high cholinergic states, 

interestingly, BCs began to interfere with the theta activity generated through the OLM-

pyramidal subnetwork, and their inactivation increased rhythmic power in the theta range 

(Fig. 24). A similar analysis with a circuit including the recurrent connections and basket 

cells revealed little interaction between the two synchronizing mechanisms (Fig. 25). 

Specifically, recurrent connections appeared to have the most significant role in lower 

cholinergic states, while BCs had a consistent role with little change across cholinergic 

states. 

Discussion 

We used our previously developed model of the hippocampal CA3 to provide in-depth 

concepts to assimilate what is known about hippocampal theta generation, in a well-
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grounded conceptual framework. Our study shows a complex interaction between theta 

generators. The effects of inactivating one theta component can be complex and 

dependent on other generators present and on neuromodulatory states.  

Multiple interacting mechanisms 

Comprehensive models have been developed recently allowing the examination of a 

number of these generators in one model (Neymotin et al., 2013a; Bezaire et al., 2016; 

Ferguson et al., 2017; Hummos and Nair, 2017). We here used our biologically realistic 

model, with many theta generating components, to show that theta generators act to 

provide a context in which inactivation of one component can be interpreted. Inactivation 

of on component can have no effect, reduce or even enhance rhythmic activity, 

depending on which other components are active. Our previous study showed that results 

of component inactivation can also depend strongly cholinergic neuromodulation 

(Hummos and Nair, 2017). Here we also extend these results to show a complex 

interaction between the component inactivated, other active components, in addition to 

the cholinergic state, to determine the effects of inactivation on the power spectrum. 

These insights can be used to interpret results from experiments. For example, our results 

are consistent with findings by Royer et al., where optogentic inactivation of either BCs 

or OLM did not impact theta generation significantly. As far as can be gleaned from their 

Methods, the animals were not exposed to any novel stimuli or environments during 

testing, and because cholinergic modulation is tied to novelty (Miranda et al., 2000; 

Giovannini et al., 2001), one can assume a low cholinergic state in this study. Their 

results are consistent with our inactivation results, where, in low cholinergic states, BCs 

and OLMs were able to compensate for one another to generate theta (Fig. 24A). 
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However, our model predicts that in a high cholinergic state, the same experiment could 

show a dramatic drop in theta with OLM inactivation, and an increase in theta power with 

BCs inactivation (Fig. 24C); this remains to be shown in experiments. 

Resonant and synchronizing mechanisms act in concert to generate rhythms 

We here provide a broad stroke conceptualization by distinguishing between resonant 

mechanisms and synchronizing mechanisms. We note another distinction between 

‘resonance generators’, and ‘current generators’ suggested by Buzsaki (2002). BCs have 

recently been shown in a computational model to be significant current generators, even 

if not directly involved in rhythm generation (Neymotin et al., 2013b). 

Parallels can be seen between this conceptual division and the requirements for 

generating subthreshold membrane oscillations in a single cell. Individual neurons were 

described to require at least one resonant current and at least one amplifying current to 

display significant membrane oscillations (Hutcheon et al., 2000). 

Recently another comprehensive model of CA1 showed that theta power was sensitive to 

silencing several of the interneuronal cell types including silencing PV+ BCs, CCK+ 

BCs, neurogliaform, bistratified, and axo-axonic cells (Bezaire et al., 2016). Our work 

suggests that almost any interneuronal population, if reciprocally connected to pyramidal 

cells, can participate in rhythm generation, as a synchronizing component. The sensitivity 

of the theta rhythm in that study to the inactivation of as many types of interneurons 

might be related to changes in the levels of network excitability, as the study indicates 

theta was sensitive to level of excitation. A contribution of our study was to examine 

effects of inactivating interneurons while maintaining excitation levels within 

physiological limits. We provided pyramidal cells with a constant current injection to 



 112

offset the effects of inactivating inhibitory interneurons on level of excitation. Isolating 

effect of interneurons on excitation level, revealed their role in rhythm generation by 

acting as synchronizing mechanisms.  

Most interneuronal types are capable of participating in theta rhythm generation, 

including OLM cells. We here emphasized the role of the OLM-pyramidal cells sub-

network in providing resonance in theta frequency, however OLM cells also do 

participate, as do many interneurons, as a synchronizing mechanism. 

Fast spiking basket cells as synchronizing component for theta generation 

Inhibition by fast spiking basket cells, which tightly controls the timing of pyramidal 

cells firing, was proposed to play a role in theta generation (Buzsaki 2002), but later 

studies focused on the role of the pyramidal-basket cells sub-network as a generator of 

gamma power (for review, see Buzsáki and Wang, 2012). However, recent experimental 

and computational findings have highlighted a role for basket cells in the generation of 

theta activity. Inactivation of PV+ basket cells diminished theta activity in an intact 

hippocampus preparation (Amilhon et al., 2015), and in a detailed computational model 

of CA1 (Bezaire et al., 2016), and a minimal circuit with pyramidal cells and BCs was 

found sufficient to produce theta activity (Stark et al., 2013; Ferguson et al., 2017; 

Hummos and Nair, 2017). 

Two more recent modeling studies, Hummos et al. (2017) and Ferguson et al. (2017), 

demonstrated a role for BCs in synchronizing a population of excitatory pyramidal cells 

to generate theta activity. In these models, pyramidal cells had spike frequency adaptation 

matched to experimental data, and generated theta spiking oscillations, i.e. a 

predominance of theta interval spikes in pyramidal cells (ISI peak ~ 90 ms), robustly at a 
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wide range of input levels  (Hummos and Nair, 2017). Through reciprocal connections, 

BCs synchronize these theta spikes. Intuitively, we theorize that BCs can synchronize 

pyramidal cells spikes to a degree where BCs themselves begins to receive increasingly 

synchronized excitation from pyramidal cells, and in turn provides theta rhythmic 

inhibition, thus amplifying the rhythmic activity. This mechanism is relatively 

independent of the specific properties of BCs or their connections to pyramidal cells, but 

is rather a general property of pyramidal-interneuronal interactions. Considering that 

pyramidal cells have both subthreshold and spiking oscillations in the theta range, any 

common input might add sufficient synchrony in their activity to create more coherent 

rhythmic activity (Cobb et al., 1995). This common input can come from any type of 

inhibitory cells reciprocally connected to pyramidal cells, independent from the specific 

dynamics of the inhibitory cells or their inhibitory current, although faster inhibitory 

currents might control pyramidal cells spiking with higher precision. 

We demonstrate this effect in a simulation with two populations of BCs and pyramidal 

cells and their interconnections (Fig. 20E). This subnetwork is capable of generating theta 

rhythmic activity that is robust to a range of input levels to pyramidal cells. This current 

study extends these results and show that the role of BCs in ongoing theta oscillations is 

dependent on the involvement of OLM cells, and on the neuromodulatory state of the 

circuit. 

Competition and interference 

This study provides examples of interference and competition amongst resonant 

mechanisms and amongst synchronizing mechanisms, in a biologically realistic model. 

The results accordingly predict conditions were inactivation of a resonant or a 
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synchronizing mechanism might enhance rhythmic activity, indicating that their presence 

interfered with other active generators. We note, however, that interference is not a 

destructive phenomenon in this context. Indeed, interference between oscillators has been 

theorized to encode the location of an animal by producing grid cells firing patterns in EC 

(Burgess, 2008). In addition, competition of multiple peripheral oscillators to 

synchronization with a central oscillator have been theorized to serve as a mechanism for 

attention controlled by executive function (Kazanovich et al., 2013). 

Limitation and future direction 

As discussed above, theta appears to be generated in the hippocampus due to the effects 

of external input, both its rhythmic and non-rhythmic components, and a consortium of 

intrinsic mechanisms. Our model falls short of representing the diversity of these theta 

generators and analyzing more complex interactions that involve a larger number of 

rhythm generators. With the current community effort to make more detailed models 

increasingly available, these complexities can be examined comprehensively. In addition 

to complexity added by more theta generators, neuromodulators (such as 

endocannabinoids, and serotonin) have effects of theta generation and likely have a role 

in determining which theta generators are actively engaged. The h-current model used 

matched experiments of subthreshold resonance in pyramidal cells (see Methods), 

however it remained mathematically difficult to separate from the adaptation current in 

pyramidal cells. A more detailed model of the h-current can allow examination of its role 

specifically and separate from spike-frequency adaptation. 

Another area of future interest would be to examine how individual theta generators 

interact with rhythmic external input. Results can vary from competition and interference 
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to synergy. Combinations of intrinsic theta generators might also respond differently than 

individual ones. These questions in addition to cholinergic dependence can help future 

conceptualization of how the hippocampus responds to its rhythmic inputs.  

CONCLUSIONS 

 As a conceptual framework for hippocampal theta generation, we propose a useful 

distinction between resonant and synchronizing components. 

 Many interneuronal types can be involved in theta generation through a general role for 

interneurons as synchronizing mechanisms. These effects can be more evident if 

inactivation studies would compensate for variation in excitation levels. 

 We predict conditions when inactivation of a rhythm generator might paradoxically 

raise the power in the particular rhythmic band.  

 

Methods 

Single cell models 

The model cells in CA3 were pyramidal cells and two of the most abundant 

interneuron types, BCs and OLM cells (Vida, 2010). The two types of interneurons are 

on extreme ends of many cellular attributes such as spiking patterns, inhibition dynamics 

and post-synaptic target compartments, and so their inclusion captures a wide range of 

interneuronal dynamics. The model cells in DG were granule cells, BC, and hilar 

perforant path-associated (HIPP) cells.  

Single cell models were developed using the Izhikevich formulation (Izhikevich, 

2003, 2010). The equations for a model neuron were as follows: 
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where v is the membrane potential of the cell, u is a recovery variable, vt is the 

‘instantaneous threshold’ beyond which the cell will fire an action potential, vr is the 

resting membrane potential, I is the current injection, k is a constant used to adjust the 

input resistance and rheobase, vpeak is the threshold above which a spike is deemed to 

have occurred and the membrane potential is reset, and a, b, c, and d are parameters used 

to tune the behavior of the system to model the neuro-computational properties of the 

desired cell. While the NEURON environment is typically used for Hodgkin-Huxley cell 

models, we developed a biophysical cell model in NEURON and implemented the 

Izhikevich formulation by adding a current modeled by the two equations. 

This formulation provides a reduced-order model that preserves many of the 

neuro-computational properties of more detailed biological models. We provide an 

overview below of how model neurons were developed to match salient features in 

electrophysiological recordings, with parameters used listed in table 3. For CA3 

pyramidal cells, the resting membrane potential was set to -75 mV, spike threshold to -53 

mV, and peak action potential voltage to 29 mV (Brown and Randall, 2009). The 

remaining cell model parameters were tuned to match responses to both long and brief 

current injections  (Brown and Randall, 2009). Similarly, in developing the DG granule 

cells model, resting membrane potential, threshold, and peak action potential were set 
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using data from Staley et al., (1992) and the model was then tuned to match current 

injection responses (1992). Passive properties for the OLM model were estimated from 

Ali and Thompson (1998), and the behavior of the cells was matched to current injection 

responses from the same study. In particular, we matched the spike frequency adaptation, 

the prominent slow after-hyperpolarization potential (AHP), sag response, and rebound 

spikes. For the BC model, membrane properties, current injection responses, and finally 

current vs. firing rate relationship were matched to data reported in Buhl et al., (1996). 

Due to the striking similarity of OLM and HIPP cells (Katona et al., 1999), we used the 

same model for both cell types. EC cells are known to display theta rhythmicity (Alonso 

and García-Austt, 1987) . So, to examine the non-rhythmic component of EC input and 

its interaction with the intrinsic generators of theta in the hippocampus, we excluded 

oscillatory dynamics in EC cells by using generic non-adapting spiking cells (Izhikevich, 

2010). More details in figure 1 of Hummos and Nair (2017). 

Despite the significant heterogeneity of neurophysiological values reported across 

studies, our model neurons preserve the most salient cellular features in relative terms. 

For example, OLM interneurons fire at a slower rate than basket cells (Vida, 2010), and 

CA3 pyramidal cells burst more than granule cells of the dentate gyrus (Jung and 

McNaughton, 1993). Such relative attributes of the cells are well-preserved in our model, 

irrespective of the particular set of neurophysiological values chosen. Other experimental 

data considered in developing the single cell models can be found in Hummos et al. 

(Hummos et al., 2014). Initial membrane potential values were drawn from a normal 

distribution with a mean equal to the resting membrane potential and a standard deviation 

of 10 mV. The h-current in pyramidal and OLM cells is known to have a role in theta 
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generation (for review, see Colgin, 2013), so we added an additional slow current to our 

pyramidal and OLM cells tuned to match the subthreshold oscillations that the dynamics 

h-current produces (Zemankovics et al., 2010). The additional current equation took the 

form: 

	 ݄݀
ݐ݀

ൌ െܽ௛ሺܾ௛ሺݒ െ ௥ሻݒ െ ݄ሻ                         (4) 

 

where h is the h-current value, and ah, bh are parameters used to tune the behavior 

of the cell and took the values of 0.04 ms-1 and 10 for pyramidal cells and 0.03 ms-1 and 

3.5 for OLM cells. A reset parameters dh was added to the value of h each time the cell 

spiked and took a value of 1 for both pyramidal and OLM cells. These values were 

chosen to match the subthreshold resonance reported in literature for these two cell types 

(Zemankovics et al., 2010). 

Network structure and connectivity 

The rat hippocampus contains approximately 1.6 million cells (Hosseini-

Sharifabad and Nyengaard, 2007). For computational efficiency and to maintain 

minimum model complexity, the numbers were scaled down while maintaining reported 

ratios (Hummos et al., 2014), as in our previous models (Li et al., 2011; Kim et al., 

2013a, 2013b; Pendyam et al., 2013). The model DG region had 384 granule cells, 32 

BCs, and 32 HIPP interneurons, while the model CA3 region contained 63 pyramidal 

cells, 8 BCs, and 8 OLM cells (Seress and Pokorny, 1981; Kosaka et al., 1987; Baude et 

al., 2007; Hosseini-Sharifabad and Nyengaard, 2007). The model EC region had 30 

regular spiking cells. 
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  The entorhinal cortex provides inputs to the hippocampus through the perforant 

pathway that projects to the entire hippocampal formation. The standard view describes a 

unidirectional connectivity with a direct path from EC to CA3 and an indirect path 

through DG (Fig. 21 in Hummos and Nair, 2017) (Naber et al., 1997; Witter, 2010). The 

perforant path projections follow a lamellar organization across the longitudinal axis of 

the hippocampus, as follows: Lateral and posterior parts of the EC are connected to the 

dorsal parts of CA3 and DG, while the more medial and anterior parts of EC project to 

the ventral parts of CA3 and DG (Witter, 2010). This lamellar organization transitions 

gradually from one extreme to the other on the longitudinal axis of the hippocampus, and 

a single neuron in EC can project to about 25% of the longitudinal length of CA3 (Witter, 

2010). Projections from DG to CA3 also follow a similar longitudinal organization; 

however, these projections target a more limited longitudinal extent (Witter, 2010). 

Model cells were distributed uniformly in 3D space separated into the three 

regions, EC, DG, and CA3, with dimensions that approximate the respective dimensions 

of the rat hippocampus (Hummos et al., 2014). Projections from EC to both pyramidal 

cells and BCs in DG and CA3 followed a lamellar pattern where neurons were most 

likely to connect to neurons in of their longitudinal neighborhood with a decreasing 

probability towards the periphery. This spatial connectivity was modeled using a 

Gaussian connection probability function that depended on the longitudinal distance 

between the two connected cells. The Gaussian function had a peak probability of 0.4 and 

a standard deviation of 3 mm for the perforant path projections to both pyramidal cells 

and BCs in CA3. Perforant path projections to DG had similar values (see (Hummos et 

al., 2014)). 
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Similarly, the mossy fiber projections from DG to CA3 followed the same 

lamellar pattern but with a more limited longitudinal extent by setting the standard 

deviation of the Gaussian probability function to 2 mm. In addition, to preserve the 

sparseness of the mossy fiber connections from DG to CA3 (Witter, 2010), each DG 

granule cell was limited to contacting two CA3 pyramidal neurons. Projections from DG 

granule cells to CA3 BCs are more diffuse and out-number projections to CA3 pyramidal 

neurons by a ratio of 10:1 (Acsady et al., 1998). Accordingly, DG projections to BC 

followed a Gaussian distribution with a peak probability of 0.2 and standard deviation of 

3 mm. Recurrent CA3 connections reveal relatively more diffuse spatial organization 

(Ishizuka et al., 1990; Wittner et al., 2007), and were therefore distributed homogenously 

with a fixed probability of 0.3. 

  The dendritic projecting OLM cells are thought to be involved in feedback 

inhibitory loops (Maccaferri, 2005) and while they have a more limited axonal 

arborization (Buhl and Whittington, 2007) they make many more synapses compared to 

BCs (Sik et al., 1995). In contrast, BCs have a more diffuse axonal arborization with the 

highest connection probability to pyramidal cells in their immediate neighborhood and a 

decreasing connection probability towards the periphery of their axonal arbors (Sik et al., 

1995). Similarly, BCs project to neighboring OLM cells (Bartos et al., 2010). As before, 

we used a Gaussian function to approximate these spatial probabilities. We also assumed 

that BC projections to both pyramidal cells and to OLM cells shared the same spatial 

domain (Remove statement or add to figures or explain why it did not contribute much?). 

In the reverse direction, OLMs receive reciprocal connections from the same pyramidal 

cells they projected to, in line with their function as local feedback cells (Maccaferri, 
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2005). On the other hand, granule cells in DG and pyramidal cells in CA3 projected 

homogenously to BCs with a fixed probability of 0.15, consistent with the lack of specific 

topography reported at these projections (Wittner et al., 2006).  

The network was constructed by generating connections randomly between cells 

while maintaining the connection probabilities and spatial patterns of connectivity 

described above. The spatial connectivity patterns and parameter values are summarized 

in table 4 (also see (Hummos et al., 2014)).  

Synaptic currents 

Synaptic currents were modeled using the kinetic model described in Destexhe et 

al. (1998). AMPA, NMDA, GABAA, and GABAB currents were modeled and their 

dynamics such as rise and decay time constants and delays were matched to available 

literature (Hummos et al., 2014). In particular, CA3 pyramidal cell AMPA currents were 

fastest for the mossy fiber inputs from DG and slowest for perforant path inputs from EC, 

while recurrent CA3 inputs from other pyramidal cells had intermediate values (Hoskison 

et al., 2004; Tóth, 2010), as summarized in table 4. Additionally, inhibitory currents from 

OLM had slower dynamics compared to those from BC (Table 4) (Geiger et al., 1997; 

Bartos et al., 2010). Synaptic weights were assigned in accordance with literature where 

available (for details, see Hummos and Nair, 2017). 

Activity-dependent plasticity 

For this study, long-term plasticity was excluded from the synapses. Model 

synapses, however, exhibited short-term synaptic plasticity that used the formulation 

proposed by Varela et al. (1997). We modeled the pronounced short-term facilitation at 

mossy fibers (Toth et al., 2000) and the frequency-dependent synaptic depression 
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reported at the recurrent CA3 connections (see Fig. 3 in Hummos and Nair, 2017; 

Hoskison et al., 2004). We extrapolated from data in CA1 where projections from 

pyramidal cells display short-term facilitation at synapses contacting OLM cells (Ali and 

Thomson, 1998), and short-term depression at those contacting BC cells (Ali et al., 

1998). In the other direction, inhibitory currents from OLM cells to pyramidal cells show 

no short-term facilitation or depression (Maccaferri, 2005), while inhibitory currents from 

BCs to pyramidal cells show depression (Hefft and Jonas, 2005). Additional details and 

equations related to the implementation of short-term synaptic plasticity can be found in 

Hummos et al (Hummos et al., 2014). 

Acetylcholine effects  

The hippocampus receives widespread volume transmission of cholinergic inputs 

from the septum-diagonal band complex (Woolf, 1991). To implement the effects of ACh 

on model neurons and synapses, we used a variable ‘ACh’ to represent the ACh state. 

The variable ACh had values of 0 (low), 1 (baseline), and 2 (high). 

  Cholinergic stimulation has differential effects on synaptic transmission of 

different pathways in the hippocampus (Barry et al., 2012). Synaptic transmission 

through the perforant pathway projections to CA3 is suppressed by 50%, compared to a 

suppression by 85% at the recurrent connections in CA3 (Hasselmo et al., 1995; Kremin 

and Hasselmo, 2007). On the other hand, the mossy fibers transmission is enhanced by 

49% (Vogt and Regehr, 2001). To model ACh effects on synapses, AMPA synaptic 

currents were scaled by the value of ACh. A parameter bACh determined the direction 

and magnitude of ACh effects on a particular synapse. Values of bACh for different 
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synapses were set according to experimental results as summarized in table 4 (also see 

Hummos et al. (Hummos et al., 2014)). 

In addition to the synapse specific effects, cholinergic stimulation enhanced 

cellular excitability and depolarized the resting membrane potential of principal cells, 

eliminated AHP, decreased spike frequency adaptation and induced rhythmic burst 

activity (Madison and Nicoll, 1984; Misgeld et al., 1989). Furthermore, effects on 

interneurons were subtype-dependent (McQuiston and Madison, 1999a, 1999b). 

Muscarinic stimulation of OLM interneurons depolarized the resting membrane potential, 

and lowered both spike frequency adaptation and AHP (Lawrence et al., 2006). In 

contrast, PV-BCs respond to muscarinic receptor activation with a limited depolarization 

in resting membrane potential (Cea-del Rio et al., 2010; Cobb and Lawrence, 2010). 

Effects of ACh on neurons were modeled by linearly scaling the neuronal model 

parameters by the ACh state as detailed in Hummos et al. (see fig. S4 in (Hummos et al., 

2014)). Considering the slow dynamics of ACh effects (onset time constant approximated 

between 1 and 2 s; Hasselmo and Fehlau, 2001), ACh state was set to a given value at the 

beginning of each experiment and had no dynamics. 

Inputs and data analysis 

For the full model and sub-circuit cases considered, either EC cells or CA3 

pyramidal cells (identified in the figures) received external input as trains of Poisson-

distributed spikes, triggering an influx of AMPA and NMDA currents into the cell. We 

studied two model cases: one with external input arriving at EC, and the other with input 

arriving directly at CA3 pyramidal cells. The two types of inputs differed in the weight of 

the associated input synapses, and the base rate of the Poisson spike trains arriving at 
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these synapses. Input to EC arrived at synapses with a 100% spike transmission rate to 

ensure that EC firing pattern was dictated by the Poisson input, whereas input to CA3 

pyramidal cells had a lower weight value with parameters matching the EC to CA3 

synapses (Table 4). 

To determine the base rates of the Poisson processes generating these input trains, we 

considered place cells in CA3. Place cells respond to certain areas in the environment and 

their firing rates approximate a lognormal distribution (Mizuseki and Buzsáki, 2013) with 

an average of ~7 Hz (Mizuseki et al., 2012). In our model case where external inputs 

arrived at EC, each EC cell received a unique train of Poisson input spikes at a base rate 

of 15 Hz, which produced firing rates in CA3 pyramidal cells with a lognormal 

distribution and an average of 7 Hz. In the model case where external inputs arrived 

directly to CA3 pyramidal cells, the input rates to different cells had to be drawn from a 

lognormal distribution (average: 50 Hz, standard deviation: 40 Hz), to produce firing 

rates with a lognormal distribution that matched experimental data. Following titration of 

the Poisson input, a constant current injection was added to the voltage equation and the 

current amplitude was adjusted to maintain the physiologically reported average firing 

rate and lognormal distribution of firing rates. The current values used for each 

experimental condition are listed in the corresponding figure legend. 

For spectral analysis, we summed the spikes of all cells of each type in a region 

(e.g., CA3 pyramidal cells) in 0.1 ms bins and computed the fast-Fourier transform of the 

resulting vector, using the Matlab function psautospk.m (Koch and Segev, 1998), with a 

moving window of size 1024 ms, and overlap of 512 ms. Spike data was used in spectral 

calculations as a proxy for LFP as used in network models (e.g., Brunel and Wang, 2003; 
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Hoseini and Wessel, 2016; Samarth et al., 2016), with the assumption that these spikes 

are received by a downstream local neuron and translated into membrane currents that 

generate an LFP signal.  

  The model was developed using the NEURON software package (Carnevale and 

Hines, 2009) and run on a PC with an Intel i7-core processor with an integration time-

step of 0.1 ms (key results were also verified with a time-step of 0.01 ms). The code is 

available as part of our previous publication via the public database ModelDB at Yale 

University. The recorded spike times were then analyzed using MATLAB (Mathworks, 

Inc.). All simulations ran for 5 seconds. 
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Tables 

Table 3: Summary of inactivation studies 

Study Type Component 

inactivated 

Evidence 

for 

Evidence 

against 

Cholinergic 

effects 

Region 

(Amilhon 

et al., 

2015) 

In vitro intact 

preparation 

Optogentic 

BCs and 

OLM 

inactivation 

Role of 

BCs 

OLM cells Not considered CA1 

(Wulff et 

al., 2009) 

In vivo GABAA 

receptors on 

BCs  

Role for 

inhibition 

of BCs in 

theta 

Role for 

inhibition of 

BCs in 

gamma 

Not considered CA1 

(Gillies et 

al., 2002) 

In vitro AMPA 

transmission 

Inhibitory 

currents 

Recurrent 

connections 

(But not in 

CA3) 

Inhibition based 

theta was 

atropine-

resistant 

CA1, 

CA3 

(Nolan et 

al., 2004) 

In vivo HCN1  h-current Not considered CA1 

(Leung 

and Shen, 

2004) 

In vivo AMPA 

transmission 

None Recurrent 

connections 

Not considered. CA1, 

theta 

dropped 

by 47% 

(Nagode 

et al., 

2014) 

in vitro  Role of 

CCK cells 

Role of BCs Rhythms 

cholinergically 

induced 

CA1 

(Royer et 

al., 2012) 

In vivo OLM cells 

and BCs 

None OLM cells 

or BCs cells 

Not considered, 

but animals not 

CA3 
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exposed to 

novelty. 

(Buzsáki 

et al., 

1983) 

In vivo EC input Rhythmic 

EC input 

 Inactivating EC 

input made the 

remaining theta 

atropine-

sensitive 

Theta 

dropped 

but more 

markedly 

became 

atropine 

sensitive. 
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Table 4: Classification of theta rhythm mechanisms as resonant, synchronizing, or both. 

 

Mechanism Resonant Synchronizing  

E-E  X  

E-Slow I X X  

E-Fast I  X  

Adaptation X   

h-current X   

Non-rhythmic 

external input 

 X  

Rhythmic external 

input 

X X  
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Figures 

  



 130

 

Figure 20: Multiple generators of theta oscillations in the hippocampal CA3 

network. 

Adapted from Hummos and Nair (2017). 
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Figure 21: Pyramidal cells slow currents and OLM-pyramidal cells loop are the two 

resonant mechanisms. 

A) The power spectra of 6 simulations. The ‘None’ experiment had no theta generating 

components with isolated pyramidal cells with no slow currents, and direct unique 

Poisson input with no correlations. The following experiments activated one theta 

component at a time and examined the power spectrum. The recurrent connections were 

activated in ‘+RC’ and produced a small bump in the 2-4 Hz range. BCs activated in 

‘+BC’ produced no spectral peaks. Routing input through the EC added correlations in 

the external input and shift the power to low frequencies but did not produce theta peaks. 

Adding OLM cells ‘+OLM’ produced a robust theta peak. Activating the slow currents in 

pyramidal cells also produced a small but significant peak in theta frequencies ‘+RES’. 

B) relative theta calculations. ‘+RC’, ‘+EC’ increased relative theta due to a less specific 

increase in slow frequency power.  C) firing rates were kept within physiological range 

using the following current injections. None: 7 mA, +RC 8 mA, +BC 5 mA, +EC 10 mA, 

+OLM 1 mA, +RES 1 mA. 
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Figure 22: Resonant mechanisms can substitute for and compete with each other. 

A) Schematic of this experiment with EC inactivated and input directly arriving at CA3 

pyramidal cells. Both OLM cells, BCs, and the recurrent excitatory connections were 

active.  

B) The power spectra of four experiments as follows: “full” simulated with both OLM 

cells and adaptation in pyramidal cells intact, “-OLM” was run with OLM cells 

inactivated, “-sPYR” had OLM cells intact but adaptation and h-current were removed 

from pyramidal cells, and finally “-both” had both pyramidal cells slow currents and 

OLM cells inactivated. The power spectra indicate that theta activity persisted with at 

least one resonant mechanism intact, but also interestingly showed that pyramidal cells 

adaptation as a resonant component may have interfered with the OLM-pyramidal cells 

resonator. 

C) Relative power in the theta band (4-12 Hz) divided by total power (0-50 Hz) and 

normalized to the value of the “full” model run.  

D) Shows the results of our procedure using constant current injections to cells to 

maintain a population average firing rate consistent with physiological data, to 
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compensate for the variation in firing rates resulting from inactivating various network 

components. Current injections to pyramidal cells in the different experiments were as 

follows. Full: 3.5 mA, -OLM: 4.2 mA,  -sPYR: 3 mA,  -Both: 8.2 mA. 

 

 

 

Figure 23: Functional separation at the extremes of cholinergic modulation 

minimizes interference between resonating mechanisms.  

Current injections to compensate for variation in firing rates: ACh 0: Full: -2 mA, -OLM: 

-2 mA,  -sPYR: 0 mA,  -Both: 2 mA. ACh 1: Full: 3.5 mA, -OLM: 4.2 mA,  -sPYR: 3 

mA,  -Both: 8.2 mA. ACh 2: Full: 4 mA, -OLM: 5 mA,  -sPYR: 3.5 mA,  -Both: 8.5 mA. 

 

 

 

Figure 24: Synchronizing mechanisms can substitute for or interfere with one 

another 
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Recurrent connections and EC were inactivated, leaving the two synchronizing 

mechanisms in the model, OLM cells and BC cells. We tested three conditions, first with 

both OLM and BC cells active (+OLM +BC), and then with BCs inactivated (+OLM -

BC) and finally, with OLM cells inactivated (-OLM +BC). Running the three conditions 

under three different cholinergic states revealed different interaction modes between the 

two synchronizing mechanisms. In low ACh, they were equally effective at generating 

theta, and only one mechanism appeared necessary. With increasing cholinergic levels, 

BCs contribution to theta diminished, and in high cholinergic states they interfered with 

OLM generated theta. Current injections to compensate for variation in firing rates: ACh 

0: +both: -7 mA, -BC: -6.5 mA,  -OLM: -7.5 mA. ACh 1: +both: -3 mA, -BC: 1 mA,  -

OLM: -6.1 mA. ACh 2: +both: -1 mA, -BC: 2.8 mA,  -OLM: 1.4 mA. 

 

 

 

Figure 25: Recurrent connections and BCs cooperatively synchronize theta 

oscillations. 

OLM cells and EC were inactivated, leaving the two synchronizing mechanisms in the 

model, recurrent connections and BC cells. We tested three conditions, first with both 

recurrent connections and BC cells active (+RC +BC), and then with BCs inactivated 

(+RC -BC) and finally, with recurrent connections inactivated (-RC +BC). Running the 
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three conditions under three different cholinergic states revealed a stable engagement of 

BCs in theta generation while recurrent connection had a stronger engagement in lower 

cholinergic states. Current injections to compensate for variation in firing rates: ACh 0: 

+both: 5 mA, -BC: 6 mA,  -RC: 1 mA. ACh 1: +both: 2 mA, -BC: 5 mA,  -RC: -2 mA. 

ACh 2: +both: -2 mA, -BC: 5 mA,  -RC: -2 mA 
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CHAPTER 5 − SUMMARY, CONTRIBUTIONS, AND FUTURE 

WORK  

 

Summary 

Biological neuronal systems are complex and highly nonlinear dynamical systems that 

have defied our understanding for decades. While we remain relatively far from 

understanding the underpinnings of traumatic memories in the brain, we are making 

significant progress in understanding the functional aspects of the hippocampus, the brain 

area intimately associated with the storage of personal episodic memories.  

This dissertation builds on existing knowledge about hippocampal function, and extends 

this knowledge, through computational modelling, to investigate how the hippocampus 

maintains its level of excitation and how it generates oscillatory activity. Both of these 

functional aspects are important for understanding the role the hippocampus plays in the 

storage of traumatic memories. We hope to see our work contribute to the efforts of the 

neuroscientific community to understand the nature of traumatic memories and eventually 

discover practical ways to influence them. We summarize the contributions of our three 

research projects below. 

 

Chapter 2 

In Chapter 2, we expanded upon previous work that identified memory encoding and 

memory retrieval circuits in the mammalian hippocampus regulated by the neuromodulator 

Acetylcholine. We first began by reproducing the known behavior of the hippocampus as 

it attempts to separate new learned information from previously stored memories and to 
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give the new information a separate representational neuronal activity pattern. We then 

examined mechanisms that maintain the stability of the network against runaway 

excitation. This runaway activity produces seizures in animals. Our results indicated that 

different mechanisms are responsible for preventing seizure activity during memory 

encoding and memory retrieval. Our work was the first to categorize seizures according to 

the functional state of the brain. We hope that these new distinctions will allow more 

targeted treatment options for these different kinds of seizures.  

Future work: 

 A future goal is to collaborate with experimental biologists to test our hypothesis 

in rodents. Literature review showed that a certain chemical lesion causes rats to 

develop seizures when placed in a novel maze that they needed to learn. We make 

specific predictions about the type of deficit at a neuronal level based on our model 

findings, and we seek to test these predictions.  

 

Chapter 3 

In Chapter 3, we used the hippocampal model to examine the origins and mechanisms of 

the theta rhythmic activity observed in the hippocampus during spatial navigation and 

active exploration. Our results revealed a wealth of mechanisms capable of generating 

theta. We again found parallel differences between the memory encoding and the memory 

retrieval circuits. The memory encoding circuits depended primarily on the activity of 

inhibitory interneurons to generate theta activity, while the memory retrieval depended on 

the recurrent connections between pyramidal cells. The differences between the two 



 138

circuits extends their conceptualization as two distinct circuits despite their sharing of 

many of the physical components. 

Future work: 

 By combining our work in Chapter 2 and Chapter 3, theta rhythmic activity that 

can be easily recorded, might possibly help discern the computational state of the 

hippocampal circuit, whether it is in memory encoding or memory retrieval mode. 

That knowledge can be extended to predict what pathology might gender seizure 

episodes and what specific treatments would be recommended based on the current 

functional state of the hippocampus. 

Chapter 4 

In Chapter 4, the model describes a more elaborate conceptualization of theta generation 

mechanisms. Their complex interactions and ability to substitute for one another and even 

interfere with each other are examined. 

Future work: 

 The framework presented in this paper, if examined in full detail, can generate a 

model that can predict the results of inactivation experiments. Such biological 

experiments usually inactivate circuit components and observe changes in the 

power spectrum. Currently these results are divergent, and our conceptual 

framework promises to unify these conflicted results in one theoretical framework.  
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