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Abstract
This article presents a novel local pressure correction method for incompressible
fluid flows and documents a numerical study of this method. Pressure correction
methods decouple the velocity and pressure components of the time-dependent
Navier-Stokes equations and lead to a sequence of elliptic partial differential
equations for both components instead of a saddle point problem. In some sit-
uations, the equations for the velocity components are solved explicitly (with
time step restrictions) and thus the elliptic pressure problem remains to be the
most expensive step. Here, we employ a multiscale procedure for the solution
of the Poisson problem related to pressure. The procedure replaces the global
Poisson problem by local Poisson problems on subregions. We propose a new
Robin-type boundary condition design for the local Poisson problems, which
contains a coarse approximation of the global Poisson problem. Accordingly,
no further communication between subregions is necessary and the method is
perfectly adapted for parallel computations. Numerical experiments regarding
a known analytical solution and flow around cylinder benchmarks show the
effectivity of this new local pressure correction method.
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1 INTRODUCTION

Starting with the pioneering works of Chorin1 and Temam,2 pressure correction methods attracted very large interest due
to their efficiency for large scale computations. In the literature, together with their other variants, velocity correction and
consistent splitting methods, they are referred to as projection methods. For an overview, we refer to Guermond et al.3

The common procedure of pressure correction methods consists in a predictor step for a (non-divergence-free) veloc-
ity field with an explicit pressure, followed by a Poisson problem for the pressure (update) and a final velocity correction
to obtain a divergence-free vector field. In certain applications, the predictor step can be formulated in an explicit way,
especially when small time steps are required due to accuracy reasons (e.g., in climate research). In such cases, the Pois-
son problem for the pressure (update) is a numerically very expensive part of the splitting scheme. It is an elliptic partial
differential equation in the entire domain and the associated matrix has a condition number that depends on the mesh res-
olution. As the underlying mesh chosen finer, the condition number becomes larger and therefore many iterative solvers
(such as conjugate gradient methods, Jacobi iteration, and Gauss-Seidel methods) suffer in terms of convergence rates.
On the other hand, multigrid methods are well-known to perform very good for the Poisson problems with convergence
rates independently of the mesh size (with certain restriction with respect to the aspect ratio of the cells).4,5 Therefore,
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multigrid is often the best choice for the pressure correction methods. Issues may arise in the context of highly parallel
architectures because of the limits of scaling for large numbers of cores.

Lately, several authors6,7 aimed to solve this Poisson problem in a more computationally efficient way by modifying
the finite dimensional approximation spaces. Recently, a local pressure correction method8 for the Stokes system was pro-
posed. The method employs a domain decomposition technique for the Poisson problem and opens up the possiblity to
solve Neumann type Poisson problems in subregions. Here, we numerically investigate the case when Robin boundary
conditions are employed for the local Poisson problems. First, we solve the global Poisson problem approximatively on a
coarse grid. Consequently, on the same grid with velocity components, solutions to local Poisson problems are approxi-
mated . The coarse solution and its gradients enter in the boundary conditions of local problems. This choice of boundary
conditions is motivated by the domain decomposition method of Lions,9 with the adjustment that replaces solutions from
neighbour subregions by coarse global solutions in order to prevent iterations. Therefore, parallel computation of the local
pressure corrections is very natural and straightforward. Interested reader may consult to Knopp et al.10 for an extensive
review of domain decomposition methods for incompressible flows.

At this point, we would like to emphasize that pressure correction methods are not the most accurate schemes to solve
flow problems, in general. Solving the equations for pressure and velocity in a coupled fashion leads to more accuracy,
but also to higher numerical costs.11 Furthermore, recently so-called pressure-robust methods12 has gained popularity,
as they lead to a decoupling of the pressure error from the velocity error. This may be beneficial for flows with strong
Coriolis forces. We stress the fact that the design of local pressure correction schemes is motivated by durable popularity
of pressure correction methods in the literature and in many commercial CFD codes as well.

In Section 2, we introduce the local pressure-correction method with Robin boundary conditions. The finite element
discretization and fully discrete solution procedure for the local pressure-correction method is given in Section 3. The
numerical studies are presented in Section 4. We finalize the article with a conclusion and outlook.

2 LOCAL PRESSURE- CORRECTION FOR THE NAVIER-STOKES
EQUATIONS

We consider the time-dependent incompressible Navier-Stokes equations in a Lipschitz domain Ω ⊂ Rd, d∈ {2, 3} with
homogeneous Dirichlet conditions. In terms of velocity field u ∶ Ω → Rd, and pressure p ∶ Ω → R, the equations read

𝜕tu − 𝜈Δu + (u ⋅ ∇)u + ∇p = f in ΩT ∶= Ω × (0,T], (1)

div u = 0 in ΩT , (2)

u = 0 on 𝜕Ω × (0,T], (3)

u(0) = u0 in Ω, (4)

where 𝜈 > 0 is a positive, constant viscosity and f ∶ Ω → Rd is a forcing term. The weak solutions to problem (1-4) are
sought in the space V × Q ∶= H1

0(Ω)
d × L2(Ω).

Many different pressure correction methods can be found in the literature, starting with the pioneering work of
Chorin1 and Temam.2 Instead of reporting here on the different pressure correction schemes, we refer to the overview
article of Guermond et al.3 In these methods, each time step starts with a computation of a not necessarily divergence-free
predictor velocity field, followed by a Poisson problem for the pressure (or a pressure update), and terminates with a pro-
jection of the previously computed velocity onto a divergence free one. Although the predictor velocity often demands
an implicit method for stability reasons, in certain applications (e.g., in climate research) with the need of (relatively)
small time steps due to accuracy reasons, the predictor step can be formulated in an explicit way. In this case, the Pois-
son problem for the pressure (update) is relatively expensive due to the need of an implicit solver with an ill-conditioned
stiffness matrix. The condition number 𝜅 becomes worse on finer meshes: 𝜅 ∼ h−2 for mesh sizes of order h. Therefore,
parallelization on multi-core machines or parallel computers may help to reduce the simulation time but always require
suitable further iteration techniques to account for the elliptic character of the Poisson problem. Recently, a local pressure
correction method8 was proposed. The idea is basically to solve local Poisson problems, independently from each other,
with boundary values obtained from a global coarse-grid problem. It was shown that for the Stokes problem the same
order of convergence as the original scheme can be obtained. While the boundary conditions for the local problems are
of Neumann-type, we propose in this work Robin-type boundary conditions for the subdomain problems. Although the
following domain decomposition procedure is applicable to all existing pressure correction methods in the literature, we
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restrict ourselves to the rotational incremental pressure correction proposed by Timmermans et al.13 which is the most
accurate one beyond others.

We consider a non-overlapping decomposition of Ω:

Ω =
N⋃

i=1
Ωi with Ωi ∩ Ωj = ∅ for 1 ≤ i ≠ j ≤ N.

We denote S ∶= H1(Ω) and the local pressure corrections in each subdomain Ωi will be sought in the space Si ∶=
H1(Ωi), i ∈ {1, … ,N}. The interfaces are denoted byΓi ∶= 𝜕Ωi ⧵ 𝜕Ω and the outer normal on the boundary 𝜕Ωi by ni. For
the sake of simplicity, we take constant time step size k= tm − tm− 1 > 0 for all m, where 0= t0, t1, … , tM are M + 1 discrete
time points. Hence tm :=mk for 0≤m≤M =T/k. The time discrete solution at time tm will be denoted by (um, pm).

In general, pressure correction schemes solve in each step a Poisson problem on Ω equipped with homogeneous Neu-
mann boundary conditions. Consideration of several non-overlapping subdomains Ωi, i ∈ {1, … ,N} instead of Ω brings
out the issue of determining consistent boundary conditions for local Poisson problems on subdomains. Our approach
is to equip local Poisson problems with Robin type boundary conditions, where a computationally cost efficient approx-
imation of the Poisson problem on Ω and its gradients enter on the right hand side of the boundary data. The details of
the resulting local pressure correction method are presented in Algorithm 1.

Algorithm 1. The local pressure correction

The local pressure correction starts with a given u0 and p0 and for m ≥ 1:
Step 1: Compute the velocity predictor ũm from momentum equation with a BDF(2)-scheme and a given pressure pm−1

1
2k

(3ũm − 4um−1 + um−2) − 𝜈Δũm + (ũm ⋅ 𝛻)ũm = f(tm) − 𝛻pm−1 in Ω,

ũm = 0 on 𝜕Ω.

Step 2a: Find q̄m ∈ S such that

−Δq̄m ≈ − 3
2k

div ũm in Ω,

𝛻q̄m ⋅ n = 0 on 𝜕Ω,
(q̄m, 1)Ω = 0.

Step 2b: Compute local pressure corrections qm
i from Poisson equations on sub-domains Ωi, i ∈ {1,… ,N} ∶

−Δqm
i = − 3

2k
div ũm in Ωi,

𝛻qm
i ⋅ ni + 𝜏qm

i = 𝛻q̄m ⋅ ni + 𝜏q̄m on Γi,

𝛻qm
i ⋅ ni = 0 on 𝜕Ωi ∩ 𝜕Ω.

where 𝜏 > 0 is an algorithmic parameter to be defined later.
Step 3: Pressure update:

qm =
N∑

i=1
qm

i , (5)

pm = pm−1 + qm − 𝜈 div ũm. (6)

Step 4: Velocity correction:

um = ũm − 2k
3
𝛻qm. (7)

Step 5: If m = M stop. Otherwise, increase m by one, increase t by k, and go to Step 1.

Remark 1. If N = 1 we recover the original scheme.13
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Remark 2. The Step 2a of Algorithm 1 consists of calculation of the global correction, which enters in the
Robin boundary conditions of the local Poisson problems in Step2b. Note that Step 2a does not involve an
equality in the pointwise sense, but in an (coarse) approximation sense. Therefore, we use the symbol “≈” in
Step 2a.

Remark 3. In case of a pointwise equality in Step 2a and qi = qm in Step 2b, Algorithm 1 corresponds to the original
scheme for any N ∈ N which has the following accuracy for sufficiently smooth u and p: While the errors of predictor
velocity and corrected velocity in l2(0, T; L2) norm at discrete time points are of order k2, in l2(0, T; H1) norm they are of
order k3/2. The pressure error in l2(0, T; L2) norm is of order k3/2 as well. For a detailed proof, we refer to Guermond and
Shen.14

Remark 4. For building the sum in Equation (5), the individual qm
i , defined on Ωi, are extended to Ω by setting it to zero

on Ω ⧵Ωi. Accordingly, the gradient ∇qm in (7) is only defined on
⋃

iΩi but not on interior boundaries Ωi ∩ Ωj for i≠ j.
Therefore, this velocity update has to interpreted in weak form and by integration by parts in order to shift the gradient
onto the test function, see the next section.

This method can be considered as a domain decomposition method without iteration within one time-step: The global
Poisson problem in Step 2a will be approximated by solving for a discrete pressure update on a coarse mesh. Afterward,
the local problems of Step 2b can be solved in parallel without any communication between the subdomains. Similar to
other domain decomposition methods (see, e.g., Bjorstad et al.15, Chan16 and references therein), the kind of boundary
conditions for the subdomains matters. Here, we propose Robin-type conditions with a right hand side obtained from
the global problem in Step 2a. Due to the absence of communication between the sub-domains, we expect a speed up for
parallel computations.

3 FINITE ELEMENT DISCRETIZATION

Let h(Ω) be a shape-regular, admissible decomposition of Ω into simplices. hK denote the diameter of a cell K ∈
h(Ω) and h = max {hK ∶ K ∈ h(Ω)}. Let K̂ be a reference element of h(Ω) and Pk(K̂) the space of all polynomi-
als on K̂ with maximal degree k in each coordinate direction. We employ the continuous conforming finite element
space

Ph(Ω),k ∶= {𝜙 ∈ C(Ω,R)||| 𝜙|K◦TK ∈ Pk(K̂), K ∈ h(Ω)}.

Discrete subspace pair for velocity and coarse pressure corrections are

Vh ∶= Pdh(Ω),k
∩ V, SH ∶= PH (Ω),k−1 ∩ Q.

Moreover, discrete local pressure corrections are sought in Si,h ∶= Ph(Ωi),k−1 ∩ Si. After employing the
finite dimensional spaces introduced above, in Algorithm 2, we present the spatially discrete version of
the Algorithm 1.

Remark 5. Note that, the computation of um
h in the Step 4 of Algorithm 1 was eliminated in Algorithm 2

by substituting it in (8). Moreover, since pm
h , qm−1

h , qm−2
h ∈ Qh integration by parts was performed over

pressure and pressure updates in Equation (8). The interface term (pm−1
h + 4

3
qm−1

h − 1
3

qm−2
h ,𝝌 ⋅ ni)Γi

is neglected, since the mean values of the variables involved in this term are arbitrary on each
subdomain.

4 NUMERICAL EXAMPLES

In order to compare the accuracy of the proposed method numerically, we consider two 2d examples from the lit-
erature. First one is with a known analytical solution in terms of trigonometric functions and the second one is
the so-called flow around cylinder benchmark problem where lift and drag forces, and as well as certain pressure
changes are quantities of interest. We choose 𝜏0 = 10 if not stated otherwise. All experiments were performed on
FreeFem++.17
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Algorithm 2. The local pressure correction, fully discrete case

The local pressure correction starts with a given u0
h and p0

h and for m ≥ 1:
Step 1: Find ũm

h ∈ Vh such that

3
2k

(ũm
h ,𝝌)Ω + 𝜈(𝛻ũm

h , 𝛻𝝌)Ω + ((ũm
h ⋅ 𝛻)ũm

h ,𝝌)Ω =
(

fm + 2
k

ũm−1
h − 1

2k
ũm−2

h ,𝝌

)
Ω
+
(

pm−1
h + 4

3
qm−1

h − 1
3

qm−2
h , div𝝌

)
Ω

∀𝝌 ∈ V h. (8)

Step 2a: Find qm
H ∈ SH such that

(𝛻qm
H , 𝛻𝜑)Ω = −

( 3
2k

div ũm
h , 𝜑

)
Ω

∀𝜑 ∈ SH .

Step 2b: For each i ∈ {1,… ,N} find qm
i,h ∈ Si,h such that

(𝛻qm
i,h, 𝛻𝜑)Ωi + (𝜏qm

i,h, 𝜑)Γi = −
( 3

2k
div ũm

h , 𝛻𝜑
)
Ωi

+ (𝛻qm
H ⋅ ni + 𝜏qm

H , 𝜑)Γi ∀𝜑 ∈ Si,h

where 𝜏 = 𝜏0h−1 and 𝜏0 ∼ (1).
Step 3: Find qm

h and pm
h ∈ Qh such that

(qm
h , 𝜑)Ω =

N∑
i=1

(qm
i,h, 𝜑)Ωi ∀𝜑 ∈ Qh,

(pm
h , 𝜑)Ω = (pm−1

h + qm
h − 𝜈 div ũm

h , 𝜑)Ω ∀𝜑 ∈ Qh.

Step 4: If m = M stop. Otherwise, increase m by one, increase t by k, and go to Step 1.

4.1 An example with known analytical solution

We start with a standard example from literature.14 Let Ω = (0, 1)2, I ∶= (0,T] with T = 1 and the data of problem (1) be
determined by

u(x, y, t) =

(
sin(x + t) sin(y + t)
cos(x + t) cos(y + t)

)
, p(x, y) = sin(x − y + t).

We chose constant time step sizes k= 0.1 ⋅ 2−n, n∈ {0, … , 8} and use Taylor-Hood P2∕P1 finite elements on a triangulation
with mesh size h= 2−7. The elliptic coarse grid problem for qH is carried out by P1-elements on a triangulation with mesh
size H ∈ {8h, 16h}. Therefore, solving this problem is a factor 64 or 256 smaller (with respect to the number of unknowns)
than the one for the pressure update of the original pressure correction scheme. That is to say, the computation of qH is
basically for free. For this example, we will study the velocity error in the following norm and semi-norm

||u − uh||l2(0,T;L2(Ω)) =
(
∫

T

0
||(u − uh)(t)||2L2(Ω)dt

)1∕2

,

||u − uh||l2(0,T;H1(Ω)) =
(
∫

T

0
||(∇u − ∇uh)(t)||2L2(Ω)dt

)1∕2

.

The pressure error is considered in the following semi-norm

||p − ph||l2(0,T;H1(Ω)) =
(
∫

T

0
||(∇p − ∇ph)(t)||2L2(Ω)dt

)1∕2

.

We note that there is no way to really determine the mean value of pressure on each subdomain, which would correspond
to the one of the global pressure. In the following two subsections, we present the results for the diffusion dominant case
(𝜈 = 1) and for the convection dominant case (𝜈 = 10−3), respectively. In Section 4.1.3, we present results for the case
when spatial discretization error dominates. Later on in Section 4.1.4, we present the results for the effect of different 𝜏0



6 KAYA et al.

F I G U R E 1 Numerical results for 𝜈 = 1, H = 8h (Section 4.1.1) [Color figure can be viewed at wileyonlinelibrary.com]

on the accuracy of the local pressure correction scheme. Afterward, in Section 4.1.5, results with the Neumann type local
pressure corrections will be given.

4.1.1 Results for the diffusion dominant case

In the first test, we consider the Navier-Stokes problem with viscosity 𝜈 = 1 for a variety of number of subdomains
N ∈ {1, 4, 16, 64, 256}, where N = 1 corresponds to the original scheme without subdomains. In Figures 1 and 2, we present
convergence rates of ||u − ũh||l2(0,T;L2(Ω)), ||u − ũh||l2(0,T;H1(Ω)), ||u − uh||l2(0,T;L2(Ω)) and ||p − ph||l2(0,T;H1(Ω)) in dependence of
the time step size k. It turns out that there is no difference in the accuracy of local pressure correction method when com-
pared to the original scheme. Moreover, we note that the convergence rate in norm ||u − ũh||l2(0,T;H1(Ω)) is (k2), while the
theory predicts (k3∕2). The convergence rates in norms ||u − uh||l2(0,T;L2(Ω))and ||u − ũh||l2(0,T;L2(Ω)) are (k2) as predicted
by the theory for original scheme. Furthermore, the pressure error with respect to the spatial gradient ||p − ph||l2(0,T;H1(Ω))
for the local pressure correction leads to the same accuracy as the original scheme, independent of the number of
subdomains. We observe that the curve flattens for smallest time steps as a consequence of the dominating spatial error.

4.1.2 Results for the convection dominant case

As next, we modify the viscosity to 𝜈 = 10−3. It is well known that for smaller values of viscosity, the problem (1) becomes
convection dominant and numerical approximation becomes more challenging. Moreover, a different scaling of the dif-
fusive term leads to a different scaling between pressure and velocity. The error results are presented in Figures 3 and 4.
For H = 8h, again, there is no difference in the accuracy of the local pressure correction method and the original scheme.

http://wileyonlinelibrary.com


KAYA et al. 7

F I G U R E 2 Numerical results for 𝜈 = 1, H = 16h (Section 4.1.1) [Color figure can be viewed at wileyonlinelibrary.com]

The convergence rates are the same as in the case 𝜈 = 1. On the other hand, for H = 16h, we observe that, only for small
time steps, there is an accuracy loss in the norms ||u − uh||l2(0,T;L2(Ω)) and ||u − ũh||l2(0,T;H1(Ω)). This behavior suggests that
the coarse grid problem cannot be solved on triangulations with an arbitrarily large mesh size H.

4.1.3 Results for the case of dominating spatial discretization error

Now we choose 𝜈 = 10−3 and h= 2−5. In Figure 5, we present a comparison of the original pressure correction
scheme (N = 1) and the local pressure correction scheme with N = 16 and H = 8h. We observe that the spatial pres-
sure gradients from both schemes stagnate at k= 0.025. Both methods lead to same errors for predictor velocity
in the norm ||u − ũh||l2(0,T;L2(Ω)). For the smallest time step size the errors of the local pressure correction method
(N= 16) in the norms ||u − uh||l2(0,T;L2(Ω)) and ||u − ũh||l2(0,T;H1(Ω)) are the same of the original pressure correction
scheme.

4.1.4 The choice of parameter 𝝉0

Now we consider different choices for the parameter 𝜏0. We choose N = 64, h= 2−7 and H = 16h. From Section 4.1.2,
it is clear that this is a challenging setting for the local pressure corrections. In Figure 6, we present the errors for
𝜏0 ∈ {10, 104, 108} and compare to the original pressure correction method (N = 1). It becomes evident that the choice
of 𝜏0 is of small significance for k≥ 0.0125. However, as the time step size chosen smaller, the error of corrector veloci-
ties in the norms ||u − ũh||l2(0,T;L2(Ω)) and ||u − ũh||l2(0,T;H1(Ω)) grows faster for 𝜏0 ∈ {104, 108} when compared to 𝜏0 = 10 or

http://wileyonlinelibrary.com
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F I G U R E 3 Numerical results for 𝜈 = 10−3, H = 8h (Section 4.1.2) [Color figure can be viewed at wileyonlinelibrary.com]

the original pressure correction method (N = 1). On the other hand, from our experiences 𝜏0 < 10 leads to an unstable
scheme, in general. A theoretical analysis for the design of 𝜏0 remains open.

4.1.5 Comparison with local pressure corrections of Neumann type

As next we present results obtained with local pressure corrections of Neumann type.8 In this formulation, the Step 2b
reads: for each i∈ {1, … , N} find qm

i,h ∈ Si,h such that

(∇qm
i,h,∇𝜙)Ωi − (gi, 𝜙)Γi = −

( 3
2k

div ũm
h , 𝜙

)
Ωi

+ (ΠH(∇qm
H ⋅ ni), 𝜙)Γi ∀𝜙 ∈ Si,h,

(qm
i,h, 1)Ωi = (qm

H , 1)Ωi ,

where gi = |Γi|−1( 3
2k

ũm
h ⋅ ni − ΠH(∇qm

H ⋅ ni), 1)Γi and ΠH ∶ L2(Ω) → P2H (Ω),2 ∩ Q.

The results depicted in Figure 7 for h= 2−7, H = 8h, and N = 64 show that the local pressure corrections of Neu-
mann type yield to a large loss of accuracy for smaller time step sizes. Moreover, a comparison of Figure 3(N = 64) and
Figure 7indicates that, for k≥ 0.025, the errors obtained from both local pressure corrections of Neumann type and Robin
type are in agreement. However, for smaller time step sizes, the local pressure corrections of Robin type outperforms the
Neumann type as they exhibit the same asymptotic behavior with the original scheme. Therefore, we deduce that the
Robin type local correction projections are favorable when compared to the Neumann type.

http://wileyonlinelibrary.com
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F I G U R E 4 Numerical results for 𝜈 = 10−3, H = 16h (Section 4.1.2) [Color figure can be viewed at wileyonlinelibrary.com]

4.2 Benchmark problem “Flow around cylinder”

In this subsection, we present our numerical results concerning the so-called flow around cylinder benchmark problem
according to the domain configuration given in Schäfer et al.11 and compare with the reference results in John18. For
interested readers, we refer to John et al.19 for an overview of time integration techniques related to this problem. Domain
of interest is Ω = [0, 2.2] × [0, 0.41] ⧵ S where S is the circle around the point (0.2, 0.2) with radius 0.05. Moreover, we
set I := (0, T] with T = 8 and f= 0. The inlet and outlet boundaries are denoted by Γin = {(0, y) ∈ R2; 0 ≤ y ≤ 0.41} and
Γout = {(2.2, y) ∈ R2; 0 ≤ y ≤ 0.41}, respectively. Boundary conditions are given as

u(t) = 0.41−2 sin(𝜋t∕8)(6y(0.41 − y), 0) on Γin ∪ Γout,

u(t) = 0 on 𝜕Ω ⧵ (Γin ∪ Γout).

The mean inflow velocity is U(t) = sin(𝜋t∕8) and thus Umax = 1. Therefore, based on L= 0.1 (the diameter of S) and
𝜈 = 10−3, the Reynolds number of the flow is found to be 0≤Re≤ 100. Drag and lift cofficients at the cylinder are
calculated with the formula

cd(t) =
2

𝜌LU2
max ∫S

(
𝜌𝜈

𝜕utS (t)
𝜕n

ny − p(t)nx

)
dS,

cl(t) = − 2
𝜌LU2

max ∫S

(
𝜌𝜈

𝜕utS (t)
𝜕n

nx + p(t)ny

)
dS,

http://wileyonlinelibrary.com
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F I G U R E 5 Numerical results for 𝜈 = 10−3 - spatial discretization error dominates (Section 4.1.3) [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 6 Numerical results for 𝜈 = 10−3. Comparison of 𝜏0 ∈ {10, 104, 108} (Section 4.1.4) [Color figure can be viewed at
wileyonlinelibrary.com]

where 𝜌 = 1 (fluid density) is a known parameter. Here utS denotes the tangential velocity, n= (nx, ny)T is the normal
vector on S directing into Ω and tS = (ny,−nx)T is the tangential vector. Moreover, the pressure difference between the
front and the back of the cylinder

Dp(t) = p(t; 0.15, 0.2) − p(t; 0.25, 0.2),

is another parameter of interest.
The domain Ω is decomposed into 24 subdomains as illustrated in Figure 8. Two spatial discretization settings are

considered whereas both employ the same coarse mesh H(Ω) (see Figure 9). While H = 4h for Mesh 1, H = 8h was chosen
for Mesh 2. Computation of the coarse grid correction qH is then negligible regarding the numerical costs, when compared
with the original correction. The local Poisson problems on each subdomain are solved on h(Ωi). The degrees of freedom
corresponding to each local pressure correction qm

i,h ∈ Si,h are illustrated in Figure 10. Note that the choice of subdomains
is rather flexible and certain modifications can decrease the size of local problems. In Table 1, we present the number of
degrees of freedom for velocity ũm

h ∈ Vh, original (global) pressure correction qm
h ∈ Qh, and the coarse pressure correction

qm
H ∈ SH . A challenging aspect of this setting is: there are four subdomains around the cylinder, which means the pressure

differences are determined on four independent local problems.

http://wileyonlinelibrary.com
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F I G U R E 7 Numerical results for 𝜈 = 10−3, N = 64. Local pressure corrections of Neumann type (Section 4.1.5) in l2(0,T;L2(Ω)) norm
(left) and l2(0,T;H1(Ω)) norm (right): A comparison with Figure 3 indicates a huge accuracy loss especially for k < 0.025 when Neumann
type boundary conditions are chosen for the local problems [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 8 Splitting of Ω into 24 subdomains (Section 4.2) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9
8⋃

i=1
H(Ωi) and H(Ωi), i ∈ {9, … , 24} [Color

figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Degrees of freedom per
subdomain. Mesh 1 (gray) and Mesh 2 (blue) [Color
figure can be viewed at wileyonlinelibrary.com]

1 2 3 4 5 6 7 8 9+
Subdomain numeration

Number of degrees of freedom per subdomain

2813

3525 3397

2685

3457 3457 3585 3585

1681

727
907 875

695
897 897 929 929

441

http://wileyonlinelibrary.com
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Mesh V h Qh SH

1 103,728 13,132 883

2 412,256 51,864 883

T A B L E 1 Number of degrees of freedom

In Figures 11 and 12, we present drag and lift coefficients and pressure differences computed on Mesh 2. For local
pressure corrections, average pressure differences on the subdomains (5, 6) and (7, 8) are considered. Note that moderate
differences are only present in the lift coefficient. In Figure 11, we zoom around the region where the lift coefficient attains
its maximum value. The reference maximum value of the lift coefficient18 is depicted by a point. We observe that, for
large time-steps, there is a moderate difference between lift coefficients of local pressure and original pressure correction
methods. However, this difference becomes less when the time-step is chosen smaller and both methods converge to
the reference value. This behavior can be observed in Table 2 in more detail for both mesh settings. Regarding the drag
coefficient, we stress the fact that the original pressure correction method does not converge to the reference value, but
leads to a relative error of approximately 2 ⋅ 10−4 on Mesh 2. Nevertheless, the drag coefficient and pressure differences
resulting from local pressure correction method converges to the one from original pressure correction method on Mesh
1 and 2.

F I G U R E 11 Mesh 2: Obtained lift coefficients (left) for the original (Global) scheme and the novel (Local) scheme with different time
steps k= 0.01 ⋅ 2−s. Zoom around maximal lift coefficients (right) [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 12 Mesh 2: Obtained drag coefficients (left) and pressure differences (right) with different time steps k= 0.01 ⋅ 2−s from the
original and the novel scheme. All curves are nearly not distinguishable [Color figure can be viewed at wileyonlinelibrary.com]
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T A B L E 2 Maximal lift and drag coefficientes and pressure differences; Global scheme (N = 1, in bold)
and Local scheme (N = 24, plain)

Mesh k t(cd, max) cd, max t(cl, max) cl, max Dp(8)

1 0.005 3.935 2.94412 5.71 0.528282 −0.111770

3.935 2.94426 5.705 0.523518 −0.111759

1 0.0025 3.935 2.94390 5.695 0.490996 −0.111515

3.935 2.94406 5.695 0.489076 −0.111508

1 0.00125 3.93625 2.94386 5.6925 0.480464 −0.111359

3.93625 2.94400 5.6925 0.479754 −0.111360

2 0.005 3.935 2.95050 5.71 0.528422 −0.111908

3.935 2.95048 5.71 0.524312 −0.111906

2 0.0025 3.935 2.95028 5.6975 0.491594 −0.111783

3.935 2.95028 5.6975 0.490140 −0.111777

2 0.00125 3.93625 2.95024 5.69375 0.481484 −0.111654

3.93625 2.95024 5.69375 0.480984 −0.111653

reference 3.93625 2.950921575 5.693125 0.47795 −0.1116

5 CONCLUSIONS

We presented a numerical study of the local pressure correction method for approximating the solutions to Navier-Stokes
equations. The method is based on local projections of the velocity onto divergence-free velocities. The global Poisson
problems are replaced with a (very) coarse global and several local Poisson problems. The resulting local Poisson problem
can be solved completely in parallel. We numerically investigated that for velocity the discretization error of the method
has the same asymptotic behavior as the original pressure correction scheme. Moreover, we presented our computational
results regarding flow around cylinder benchmark, where physical quantities such as lift and drag forces and pressure
differences are of interest. The results show that the local pressure correction scheme is qualitatively very promising.
One of the next steps will be to solve the subproblems in parallel and to document on the speed up of the new scheme.
Moreover, a theoretical error analysis of the scheme is inevitable as it would lead to a robust design of the parameter 𝜏0.
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