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Abstract

Abscisic acid (ABA) priming is known to enhance plant growth and survival under

salinity. However, the mechanisms mediating this long-term acclimatization to salt

stress are still obscure. Specifically, the long-term transcriptional changes and their

effects on ion relations were never investigated. This motivated us to study the long-

term (8 days) effect of one-time 24 h root priming treatment with 10 μM ABA on

transcription levels of relevant regulated key genes, osmotically relevant metabolites,

and ionic concentrations in Vicia faba grown under 50 mM NaCl salinity. The novelty

of this study is that we could demonstrate long-term effects of a one-time ABA appli-

cation. ABA-priming was found to prevent the salt-induced decline in root and shoot

dry matter, improved photosynthesis, and inhibited terminal wilting of plants. It sub-

stantially increased the mRNA level of AAPK and 14-3-3 ABA inducible kinases and

ion transporters (PM H+-ATPase, VFK1, KUP7, SOS1, and CLC1). These ABA-induced

transcriptional changes went along with altered tissue ion patterns. Primed plants

accumulated less Na+ and Cl− but more K+, Ca2+, Zn2+, Fe2+, Mn2+, NO3
−, and SO4

2−.

Priming changed the composition pattern of organic osmolytes under salinity, with

glucose and fructose being dominant in unprimed, whereas sucrose was dominant in

the primed plants. We conclude that one-time ABA priming mitigates salt stress in

Vicia faba by persistently changing transcription patterns of key genes, stabilizing the

ionic and osmotic balance, and improving photosynthesis and growth.

1 | INTRODUCTION

Salinity is characterized by excessive soluble salts in the growth medium,

which impose osmotic and ionic stress in plants (Munns & Tester, 2008).

Key processes of photosynthesis, respiration, and transpiration are

affected, thus limiting shoot and root growth (Munns & Tester, 2008).

Field bean (Vicia faba) grown with an excess of sodium chloride (NaCl)

has been reported to show severe growth retardation due to a high

accumulation of Na+ that interferes with K+ uptake (Slabu et al., 2009). It

possibly disrupts the regulation of cytoplasmic enzymes and stomatal

conductance (Isayenkov & Maathuis, 2019). Moreover, in Vicia faba

grown under NaCl stress, higher accumulation of chloride (Cl−) in the

chloroplast is thought to impair the photosynthetic machinery and thus

to induce chloroplast degeneration leading to chlorosis or necrosis of the

leaf tissue (Geilfus, 2018). To resist salt stress, plants have evolved miti-

gating mechanisms at different organizational levels. Many of these
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mechanisms, for example, stomatal regulation, various morphological

modifications, osmolyte accumulation, exclusion of salt ions by roots,

and vacuolar partitioning of excess ions, are activated by salt stress,

increasing resistance following the stress event. Hence, to pre-emptively

strengthen the salt resistance in plants, it is vital to activate the resis-

tance mechanisms before the onset of salt stress.

Priming represents a sustainable, fast, cost-effective, and

environmental-friendly procedure for crop production under stressed

environments (Tanou et al., 2012). The priming process is referred to as

pre-treatment of plants, seeds, or roots, with mild stressor agents to

activate resistance responses in plants to future stress exposure (Tanou

et al., 2012). Priming induces physicochemical and transcriptional adap-

tations, which allow plants to react faster and more robustly after they

encounter biotic or abiotic stress (Savvides et al., 2016). So far, numer-

ous priming agents, such as salicylic acid, β-amino butyric acid, kinetin,

or abscisic acid (ABA), have been used to enhance resistance against

drought, cold, or salt stress (Savvides et al., 2016).

ABA is considered a stress hormone, and its rapid accumulation in

plants under various abiotic stresses shows its involvement in stress

resistance of plants (Geilfus et al., 2018; Zörb et al., 2013). Long-term

root application of ABA to stressed plants has shown to improve

drought resistance in rice (Teng et al., 2014), salt-resistance in potato

(Etehadnia et al., 2008), and common bean (Khadri et al., 2007). These

studies indicated that the improvement in growth of salt-stressed

plants induced by exogenously applied ABA was related to decreased

sodium (Na+)-to-potassium (K+) ratio and chloride (Cl−) accumulation,

and increased accumulation of proline or soluble sugars.

Finkelstein (2013) reported that ABA regulates transcription of 1–

10% of the Arabidopsis genome. Thus, we expect that ABA priming

induces salt stress resistance in plants by changing the expression pat-

terns of genes relevant to salt ion exclusion or inclusion. Previous

studies on the effect of ABA priming on salinity resistance did not

examine the expression of genes that are involved in salt resistance

together with critical ionic load in the tissues. Thus, we hypothesized

that a one-time 24 h ABA priming event induces long-term salt resis-

tance via: (1) long-term effects on transcription of genes involved in

salt stress signaling and ion regulation, (2) stabilizing ionic and osmotic

relations, and (3) enhancing photosynthesis and plant growth. There-

fore, we studied the long-term effects of short-term ABA priming on

the mRNA levels of ABA-inducible kinases (ABA activated protein

F IGURE 1 Schematic illustration of the current knowledge about transporters, ion channels, regulatory proteins, and signaling molecules are
involved in ion regulation under salt stress and being affected by ABA priming. The increased expression after ABA priming is highlighted in red
color. ABA receptors in the cytoplasm and nucleus activate ABA-dependent signaling cascades via primary enhanced expression and activation of
AAPK/SnRK2 (ABA dependent kinase), which may subsequently phosphorylates other signaling kinases like 14-3-3, CIPK, CBL, CDPK, MAPK,
etc. These components, along with SnRK2, may phosphorylate ABA-responsive elements like ABRE, ABF2 (transcription factors), which may
further activate expression of stress response genes, and ion transporters for stress adaptation. Interaction of 14-3-3 with the plasma membrane
(PM) H+-ATPase may increase the proton-pumping activity and creates an electrochemical H+ gradient across the PM, which may lead to
membrane hyperpolarization, energizes secondary transport and activates voltage-dependent ion channels like CLC1, SLAC1, AKT2/3 for ion
transport. The salt exclusion transporter SOS1 and the potassium transporter HAK/KUP is activated via phosphorylation by CIPK and CBL and by
protonation. ABA priming is suggested to enable an increased activation of these interacting mechanisms helping plants to acclimate to salt stress
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kinase [AAPK] and 14-3-3), which are important regulators of both

ABA responsive genes and activators of transport proteins involved in

ion regulation. The expression of important membrane ion transporter

genes (viz. plasma membrane [PM] proton ATPase, potassium trans-

porter, sodium antiporter and chloride channel) was also studied (for a

visual explanation of the studied molecular mechanisms, see Figure 1).

The priming-induced changes in ion transport expression were associ-

ated with ion relations and osmolyte composition under salinity stress.

Based on this, we tested whether these changes were associated with

a stabilized leaf water content, improved photosynthesis, and plant

growth under salinity stress.

2 | MATERIAL AND METHODS

2.1 | Plant cultivation, ABA priming, and salinity
treatment

Vicia faba L. (cv. Sirocco: NPZ GmbH, Hohenlieth, Germany) was culti-

vated under hydroponic culture condition in a controlled climatic

chamber (14/10 h day/night; 20/15�C; 50/60% humidity). Seeds were

surface sterilized with 0.5% sodium perchlorate for 3 min and then

washed thoroughly with deionized water. Afterward, seeds were soaked

in aerated 0.5 mM CaSO4 solution overnight and sown in moist sterilized

quartz sand for germination. After 1 week, uniform-sized seedlings were

transferred to 2.5-L plastic pots containing a quarter strength of the

nutrient solution (Geilfus & Mühling, 2013). To avoid any osmotic shock

reaction, the concentration of the nutrient solution was progressively

increased to ½, 3/4, and full-strength on second, third, and fourth day

after transplantation, respectively. The nutrient solution was changed

after every 2 days to replenish the depleted nutrients. Unprimed and

ABA-primed plants were grown without (0 mM) and with 50 mM sodium

chloride (NaCl). Thus, the experiment had a two-factor factorial design in

a completely randomized arrangement with four independent pot repli-

cates for each treatment. Before induction of salinity treatment, 2 weeks

old plants were pre-treated with ABA by adding the hormone to the

nutrient solution (for the timing of treatments, see Figure 5).

For ABA priming, plants growing in nutrient solutions were sup-

plied with 10 μM of ABA for 24 h, while the unprimed plants did not

receive an ABA pre-treatment. Fifteen-day (fourth leaf stage) old

unprimed and ABA-primed plants were subjected to 0 and 50 mM

NaCl salinity in the nutrient solution. The salinity level of 50 mM was

increased progressively for 2 days to avoid sudden osmotic shock.

Thereafter, the nutrient solution, without (control treatment) and with

the required concentration of NaCl salt (50 mM NaCl treatment), was

changed after every day to replenish the depleted ions. After 8 days

of growth under non-saline or saline conditions, plants were

harvested, and roots and leaf samples were separately collected. Leaf

and root samples were thoroughly washed with deionized water to

remove the adhering ions from the surface, dried at 60�C for 72 h,

and the dry weights were recorded. The dried materials were ground

to a fine powder and used for mineral analysis. Fresh plant materials

were used to analyze the abundance of certain transcripts. For this,

the second batch of plants was grown at the same time under identi-

cal conditions. After washing with deionized water, fresh plant mate-

rials were shock-frozen in liquid N2 and stored at −80�C until analysis.

2.2 | Gas exchange measurements

Gas exchange measurements were carried out on intact, fully

expanded third-youngest leaves before harvesting. Photosynthetic

rate (μmol CO2 m
−2 s−1) and stomatal conductance (mol H2O m−2 s−1)

were measured with an open flow portable photosynthesis system

(LI 6400XT, Li-COR Biosciences Inc.). For measurements, leaves were

placed across a 2 × 3 cm leaf chamber. The conditions for the mea-

surements inside the leaf chamber were maintained identical to the

external conditions of the climatic chamber. The light was provided by

a LED red light source built into the top of the leaf chamber (250 μmol

quanta m−2 s−1), and the CO2 concentration was controlled by Li-Cor

LI-6400 CO2 injection system (400 μmol CO2 mol−1) as identical to

outside conditions.

2.3 | Non-invasive leaf water content (LWC)
measurement

Non-invasive in planta measurement of leaf water content was started

2 days before the onset of ABA priming and continued till the day of

harvest. A circular area of 2–3 cm diameter in the middle of the fourth

leaf was selected for daily measurements. For the quantification of

leaf water content, a ratiometric near-infrared (NIR) transmission

setup was employed. The measurement uses the ratio in absorption at

1450 nm (strong absorption by liquid water) and 1050 nm (non-

absorbing wavelength), which vary with leaf water content (Zhang

et al., 2019). The custom-made water sensor (developed by H. Kaiser)

device had a dual infrared LED emitter mounted on top of a leaf clip

by a 45� angle and a photodiode collecting transmitted light below

the leaf. A data logger was used to control the device and record data.

For calibration of the water sensor, several detached Vicia faba leaves

were placed in deionized water at 4�C for overnight. On the following

day, NIR transmission ratio was determined at three-time intervals

(0, 5, 10 min) during air drying of these leaves. Simultaneously, water

content was measured by the gravimetric method. The linear relation

between NIR transmission ratio and gravimetric water content was

used to convert the sensor data into water content (g m−2).

2.4 | Mineral analysis of plant tissue

For mineral analysis, oven-dried and finely ground leaf and root sam-

ples (200 mg) were digested with 10 ml of 69% HNO3 (ROTIPURAN

Supra for ICP, 69%) in a closed-vessels microwave digestion system

(MARS 6 Xpress, CEM Corporation) adjusted to the following condi-

tions: 2 min at 100�C, 1 min at 120�C, 20 min at 180�C and 20 min

cooling time. Afterward, the digested samples were diluted with
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Milli-Q water (18.2 MΩ cm conductivity) to 100 ml and stored at 4�C

until further analysis. Concentrations of Na and macronutrients (K and

Ca) and micronutrients (iron, Fe; manganese, Mn; zinc, Zn) were mea-

sured by inductively coupled plasma mass spectroscopy (ICP-MS;

Agilent 7700, Agilent Technologies Inc.) as described by Jezek

et al. (2015).

2.5 | Determination of free sugars and inorganic
anions

Water-soluble sugars and free inorganic anions were extracted by hot

water following the procedure of Cataldi et al. (2000) with minor mod-

ifications. Dried and powdered leaf and root samples (~ 20 mg) were

dissolved and boiled for 5 min in 1.5 ml of sterile deionized water,

mixed thoroughly by vortexing and immediately placed on an ice-

water bath for 30 min. Then mixtures were centrifuged, and the

supernatant was collected. For the precipitation of proteins, the

supernatants were mixed with chloroform and centrifuged. Again,

the supernatant was collected and cleaned by passing through strata

C-18 columns (Phenomenex, Torrance). Afterward, both the anions

and sugars were determined by isocratic ion chromatography

(IC-5000 Capillary Reagent- Free IC System, Thermo Scientific).

2.6 | Primer design and Sanger sequencing

For analyzing the mRNA transcript level of ABA inducible kinases

AAPK and 14-3-3, and ion transporter genes PM H+-ATPase isogenes

(vha2, vha4, vha5), and Vicia faba potassium channel1 (VFK1), primers

were designed from sequences available on NCBI database for Vicia

faba. Since genome sequences of salt overly sensitive1 (SOS1), potas-

sium uptake permease 7 (KUP7), and chloride channel1 (CLC1) are not

annotated for Vicia faba, Fabaceae family-specific primers were

designed based on conserved regions: The coding sequences (CDSs)

of genes of interest from Glycine max, Vigna radiata, Cicer arietinum,

and Medicago truncatula were retrieved from the NCBI database

(https://www.ncbi.nlm.nih.gov/nuccore/). Thereafter, multiple CDS

sequences were aligned by using the CLC workbench tool (https://

www.qiagenbioinformatics.com/products/clc-genomics-workbench/),

and the homologous conserved region was chosen for primer design.

A pair of primers were designed from the conserved aligned sequence

for each gene by manual selection of oligonucleotide sequences on

the CLC workbench tool. Characteristics of selected primers were

checked and evaluated in silico by the online tool oligo calc (http://

biotools.nubic.northwestern.edu/OligoCalc.html) and multiple primer

analyzer tools provided by Thermo-Fisher. All primer oligos were pur-

chased from Eurofins Genomics (Ebersberg, Germany). The details of

the primers are listed in Table S1. All the primers were tested and vali-

dated by PCR amplification to ensure that (1) they work in Vicia faba

and (2) there are specific to the targeted cDNA. The thermal-cycling

program was performed as follows: initial denaturation at 95�C for

3 min, followed by 40 cycles of denaturation at 94�C for 30 s,

annealing at 55–60�C for 30 s, and extension at 72�C for 30 s and

final extension for 5 min at 72�C. PCR products obtained were run

along with 1 kb DNA ladder (Gene ruler, Thermo Fisher Scientific) on

1% TBE agarose gels to ensure the correct length of the amplicon.

Furthermore, amplification of the correct gene was confirmed by the

sequencing of the amplicon (Sanger sequencing, Instituts für Klinische

Molekularbiologie) and comparison with the BLASTN nucleotide col-

lection database (Table S2).

2.7 | Gene expression analysis

Total RNA of leaves and roots were extracted using TRIzol

(Invitrogen) according to the manufacture's protocol. The concentra-

tion and purity of RNA were determined by a NanoVue Plus Spectro-

photometer (GE Healthcare Life Science), and integrity was checked

by gel electrophoresis. Total coding RNA (1 μg) isolated was reverse

transcribed following the manufacturer's instructions (Verso cDNA

synthesis kit, Thermo Fisher Scientific, USA), including DNase I treat-

ment. The quality of synthesized cDNA (1/10 dilution) was checked

by standard PCR with the most stable housekeeping gene Vf

Cyclophilin (CYP) (Gutierrez et al., 2011; Neuhaus et al., 2013). Quanti-

tative RT-PCR was conducted by PowerUp™ SYBR™ Green Master

Mix (Applied Biosystems) with primers shown in Table S1 on CFX96

Real-Time System (Bio-Rad Laboratories GmbH, München, Germany).

Each reaction (20 μl) contains 100 nM of each primer, 2 μl of diluted

cDNA templates, and other reaction components. After an initial

denaturation step (95�C for 5 min), RT-qPCR was carried out over

40 cycles (95�C for 15 s, 60�C for 30 s, 72�C for 30 s), followed by a

melt curve stage (95�C for 15 s, 60�C for 1 min, 95�C for 15 s, 24�C

for 15 s). Three biological replicates and three technical replicates

were used for each treatment. Transcript levels of gene were normal-

ized with endogenous control (Vf CYP), and the expression changes of

target mRNAs were determined using the 2–ΔΔCt method (Livak &

Schmittgen, 2001).

2.8 | Statistical analysis

Data were statistically analyzed following two-way ANOVA, which

was performed using SPSS software (version 17.0). Significant differ-

ences among the means were determined by Tukey's HSD test

at P ≤ 0.05.

3 | RESULTS

3.1 | Growth, dry matter, and gas exchange
attributes

Under saline condition, plant height and root growth were severely

stunted in unprimed plants, while this effect was not observed for

ABA-primed plants (Figure 2). Leaf dry matter of unprimed plants
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decreased by 33% under saline condition as compared to non-saline

condition (Figure 3A). However, ABA-primed plants did not show a

decrease in leaf dry matter accumulation under saline condition. Simi-

larly, reduction in root dry matter of unprimed plants under salinity

was 21% as compared to non-saline condition. In contrast, salinity did

not affect the root dry matter accumulation of ABA-primed plants

(Figure 3B).

Under non-saline conditions, the photosynthetic rate of unprimed

and ABA-primed plants was similar. Under saline condition, photosyn-

thetic rate of unprimed plants declined by 45%, while that of ABA

primed plants decreased by only 10% (Figure 4A). ABA priming under

non-saline condition decreased stomatal conductance, measured after

4 h of light, by 27% as compared to unprimed plants (Figure 4B).

However, under saline condition, ABA primed plants had a 53% higher

stomatal conductance than unprimed plants.

3.2 | Leaf water content

In general, leaf water content (LWC) showed an increasing trend dur-

ing the 8 days of observation, possibly due to ongoing maturation

(Figure 5). ABA priming caused a significant extra increment of

ca. 10% compared to the unprimed treatments. Under salinity, LWC

in the unprimed plants increased at a high rate to a maximum on day

5, and onward to that rapidly decreased till the end of the experiment

when visual wilting was observed. This decline was most likely caused

by visual dieback of the fine roots, effectively impeding water supply

to the shoot. The ABA-primed plants under salinity neither showed

the large initial increase nor the later rapid decline in LWC; instead,

they responded mainly parallel to the unprimed and primed non-saline

treatments.

3.3 | Concentration of minerals in leaves and roots

Under saline conditions, Na+ concentration increased 11- and 18-fold,

respectively, in leaves and roots compared to the values recorded

under non-saline conditions (Figure 6A,B). ABA priming under saline

condition decreased leaf and root Na+ concentration by a factor of

0.60 and 0.44, respectively. Potassium concentration in leaves and

roots of unprimed plants showed a 17 and 30% decrease, respec-

tively, under saline condition compared to non-saline condition

(Figure 6C,D). ABA-primed plants did not show this salinity-induced

decline in K+ concentration in both the tissues. Salinity decreased Ca2+

concentration in leaves of both unprimed and ABA-primed plants by

28%, compared to non-saline unprimed plants (Figure 6E). Similarly, the

root Ca2+ concentration declined by 25% under salinity in unprimed

plants, in contrast to primed plants, which sustained their Ca2+ concen-

tration (Figure 6F).

Salinity, ABA priming, and their interaction in some cases

(Figure 7) significantly affected micronutrient (Zn2+, Fe2+, and Mn2+)

concentrations in leaves but not in roots. Under non-saline condition,

unprimed and ABA-primed plants had similar Mn+2 concentration in

both tissues, while Zn2+ and Fe2+ concentration in leaves were 16%

and 32% higher in ABA-primed plants (Figure 7A,C,E,G). Salinity gen-

erally decreased micronutrient concentrations in leaves, but more so

in unprimed than ABA-primed plants. Consequently, in leaves, ABA

priming restored Zn2+ and Mn2+ (Figure 7A,E) and improved Fe2+

F IGURE 2 Effect of ABA priming
on plant height and root morphology
of Vicia faba grown without or with
50 mM NaCl salinity. The 24-h lasting
ABA priming with 10 μM ABA at the
roots was done 1 day before
application of salt stress and 8 days
before pictures were taken
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concentration by 82%, as compared to unprimed plants under saline

condition (Figure 7C).

Salinity increased Cl− concentration in leaves and roots of

unprimed plants by 4.6- and 5.1-fold, respectively (Figure 8A,B). ABA-

priming decreased Cl− concentration in leaves and roots by a factor of

0.60 and 0.53, respectively, compared to the unprimed plants

(Figure 8A,B). Salinity decreased nitrate (NO3
−) and sulfate (SO4

2−)

concentrations in leaves by 80 and 37%, respectively, in unprimed

plants (Figure 7C,E). ABA priming doubled the NO3
− and SO4

2− con-

centrations in leaves as compared to unprimed plants under saline

condition (Figure 8C,E). Under salinity, NO3
− concentration in roots

decreased by 69% in unprimed plants as compared to non-saline

unprimed. In comparison, ABA priming improved NO3
− concentration

in roots by 150% as compared to saline unprimed plants (Figure 8D).

Concentrations of SO4
2− in roots were neither affected by salinity nor

by ABA priming under saline condition (Figure 8F).

3.4 | Accumulation of organic osmolytes by leaves
and roots

In leaves, the salinity response of unprimed plant was dominated by

three- and twofold increase in glucose and fructose concentrations,

respectively (Figure 9A,C). The sucrose concentration, however,

remained unchanged. Priming inverted this pattern: it reduced the

fructose and glucose concentrations back to the level of non-saline

conditions and led to a ca. twofold increase in sucrose concentration,

effectively shifting the dominant sugars in osmotic adjustment from

fructose and glucose to sucrose (Figure 9A,C,E). A similar shift to

sucrose as prevalent sugar was observed in the roots, where salinity

halved the sucrose concentration in roots of unprimed plants and

priming led to a slight increase under salinity. At the same time, the

salinity-induced increase in glucose and fructose concentrations was a

little (fructose) or absent in ABA-primed plants (Figure 9B,D,F).

F IGURE 3 Effect of ABA priming on the leaf (A) and root (B) dry
matter of Vicia faba L. grown without or with 50 mM NaCl salinity.
The data ± SE are means of four independent pot replicates. Different
letters on data bars indicate significant differences among the
treatments at P ≤ 0.05

F IGURE 4 Effect of ABA priming on photosynthetic rate (A), and
stomatal conductance (B) of Vicia faba L. grown without or with
50 mM NaCl salinity. The data ± SE are means of four independent pot
replicates. Different letters on data bars indicate significant
differences among the treatments at P ≤ 0.05
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F IGURE 6 Effect of ABA priming
on the concentration of Na+ (A,
leaf; B, root), K+ (C, leaf; D, root), and
Ca2+ (E, leaf; F, root) by Vicia faba
L. grown under non-saline and
50 mM NaCl saline nutrient solution.
The data ± SE are means of four
independent pot replicates. Different
letters on data bars indicate
significant differences among the
treatments at P ≤ 0.05

F IGURE 5 Change (%) in leaf
water content relative to the initial
LWC of Vicia faba L. grown under
non-saline and 50 mM NaCl saline
nutrient solution. The data ±SE are
means of seven independent pot
replicates. The different letters at the
eighth day of measurement show
significant differences at P ≤ 0.05
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3.5 | Relative transcript abundance of ABA-
inducible kinase and membrane transporters genes

Under saline conditions, ABA-primed leaves and roots showed signifi-

cantly higher AAPK transcripts levels than unprimed plants

(Figure 10A,B). Irrespective of ABA priming and salinity, 14-3-3 tran-

script remained unchanged in leaves (Figure 10C). However, in roots,

ABA priming increased the mRNA expression of 14-3-3 by a factor of

3.2 under non-saline and 2.8 under saline condition compared to

unprimed plants (Figure 10D).

The mRNA expression of membrane ion transporters PM H+-

ATPase isogenes (vha2, vha5), KUP7, VFK1, SOS1, and CLC1 was

decreased under saline condition (Figures 11 and 12). In leaves under

saline condition, ABA priming clearly increased transcript levels,

restoring those of vha2 and vha5 to non-saline levels and doubling the

mRNA expression of vha4 compared to unprimed plants (Figure 11A,

C,E). Similarly, in roots, ABA-primed plants showed significantly higher

mRNA expression of all three isogene transcripts than unprimed

plants (Figure 11B,D,F). Under salt stress, the relative mRNA

expression of KUP7was only affected in leaves, where unprimed showed

suppression of transcript, while ABA-primed restored it to the level of

non-saline treatment (Figure 12A,B). Moreover, 1.8-fold higher mRNA

expression of KUP7 in roots of ABA-primed versus unprimed plants was

observed under non-saline condition only (Figure 12B). Additionally,

VFK1 mRNA abundance significantly increased by both salinity and ABA

priming treatments in leaves (Figure 12C), 2.8-fold upregulation in VFK1

was recorded in ABA-primed plants as compared to unprimed plants

under non-saline condition. In roots, only ABA-primed plants showed sig-

nificant upregulation compared to unprimed plants under saline condi-

tion (Figure 12D).

In leaves, SOS1 mRNA expression was upregulated by salinity but

not ABA priming (Figure 12E,F). In roots, ABA priming upregulated

the mRNA expression of SOS1 by 1.0- and 1.5-fold under saline and

non-saline condition, respectively, than the unprimed counterparts.

The relative mRNA expression of the CLC1 was upregulated in ABA-

primed plants in both tissues, but more prominently in the roots, 2.82-

and 6.5-fold as compared to unprimed plants under non-saline and

saline conditions, respectively.

F IGURE 7 Effect of ABA priming
on the concentration of Zn2+ (A,
leaf; B, root), Fe2+ (C, leaf; D, root),
and Mn2+ (E, leaf; F, root) by Vicia
faba L. grown under non-saline and
50 mM NaCl saline nutrient solution.
The data ±SE are means of four
independent pot replicates. Different
letters on data bars indicate

significant differences among the
treatments at P ≤ 0.05
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4 | DISCUSSION

Short-term ABA application substantially improved plant growth and

excess salt ion exclusion for a long time (8 days). As a high turnover

plant hormone, ABA is too short-lived (Ren et al., 2007; Yang &

Zeevaart, 2006) to have any direct effect on plants 1 week after its

application. Therefore, one can assume that the ABA-induced changes

reflect the transformation into a more salt-resistant transcriptional

and physiological state, a process usually referred to as “priming.”

4.1 | ABA priming prevents salt-induced growth
reduction

In our study, unprimed plants showed significant growth retardation

under salt stress, which was mitigated by ABA priming (Figure 2).

Higher dry matter accumulation by ABA-primed plants may be

explained by attenuation of the inhibitory effects Na+ and Cl− on

photosynthesis (Figure 4A) due to their substantially lower accumula-

tion in primed as compared to unprimed plants (Figures 6A,B and 8A,

B). Improved plant growth may also be linked to higher PM

H+-ATPase expression (Figure 11), which may facilitate (1)

re-translocation of salt ions (Shabala et al., 2020), (2) apoplastic

acidification for acid-induced growth (Cosgrove, 2005), or (3) higher

auxin transport under water stress (Xu et al., 2013).

After 8 days of growth under saline condition, leaf water content

(LWC) of unprimed plants decreased by 10% as compared to its initial

value, whereas ABA-primed plants maintained a steady increase in

LWC (Figure 5). The decrease in LWC of unprimed plants under saline

condition can be explained by salinity induced root damage (Figures 2

and S1), which impaired the uptake of water, changed the pattern of

osmolyte accumulation (Figure 9) and induced stomatal closure

(Figure 4B). In contrast, the roots of ABA-primed plants had a normal

length (Figure S1), and thus the shoot did not show a decline in LWC

under saline condition (Figure S1). Higher sucrose concentrations in

ABA-primed plants (Figure 9E) might also have contributed to higher

F IGURE 8 Effect of ABA priming
on the concentration of Cl− (A,
leaf; B, root), NO3

− (C, leaf; D, root),
and SO4

2− (E, leaf; F, root) by Vicia
faba L. grown under non-saline and
50 mM NaCl saline nutrient solution.
The data ± SE are means of four
independent pot replicates. Different
letters on data bars indicate

significant differences among the
treatments at P ≤ 0.05
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LWC because of decreased osmotic potential. Moreover, ABA-primed

plants accumulated more K+ (Figure 6C,D) that helped in osmotic

adjustments.

4.2 | ABA priming modulates ion concentrations
under salt stress

As expected, plants that grew under saline conditions accumulated

high quantities of Na+ and Cl− in roots and leaves; however, one-time

ABA priming effectively reduced Na+ and Cl− an accumulation

(Figures 6A,B and 8A,B). The lower accumulation of Na+ in ABA-

primed plants might be explained by the higher expression of SOS1

(Na+/H+ antiporter) gene (Figure 12E,F), whose product efficiently

excludes Na+ as has been shown for some glycophytes such as Ara-

bidopsis (Shi et al., 2002), white clover (Li et al., 2017), and black locust

(Chen et al., 2017). The driving force for Na+/H+ antiport at plasma

membrane is provided by the activity of the PM H+-ATPases whose

transcripts were also upregulated in primed plants under salt stress

(Figure 11).

At the same time, higher K+ concentration in ABA-primed plants

(Figure 6C,D) indicates that Na+ did not repress K+ uptake. The

enhanced expression of K+ transporter (KUP7) and K+ channel (VFK1)

after ABA pre-treatment in roots under salt stress (Figure 12A,D) may

have contributed to the increased K+ uptake (Figure 6C,D). Higher

transcript abundance of three isogenes of PM H+-ATPase in ABA-

primed plants observed in this study could also have contributed to

higher K+ accumulation, via hyperpolarization-activated opening of K+

channel (Maathuis et al., 1997), and providing the driving force for

H+/K+ cotransport (KUP7) and K+ channel transport (VFK1)

(Li et al., 2018; Maathuis et al., 1997). In ABA-primed plants, the

enhanced accumulation of K+ could have been one of the key mecha-

nisms that helped avoid salt damage, as K+ is a key osmoticum for

osmotic adjustment and activator of various enzymes (Munns &

Tester, 2008). Salinity significantly reduced Ca2+ in unprimed plants

(Figure 6E,F), whereas ABA priming restored Ca2+ concentration in

F IGURE 9 Effect of ABA priming
on the concentration (conc.) of
glucose (A, leaf; B, root), fructose (C,
leaf; D, root), and sucrose (E, leaf; F,
root) in Vicia faba L. grown under
non-saline and 50 mM NaCl saline
nutrient solution. The data ± SE are
means of four independent pot
replicates. Different letters on data

bars indicate significant differences
among the treatments at P ≤ 0.05
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roots (Figure 6F). Owing to the involvement of Ca2+ in various cell wall

functions (Manishankar et al., 2018), its deficiency can be a problem

under salinity, which could be mitigated by ABA priming. Another nov-

elty of the present research is that ABA priming was also found to have

beneficial or restorative effects on the concentration of micronutrients

(Zn2+, Fe2+, Mn2+) in both root and leaves. This effect may be explained

by an upregulation of PM H+-ATPase expression that is important for

the establishment of the proton gradient across the plasma membrane

and thus activating secondary transport of these micronutrients. The

uptake of Fe+2, Mn+2, and Zn+2 is driven by this proton gradient (Gupta

et al., 2016; Socha & Guerinot, 2014). Actually, Fe2+ and Zn2+ tissue con-

centration of unprimed plants under salinity fell below the threshold for

a deficiency, which is about 30 μg g−1 for Fe+2 and 25 μg g−1 for Zn+2

for beans (Kosegarten et al., 1998; Rafique et al., 2015). This may have

contributed to the limitation of photosynthesis (Figure 4A). Additionally,

as these micronutrients (Zn+2, Fe+2, Mn+2) serve as co-factors for various

key metabolic enzymes, their lack in the unprimed salt-stressed plants

may have contributed to growth retardation.

4.3 | ABA priming modulates anion contents

Chloride concentration under salt stress was much lower in primed

than in unprimed plants (Figure 8A,B), indicating that ABA priming

also induced Cl− exclusion mechanisms as was found by Qiu

et al. (2016) in Arabidopsis. The enhanced expression of CLC1 in

primed plants may have contributed to enhance the sequestration and

compartmentation of Cl− in the roots (Figure 12G,H). The limited root

to shoot translocation of Cl− due to the upregulation of CLCs has been

confirmed by Wang et al. (2015) in transgenic Arabidopsis plants and

by Wei et al. (2016) in soybean. Conversely, with increased Cl− con-

tents in unprimed plants under salinity, in our study, the uptake of

NO3
− and SO4

2− was strongly reduced (Figure 8C–F). This might be

due to the antagonistic interaction of Cl− with these anions. Basically,

Cl− accumulation takes place at the expense SO4
2− and, especially

NO3
− (Zhang et al., 2020) due to the sharing of the same transporters

(Geilfus, 2018). ABA priming significantly increased the content of

these anions under saline conditions (Figure 8). Together with a

decreased Cl− accumulation, this indicates that priming reduced the

antagonistic effect of Cl− (Qiu et al., 2016). Other ABA-induced mech-

anisms might also have contributed to increased SO4
2− content. For

example, Cao et al. (2014) reported that ABA application increased

the transcript level of a SO4
2−/H+ co-transporter (SULTR3) and other

S-metabolism-related genes, causing a higher SO4
2− concentration.

4.4 | ABA priming modulates sizes of sugar pools

Sugar accumulation has diverse roles in salinity stress response.

Sugars provide osmoprotection, ROS scavenging, energy, and act as

signaling molecules (Halford et al., 2011). In the present study, we

have found a peculiar change in sugar accumulation patterns between

unprimed and primed plants under salinity. Under salt stress,

unprimed plants showed a higher accumulation of hexoses (glucose

and fructose, Figure 9A,D), while ABA priming enhanced the accumu-

lation of sucrose (Figure 9E,F). Accumulation of hexoses has been found

F IGURE 10 Effect of ABA
priming on relative expression of
ABA inducible kinase gene in Vicia
faba L. grown under non-saline and
50 mM NaCl saline nutrient solution.
The data ± SE are means of three
independent pot replicates. Different
letters on data bars indicate
significant differences among the

treatments at P ≤ 0.05
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to induce enzymatic and transcriptional feedback inhibition of photosyn-

thesis (Martínez-Carraseo et al., 1993; Paul & Pellny, 2003; Sehar

et al., 2019), possibly being one cause for the lower photosynthetic rate of

unprimed plant under salt stress (Figure 3A). Fivefold higher sucrose level

in ABA-primed plants was observed, compared to the unprimed plants,

under (Figure 9C,D). This could be attributed to a higher K+/Na+ ratio

(Figure 6A–D), which removes Na+ induced allosteric deactivation of vari-

ous metabolic enzymes involved in sucrose synthesis (Hasanuzzaman

et al., 2018) under salt stress. Sucrose is the only phloem mobile sugar; a

high sucrose concentration may thus also improve the source-sink rela-

tions by providing carbon assimilates for growth and sufficient energy for

ion homeostasis (Rosa et al., 2009).

4.5 | ABA priming modulates gene expression of
ABA inducible kinases and membrane transporters

In the present study, we found a long-lasting effect of ABA priming

on the expression of genes governing salt-resistance in plants, even

though the ABA-priming application was done 8 days ago. Salt stress

in unprimed plants had little or no effect on the expression of ABA-

activated protein kinase (AAPK) in root and leaf tissues; however, ABA

priming increased expression levels under salinity (Figure 10A,B).

AAPK activates various downstream signal components such as CIPK,

CDPK, 14-3-3, and other ABA-responsive elements via phosphoryla-

tion (Figure 1). Kulik et al. (2011) found that overexpression of

SnRK2.6, an orthologue of AAPK, in transgenic Arabidopsis plants

induced resistance to multiple stresses via higher expression of ABA-

dependent stress-responsive genes, secondary root development, and

improved osmotic potential. Hence, higher expression of AAPK in

ABA-primed plants in this study could have induced salinity resistance

through the same mechanisms. SnRK2.6 has also been shown to be

upregulated in pepper plants by exogenous application of ABA and

salt treatment (Ruggiero et al., 2019). Moreover, elicitation of 14-3-3

by AAPK, in turn, facilitates the upregulation of ABA-responsive genes

in an ABA-dependent manner (Takahashi et al., 2007; Yan et al., 2004)

(Figure 1). Under salinity stress, we also observed a higher level of

14-3-3 mRNA transcript in roots of ABA-primed plants compared to

F IGURE 11 Effect of ABA
priming on relative expression of
plasma membrane H+-ATPase
isoforms in Vicia faba L. grown under
non-saline and 50 mM NaCl saline
nutrient solution. The data ± SE are
means of three independent pot
replicates. Different letters on data
bars indicate significant differences

among the treatments at P ≤ 0.05
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unprimed plants (Figure 10C,D). A previous study demonstrated that

14-3-3 expression was upregulated by exogenous application of ABA

and salt in rice (Yashvardhini et al., 2018). Overexpression of 14-3-3

in transgenic cotton showed improved drought resistance by regulat-

ing metabolic processes and PM H+-ATPase activity (Yan et al., 2004)

(Figure 1). Our results thus suggest that ABA priming has a long-term

effect on the expression of central ABA-dependent kinases.

Knowing that ABA priming reduces the effects of salinity on the

ion composition, the question whether these changes in ionic rela-

tions functionally correlate with the changes in expression level of ion

channels arose. Hence, we analyzed the expression patterns of differ-

ent ion transporter genes in both root and leaf tissues. The expres-

sions of three different isogenes of PM H+-ATPase were upregulated

by ABA priming under both normal and saline growth conditions

F IGURE 12 Effect of ABA
priming on the relative expression of
membrane ion channel and
transporter in Vicia faba L. grown
under non-saline and 50 mM NaCl
saline nutrient solution. The data ± SE

are means of three independent pot
replicates. Different letters on data
bars indicate significant differences

among the treatments at P ≤ 0.05
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(Figure 11). Post-translationally, PM H+-ATPases could have been activated

by the increased levels of 14-3-3 and sucrose in ABA-primed plants

(Figure 1), as both are activators of PM H+-ATPases (Falhof et al., 2016;

Okumura et al., 2016). Similarly, expressions of KUP7 transporter and K+

channel VFK1 were upregulated in leaf and root tissues of ABA-primed

plants under both non-saline and saline conditions (Figure 12A-D). Thus, the

higher concentration of ions, particularly K+, as observed in ABA-primed

plants under salt stress (Figure 6C,D), could be attributed to the above

transporter's upregulation. KUP7 is located at the plasma membrane and is

regarded as a high-affinity K+/H+ co-transporter for K+ uptake. ABA-

dependent SnRK2.6 kinases activate it, and its K+/H+ co-transport is ener-

gized by PM H+-ATPase activity (Han et al., 2016; Li et al., 2018) (Figure 1).

The observed upregulation by ABA priming of both AAPK and PM H+-

ATPases could activate and drive K+ uptake by the more abundant KUP7.

VFK1 is a voltage-gated inward rectifying plasma membrane K+ channel pro-

tein, an orthologue of Arabidopsis potassium channel 2/3 (AKT2/3), which

plays a dual role in phloem cell of leaves and roots by loading K+ from

source tissues and unloading K+ into sink organs (Dreyer & Uozumi, 2011;

Gajdanowicz et al., 2011). ABA-induced hyperpolarization of the root

plasma membrane was found to activate AKT2/3 (Roberts &

Snowman, 2000). Thus, the higher expression of VFK1 in ABA-primed roots

and leaves could have contributed to the increased K+ concentrations.

Our results show that SOS1 transporter expression was upregulated

in roots of ABA-primed plants (Figure 12E,F). SOS1 is the plasma mem-

brane Na+/H+ antiporter, located in parenchyma cells at the xylem/

symplast boundary in leaf, stem, and root cells. It plays a crucial role in Na+

exclusion and governs its long-distance translocation (Munns &

Tester, 2008; Shi et al., 2002). SOS1 has been found to be upregulated via

ABA-dependent CIPKs activation (Sripinyowanich et al., 2013; Zhao

et al., 2019) or by ABA-responsive transcription factors via the ABA signal-

ing pathway (Osakabe et al., 2014). Hence, the observed concomitant

higher expression of PM H+-ATPase and SOS1 in ABA-primed plants might

have increased the K+/Na+ ratio by expelling Na+ from the cytoplasm.

Chloride exclusion and sequestration are important mechanisms

in salt resistance. The vacuole sequestration depends on Cl+/H+

antiport by CLCs, which are voltage-gated vacuolar Cl− channels.

Gene expression of CLC1, an isoform of the CLCs (Diédhiou &

Golldack, 2006), was upregulated by ABA priming in leaves and roots,

and also by salinity (Figure 12G,H), possibly being a reason for the

priming induced salt resistance. This suggestion is supported by an

enhanced salt resistance after overexpression of CLC1 in transgenic

Arabidopsis (Wang et al., 2015) and soybean plants (Wei et al., 2016).

Taken together, we conclude that ABA priming generally

increases the expression of the observed genes under salinity, leading

to increased activity of kinases involved in stress signaling and impor-

tant ion transport proteins, ultimately causing the observed improve-

ment of salt resistance mechanisms in plants (Figure 1).

5 | CONCLUSION

This is the first study that thoroughly documents the long-term

(8 days) benefits of a one-time 24-h ABA priming application. Long-

lasting upregulation of genes for ABA inducible kinase AAPK, 14-3-3

protein, PM-ATPases, and ion transporters under saline conditions

was the consequence of ABA priming. This may have helped ABA-

primed plants to adapt to salt stress by limiting Na+ and Cl− uptake

and translocation and favoring K+, Ca2+, Zn
2+, Fe2+, Mn2+, NO3

−,

and SO4
2− accumulation. The observed lower Na+ and Cl− accumu-

lation in leaves of ABA-primed plants is likely to have mitigated the

salt-induced impairment of photosynthesis and may have improved

plant growth under salinity. Furthermore, priming enhanced root

growth and changed osmolyte composition by favoring sucrose and

K+ over hexoses, which could explain the stabilized leaf water con-

tent. Together, these results clearly show, for the first time, that

short-term ABA priming generates long-lasting changes in inter-

acting cellular processes on different organizational levels, which

enhance salt resistance in plants. These results are essential for the

understanding of mechanisms involved in priming by previous

stresses. It could also lead to improved agricultural practices by

inducing readiness in crops to resist salt, drought, and other envi-

ronmental stresses.
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