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1 |  INTRODUCTION

As important pollinators, bees (Anthophila) have received 
much attention in recent years. Their diversity goes much be-
yond the well-known honey bee Apis mellifera and includes 
more than 20,000 species in the seven families Andrenidae, 
Apidae, Colletidae, Halictidae, Megachilidae, Melittidae and 
Stenotritidae (Michener 2007). Besides the Stenotritidae, all 
families are species-rich and have a diverse range of mor-
phological variation. While the monophyletic status of most 
families has been confirmed for a relatively long time (e.g. 
Danforth et al., 2006), monophyly of the Melittidae has been 
widely discussed, because of their high phenotypic diversity 
and ambiguous molecular results (Michez et al., 2009).

The phylogeny of the Anthophila more generally has 
been explored in a variety of studies employing morpho-
logical data (Alexander & Michener,  1995; Engel, 2001; 
Michener, 1944), diverse molecular markers (e.g. Branstetter 
et al., 2017; Peters et al., 2017; Sann et al., 2018), or a com-
bination of both (Danforth et al., 2006; Michez et al., 2009), 
delivering divergent results. Especially, the status and phy-
logenetic position of the Melittidae have frequently changed. 
While earlier studies often grouped Melittidae as the sis-
ter group of Megachilidae and Apidae and suggested a 
derived status of the family, more recently the family was 
thought to be paraphyletic and consisting of multiple fam-
ilies (Danforth et  al., 2006; Michez et  al., 2010). This has 
been revoked by Danforth et al. (2013) who concluded that 
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the family is monophyletic, but also stated that it requires 
further revision. This study already suggested a basal posi-
tion of the Melittidae within the Anthophila. Finally, stud-
ies based on transcriptomic data, genomic ultraconserved 
elements, and combined transcriptomic and target enrich-
ment data (Branstetter et al., 2017; Peters et al., 2017; Sann 
et al., 2018) supported the basal position on the Melittidae 
and their monophyletic status, yet with limited sampling for 
the family.

A first mitogenomic study by Kahnt et  al.  (2015) sug-
gested a close relationship of Melittidae with Colletidae, yet 
with limited sampling across all Anthophila families. A more 
comprehensive study of mitogenomes was performed by He 
et al.  (2018) which placed the Melittidae at the basis of all 
bees, yet, again, only the mitogenome sequence of a single 
species, Rediviva intermixta, was included. While the anal-
yses of mitogenomes for phylogenetics may appear basic in 
times of genomics, mitogenomes remain useful as a source 
of data for phylogenetic analyses, but also represent an in-
teresting marker system for larger scale community studies 
as shown by Tang et  al.  (2015). Surprisingly, even charis-
matic taxa, such as bees, are not yet fully understood from 
a mitogenomic standpoint. Hence, we here include four ad-
ditional species, belonging to four genera, two subfamilies 
and three tribes of Melittidae, into a mitogenomic phylog-
eny to test whether Melittidae remain monophyletic based on 
mitogenomic data and whether the basal position within the 
Anthophila is further supported.

2 |  MATERIALS AND METHODS

2.1 | Sampling

In this study, we included four new mitogenomes of 
Melittidae (Dasypoda hirtipes (Dasypodainae: Dasypodaini) 
– MT985326, Melitta schultzei (Melittinae: Melittini) – 
MT985327, Capicola nanula (Dasypodainae: Hesperaspini) 
– MT985325 and Samba griseonigra (Dasypodainae: 
Dasypodaini) – MT985328) (Nickel et al. in press) together 
with the previously published sequence of R.  intermixta 
(Melittinae: Melittini; Kahnt et  al.,  2015) raising the num-
ber to five mitogenomes available for the family. Material 
of D. hirtipes was collected during a field trip to Pevestorf 
(Lower Saxony, Germany) in July 2017. Material of 
M. schultzei (Farm Kanolfontein, 20 km W Sutherland, road 
side, 1,385  m, S32°24′43″, E20°27′28″, 17.IX.2017, leg. 
MK), C. nanula (1 km NW Vioolsdrif, Orange River Valley, 
310  m, S28°42′02″, E17°30′22″, 9.IX.2016, leg. MK) and 
S. griseonigra (8 km WNW Leliefontein, Fynbos, road side, 
S30°15′58″, E18°03′17″, 14.IX.2017, leg. MK) was col-
lected in South Africa by MK in 2016 and 2017 and was con-
served pinned and dried, or in ethanol.

2.2 | Molecular analyses

Genomic DNA was extracted from D. hirtipes using a salt-
extraction protocol as described in Aljanabi and Martinez 
(1997). Subsequently, genomic DNA was fragmented and 
libraries were prepared using NEBNext® Ultra™ II DNA 
Library Prep Kit for Illumina® (New England Biolabs). 
Genomic DNA was extracted from M. schultzei, C. nanula 
and S. griseonigra using EchoLUTION Blood DNA HiYield 
Kit (BioEcho), and libraries were prepared using Nextera 
DNA Flex Library Prep Kit (Illumina). Sequencing was per-
formed on the Illumina MiSeq platform producing 250  bp 
paired-end reads for M. schultzei, C. nanula and S. griseoni-
gra and 250 bp single-end reads for D. hirtipes yielding at 
least 1.1 million reads per species.

Adapter trimming and quality filtering were performed 
using Trimmomatic v. 0.38 (Bolger et al., 2014) for paired-end 
and single-end reads. Initially, the bases at the end of the read 
were cut if the Phred score, indicating the quality of each base, 
fell below 15. The Trimmomatic sliding window function was 
used to remove fragments of 4 bases once the average quality 
within the window fell below the Phred score 15. Reads shorter 
than 70 bp after trimming were discarded. Finally, the qual-
ity of the trimmed reads was checked using FastQC v. 0.11.7 
(Andrews, 2010) to evaluate if previous steps were successful.

All remaining reads were then used to produce mitochon-
drial genome assemblies using the “de novo assembly” and 
“find mitochondrial scaffold” modules provided in MitoZ 
v2.4 with default settings (Meng et  al.,  2019). For D.  hir-
tipes and M.  schultzei, this was not sufficient to recover a 
complete mitogenome. The multi-kmer mode in MitoZ to 
identify missing PCGs was used with a kmer size of 99 for 
D. hirtipes and 31 for M. schultzei to achieve the longest con-
tinuous mitochondrial contig. The preliminary mitogenomes 
(~13,000 bp) were then used as the respective reference ge-
nome for the mitochondrial baiting and iterative mapping im-
plemented in MITObim v1.9.1 (Hahn et al., 2013). Finished 
mitogenomes were annotated using the MITOS2 webserver 
(Bernt et al., 2013). The gene boundaries were checked man-
ually, and start and stop codons were corrected when neces-
sary using Geneious v10 (Kearse et al., 2013). Protein-coding 
and rRNA genes were extracted for phylogenetic analysis.

2.3 | Sequence alignment and 
phylogenetic analyses

Published data for the 13 mitochondrial protein-coding 
genes and the mitochondrial large and small subunit ribo-
somal RNA genes were downloaded from GenBank and 
incorporated into the datasets containing the newly gen-
erated sequences. Protein coding sequences were aligned 
with MUSCLE (Edgar, 2004) as implemented in MEGA X 
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(Kumar et al., 2018) using default settings. Sequences of the 
small and large subunit ribosomal RNA genes were aligned 
with MAFFT (Katoh & Standley, 2013) as implemented in 
the MAFFT online service (Katoh et  al.,  2019) using the 
Q-INS-i iterative refinement algorithm and otherwise de-
fault settings. Alignments were concatenated and ambigu-
ously aligned positions were then excluded with Gblocks 
(Castresana,  2000) as implemented at the Gblocks Server 
(http://molev ol.cmima.csic.es/castr esana/ Gbloc ks_server.
html), with options chosen to allow for smaller final blocks, 
gap positions within the final blocks and less strict flanking 
positions.

PartitionFinder 2.1.1 (Lanfear et  al.,  2017) was used to 
select the best-fitting evolutionary models for the maxi-
mum likelihood (ML) analysis of phylogenetic relationships, 
conducting exhaustive searches with separate estimation 
of branch lengths for each partition and with the Bayesian 
information criterion to select among models. The dataset 
was initially divided into five partitions corresponding to the 
three codon positions of the mitochondrial protein-coding 
genes as well as the stem and loop regions of the mitochon-
drial ribosomal genes determined based on the secondary 
structure models published by Gillespie et al. (2006).

The ML analysis was performed using Garli (Zwickl, 2006) 
with evolutionary models and data partitions as suggested by 
the PartitionFinder analysis and otherwise default settings. 
Support values were calculated by bootstrapping with 1,000 
replications.

Heuristic maximum parsimony (MP) searches were con-
ducted with PAUP* 4.0a166 (Swofford,  2002) with unor-
dered characters, 100 random sequence addition replicates, 
tree bisection reconnection (TBR) branch-swapping, and 
gaps treated as missing data. Support for internal branches 
was assessed in PAUP* by bootstrapping with 1,000 replica-
tions, using full heuristic searches with 10 random addition 
sequence replicates, TBR branch swapping, and one tree held 
at each step during stepwise addition.

Bootstrap support (BS) values from the ML and MP anal-
yses were mapped onto the ML tree with Sumtrees 3.3.1, 
which is part of the DendroPy 3.8.0 package (Sukumaran & 
Holder, 2010). BS values with 70 ≤ BS < 80 and Bayesian 
posterior probability (PP) values with 0.95  ≤  PP  <  0.97 
were interpreted as moderate support for a node, nodes with 
80 ≤ BS < 90 and 0.97 ≤ PP < 0.99 as well supported, and 
BS ≥ 90 and PP ≥ 0.99 as highly supported.

3 |  RESULTS

3.1 | Alignments and evolutionary models

The mitochondrial genomes of D.  hirtipes, M.  schultzei, 
C.  nanula and S.  griseonigra are 18,594, 20,324, 15,884 

and 16,978  bp in length, respectively. All consist of 13 
protein-coding genes (PCGs), 22 tRNA genes, two rRNA 
genes and the non-coding mitochondrial control region. 
The final alignment of the 13 mitochondrial protein-cod-
ing genes and the two mitochondrial rRNA genes had a 
length of 15,468 base pairs (bp), with 2,821 bp excluded by 
Gblocks (see Table 1).

The PartitionFinder analysis suggested to use four parti-
tions corresponding to the 1st codon positions (GTR + G), 
2nd codon positions (GTR  +  G) and 3rd codon positions 
(GTR  +  G) of the protein-coding genes and the combined 
stem and loop regions of the rRNA genes (GTR + G).

3.2 | Phylogenetic analyses

Anthophila were recovered as monophyletic clade with max-
imal support (Figure 1). The Melittidae, represented by the 
genera Capicola, Dasypoda, Melitta, Rediviva and Samba, 
formed a monophyletic clade with maximum support in all 
analyses (Figure  1). Similarly, all other bee families were 
monphyletic with high support values in most analyses. 
The Melittidae were placed as the sister group of an unsup-
ported clade including all other families. The short-tongued 
bees (Andrenidae, Halictidae and Colletidae, BS [ML]: 
100, BS [MP]: 87) and the long-tongued bees (Apidae and 
Megachilidae, with maximum support) were both recovered 
as monophyletic groups with high support. However, the 
relationships between the three short-tongued bee families 
were not resolved (Figure 1).

T A B L E  1  Length of genes included in phylogenetic analyses and 
positions excluded by Gblocks

Gene Length (bp)
Positions 
excluded (bp)

COXI 1,611 76

COXII 705 27

COXIII 885 103

CYTB 1,254 109

ATP6 783 117

ATP8 270 123

NAD1 1,011 84

NAD2 1,263 367

NAD3 375 21

NAD4 1,482 194

NAD4L 324 57

NAD5 1,815 207

NAD6 678 189

12S 1,232 569

16S 1,780 578

Total 15,468 2,821

http://molevol.cmima.csic.es/castresana/Gblocks_server.html
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F I G U R E  1  Maximum likelihood tree showing the relationships of bees based on the analysis of 13 mitochondrial protein-coding genes and 
two mitochondrial ribosomal RNA genes. Values at nodes represent maximum likelihood (left) and maximum parsimony (right) bootstrap values. 
Only nodes with bootstrap values ≥50 are annotated
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4 |  DISCUSSION

In this study, we provide the so far most comprehensive mi-
togenomic phylogeny of bees, which for the first time includes 
more than a single member of the family Melittidae; our sam-
pling represents five genera of two subfamilies (Melittinae, 
Dasypodainae) and three tribes (Melittini, Hesperaspini, 
Dasypodaini). The length of the newly generated mitochondrial 
genomes varies between 15,884 bp in C. nanula and 20,324 bp 
in M. schultzei. The structure matches that of other bees and 
contains the typical set of genes and RNAs (Nickel et al. in 
press). Our analyses confirm the monophyly of all studied bee 
families, including the Melittidae and further support the posi-
tion of the Melittidae as sister group to all other bees. We also 
confirm the monophyly of the long-tongued bees (Apidae and 
Megachilidae), which are nested within the short-tongued bees 
rendering them paraphyletic. We further find Andrenidae and 
Halictidae to be sister groups with Colletidae at their base.

Our results largely agree with the relationships found by 
He et al. (2018) which also constructed a phylogeny based on 
mitogenomic sequences with a large overlap with our data 
set, albeit with a less comprehensive sampling for Melittidae. 
Yet, theirs and our results are divergent in the sister group re-
lationships within the last-mentioned group. He et al. (2018) 
found a closer relationship between Halictidae and Colletidae, 
with Andrenidae at their base with high support. However, 
the relationship between Andrenidae and Halictidae is not 
well-supported in our phylogeny, leaving this question to 
further investigations. A sister group relationship between 
Colletidae, Halictidae and the here not included Stenotritidae 
is, however, also supported by a combined multi-gene ap-
proach (Danforth et  al., 2006), a supertree analysis (Hedke 
et al., 2013), and ultraconserved elements (Branstetter 
et al., 2017). Analysis of transcriptomes yielded different re-
sults depending on the inclusion of the Stenotrididae (Peters 
et al., 2017; Sann et al., 2018). Hence, the inclusion of the 
Stenotritidae may be a crucial factor in the phylogenetic re-
construction of the Anthophila. Yet, it is surprising that we 
did not recover this relationship in our phylogeny. The di-
vergent results may be due to slightly different sampling of 
Halictidae of which we included less samples, as many of the 
mitogenomes were rather incomplete. Sampling, especially 
of Stenotritidae, but also for Colletidae needs therefore to be 
expanded in the future.

The basal position of Melittidae can be seen as confirmed 
as all recent analyses with various types of data supported 
this relationship (e.g. Branstetter et al., 2017; Hedke et al., 
2013; Peters et al., 2017; Sann et al., 2018); only the multi-
gene analysis by Danforth et al. (2006) suggested paraphyly 
for the family.

We can say only little about the intra-family relation-
ships within Melittidae with only five species represent-
ing five genera included. However, we recovered two 

well-supported groups: the first group includes the genera 
Melitta and Rediviva, consistent with the tribe Melittini 
within the subfamily Melittinae (e.g. Michez et  al.,  2009), 
and the second group contains Dasypoda and Capicola (yet, 
only with medium support) as sister taxa with Samba as basal 
taxon. Capicola represents the tribe Hesperapini, whereas 
Dasypoda and Samba belong to the Dasypodaini, both within 
the Dasypodainae (Michez et al., 2010). Our phylogeny does 
not reflect the currently recognized tribes, but matches with 
subfamilies. These suggest that tribes will have to be reevalu-
ated based on a larger sampling in the future.
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