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1 Synopsis

1.1 Introduction and Research Gap

An intelligent personnel planning is a key prerequisite to achieve greater productivity

and competitive strength in many industries. It enables to bridge reliably future per-

sonnel gaps, to reduce overstaffing and understaffing as well as to increase employee’s

efficiency and satisfaction. Therefore, a well-planned workforce scheduling has become

a top priority for many companies, see e.g. Ernst et al. (2004), Pinedo et al. (2015). Its

importance continues to grow especially in service industries where maintaining growth

in a highly competitive market requires that companies use their expensive and limited

personnel resources effectively. However, to capture practical realities is not a trivial

matter. Work rules and legal regulations as well as current market developments im-

pose consistently additional constraints making staffing and scheduling more and more

complex. This motivates the development of sophisticated scheduling methods. For

instance, one of the big challenges are job’s complexity and large number of involved

employees. In view of this complexity, jobs can often be carried out only by a group of

specialists. The situation is complicated by the fact that specialists can possess skills

in multiple domains. Skills can in turn be characterized by several hierarchical levels

according to expert knowledge, experience, social competencies or other performance

attributes. The fashion in which a team is configured is a key factor that influences the

outcome of the work. Therefore, implementing multi-skill teams requires companies to

rethink their organization on multiple levels. In the past decade, research on team effec-

tiveness has been spurred as team work has become central in organizations of different

types. For instance, Shelton et al. (2010) analyzed the group potency that was defined

as the success with which groups accomplish their tasks. One of the main findings of

1
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this study is that perceived organizational support has a positive influence on the team

working process. The latter can be promoted, for instance, by increasing employee

empowerment or team building activities. Leggat (2007) analyzed critical teamwork

competencies for health service managers. Mello and Ruckes (2006) investigated the

factors that are crucial for a balanced team composition. The authors emphasized that

heterogeneous groups demonstrate the capability to reach better decisions due to a wider

range of experiences and opinions and can outperform homogeneous ones in highly un-

certain situations. Furthermore, numerous psychological and empirical studies show

that well-balanced teams are likely to experience more interpersonal compatibility and

agreements about their tasks and team processes, see e.g. Cassera et al. (2009), Kalisch

et al. (2008), Ilgen et al. (2005), Mathieu et al. (2008). In the context of scheduling,

the question of the team “optimal„ composition refers not only to the distribution of

knowledge or personal attributes across members of a team but also to the nature of the

tasks that are to be processed. Due to limited personal resources, teams often cannot be

split within a planning period but can get assigned multiple jobs of different complexity

to process them consecutively. From this perspective, another analytic challenge that

has to be addressed is an efficient cross-functional task distribution across jobs as well

as of jobs among the teams. To this end, a strict service orientation may also require

that services are provided at customer locations. Hence, routing of teams is another

essential feature of workforce teaming and job allocation.

This dissertation offers innovative analytic and methodological approaches to a work-

force scheduling problem that is defined as a combination of three subproblems each of

which represents a complex and highly constrained optimization problem itself: teaming

of multi-skilled employees, assignment of jobs to the created teams and team routing

across customer locations. The problem is referred to in the following as RSPMST

(routing and scheduling problem of multi-skilled teams). The problem is of practical
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relevance in a wide range of organizations. For instance, scheduling of multi-skilled

technicians in the telecommunication industry can be regarded as a representative op-

timization topic, see Cordeau et al. (2010). Further domains of such companies include

maintenance, construction, airline or health care sector, see e.g. Kovacs et al. (2012),

Firat and Hurkens (2012), Ho and Leung (2010), Dohn et al. (2009), Castillo-Salazar

et al. (2014). Despite its high practical relevance, the discussed problem represents a rel-

atively new and unexplored research field. Although, there have been first attempts to

formalize basic planning concepts (see e.g. Cordeau et al. (2010), Estellon et al. (2009),

Hurkens (2009)), the incorporation of real life aspects in designing workforce scheduling

systems is still limited and challenging. Including elements such as employee-oriented

scheduling, dynamic environments, data uncertainty or skill-based estimation of process-

ing times could offer additional insights into the problem. Therefore, following research

questions are investigated in the essays that belong to this thesis:

1. Under what objectives should RSPMST be optimized? Can the complexity of the

respective problem be reduced by decomposition techniques?

2. How can companies manage demand and capacity in a dynamic environment while

maintaining employee engagement?

3. How can schedule reliability be guaranteed in the presence of data uncertainty?

4. How does cross-functional task distribution influence job processing times?

The above mentioned aspects describe the scope of this thesis, which aims to develop

new planning concepts and couple them with advanced solution methods. From an

optimization point of view, this work is concerned with linear programming techniques

and metaheuristics that allow to obtain good quality solution for large-scale problems

in comparatively less computational time compared to exact optimization methods.
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The remainder of this chapter is structured as follows. Section 1.2 provides a brief

literature review. Section 1.3 outlines the structure of this thesis and highlights the

individual contributions. Section 1.4 presents extended abstracts for the involved essays

that explain the approached research gap, the developed models and solution methods

and contain a brief description of obtained results individually for each essay. Finally,

potential areas for future research are discussed in Section 1.5.

1.2 Literature Overview

As personnel scheduling represents a multidisciplinary research area, there is a vast

amount of literature where the problem is considered from different perspectives. There-

fore, this review will be limited to the most relevant cross-border studies devoted to

multi-skill scheduling as well as to routing and scheduling of technicians.

Since the beginning of the 1990s, a series of studies were conducted to reveal the

economical and psychological benefits and challenges of multi-skilling, see e.g. Cordery

(1989), Bergman (1994), McCune (1994). A large stream of research designed optimiza-

tion models and conducted computational experiments. For instance, Campbell (1999)

introduced and evaluated one of the first non-linear optimization models for allocat-

ing cross-trained employees where employees qualifications were defined by parameters

ranging between zero and one. The main goal was to maximize the utility associated

with the assignment of employees to different departments. The study demonstrated

that already a small amount of cross-training can offer substantial benefits in terms of

cross-utilization. Li and Li (2000) considered a problem from another context. Specif-

ically, the authors analyzed scheduling flexibility to possible demand fluctuations and

introduced a planning model where multi-skilling was designed by three parameters:

employee’s ability to substitute for different skill categories, productivity coefficients for

each particular staff category and relative efficiency for a substitution of staff. It was

shown that integrating the flexibility aspect into the personnel scheduling provides a ca-
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pacity cushion. However, this does not necessarily result in a significant cost reduction.

A further line of research established the concept of multi-dimension skill represen-

tation in which employees are classified into different categories based on the level of

knowledge, experience or training reached in each skill domain. This modeling approach

found application in a number of studies devoted to a tour scheduling problem that in-

volves allocating of shifts to the individual day work schedules of employees as well as

assignment of activities to shifts. To incorporate the concept into a linear optimization

framework, some of these studies (Eiselt and Marianov (2008), Cuevas et al. (2016),

Gérard et al. (2016)) parametrized the set of feasible activities for each employee while

other approaches (Al-Yakoob and Sherali (2007), Eitzen and Panton (2004)) conversely

derived the set of qualified employees for each skill category. In a recent contribution

(Altner et al. (2019)), the problem of assigning multi-skilled employees was extended by

training decisions that have to be taken under demand uncertainty. The study demon-

strated that proposed stochastic programming approach is superior to a deterministic

one and can significantly reduce personal costs.

A similar modeling principal found its application in production environments where

a set of workers has to be allocated to a set of production lines and machines. For in-

stance, Park (1991) described the skill degree of workers by a two-dimensional efficiency

matrix. Piya and Al-Hinai (2014) assigned workers to different hierarchy levels depend-

ing on their capability to operate different machines and the speed to perform certain

operations. Shahnazari-Shahrezaei et al. (2013) investigated a multi-skilled manpower

scheduling problem where employees were grouped in two specializations and special-

ization were discretized into three skill levels. Thereby, each employee could perform

operations at his real or any lower skill level. A special case represents scheduling of

temporary workers proposed by Techawiboonwong et al. (2006) where only two types

of workstations demanding skilled and unskilled workers are considered. Further ap-
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plications can be found e.g. in Seckiner et al. (2007), Narashiman (2000), Pastor and

Corominas (2010), Ozguven and Sungur (2013). Parallels can also be drawn to project

scheduling where a set of employees is required to execute project activities based on

skills required for the tasks involved in the project, see e.g. Bellenguez-Morineau (2008),

Kazemipoor et al. (2013), Ahmadpour and Ghezavatil (2019).

Another issue that deserved more attention and appeared highly promising was

scheduling of jobs for multi-skilled teams that was first presented as a topic of ROADEF

optimization challenge organized in 2007, see ROADEF (2007). An introductory study

in this field was given in Estellon et al. (2009), Hurkens (2009), Cordeau et al. (2010)

and Hashimoto et al. (2011). The authors presented alternative basic concepts for form-

ing teams and assigning of jobs based on multi-dimensional qualification requirement

matrices. The contribution of these works was the introduction of teaming decisions

into operations management. One of the most inspiring works in the related domain

represents the study of Kovacs et al. (2012) that first incorporated the need to route

the teams from customer location to customer location. In the scheduling literature,

routing itself does not represent a novel planning problem on its own. However, most

research in the routing domain refers usually to scenarios where only one person is re-

quired to serve a job. Examples can be found in the home health care sector (Kergosien

et al. (2009), Bertels and Fahle (2006), Everbon et al. (2006)), the telecommunication

industry (Tsang and Voudouris (1997), Xu and Chiu (2001)), port manpower planning

(Lim et al. (2004)), and the repair and the maintenance sector (Cortés et al. (2014),

Pillac et al. (2013)). Teaming decisions are not part of these studies.

This literature review reveals that the research on incorporating routing and schedul-

ing into the composition of multi-skilled teams is very limited so far. Therefore, RSPMST

represents a relatively unexplored field that offers still a broad spectrum of research top-

ics. To bridge this gap, the thesis contributes to the development of models and methods
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that provide a deeper insight into the problem.

1.3 Overview of Contributions

This thesis aims at researching challenges in the area of composing and scheduling of

multi-skilled groups of employees as is faced by service-oriented companies. It provides

useful models and solution techniques that address several so-far uninvestigated aspects

of the problem. The submitted work is a cumulative dissertation that contains a col-

lection of four essays. Each essay will cover one or more relevant practical aspects for

successful workforce management and involves planning concepts, the formulation of

optimization models, the design of algorithms as well as computational analyses of the

involved decisions. More precisely, Essay 1 analyses the involved problem under three

different optimization objectives: improvement of service quality, reduction of labor cost

and fairness of workload distribution. In doing so, it contributes to the answering of

research question 1 from Section 1.1. The service quality is associated with the total job

completion times. The labor cost are represented by the total employee working time.

A scheduling fairness is achieved by minimization of the longest working time among all

teams. The methodological contribution of Essay 1 is to provide a sequential solution

approach for RSPMST that uses a bi-level decomposition of the overall problem and to

compare it with a monolithic optimization model. Furthermore, a sensitivity analysis

is conducted to evaluate the model performance under each objective and different skill

settings.

Essay 2 approaches research question 2 by investigating how companies can manage

demand and capacity in a dynamic environment. In particular, it analyzes how to

implement a more employee-oriented strategy by ensuring stability of team compositions

in a multi-period planning. The main motivation behind this is to find a compromise

between cost reduction and an increase of employee loyalty and satisfaction. Moreover,

the research provides a planning framework to adapt the schedule to demand changes
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when new requests arrive within the planning horizon. As both concepts are interrelated,

the methodology includes two linked linear optimization programs developed for a short-

and long-term planning. The first program is solved through a fix-and-optimize heuristic

which is designed to tackle large-scale problems.

Essay 3 elaborates research question 3 by addressing the issue of data uncertainty that

is represented as variations in job qualification requirements. The variation might refer

to required skills as well as to required experiences. To capture this type of uncertainty,

a robust optimization methodology is employed to anticipate skill deviations rather

than to merely react to such changes. Based on the concept of budget uncertainty, skill

realizations are defined through interval uncertainty sets. In the context of RSPMST,

uncertainty can be specified job-wise or be bounded overally. Therefore, two robust

counterparts of the considered problem are introduced correspondingly. To evaluate the

models performance under different types of uncertainty, experiments involve extensive

simulation studies and compare the quality of robust and deterministic solutions by

varying the uncertainty level.

For reason of simplicity, traditional scheduling approaches usually consider processing

time of tasks as given and constant such that they do not vary with the number and

competences of assigned employees. Essay 4 pursues, however, the idea that processing

times are linked to team size and efficiency of each single team member. In this way,

Essay 4 provides an answer to research question 4. This research particularly identifies

and models the conditions under which job operations are performed simultaneously

or sequentially. It begins by establishing the concept of „sequential“ use of skill. A

parametrization technique is then applied to embed the sequential skill setting into a

linear optimization framework. A comparison of large problem instances is based on

an Adaptive Neighborhood Search method that combines the main characteristic of a

classical neighborhood framework with a sequential search heuristic.
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Table 1.1: Overview of manuscripts

Essay Title Authors Journal VHB
JQ3

1
Technician Teaming and
Routing with Service-, Cost-
and Fairness-Objectives

Y. Anoshkina and
F. Meisel

Computers & Industrial
Engineering (2019), 135,
868-880.

B

2

Interday Routing and
Scheduling of Multi-Skilled
Teams with Consistency
Consideration and Intraday
Rescheduling

Y. Anoshkina and
F. Meisel

EURO Journal on
Transportation and
Logistics (2020), 9, 1-18.

B

3

Robust Optimization
Approaches for Routing and
Scheduling of Multi-Skilled
Teams under Uncertain Job
Skill Requirements

Y. Anoshkina, M.
Goerigk, F. Meisel

Transportation Science
(2021), submitted. (A)

4
Routing and Scheduling of
Multi-Skilled Teams with
Simultaneous and Sequential
Use of Skill

Y. Anoshkina
Annals of Operations
Research (2021),
submitted.

(B)

To give a brief overview of the structure of this work, Table 1.1 outlines the parts of

the research project in chronological order by publication or submission date. As can

be seen from Table 1.1, the Essays 1 and 2 are already published. The Essays 3 and

4 have been submitted and are currently under review. The research was conducted in

collaboration with other researchers. Authors confirm their contribution as follows. As

the first author, I substantially contributed to all mentioned essays in terms of concep-

tualizing the research, developing the optimization models and algorithms, conducting

the experiments, acquiring and analyzing results as well as writing the manuscripts.

Professor Frank Meisel supervised the project, provided critical feedback, helped on

shaping the research and write the manuscripts. In the first three essays, he is listed as

second author. Essay 3 was written in collaboration with professor Marc Goerigk from

University of Siegen, Germany, who provided the methodological input for the design of

the robust optimization concept. The breakdown of each author’s contribution is pro-

vided at the end of the thesis. The authors declare that there are no conflicts of interest

regarding the publications listed above. The research was not funded by any specific
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project grant. The thesis has been written independently and has not been submitted

at any other university for the conferral of a PhD degree, neither has the thesis been

previously published in full.

1.4 Extended Abstracts

1.4.1 Essay 1

Technician Teaming and Routing with Service-, Cost- and Fairness-Objectives

Yulia Anoshkina, Frank Meisel

Research gap: A central objective of RSPMST studies is to find a schedule that

minimizes routing costs. In this essay, we try to align employees perspective with

company goals through a variety of alternative objectives. In order to maintain and to

increase the organizational performance, we are striving for improving the service quality

by minimizing total job completion times. To involve the employee’s representation as

an objective, we are looking for fairness of workload distribution. Therefore, we attempt

to minimize the longest working time among the created teams. We also combine these

objectives with a more classical reduction of labor cost expressed in terms of total team

working time. To this end, we analyze the problem under different combinations of

these objectives and solution methods. More precisely, we compare a monolithic model

formulation with a bi-level decomposition approach.

Solution methods: The problem is first solved by using a standard MIP solver. As

such a standard approach encounters great difficulty in finding solutions within reason-

able computational times, we propose an alternative formulation that decomposes the

problem into two subproblems of a smaller dimension that are then solved sequentially.

The two-stage approach involves team building as the first stage decision while job as-

signment and routing decisions are forwarded to the subordinate stage. We support

the original concept by involving alternative objectives within the teaming subproblem
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in the following different ways. Specifically, we reduce labor cost by minimizing the

number of assigned employees and we try to reach flexibility of job distribution by max-

imizing the number of possible job-team assignments. To further combine the benefits

of both approaches, multi-objective optimization is applied by weighting both criteria

in the objective function. Eventually, low and high job qualification requirements as

well as skill settings with differing experience levels are simulated to estimate the effect

on solution quality and computation effort.

Results: The sequential solution approach that involves a decomposition technique

for the overall problem represents a powerful heuristic regarding solution quality as well

as computational effort. Furthermore, it also offers a useful linearization of the cost

objective. However, to achieve reasonable results, an appropriate surrogate objective

has to be applied for the involved subproblems. In general, the weighted bi-level model

that involves a combination of both surrogate objectives provides the best results if

improvement of service level or fairness is prioritized. In contrast, the best results

for cost reduction are attained if minimization of the number of assigned employees is

a main objective. Sensitivity analyzes demonstrate that all proposed variants of the

decomposed model can successfully handle the different skill settings and are superior

to the monolithic optimization model.

Conclusions: The proposed optimization framework is an effective method to solve

the problem and implement different operations management objectives. By selecting

a particular setting, decision makers can implement organizational as well as employee-

oriented goals. Furthermore, the qualification of the employees has a strong impact on

the quality of the obtained solutions. This emphasizes the importance of considering

employee qualifications within RSPMST.
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1.4.2 Essay 2

Interday Routing and Scheduling of Multi-Skilled Teams with Consistency

Consideration and Intraday Rescheduling

Yulia Anoshkina, Frank Meisel

Research gap: In recent years there has been an increased interest in the development

of multi-period optimization models to capture interdependences of consecutive planning

periods. Despite the broad practical relevance, it appears that multi-period oriented al-

gorithms are limited in scope as they have been developed primarily for rerouting of

single employees or for staff scheduling without routing decisions. Therefore, Essay 2

addresses the RSPMST from a multi-period perspective to close this gap. The major

premise behind multi-period scheduling presented here is that stable team compositions

are essential for highlevel teamwork whereas flexible regrouping of employees supports ef-

ficient service operations. This consideration is guided by empirical studies that suggest

that team stability creates cohesion among team members, intensifies mutual under-

standing, enables an efficient communication and facilitates fast decision-making, see

e.g. Kalisch et al. (2008). However, in practice, the team configuration is usually based

on an hierarchical competence level system or on employees’ availability. To change the

focus from a resource-based to a more employee-oriented view, we propose a concept of

interday planning where the schedules are created on a daily basis but the team struc-

ture of the previous period is presented as far as possible. Another essential condition

for a successful practical application is the real-time capability to change plans on-the-

fly when new jobs arrive. The personnel planning is usually conducted in a dynamic

environment that requires a quick respond to changing conditions. The main issue aris-

ing in this context is schedule adaptation to demand changes. Therefore, an intraday

rescheduling approach is proposed to update an existing schedule to newly arriving jobs.

Both concepts are interrelated as the outcome of the interday planning is forwarded as
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input for intraday rescheduling.

Solution methods: Two interrelated exact and heuristic solution methods are proposed

here. First, a linear optimization model is developed to generate a schedule for the cur-

rent planning period. Furthermore, two alternative ways to formulate team consistency

are included. More precisely, the first approach summarizes the total number of employ-

ees that switch their teams. The second approach is based on Hamming distance. Here,

we analyze if employees work together at consecutive periods or not. Thereby, it makes

no difference whether employees stay in the same team or jointly switch to another one.

The model is also considered as a part of a fix-and-optimize heuristic framework that

can solve instances of a large size. Starting from an initial solution, the algorithm tries

to improve the solution by subsequently splitting and merging of teams, swapping jobs

between the teams and altering the team structure. The generated schedule is taken up

by the intraday model that dynamically inserts new arriving requests. This model can

integrate jobs either simultaneously or it can be applied in an iterative manner where

the schedule is updated sequentially, i.e. the requests are inserted one-by-one.

Results: The computational results show that team consistency can be successfully

integrated into a multi-period planning but at the cost of a slightly lower service level.

The compromise can, however, be controlled by the weighting factors applied in the

objective function. Both proposed consistency measures can be applied in a flexible

way. The problem complexity increases drastically with an increasing number of jobs

and employees considered. The proposed fix-and-optimize heuristic provides a good

method to also solve problems of large size. Each heuristic phase contributes to the

improvement of solution quality by either a further increase of the number of performed

jobs or by a reduction of the total job completion time. Furthermore, the intraday

model allows to update schedules within very short computational time.

Conclusions: Interday planning is an efficient method to preserve team structures
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as required and, thus, has a lot of potential to directly improve employee engagement.

Intraday rescheduling allows to react to unexpected daily changes and to keep the service

level as high as possible. With its help, decision makers can approve urgent jobs and

postpone less important jobs in an online manner and guarantee a quick response to

user requests.

1.4.3 Essay 3

Robust Optimization Approaches for Routing and Scheduling of Multi-Skilled

Teams under Uncertain Job Skill Requirements

Yulia Anoshkina, Marc Goerigk, Frank Meisel

Research gap: The majority of concepts for short- and medium-term planning adopt

a view of planning that is based on pure deterministic methods where all parameters

are assumed to be known with certainty. However, these methods may not work in a

dynamic environment where information can be incomplete or is subject to considerable

fluctuations during the planning horizon. In general, randomness in data and param-

eters is a common feature of many routing optimization problems where uncertainty

is usually associated with traveling times or demand. In the context of RSPMST, we

consider the uncertainty in job qualification requirements that can arise due to many

sources including working environment or incomplete or incorrectly job data submitted

by customers. We consider deviations from two perspectives: in terms of required skills

and in terms of required experience. Thereby, the first one is always coupled with a

variation in the number of required employees while the latter is not necessarily.

Solution methods: We propose two linear modeling optimization frameworks that

generate solutions that are robust to possible data variations. Robustness is achieved if

a solution remains feasible for all anticipated variations of skill requirement. The level of

robustness is defined as the number of jobs that can be still performed after uncertainty
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is realized. Both our approaches represent a MILP formulation based on the concept

of the so-called uncertainty budget proposed by Bertsimas and Sim (2004) where the

uncertainty is described through a set that contains all possible realizations of respec-

tive parameters. The first approach defines such sets for an aggregated qualification

requirement of each single job while the second approach hedges global uncertainty, i.e.

skill deviations are modeled as a network and finding an optimal solution is equivalent

to finding a longest path in the created graph. Numerical experiments are performed

on instance sets originally generated for the deterministic problem version in Essay 1.

Simulation-based sensitivity analyses are conducted to compare the performance of both

approaches under different levels of data variations.

Results: The obtained results show that a robust solution is associated with a lower

service level which is measured as in the other essays by the number of processed jobs.

However, the robust approaches outperform significantly the deterministic model in

both, the absolute and relative share of jobs that can still be performed if data variations

come into the play. In general, the proposed methods can successfully manage the

uncertainty and allow to generate a more stable schedule without the original solution

becoming infeasible in the case of some small deviations. Thereby, the aggregation

method is slightly faster due to a lower number of decision variables and constraints.

The robustness factor allows to control the amount of risk the decision maker is willing

to accept.

Conclusions: Data uncertainty can incur higher cost for a risk seeking decision maker.

The robust approach allows to find a compromise between the risk aversion and the

achieved service level. Moreover, decision makers adopting this approach can determine

their operations management strategy in such a way, that unforeseen conditions will be

less likely to invalidate the base schedule and that small perturbations cannot lead to

far-reaching interruptions in working processes.
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1.4.4 Essay 4

Routing and Scheduling of Multi-Skilled Teams with Simultaneous and Se-

quential Use of Skill

Yulia Anoshkina

Research gap: A critical feature of the traditional scheduling approach is that the

job processing time is usually considered as constant value or at least as independent

on personal qualifications. All studies addressed RSPMST so far are based on this

assumption. This is explained by the fact that models incorporating the evolution of

employee efficiency over the planning horizon usually lead to non-linearity in the objec-

tive function or in constraints and, thus, are less suitable for mathematical programming

formulations. Depending on the team size, job operations can be performed simultane-

ously or sequentially. From this, the deviation in time that the team needs to execute

the work can be significant. This can in turn incur higher cost as some jobs cannot be

completed in time or cannot be processed at all. In order to ensure schedule reliability

under such conditions, Essay 4 provides a concept of sequential use of skill that describes

job processing time as a function of skill contributions of each team member.

Solution methods: The main challenge for modeling sequential use of skill lies in the

fact that the relationship between employee efficiency and job processing time is not

linear and can be hardly described by means of a linear optimization framework. To

overcome non-linearity, we conduct a data preprocessing and introduce a method for

constructing parametrized efficiency units of labor for each employee-job pair. Further,

we develop a concept of an effective team size that allows to define lower and upper

bounds if job operations are performed sequentially vs. simultaneously. On this basis,

a linear competence-based performance model is derived. As additional parameters and

constraints significantly increase the problem’s complexity, a Large Adaptive Neighbor-

hood Search is proposed to solve large-scale RSPMST instances. The algorithm involves
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minimum, average and maximum team configuration schemes and 15 pairs of destroy

and repair operators. In addition, a new restart procedure based on a sequential search

heuristic is implemented in order to accelerate convergence.

Results: The main contribution here is the problem formulation that allows to es-

tablish a linear dependency between team efficiency and job processing times. In order

to estimate the benefits of the proposed concept, we compare schedules obtained under

the simultaneous skill setting against those obtained under the sequential skill setting.

As the principal criterion, we consider the number of assigned and actually performed

jobs. The analysis reveals that an inclusion of sequential use of skill requires a longer

processing time. Therefore, not all jobs assigned under the simultaneous setting may

be performed. In fact, the decrease in service level is often substantial for medium-

and large-sized instances and can even exceed 50% of scheduled jobs. The proposed

heuristic generates high quality solutions within short computational time. Thereby,

the proposed restart mechanism significantly reduces the number of required iterations.

Conclusions: The sequential skill modeling concept has the potential to be used

in practice as it accurately estimates service times and guarantees a higher schedule

reliability. In doing so, it helps to avoid mental and physical exhaustion of employees

due to an excessive job assignment that could result from inappropriate estimation of

job processing times.

1.5 Summary and Future Research

This thesis has taken steps to create an employee-friendly planning environment by

incorporating a more employee-oriented perspective into teaming and routing decisions.

This was done in Essay 1 by implementing employee relevant aspects such as fairness

of workload distribution or working time minimization as optimization goals. Essay 2

suggests that stability of team composition can contribute to an increase of employee’s

efficiency and satisfaction. The robust planning approach proposed in Essay 3 can
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not only improve the operational performance in the presence of data uncertainty but

also help avoid an excessive effort for employees that have to deal with uncertain job

requirements. The same holds for the sequential use of skill concept provided in Essay

4. Adequate estimation of processing times prevents both stress and work overload

that can lead to a decrease in employee engagement and productivity. Despite the

progress achieved, there are still some promising avenues for future research. Further

progress can be made by extending towards an employee empowerment concept that

looks for opportunities to involve employees into the planning process. For instance,

future scheduling models could reformulate team consistency by considering employee

preferences not only for stability of team composition but also for collaboration with

particular coworkers. Furthermore, an alternative multi-period planning concept can be

developed under the premise that complete information is available regarding the type

and the number of incoming requests or that requests are known for at least several

days. In this case, the schedule could be created for multiple planning periods ahead

instead of an interday day-to-day planning as well as team building decisions can be

derived with regard not only to the previous period but also for future demand. In this

way, team consistency might be supported over a longer time horizon.

Another opportunity for companies to promote employee’s engagement is to account

for an individual ability to learn by experience and to learn within the team. In this

context, it might be interesting to extend the concept of sequential use of skill by learning

effects. Thereby, two phenomena can be considered. In general, it is usually expected

that repetitive works contribute to an increase of work experience. This results, in turn,

in a decrease in time that employees need to complete their assigned task. In contrast, a

forgetting curve can be used to describe a decline in employee’s efficiency that happens

in the course of time and in absence of ongoing learning processes. In the context of team

scheduling, the situation is complicated by the fact that the difficulty level in working
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on each task and the individual learning rate might also be influenced by interaction

between the team members. Depending on the extent of this interaction, progress

can be guided in both directions. Furthermore, models available in the literature so far

would suffer from incorporating learning curves as these are usually defined as non-linear

functions which makes the models much more difficult to solve. Therefore, the analytic

challenge that must, thus, be addressed is how learning and forgetting phenomena can be

incorporated as a part of RSPMST optimization frameworks. To this end, the robust

planning approach can be extended by alternative formulations of uncertainty sets.

It would also be worthwhile to introduce more powerful metaheuristic approaches for

solving large scale practical applications.
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Abstract: In workforce routing and scheduling there are many applications in which

differently skilled workers must perform jobs that occur at different locations, where

each job requires a particular combination of skills. In many such applications, a group

of workers must be sent out to provide all skills required by a job. Examples are found

in maintenance operations, the construction sector, health care operations, or consul-

tancies. In this paper, we analyze the combined problem of composing worker groups

(teams) and routing these teams under goals expressing service-, fairness-, and cost-

objectives. We develop mathematical optimization models for an integrated solution

and a sequential solution of the teaming- and routing-subproblems. Computational

experiments are conducted to identify the tradeoff of better solution quality and com-

putational effort that comes along with solving the subproblems within a combined

monolithic model and within bi-level decomposition schemes. We further analyze the

impact of the qualification of employees on the different objectives.

Keywords: Teaming, Routing, Workforce Scheduling, Integrated Solution, Bi-Level

Decomposition
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2.1 Introduction

Due to limited personnel resources, a growing service portfolio, and customization re-

quirements demanded by customers, efficient use of the available workforce is one of the

major business challenges for companies of the service sector. To support companies

in efficiently using their workforce, related routing problems, sheduling problems and

rostering problems have been investigated for decades, as is shown by the surveys of

Ernst et al. (2013), Van den Bergh et al. (2013) and Castillo-Salazar et al. (2014).

The services offered by companies often consist of complex tasks that require multiple

employees trained in different skills. Furthermore, services are often provided at the

customers’ locations, meaning that employees have to travel there. To cope with these

challenges, companies form teams of employees in order to ease the organization of

work schedules, the synchronization of workforce, and the transportation of workers

to customer locations. Examples can be found in the installation and maintenance

sector (Kovacs et al. (2012)), the telecommunication industry (Cordeau et al. (2010),

Hashimoto et al. (2011)), construction sector (Firat and Hurkens (2012)), airline catering

(Ho and Leung (2010)), or the home health care business (Dohn et al. (2009), Castillo-

Salazar et al. (2014)).

In this paper we consider a combined teaming and routing problem (CTRP) for a

given workforce and a given set of service jobs. This problem comprises the following

decisions:

• grouping a given set of employees with various skills and experience levels into a

set of teams,

• assigning given jobs with individual qualification requirements to sufficiently skilled

teams and determining the job execution order for each team.

We consider different types of skills and different experience levels possessed by em-
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ployees and required by jobs. Teams have to be built from the available workforce.

The considered jobs are then assigned to teams with respect to the qualification re-

quirements of jobs. This decision determines to a large extent the distribution of the

workload among the teams. Eventually, deciding on the order in which each team per-

forms its assigned jobs determines the completion times of jobs and, thus, the service

quality perceived by customers as well as the actual working time of each team. Hence,

the teaming of employees based on their individual skills has to be combined with the

job assignment and routing in order to achieve an efficient use of the workforce, a high

service quality, and a fair distribution of the workload.

We propose for this problem a monolithic optimization model that can strive for

minimizing total job completion time (a proxy for service quality), minimizing total

employee working time (a proxy for variable labor cost), and minimizing the maximum

working time among teams (a proxy for the fairness of the workload distribution). We

attempt to solve this problem using a standard MIP solver. As an alternative solution

scheme we introduce a hierarchical model decomposition that respects the natural order

of the involved decisions and resembles the strategies typically applied for teaming

and routing problems in practice. More precisely, we consider the team building as

first subproblem whose solution generates additional constraints for the subsequent job

assignment and routing subproblem. For the teaming subproblem, we propose three

alternative surrogate objectives in order to produce teams that have a good potential for

delivering high quality solutions in the second subproblem. We evaluate the performance

of the integrated monolithic model and the sequential decomposition approach on a large

set of test instances. We analyze the computational results to provide insight into the

performance of the different solution schemes and their impact on service quality, total

employee working time, and a fair distribution of the workload among teams.

The paper is organized as follows. In Section 2.2, we provide a literature review.
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We then give a formal description and a mathematical formulation of CTRP together

with an example in Section 2.3. In Section 2.4, we explain the bi-level decomposition

scheme. Section 2.5 contains the computational study that analyses the potentials and

limitations of solving CTRP sequentially and integrally. Finally, concluding remarks

are presented in Section 2.6.

2.2 Literature

Various types of workforce routing and scheduling problems have been investigated in

the literature. A recent survey is provided by Castillo-Salazar et al. (2014). One stream

of research studies problems where a single worker can perform a job. The problems

are typically handled as extended multiple traveling salesman problems. For instance,

Kergosien et al. (2009), Bertels and Fahle (2006) and Everbon et al. (2006) investigate

among others the problem of workforce scheduling in the home health care sector where

patients are dispersed geographically and require different types of cares. In order to

perform non-clinical service on the patient premises, medical staff has to be sent to

each patient within respective time windows in such a way that routing costs, personnel

costs or overtime costs are minimized. The problem, however, is not unique to the home

health care sector. For instance, Tsang and Voudouris (1997) present a case-oriented

study for scheduling British Telecom’s engineer workforce. The authors introduce skill

factors indicating how much time each engineer needs to process a job. They developed

fast local search algorithms for solving this problem. Xu and Chiu (2001) propose a

general linear programming formulation of a technician scheduling problem with the

comparison of three different solution procedures: greedy heuristic, local search algo-

rithm and randomized adaptive search. Lim et al. (2004) investigate a similar problem

in the context of port manpower planning where a service center dispatches engineers

to perform various jobs at different locations in a port. The primary objective of this

model is to minimize the number of required technicians and the secondary objective is
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to minimize the total travel distance. It is assumed there that all workers have identical

qualification. Pillac et al. (2013) address a technician routing and scheduling problem

under limited resources like tools and spare parts, which might be replenished at a cen-

tral depot. The problem is solved by a parallel Adaptive Large Neighborhood Search

(ALNS). Finally, Cortés et al. (2014) consider the assignment of technicians for a com-

pany that provides repair services in Santiago de Chile and propose a branch-and-price

approach for solving this problem.

Another stream of research investigates problems where a team of workers needs to be

assigned to each job rather than a single employee. However, many authors assume that

worker teams are given without a need to consider team building decisions. For instance,

Chuin Lau and Gunawan (2012) route a given set of homogeneous security teams for

patroling a public transportation network. Dohn et al. (2009) consider a given workforce

of inhomogeneous teams with different qualifications and introduce a binary parameter,

which indicates whether or not a team is sufficiently qualified to execute a job. The

problem is solved by column generation in a branch-and-price framework.

A number of studies that combine the assignment of technicians to teams and the

scheduling of jobs for the created teams originated from the 2007 ROADEF challenge

(Estellon et al. (2009), Hurkens (2009), Cordeau et al. (2010), Hashimoto et al. (2011),

Kovacs et al. (2012)). Both, technicians and jobs, are characterized by a number of differ-

ent skills and qualification levels. The jobs may vary in priority and involve precedence

constraints. It is also allowed to outsource jobs at some cost, i.e. to exclude them from

the assignment and routing decision making. For the solution of this problem, Estellon

et al. (2009) propose a combination of a greedy algorithm and local search methods. As

the main goal they consider the minimization of job completion times. Hurkens (2009)

develops a two-phase MIP-based approach. In the first phase, a MIP model is applied to

determine the outsourced jobs while in the second phase matching models determine the
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job-technician-assignments. Firat and Hurkens (2012) extend this matching approach

by adding new matching mechanisms to the solution algorithm. Cordeau et al. (2010)

formulate an optimization model for this problem with the goal to minimize the sum of

weighted job completion times. They developed a meta-heuristic using a construction

heuristic and an ALNS heuristic to solve this problem. Hashimoto et al. (2011) propose

a decomposition approach similar to Hurkens, where optimization models are used to

determine the jobs that are outsourced. A Greedy Randomized Adaptive Search Pro-

cedure is then applied to find the best schedule for the non-outsourced jobs. However,

routing of teams is out of scope of all these studies, meaning that travel times and cost

for sending teams from one job location to another is not considered in the planning.

Kovacs et al. (2012) integrate routing of technicians into the model of Cordeau et al.

(2010) and present a corresponding optimisation model for the minimization of total

routing and outsourcing cost. For the solution of the resulting problem they also apply

an ALNS heuristic. Further, Zamorano and Stolletz (2017) consider teaming and rout-

ing within a multi-period planning with the goal to minimize the sum of travel, waiting

and overtime costs. In their problem, the size of each team is fixed. They propose an

exact branch-and-price algorithm that can solve instances with up to three teams with

two technicians each.

Apart from ROADEF studies, Ho and Leung (2010) address a manpower scheduling

problem from the airline catering industry that combines team construction and job

assignment for a set of employees with different skills. The maximum size of a team is

restricted to only two employees in this problem. Finally, Fırat et al. (2016) combine

teaming with the concept of a so-called stable workforce assignment in which employees

show preferences for performing certain jobs. An assignment is considered stable if each

technician gets assigned one of his/her most preferred jobs. In contrast to other studies,

every technician can get assigned at most one job. The problem incorporates additional
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features like, for example, replacement of technicians. Since only a single job is assigned

to each team in this problem, routing and scheduling decisions are out of scope of this

study.

In our paper, we investigate the problem of teaming and routing of a set of employees

with different qualification and experience levels. In contrast to the above mentioned

studies, we concentrate on the comparison of service-, fairness-, and cost-objectives

together with an analysis of the benefits and the computational burden of an integrated

solution versus a sequential solution of the involved subproblems. Thereby we do not

fix team sizes but leave it to the optimization to identify best possible teams. We also

analyze the influence of these solution concepts on the efficiency of the obtained routes.

2.3 An Integrated Model for CTRP

2.3.1 Notation and Formal Problem Description

We are given a set of jobs J to process, a set of employees M available for performing

the jobs, a set of skill domains K needed for performing the jobs, and a set of experience

levels L. Each employee m P M is proficient in one or more skills k P K at a level of

competence l P L. The levels of competence express different factors like experience

or specialization in the corresponding skill domain. Let binary matrix qmkl denote the

qualifications of employee m in which value 1 indicates that this employee is qualified

in skill k at level l, 0 otherwise. We assume that qmkl1 ¤ qmkl for all l1 ¡ l, i.e. if

employee m is experienced in skill k at level l1, he/she can also perform jobs requiring

lower experience levels l for this particular skill. For example, the qualification matrix

qmkl given below illustrates the qualification of an employee m in |K| � 3 skills for

|L| � 2 experience levels. It shows that this employee is proficient in skill k � 1 at both

levels, l � 1 and l � 2, but in skill k � 2 only at level l � 1 and in skill k � 3 not at all.
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qmkl �

k � 1 k � 2 k � 3�
�

�
1 1 0 l � 1

1 0 0 l � 2

The jobs j P J differ in the number of required employees, their skills k P K and ex-

perience levels l P L. Let integer matrix rjkl denote for a job j the number of employees

with qualification k and experience level l required for performing this job. The subse-

quent example shows a job j that requires one employee with skill k � 1 proficient at

level l � 2 (which also covers l � 1) as well as two employees with skill k � 3 proficient

at level l � 1.

rjkl �

k � 1 k � 2 k � 3�
�

�
1 0 2 l � 1

1 0 0 l � 2

In order to perform a job, a team of sufficiently qualified workers has to be composed.

Each employee can be a member of at most one team. Each job must be carried out by

exactly one team with appropriate skills, where teams can also be overqualified. Apart

from the skill requirements, each job is characterized by a processing time pj, which

states the duration of the job. It is assumed that pj is constant and independent of the

composition of its assigned team. Eventually, the jobs occur at different locations. The

corresponding network is modeled as an undirected graph G � pJ0, Eq, where vertex

set J0 � t0u Y J � t0, 1, ...|J |u consists of the locations of jobs 1...|J | and a dummy job

0 (with p0 � 0) that represents the depot where all teams start and end their routes.

Edge set E � tpi, jq|i, j P J0u represents travel links between different locations, with

corresponding travel times dij.

The following decisions have to be made:

• Grouping of employees (teaming): determine a set of teams T , with |T | � Tmax,



CHAPTER 2. ESSAY 1 33

by distributing the available workforce M .

• Job assignment and routing: assignment of jobs J to teams T and determination

of an order in which each team performs its assigned jobs.

Note that the number of teams Tmax might be given as an external parameter (e.g.

due to organizational reasons, available number of transport vehicles, or the like) or it is

derived from the number of jobs and the number of employees by Tmax � mint|J |, |M |u.

To model the corresponding decisions, we introduce the following decision variables:

xmt �

$''&
''%

1, if employee m is assigned to team t,

0, otherwise.

ztij �

$''&
''%

1, if team t performs job i directly before job j,

0, otherwise.
fj completion time of job j,

WTt working time of team t,

LWT longest working time among all teams.

2.3.2 Model Formulation

Using the introduced notation the mathematical model of CTRP is formulated as fol-

lows.

[CTRP]:

MinFinish: minimize
¸
jPJ

fj (2.1)

MinLWT: minimize LWT (2.2)

MinTEWT: minimize
¸
tPT

�
WTt �

¸
mPM

xmt

�
(2.3)

subject to:¸
tPT

xmt ¤ 1 @ m PM (2.4)
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¸
mPM

xmt � qmkl ¥ rjkl �
¸
iPJ0

ztij @ t P T, j P J, k P K, l P L (2.5)

¸
jPJ

zt0j ¤ 1 @ t P T (2.6)

¸
tPT

¸
iPJ0

ztij � 1 @ j P J (2.7)

¸
iPJ0

ztij �
¸
iPJ0

ztji @ t P T, j P J0 (2.8)

¸
iPJ0

¸
jPJ0

pdij � pjq � ztij � WTt @ t P T (2.9)

WTt ¤ LWT @ t P T (2.10)

fi � dij � pj ¤ fj � Z � p1 � ztijq @ t P T, i P J0, j P J (2.11)

fj ¥ 0 @ j P J0 (2.12)

xmt, ztij P t0, 1u @ m PM, t PT, pi, jq PE (2.13)

We consider three objectives, one expressing service quality, one striving for a fair

distribution of workload among the teams, and one expressing variable labor cost of

the obtained solution. More precisely, (2.1) minimizes the sum of job completion times,

which is the service oriented objective. In (2.2), we focus on the fairness of the workload

distribution by minimizing the longest working time among all teams. Using this min-

max-objective as a fairness criterion is well established in the literature on the vehicle

routing problems with workload equity consideration, see (Matl et al. (2018)). Objective

(2.3) minimizes the total employee working time, by multiplying the working time of

each team by the number of workers in that team. This approximates the labor costs

in settings where employees are paid time wages. Note that objective function (2.3) is

not linear.

Constraint (2.4) stipulates that each employee is assigned to at most one team. Em-

ployees can be left unassigned if they are not needed for performing the given jobs in

the optimal way. Constraint (2.5) demands that each job is performed by a team with
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Figure 2.1: Solutions for the example instance

appropriate skills. Constraint (2.6) ensures that each team departs from the depot at

most once. Constraint (2.7) states that each job j is visited once by one of the teams.

Constraint (2.8) guarantees that each team visiting a node j also leaves this node. Con-

straint (2.9) specifies the value of the working time of each team, which is composed of

the traveled times and job processing times. Constraint (2.10) defines the value of the

longest working time among all teams. Constraint (2.11) defines the time at which job

j is completed by team t. It requires that the completion time of the preceding job i

plus the travel time from i to j and the processing time of job j is a lower bound for the

completion time of job j. In this constraint Z denotes a sufficiently large positive value.

Note that completion times fj are actually not required if the objective is to minimize the

longest working time (2.2) or the total employee working time (2.3). Still, we keep the

corresponding constraints (2.11)-(2.12) for the purpose of subtour elimination also under

these objectives. Constraints (2.12) and (2.13) specify domains of decision variables.
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2.3.3 Examples

We illustrate the described problem by considering the following example instance. We

are given |J | � 4 jobs and |M | � 7 employees with |K| � 4 different skills and |L| � 2

experience levels. Qualifications of employees, skill requirements of jobs, job locations

and travel times are shown in Figure 2.1a. The jobs have processing times p1 � 250,

p2 � 320, p3 � 350, p4 � 180. For reasons of simplicity, we assume that each employee

is proficient in only one skill, and each job requires at most one employee per skill

level. For example, employee 1 is qualified in skill 1 at level 1 only and employee 4 is

qualified in skill 2 at both levels. Job 1 requires one employee with skill 3 at level 2

and one employee with skill 4 at level 1. The maximal number of teams that can be

created here is Tmax � mint|J |, |M |u � mint4, 7u � 4. However, there is no guarantee

that the available workforce of an instance allows constructing up to Tmax teams that

can all be used for serving jobs. Actually, Figures 2.1b-2.1d illustrate solutions for

|T | � 1, 2, 3 teams respectively, whereas a solution with |T | � 4 active teams does

not exist for this particular problem. These three solutions are optimal with regard to

objective function (2.1) under the preset number of teams. The solution in Figure 2.1b

comprises a single team that consists of employees 2, 4, 6, 7. This team covers the skill

requirements of all jobs. The total job completion time is 3858 time units. The solution

in Figure 2.1c uses two teams with a total of five employees. The teams are composed

such that the four jobs can be distributed among them, reducing the total finishing time

to 2437. Eventually, in Figure 2.1d, a third team is built consisting of employee 3 only.

The total finishing time is 2040. This is the least total finishing time achievable for this

instance. The example illustrates that the formation of teams is crucial for obtaining

high quality solutions and it is strongly interdependent with the job assignment and

routing decisions.

We provide two further small example instances that demonstrate the conflicting
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Figure 2.2: Example instances for illustrating conflicting objectives

character of the three objectives MinFinish, MinLWT and MinTEWT. The instance of

Figure 2.2a consists of two jobs (A and B), four employees, two skills, and one experience

level only. Each job requires two employees for being processed. It can been seen easily

that a single team (for example x1,1 � x3,1 � 1) can perform the two jobs in any order

(route (0,A,B,0) or route (0,B,A,0)) where both solutions show the same objective func-

tion values MinFinish=200+340=540, MinLWT=440 and MinTEWT=440�2=880. If

two teams are built (for example x1,1 � x3,1 � 1 and x2,2 � x4,2 � 1), the two jobs can be

distributed among them with routes (0,A,0) and (0,B,0). Objective function values are

then MinFinish=200+200=400, MinLWT=maxt300, 300u=300 and MinTEWT=300�2

+300�2=1200. Obviously, the second solution delivers minimum total finishing times

and also minimum longest working time. However, the first solution has smaller total

employee working time, which confirms the conflicting character of objective MinTEWT

against the objectives MinFinish and MinLWT. Furthermore, the conflicting character

of MinFinish and MinLWT is confirmed by the instance shown in Figure 2.2b, where

three jobs (A, B, C) have to be processed. For reason of simplicity, we ignore here the

team building decisions and assume that a single team can perform all three jobs. The
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optimal routing under objective MinLWT is (0,A,B,C,0) which affects MinLWT=460

and MinFinish=200+240+360=800. In contrast, the routing (0,B,A,C,0) achieves the

minimum total finishing time of MinFinish=740 but a higher longest working time of

MinLWT=480.

2.4 Bi-Level Decomposition

The presented CTRP model is nonlinear under objective function (2.3). Further, the

problem contains the uncapacitated vehicle routing problem (VRP), which is known to

be NP-hard (Lenstra and Kan (1981)). In order to reduce the complexity, to eliminate

the nonlinearity, and to gain more insight into the solvability and the structure of high

quality solutions, we suggest a bi-level decomposition framework. We decompose the

problem into two subproblems: 1. teaming problem (TP) and 2. job assignment and

routing problem (JARP) which are both described in subsections 2.4.1 and 2.4.2. In

subsection 2.4.3 we then present the solution scheme that uses the two subproblems for

generating solutions to the overall problem CTRP.

2.4.1 Stage 1: Teaming Problem (TP)

At this stage decisions are made for constructing teams. The goal is to form teams that

are capable of performing all jobs. For this purpose we introduce a new binary decision

variable ytj which indicates whether the composed team t is qualified for performing job

j:

ytj �

$''&
''%

1, if team t is qualified for performing job j,

0, otherwise.

For the teaming we consider three surrogate objectives that strive for supporting the

original service-, cost-, and fairness-objectives in different ways within the TP subprob-

lem:
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[TP]:

MinEmp minimize:
¸
mPM

¸
tPT

xmt (2.14)

MaxFlex maximize:
¸
tPT

¸
jPJ

ytj (2.15)

MinEmpFlex minimize: p1 � αq
¸
mPM

¸
tPT

xmt � α �
¸
tPT

¸
jPJ

ytj (2.16)

subject to:¸
tPT

xmt ¤ 1 @ m PM (2.17)

¸
mPM

xmt � qmkl ¥ rjkl � ytj @ t P T, j P J, k P K, l P L (2.18)

yt0� 1 @ t P T (2.19)¸
tPT

ytj ¥ 1 @ j P J (2.20)

xmt, ytj P t0, 1u @ m PM, t P T, j P J0 (2.21)

In (2.14) we minimize the number of employees that are used in the designed teams

as a surrogate objective to the minimization of cost in (2.3). In (2.15) we maximize

the number of job-team-assignment opportunities for the later routing model. This

objective yields flexibility regarding the distribution of jobs among teams and, thus, a

fair workload distribution in the subsequent subproblem. Eventually, we combine (2.14)

and (2.15) within objective function (2.16) for trading off the number of used employees

and the flexibility of job-team-assignments. In this function α denotes a value in the

interval r0, 1s. The larger α, the more we strive for qualified teams that can flexibly

get assigned jobs. In contrary, α-values close to 0 indicate that we are more concerned

with minimizing the number of employees. Constraint (2.17) ensures that each employee

is assigned to at most one team. Constraint (2.18) detects which teams are qualified

for which jobs. Constraint (2.19) expresses that the depot is accessible for all teams.

Constraint (2.20) ensures that at least one qualified team is built for each job. Note that
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multiple teams might qualify for a same job. For example, decision variables y13 � 1

and y23 � 1 would indicate that both teams 1 and 2 are qualified for performing job

3. This opens up optimization potential for the subsequent job assignment and routing

subproblem.

Note that minimizing the number of employees by (2.14) or (2.16) usually effects the

construction of a single omnipotent team. In order to generate solutions with more

than one team, one might preset a desired number of teams |T | and add the following

constraints:

¸
mPM

xmt ¥ 1 @ t P T (2.22)

¸
jPJ

ytj ¥ 1 @ t P T (2.23)

Constraint (2.22) demands that each team contains at least one employee. Constraint (2.23)

guarantees that each team is qualified for at least one job. We will use this extension

later to identify the optimal number of teams under certain problem settings.

2.4.2 Stage 2: Job Assignment and Routing Problem (JARP)

Having solved TP at stage 1, the second-stage subproblem JARP is to assign jobs to

teams and to determine a route for each team using the already introduced routing

variables ztij. The values of the stage 1 decision variables xmt and ytj are now fixed and

serve as parameters at stage 2. In other words, the composition of teams is now fixed

as well as the job-team-qualifications ytj. For example, the xmt-values shown below

describe the teams composed for the example solution from Figure 2.1d.
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xmt �

t � 1 t � 2 t � 3�
�����������

�
����������

0 0 0 m � 1
1 0 0 m � 2
0 0 1 m � 3
1 0 0 m � 4
0 1 0 m � 5
1 0 0 m � 6
0 1 0 m � 7

The corresponding ytj-values for these teams are given below. They indicate that

team 1 (see row 1) can perform job 3, while team 2 is qualified to execute jobs 1 and

4 and team 3 can execute job 2. Note that the first column (index j � 0) represents

the depot which is accessible by all teams. For this small example, the ytj-variables of

stage 1 already fix the assignment of jobs to teams as there is only one team qualified

for each job. For larger instances this is usually not the case.

ytj �

j � 0 j � 1 j � 2 j � 3 j � 4�
��

�
�1 0 0 1 0 t � 1

1 1 0 0 1 t � 2
1 0 1 0 0 t � 3

The model for the job assignment and routing problem (JARP) is formulated as follows:

[JARP]:

MinFinish minimize:
¸
jPJ

fj (2.24)

MinLWT minimize: LWT (2.25)

MinTEWT mimimize:
¸
tPT

�
WTt �

¸
mPM

xmt

�
(2.26)

subject to (2.6) � (2.12) and¸
iPJ0

ztij ¤ ytj @ t P T, j P J0 (2.27)

ztij P t0, 1u @ t P T, pi, jq P E (2.28)
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The three objectives (2.24) - (2.26) are identical to the original CTRP-objectives

(2.1), (2.2) and (2.3). Note that the size of each team follows from
°
mPM xmt which is

also a fixed parameter value now. Hence, in the comparison to model CTRP, objective

(2.26) «minimize the total employee working time», is now a linear expression in the

second stage subproblem JARP. Constraints (2.6) - (2.12) are taken from model CTRP.

As the decision made here have to respect the decisions made at the previous stage 1,

(2.27) guarantees that a team t can visit node j only if it is qualified for this job.

2.4.3 Solution Scheme

This section describes the solution scheme for the bi-level decomposition of CTRP. The

basic process is illustrated in Figure 2.3. In the first step, we solve subproblem TP in

order to construct teams and determine for each job the set of qualified teams. In the

next step, we fix the corresponding decision variables. Afterwards, we solve subproblem

JARP which delivers the best routing plan for the created teams.

Figure 2.3: Basic solution scheme for bi-level decomposition

If MaxFlex (objective function (2.15)), is used within subproblem TP as the surro-

gate objective, the process illustrated in Figure 2.3 is executed exactly once. It returns

a single solution to the overall problem CTRP. Clearly, there might be several opti-

mal solutions to this first stage subproblem. In this situation, we simply use whatever

solution is first generated by the solver that is applied to this subproblem. Further

discussion of this issue is provided in Appendix A. If the objectives MinEmp (objective

function (2.14)) or MinEmpFlex (objective function (2.16)) are considered within sub-

problem TP, the first step of the solution scheme may create just one single omnipotent

team. After the third step, we then obtain a single solution to CTRP that involves

this single team. Such a solution can be of high quality but we might miss even better
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solutions that use more than just one team. Therefore, we propose an extended solution

scheme (Figure 2.4) that iteratively produces solutions for |T | � 1, 2, . . . Tmax teams,

where Tmax � mint|J |, |M |u.

START

STOP

calculate 𝑇𝑚𝑎𝑥 = min 𝐽 , 𝑀
set 𝑇 = ∅

solve TP for |𝑇| teams  

solution exists?  

fix values of  𝑥𝑚𝑡 and 𝑦𝑡𝑗

solve JARP  

YES

NO

allow one more team in 𝑇

teaming

routing

preprocessing

𝑇 < 𝑇𝑚𝑎𝑥?

return best CTRP solution  

save resulting CTRP solution  

YES

NO

Figure 2.4: Extended solution scheme for iterating the number of teams

In this extended solution scheme, model TP is solved once for each number of teams

with the additional constraints (2.22) and (2.23) to ensure that the prescribed number of

useful teams is constructed. If a feasible solution is found for TP, we fix variables xmt and

ytj and continue by solving JARP. As long as |T |   Tmax, one more team is allowed and

the procedure is repeated for this size of set T . Recall, that there is no guarantee that a

prescribed number of useful teams can be generated for given sets M and J . Therefore,

the overall process depicted in Figure 2.4 might terminate prematurely right after failing
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to solve TP for the current number of teams. Anyhow, the final step before terminating

the procedure is to select the best CTRP solution among all solutions created in the

conducted iterations. The algorithm returns this solution and stops.

2.5 Computational Study

2.5.1 Generation of Test Instances

For the experiments, we have generated 12 instance sets containing 10 instances each.

The instance sets differ in the number of jobs and the number of technicians per instance.

The smallest instances (set 1) contain |J | � 4 jobs and |M | � 4 employees whereas the

largest instances (set 12) contain |J | � 20 jobs and |M | � 20 employees. For all instances

we consider |K| � 3 skills and one competence level |L| � 1. We randomly draw the job

processing times pj from the uniform distribution U r50, 250s. The jobs and the depot

are randomly located within an area of size 500 � 500 from which travel times dij are

computed by the corresponding euclidean distances. The employee qualification matrix

qmkl of an employee m is generated such that each skill k � 1, 2, 3 appears at level l � 1

with independent probability of 0.5. From this, it is possible that an employee can

be proficient in more than one skill. Furthermore, the generation process guarantees

that each employee owes at least one skill (i.e. @m P M : Dk P K ñ qmk1 � 1). The

job requirement matrix rjkl of a job j is generated such that each cell takes value 0,

1 or 2 with equal probability. In other words, concerning a particular skill k, job j

either requires no employee with that skill (rjkl � 0) or one employee (rjkl � 1) or two

employees (rjkl � 2). The instances are provided at [url hidden for double-blind peer

review process].

For the experiments, the MIP models were solved using CPLEX 12.7 on an Intel(R)

Core (TM) i7-2600 3.40 GHz with 16 GB of RAM. We set a runtime limit of 3600

seconds per instance for the integrated model CTRP. For the bi-level model we apply

this runtime limit just for the second stage because the first stage model is solved within
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at most a few seconds in all cases. If the second stage problem JARP strives for objective

MaxFlex, this model is solved only once per instance and receives the full runtime limit.

Under the objectives MinEmp and MinEmpFlex, JARP is solved up to Tmax times per

instance, see discussion in Section 2.4.3. The imposed time limit is therefore divided

among the subproblems with each subproblem adhering to a runtime limit of 3600{Tmax

seconds.

2.5.2 Comparison of the Models for Different Objectives and Problem Sizes

The first experiment is conducted to test the performance of the integrated model and

the bi-level model regarding the required solution times and the achieved solution qual-

ity. For this purpose, the whole instance set has been solved by different combinations

of models and objectives. Table 2.1 reports aggregated computational results for each

model and each instance set when striving for the minimization of total job comple-

tion times MinFinish (see Eq. (2.1)). The values reported in a row of this table are

averages for the solutions to the 10 instances in the corresponding instance set. The

first column of this table shows the instance size. The next five columns show results

of model CTRP. They report the number of teams created in the solution (column T),

the number of employees assigned to teams (column m), the objective function value

(column Obj.), the used computation time (column CPU) and the optimality gap re-

ported by CPLEX (column GAP). The further columns in this table report the results

of the bi-level model. To analyze the impact of the submodel variants of the bi-level

model, we solved the TP subproblem once under the surrogate objective MaxFlex and

once under the surrogate objective MinEmp. In both cases, the objective for the second

stage is MinFinish. The results reported in Table 2.1 for these two bi-level formulations

are the number of teams in the solution (column T), the number of assigned employees

(column m), the relative deviation (column RD) and the computation time (column

CPU). Here, the relative deviation RD expresses the deviation of the objective function
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value achieved by the bi-level model to the objective function value achieved by CTRP.

It is calculated as follows:

RD �
Obj(bi-level model) - Obj(CTRP)

Obj(CTRP) (2.29)

The results of Table 2.1 show that the integrated problem CTRP can be solved to op-

timality for instances of small size only. For medium sizes, a few instances can be solved

to optimality whereas instances of size |J | � |M | � 10 � 13 or larger cannot be solved

to optimality within the limited runtime. This is explained by the strong growth of the

optimization model with increasing instance size. For example, the smallest instances

comprise of 126 decision variables and 168 constraints on average. Medium instances

(|J | � |M | � 10 � 13) have 1362 variables and 1563 constraints. The largest instances

lead to models with 9262 variables and 10120 constraints. We also tested an extended

runtime limit of 2 hours but did not observe significant improvements of solution qual-

ity from this. Nevertheless, integer feasible solutions are found for all instances within

one hour of runtime. The bi-level decomposition using MaxFlex can be solved within

shorter time especially for the medium size instances. The bi-level decomposition using

MinEmp solves even the large instances within less than an hour. Although being faster

to solve than the integrated CTRP, the decomposed models represent a heuristic to the

overall problem. This results in substantial relative deviations RD ranging from 0.07 to

1.03 for bi-level decomposition with MinEmp. MinEmp is therefore not competitive to

CTRP when striving for the overall objective MinFinish. For the bi-level decomposition

with MaxFlex, RD is much lower with values ranging from -0.01 to 0.07. The negative

RD value indicates that this approach has a potential for delivering solutions that are

even better than those obtained by CTRP within the limited runtime. Together with

the shorter runtime, the bi-level decomposition with surrogate objective MaxFlex is a

useful alternative to solving the integrated model CTRP directly. This holds especially,

if the planning has to be done on short notice (for example because jobs are incoming
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Table 2.1: Minimization of total job completion time (MinFinish)
Instance Integrated Bi-level Decomposition

CTRP MaxFlex MinEmp
|J| � |M| T m Obj. CPU GAP T m RD CPU T m RD CPU
4 � 4 1.8 3.9 2359 0.09 0 1.7 3.8 0.01 0.02 1.8 3.3 0.07 0.03
4 � 8 3.7 7.9 1642 0.10 0 3.5 7.8 0.03 0.03 2.9 4.4 0.18 0.05
6 � 6 3.2 6.0 3069 8.72 0 3.1 5.9 0.02 0.94 3.0 4.6 0.23 0.35
6 � 12 5.6 11.9 2503 13.15 0 5.5 11.8 0.02 1.55 4.2 5.9 0.20 0.42
8 � 6 3.3 6.0 4862 507.38 0 2.8 5.9 0.06 21.58 2.9 4.9 0.22 20.69
8 � 12 6.4 11.8 3420 1955.21 8 5.6 11.7 0.04 49.30 4.9 7.3 0.35 21.81
10 � 7 3.3 6.9 6630 3315.40 77 3.2 6.7 0.03 860.59 3.6 5.9 0.29 1161.53
10 � 13 6.6 12.7 4433 3600.00 87 5.6 12.8 0.07 683.40 5.2 7.6 0.47 1020.72
15 � 8 3.7 7.9 12162 3600.00 95 3.1 7.8 0.04 3600.00 4.2 6.5 0.36 2177.80
15 � 15 7.6 15.0 7654 3600.00 98 6.1 15.0 0.07 3600.00 6.1 8.6 0.71 2204.78
20 � 10 4.5 10.0 16587 3600.00 99 4.1 10.0 -0.01 3600.00 5.0 7.0 0.65 2628.51
20 � 20 9.6 19.8 10628 3600.00 99 7.8 19.7 0.04 3600.00 7.0 8.9 1.03 2840.44
I 5.1 10.1 6329 1983.33 47 4.5 10.1 0.04 1334.78 4.3 6.3 0.39 1006.50

closely before the service process starts) which requires lower response times. In such

situation, the shorter runtimes of the bi-level decomposition might be considered more

relevant than the slightly worse solution quality. Considering the number of teams and

employees used in the solutions (columns T and m), CTRP and MaxFlex use almost all

available employees and create the larger number of teams while MinEmp - as expected

- assigns much fewer employees to a slightly lower number of teams. This might give

an advantage to MinEmp if it comes to the minimization of labor cost related objec-

tives, but it represents a systematic disadvantage when striving for service objectives

like MinFinish.

The results in Table 2.2 belong to the fairness objective MinLWT. The general per-

formance of the three solution approaches is similar to the previous experiment. Yet,

CTRP can now solve almost all medium sized instances to optimality and both bi-level

decompositions solve problems much faster under this objective. The CPU time of the

bi-level models lies considerably below the time limit even for the largest instances.

While MinEmp is extremely fast, its RD values are again very high, making it a less

useful approach also under the overall objective MinLWT. In contrast, the average RD

of the MaxFlex approach is comparably low (5%) making it a useful heuristic approach,

especially for medium and large instances.

Table 2.3 summarizes the results of the minimization of the total employee working
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Table 2.2: Minimization of the longest working time (MinLWT)
Instance Integrated Bi-level Decomposition

CTRP MaxFlex MinEmp
|J| x |M| T m Obj. CPU GAP T m RD CPU T m RD CPU
4 x 4 1.8 3.9 1259 0.08 0 1.7 3.8 0.03 0.02 1.8 3.3 0.12 0.02
4 x 8 3.2 7.3 922 0.06 0 3.4 7.7 0.02 0.04 2.8 4.3 0.20 0.07
6 x 6 3.0 5.8 1134 0.61 0 3.0 5.8 0.03 0.10 2.8 4.4 0.34 0.14
6 x 12 4.3 10.0 965 0.74 0 4.2 8.9 0.05 0.12 4.0 5.7 0.28 0.21
8 x 6 2.9 5.9 1391 10.55 0 2.6 5.7 0.03 0.63 2.9 4.9 0.26 0.23
8 x 12 5.3 11.3 1001 15.68 0 5.1 10.9 0.02 0.72 4.7 6.9 0.44 0.51
10 x 7 3.1 6.8 1511 160.12 0 3.0 6.5 0.03 1.31 3.4 5.7 0.39 0.52
10 x 13 5.7 12.6 1033 1840.38 3 5.0 11.8 0.12 2.75 4.8 7.1 0.69 1.07
15 x 8 3.8 7.8 1831 3240.22 43 3.1 7.8 0.04 953.28 3.5 5.8 0.55 4.15
15 x 15 6.9 14.6 1132 3600.00 63 5.9 14.8 0.13 1198.15 5.6 8.0 1.12 8.71
20 x 10 4.4 10.0 1834 3600.00 73 4.1 10.0 0.03 2423.23 4.1 6.0 0.93 127.29
20 x 20 8.3 19.5 1312 3600.00 77 6.8 18.2 0.11 1807.16 4.9 6.7 1.29 147.27
I 4.3 9.8 1277 1339.04 22 4.0 9.5 0.05 532.25 3.9 5.8 0.55 24.17

time MinTEWT. This objective is nonlinear which is why it cannot be applied when

solving model CTRP by a standard MIP solver like CPLEX. For providing a basis of

comparison, we compute a lower bound for TEWT as described in Appendix B. Since

computing the lower bound involves solving a variant of CTRP it can, unfortunately,

not be computed for very large instances within a runtime of one hour. However, we

obtain lower bounds at least for the first 8 instance sets. The average lower bound is

reported for these instance sets in column LB. We furthermore report the GAP values

(column GAP) expressing the deviation of the objective function achieved by the bi-level

model to the reported LB value:

GAP �
Obj.(bi-level model) - LB

LB (2.30)

To compare the two decomposition approaches, we report in column RD the relative

deviation of the objective function value achieved by this bi-level model to the objective

function value achieved by MaxFlex. Furthermore, in column B/E/W we report for each

instance set the number of instances where MinEmp performs better (B), no different

(E=equal) or worse (W) than MaxFlex. For example, in row 4x4 column B/E/W shows

values 2/8/0, meaning that MinEmp delivers better solutions for 2 instances, equal so-

lutions for 8 instances and is worse in no case. The obtained results show that MinEmp

achieves substantially lower total employee working times. This is confirmed by the

(average) negative RD values for almost all instance sets. Furthermore, for the first 8
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Table 2.3: Minimization of the total employee working time (MinTEWT)
Instance Bi-level Decomposition

MaxFlex MinEmp
|J| � |M| LB T m Obj. GAP CPU T m Obj. GAP RD B/E/W CPU
4 � 4 3515 1.1 2.7 4044 15% 0.02 1.1 2.6 3835 9% -0.05 2/8/0 0.03
4 � 8 3013 1.3 2.7 3352 11% 0.03 1.7 3.0 3211 7% -0.04 4/5/1 0.07
6 � 6 3819 1.6 3.3 4677 22% 0.12 1.5 2.7 4219 10% -0.10 5/3/2 0.18
6 � 12 3695 1.7 3.0 4028 9% 0.20 1.8 2.9 4103 11% 0.02 3/4/3 0.26
8 � 6 5073 1.7 4.1 6545 29% 0.41 1.8 3.4 6022 19% -0.08 8/2/0 0.39
8 � 12 4828 2.2 4.4 5826 20% 1.39 1.5 2.7 5210 8% -0.11 7/0/3 0.80
10 � 7 6078 1.8 4.2 7787 28% 3.17 2.6 4.7 7688 26% -0.01 5/2/3 0.81
10 � 13 5763 2.3 5.2 7401 28% 5.91 2.3 3.8 6357 10% -0.14 7/1/2 1.57
15 � 8 - 1.8 4.7 11171 - 41.04 2.2 4.1 10465 - -0.06 5/1/4 10.04
15 � 15 - 2.1 4.9 10641 - 404.33 2.3 3.8 8926 - -0.16 7/0/3 20.18
20 � 10 - 1.7 4.4 13872 - 531.14 2.9 4.6 12377 - -0.11 9/1/0 188.79
20 � 20 - 2.2 5.0 13123 - 1466.43 2.3 3.7 10570 - -0.19 9/1/0 280.93
I - 1.8 4.0 7705 20% 204.51 2.1 3.7 6915 12% -0.09 6/2/2 42.00

instance sets, the average gap to the lower bound is 12%. Interestingly, the GAP values

are relative stable over these sets, which indicates that the solution quality does hardly

deteriorate with increasing problem size. Eventually, MinEmp delivers better solutions

than MaxFlex for the majority of instances. A paired sample t-test based on the com-

putational results of both methods yields a significant mean difference (with p   0.01)

confirming that method MinEmp outperforms method MaxFlex. Furthermore, MinEmp

solves most instance sets much faster than MaxFlex. Therefore, MinEmp is the strategy

to apply if a company strives for minimizing the total working time of employees. This

can be explained as follows. As MaxFlex strives for highly qualified teams, it creates

on average a small number of 1.8 teams per instance using on average 4.0 employees

compared to MinEmp which creates more teams (2.1) using less employees (3.7). This

effects longer working time for fewer but larger teams under MaxFlex explaining its

inferior performance compared to MinEmp.

To summarize this experiment, the obtained results show that the decomposition ap-

proach yields an effective heuristic for all three objectives. However, for this approach,

the appropriate surrogate objective needs to be selected for subproblem TP. Eventu-

ally, good solutions for CTRP-objectives MinFinish and MinLWT are achieved by the

MaxFlex-decomposition approach whereas CTRP-objective MinTEWT is best solved

by using the MinEmp-decomposition approach.
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2.5.3 Weighted Bi-Level Model

The previous experiment showed that bi-level models MaxFlex and MinEmp perform

quite differently under the CTRP-objectives MinFinish, MinLWT, MinTEWT. There

is no model that outperforms the other one for all three objectives. For this reason, we

investigate here whether a combination of the two bi-level models is advantageous. For

this purpose, we apply to the first subproblem TP the weighted objective function (2.16)

that combines MinEmp and MaxFlex using a weight α (with 0 ¤ α ¤ 1). Figure 2.5

shows for different values of α and selected instance sets, the minimum total employee

working time MinTEWT of the final CTRP solutions obtained by the weighted bi-level

model. We observe that the extreme α � 1 (corresponding to MaxFlex) performs much

weaker than α � 0 (corresponding to MinEmp) as was revealed already by Table 2.3.

However, for values 0   α   1 there are only minor improvements over α � 0 that can

be seen hardly in the figure.

To better reveal this improvement, we show in Table 2.4 the numerical results of the

weighted bi-level model with α � 0.5 for all three CTRP-objectives. For the objectives

MinFinish and MinLWT, column RD expresses here the relative deviation of the ob-

jective function value obtained from the weighted bi-level model against the solutions

of the best performing pure bi-level model MaxFlex that were reported in Tables 2.1

and 2.2. The RD-values reported for MinTEWT correspond to the relative deviation of

Figure 2.5: Average objective values for MinTEWT with different α-values
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Table 2.4: Performance of the weighted bi-level model MinEmpFlex with α � 0.5

Instance MinFinish MinLWT MinTEWT
|J| x |M| T m RD CPU T m RD CPU T m RD CPU
4 x 4 1.8 3.7 -0.01 0.03 1.8 3.7 -0.02 0.03 1.0 2.5 0.02 0.03
4 x 8 3.6 6.7 -0.01 0.12 3.2 6.2 -0.02 0.10 1.4 2.7 -0.01 0.10
6 x 6 3.2 5.6 -0.01 1.81 3.0 5.5 -0.02 0.28 1.5 2.8 -0.04 0.29
6 x 12 5.4 10.7 -0.01 7.83 4.0 8.4 -0.04 0.62 1.6 2.7 -0.06 0.78
8 x 6 3.3 6.0 -0.05 59.16 2.8 5.7 0.00 0.99 1.8 3.9 0.00 1.13
8 x 12 5.9 11.4 -0.01 333.63 4.7 11.0 0.00 4.78 1.7 3.1 0.00 4.07
10 x 7 3.4 6.7 -0.01 1690.61 3.0 6.6 0.00 8.06 2.1 4.5 -0.03 5.87
10 x 13 6.1 12.1 -0.03 2529.27 4.8 11.8 -0.07 44.21 2.0 3.8 -0.03 14.99
15 x 8 3.8 7.9 -0.05 2295.31 3.4 7.7 -0.02 659.39 2.0 4.4 -0.04 158.42
15 x 15 6.9 14.6 -0.02 2597.97 6.0 13.8 -0.06 1258.09 2.0 4.0 0.00 465.30
20 x 10 5.2 10.0 0.02 2629.32 4.3 9.9 -0.03 1299.76 2.2 4.2 -0.05 815.52
20 x 20 8.6 18.9 0.05 2939.99 7.1 17.9 -0.09 1524.17 2.1 3.6 -0.02 1538.49
I 4.8 9.5 -0.01 1257.09 4.0 9.0 -0.03 400.04 1.8 3.5 -0.02 250.42

the weighted bi-level model against the solutions of the pure MinEmp model that were

reported in Table 2.3. The numerous negative RD values observed for all three objec-

tives in Table 2.4 confirm that the weighted bi-level approach clearly outperforms the

best-performing pure bi-level models in almost all settings. The average improvement

for the three objectives ranges from 1% to 3%, where the highest improvement of 9% is

achieved for the largest instances under objective MinLWT.

2.5.4 Influence of Employee Qualifications

This experiment tests the impact of employee qualifications on the quality of the ob-

tained solutions. For this purpose, we generated an additional employee qualification

matrix where all employees are fully qualified in all three skill domains. We refer to this

setting as high-skilled (HS). In this setting, teams are no longer built to cover the skills

required by jobs but to meet requirements of jobs that need more than one worker for a

particular skill-level (rjkl ¡ 1). As a benchmark for this setting, we use the results ob-

tained from the original employee qualification matrices, which we refer to as low-skilled

(LS). Furthermore, we solved all 120 instances with the HS qualifications under each

modeling approach presented in this paper. Thereby, we use the same runtime limits

as before, meaning that solutions of model CTRP are not necessarily optimal for larger

instances.

Figures 2.6 to 2.8 show for LS and HS, as well as for each (bi-level) model, the average
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Figure 2.6: Low skilled (LS) and high skilled (HS) workforce performance under MinFinish

Figure 2.7: Low skilled (LS) and high skilled (HS) workforce performance under MinLWT

Figure 2.8: Low skilled (LS) and high skilled (HS) workforce performance under MinTEWT

objective function value and the average CPU time over all 120 instances when striving

for MinFinish, MinLWT, and MinTEWT. The results for setting LS are those reported

in Tables 2.1-2.4. As expected, we observe that higher qualifications can be used for

finishing jobs faster, reducing longest working times of teams and diminishing total

employee working time. These benefits can be achieved by all models proposed in this

paper. Like before, the weighted bi-level model MinEmpFlex can be considered as a

good compromise for quickly achieving solutions of very good quality in all considered

settings. In some cases MinEmpFlex even produces better solutions than CTRP within

the limited runtime, which explains why the average objective value of HS is smaller

under MinEmpFlex than under CTRP in Figure 2.7.

Eventually, we analyze the impact of the number of qualification levels. Therefore,
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Figure 2.9: Varied number of skill levels under MinFinish

Figure 2.10: Varied number of skill levels under MinLWT

Figure 2.11: Varied number of skill levels under MinTEWT

based on the original qualification matrices, we generated additional skill levels l � 2 and

l � 3 as follows. For employees that are proficient in a skill k at level l � 1 (qmk1 � 1), we

assign the second skill level (qmk2 � 1) with probability 0.8. Furthermore, for employees

that are proficient at level l � 2 (qmk2 � 1), we assign the third skill level (qmk3 � 1)

again with probability 0.8. The elements in the job requirement matrix rjkl at higher

levels (l � 2, l � 3) take value rj,k,l�1 or maxprj,k,l�1 � 1, 0q with a probability of 0.5

each.

Figures 2.9-2.11 show the results obtained under the original low skill setting with

L � 1 skill level in comparison with L � 2 and L � 3 skill levels for objectives MinFinish,
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MinLWT and MinTEWT and all applicable methods. The high skill setting has not

been applied to L � 2 and L � 3 as results will not be affected for a perfectly skilled

workfore where each worker is qualified for all skills at the highest level. The results

in Figures 2.9-2.11 confirm the findings of the previous tests. MinEmpFlex provides

very good solution quality at relatively low computation times in all situations. We

observe slight increases in the objective function values when turning from L � 1 to

L � 2 and L � 3 under all objectives and for all methods. This is an expected outcome,

because the more diverse skill requirements reduce the flexibility of forming teams that

are qualified for a particular job. This negatively effects the performance of the teams

even if the problem can be solved to optimality. Interestingly, the solution times either

stay the same or they even decrease when we solve problems with a higher number of

skill levels. This shows that the methods can well cope with different numbers of skill

levels.

2.6 Conclusions

In this paper we presented optimization models for the integrated and sequential solution

of the combined manpower teaming and routing problem. We considered objectives

representing the minimization of the total job finishing time, of the longest working

time among teams and of the total employee working time. These objectives represent

service, fairness, and cost aspects of the considered problem. The sequential solution

approach uses a bi-level decomposition of the overall problem. It was shown that this

decomposition effects a linearization of the total employee working time objective. For

this reason, all the bi-level models can be solved using the CPLEX MIP solver. Our

experimental results show that the decomposition approach represents a useful heuristic

if an appropriate surrogate objective is chosen for the involved subproblems. Eventually,

we could show that a weighted bi-level model, that uses a mixture of the surrogate

objectives, consistently performed best. This approach provides good heuristic solutions
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even for large instances for which CPLEX cannot solve the combined model within the

considered runtime limit. We also showed by experiment that the qualification of the

employees has a strong impact on the quality of the obtained solutions, which confirms

the importance of considering employee qualification within the combined manpower

teaming and routing problem.

As future research, we will explore the possibilities of splitting and merging teams

within the planning horizon to provide more flexibility to the operations planning. Also,

we propose to investigate the interdependence of job processing times and the compo-

sition and skill levels of the assigned team.

Appendix A. Selection of Candidate TP Solution

Maximizing the job-team-assignment opportunities through MaxFlex-objective (2.15)

can lead to several optimal solutions with same objective function value but differ-

ing compositions of teams. As an example, consider a problem with three employ-

ees, three jobs, three skills, and one skill level. Let the employee skill vectors be

q1 � p1, 0, 0q, q2 � p0, 1, 0q, and q3 � p0, 0, 1q. Let the qualification requirement vectors

of the three jobs be r1 � p1, 0, 0q, r2 � p0, 1, 0q, and r3 � p0, 0, 1q. Table 2.5 lists the five

possible team compositions, where m1, m2, and m3 refer to the three employees.

Table 2.5: Team composition variants
Team Composition 1 Composition 2 Composition 3 Composition 4 Composition 5

1 m1 m1, m2 m2, m3 m1, m2 m3, m2, m3
2 m2 m3 m1 m2 -
3 m3 - - - -

Each of the five team compositions returns the same objective function value of MaxFlex = 3

and, thus, all these solutions are optimal for subproblem TP under this surrogate objec-

tive. A question is then, whether one solution should be prefered over the others when

turning to the second stage problem. Here, one could argue that a team composition

with a larger number of smaller teams is preferable as these teams can be dispatched

flexibly to jobs. The objectives MinFinish and MinLWT would then benefit from a
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parallelization of jobs and the MinTEWT objective would benefit from not sending

oversized teams to jobs. In this sence, team composition 1 from Table 2.5 would be con-

sidered the best alternative. In order to determine among all optimal solutions the one

with the largest number of qualified teams, one should first solve model TP to obtain

the optimal value for MaxFlex. Afterwards, the following model will be solved to obtain

a team composition that reaches MaxFlex with a largest possible number of qualified

teams (i.e. non-empty teams that are qualified for at least one job):

maximize:
¸
tPT

wt (2.31)

subject to:

(2.17) � (2.21)

wt ¤
¸
jPJ

ytj @t P T (2.32)

¸
tPT

¸
jPJ

ytj �MaxFlex (2.33)

wt P t0, 1u @t P T (2.34)

In this model, binary decision variable wt � 1 indicates that team t is qualified for at

least one of the jobs, 0 otherwise. Objective (2.31) maximizes the number of such qual-

ified teams. Constraint (2.32) guarantees that wt takes value 1 only for qualified teams.

Constraint (2.33) ensures that the team composition leads to the same number of team-

job-assignments as was generated in the first run of the TP model. Constraint (2.34)

specifies the domain of the new decision variables. Note that there might still be multi-

ple optimal solutions for this model, where further mechanism could be applied to select

one of these solutions.

Nevertheless, we found from experiments that the strategy described here does even-

tually not lead to better CTRP solutions. For this reason, we kept the original mech-

anism of arbitrarily selecting any optimal solution at the TP-stage and describe this
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alternative mechanism only here in the appendix.

Appendix B. Lower Bound for MinTEWT

Since the CTRP objective MinTEWT is nonlinear, it is not possible to solve this problem

by a MIP solver. In order to assess the solution quality obtained by the bi-directional

heuristic solution approach under this objective, we describe here how to compute a

lower bound for objective MinTEWT.

We first calculate for each job j P J the minimal number of employees that is needed

to perform this job. This number is denoted by Aj. We obtain this value from solving

the following reduced version of the TP model under the surrogate objective (2.14) once

for each job j P J .

minimize: Aj �
¸
mPM

xm (2.35)

subject to:¸
mPM

xm � qmkl ¥ rjkl @k P K, l P L (2.36)

xm P t0, 1u @ m PM (2.37)

As this model addresses only one job j at a time, the selected subset of employees

represents the team of minimum size that is required for performing this job. For this

reason, the reduced version of model TP can go without variables ytj, a reduced set of

constraints, and index t dropped from the original variables xmt.

Having determined Aj for all jobs j P J , we subsequently determine a lower bound

on the total employee working time by solving the following variant of model CTRP.

LB minimize:
¸
tPT

LBEWTt (2.38)

subject to:
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(2.4) � (2.13)

LBEWTt ¥
¸
tPT

Aj �WTt � Z � p1 �
¸
iPJ0

ztijq @j P J, t P T (2.39)

LBEWTt ¥ 0 @t P T (2.40)

Here, the continous variable LBEWTt expresses a lower bound on the employee

working time of team t. This value is estimated in (2.39) using the parameter Aj,

which is a lower bound on the actual size of the team that serves job j, instead of the

size of the team that is actually determined in this optimization model. This way, the

nonlinearity in the computation of total employee working time is eliminated. Objective

function (2.38) then sums up these variables over all teams to obtain a lower bound

on the original objective function MinTEWT. Note that this model still includes the

determination of teams to get meaningful routes (variables ztij) and, thus, a tight lower

bound. Therefore, it might be challenging to solve this lower bound formulation if

instances get too large.

Bibliography

Bertels, S. and Fahle, T. (2006). A hybrid setup for a hybrid scenario: Combin-

ing heuristics for the home health care problem. Computers & Operations Research,

33:2866–2890.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014). Workforce scheduling and

routing problem: Literature survey and computational study. Annals of Operations

Research, 239:1–29.

Chuin Lau, H. and Gunawan, A. (2012). The patrol scheduling problem. Proceedings of

the 9th International Conference on the Practice and Theory of Automated Timetabling

(PATAT 2012), Son, Norway, pages 175–192.



CHAPTER 2. ESSAY 1 59

Cordeau, J.-F., Laporte, G., Pasin, F., and Ropke, S. (2010). Scheduling technicians

and tasks in a telecommunication company. Journal of Scheduling, 13:393–409.

Cortés, C. E., Gendreau, M., Rousseau, L. M., Souyris, S., and Weintraub, A. (2014).

Branch-and-price and constraint programming for solving a real-life technician dis-

patching problem. European Journal of Operational Research, 238:300–312.

Dohn, A., Kolind, E., and Clausen, J. (2009). The manpower allocation problem

with time window and job-teaming constraints. Computers & Operations Research,

36:1145–1157.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., and Sier, D. (2013). Staff scheduling

and rostering: A review of applications, methods and models. European Journal of

Operational Research, 153:3–27.

Estellon, B., Gardi, F., and Nouioua, K. (2009). High-performance local search for

task scheduling with human resource allocation. Lecture Notes in Computer Science,

552:1–15.

Everbon, P., Flisberg, P., and Rönnqvist, M. (2006). Laps care - an operational system

for staff planning of home care. European Journal of Operational Research, 171:962–

976.

Fırat, M., Briskorn, D., and Laugier, A. (2016). A branch-and-price algorithm for

stable workforce assignments with hierarchical skills. European Journal of Operational

Research, 251:676–685.

Firat, M. and Hurkens, C. (2012). An improved MIP-based approach for a multi-skill

workforce scheduling problem. Journal of Scheduling, 15:363–380.



CHAPTER 2. ESSAY 1 60

Hashimoto, H., Boussier, S., Vasquez, M., and Wilbaut, C. (2011). A GRASP-based

approach for technicians and interventions scheduling for telecommunications. Annals

of Operations Research, 183:143–161.

Ho, S. C. and Leung, J. M. Y. (2010). Solving a manpower scheduling problem for air-

line catering using metaheuristics. European Journal of Operational Research, 202:903–

921.

Hurkens, C. A. (2009). Incorporating the strength of MIP modeling in schedule con-

struction. RAIRO-Operations Research, 43:409–420.

Kergosien, Y., Lente, C., and Billaut, J. C. (2009). Home health care problem. An

extended multiple traveling salesman problem. Multidisciplinary International Confer-

ence on Scheduling: Theory and Applications, Dublin 10-12 Aug 2009.

Kovacs, A. A., Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2012). Adaptive large

neighborhood search for service technician routing and scheduling problems. Journal

of Scheduling, 15:579–600.

Lenstra, J. K. and Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling

problem. Networks, 11:221–227.

Lim, A., Rodrigues, B., and Song, L. (2004). Manpower allocation with time windows.

Journal of Operational Research Society, 55:1178–1186.

Matl, P., Hartl, R. F., and Vidal, T. (2018). Workload equity in vehicle routing

problems: A survey and analysis. Transportation Science, 52:239–260.

Pillac, V., Guéret, C., and Medaglia, A. L. (2013). A parallel metaheuristic for the

technician routing and scheduling problem. Optimization Letters, 7:1525–1535.



CHAPTER 2. ESSAY 1 61

Tsang, E. and Voudouris, C. (1997). Fast local search and guided local search and their

application to British Telecom’s workforce scheduling problem. Operations Research

Letters, 20:119–127.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., and De Boeck, L.

(2013). Personnel scheduling: A literature review. European Journal of Operational

Research, 226:367–385.

Xu, J. and Chiu, S. Y. (2001). Effective heuristic procedures for a field technician

scheduling problem. Journal of Heuristics, 7:495–509.

Zamorano, E. and Stolletz, R. (2017). Branch-and-price approaches for the multiperiod

technician routing and scheduling problem. European Journal of Operational Research,

257:55–68.



3 Essay 2

Interday Routing and Scheduling of Multi-Skilled Teams with
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Abstract: We consider a combined manpower routing and scheduling problem for

performing spatially distributed jobs that demand one or more skilled workers. In par-

ticular, we investigate how the staffing can be updated for new jobs that occur within

the planning horizon. We address this by interday planning and intraday reschedul-

ing strategies under team consistency consideration. We propose linked mathematical

optimization models for the interday and intraday rescheduling. For solving large prob-

lem instances, we develop a fix-and-optimize heuristic. Our experiments analyze the

effectiveness of the method and reveal the impact of integrating team consistency into

manpower scheduling.

Keywords: Multi-Skill Workforce Scheduling, Interday Planning, Intraday Reschedul-

ing, Consistency, Synchronization

3.1 Introduction

An effective use of available personnel is one of the main instruments for companies to

gain a market advantage, to increase customer satisfaction and to improve their core

competence and business performance. For this reason, efficient workforce management

is crucial for the prosperity of service-oriented companies. The importance of an effective

workforce planning stems also from the fact that companies often provide complex

62
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services that require specialists with different qualifications and experience levels. In

addition, these services often have to be provided at geographically dispersed customer

locations. For an effective workforce management and scheduling as well as for the

improvement of service quality, companies may thus create multi-skilled worker teams.

Deciding on the order in which these teams perform their assigned jobs then directly

determines the completion times of jobs and, thus, the service quality perceived by

customers as well as the actual working time of each team. For this reason, skill-

based team configuration as well as routing of teams and scheduling of jobs have to be

considered not separately but in a complementary way. The relevance of this concern

is reflected in the number of practical applications found in the maintenance sector, the

telecommunication industry, the construction sector, airline catering or the home health

care business, see e.g., Cordeau et al. (2010), Hurkens (2009), Kazirzadeh et al. (2017).

Another important challenge faced by companies is the adjustment of staffing and

work plans to demand changes when new requests arrive or already scheduled requests

have to be postponed or canceled while a previously determined work plan is executed.

Due to these fluctuations, companies have to determine not only a work plan for the

current planning period but also for the near-future.

A question that arises in this context of multi-period planning is to what extent

the team composition should be changed from day to day. Usually, staff shortages

may force companies to frequently change team compositions from period to period.

However, empirical studies in the home health care sector demonstrate that a frequent

change of coworkers (team members) at the operative level leads to miscommunications

among the team members and, as a consequence, to an increasing number of failures,

see e.g., Kalisch et al. (2008) and Russel et al. (2011). The need to frequently familiarize

with new staff members undermines the staff working relationship, increases the stress

level, decreases the ability to cope on the unit and results in a high level of frustration.
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These findings indicate the importance of integrating team consistency aspects into

multi-period workforce planning.

In Anoshkina and Meisel (2019), we investigated the problem of multi-skilled work-

force teaming and routing for a single period, where team consistency is not an issue. In

this paper, we consider the problem from a multi-period perspective. Thereby, our pri-

mary interest lies in increasing employee satisfaction. We try to achieve this by striving

for consistent team compositions during the considered planning horizon. Furthermore,

we attempt to find an appropriate balance between the employee needs and the service

quality of the work plan, which we measure by the number of performed jobs. Note that

these objectives are conflicting because consistency of teams (i.e., avoiding changes in

team structures) might hinder performing the maximum number of jobs. Minimization

of the total job completion times, which is a main goal in many earlier contributions, is

considered as a subordinate objective only.

Our contribution is then threefold. First, we propose an interday model that composes

teams to serve requests in an upcoming period where team consistency is one of the

objectives next to service quality measures. Thereby, team consistency is modeled by

measuring differences in team composition among two consecutive periods. We present

two alternatives for measuring and modeling team consistency. Second, we formulate an

intraday model for integrating new incoming jobs into a current operation plan taking

into account the already made work progress of the teams. This model also supports

team synchronization, where two or more teams jointly fulfill a job. Finally, we develop

a fix-and-optimize heuristic for solving large problem instances. The heuristic comprises

components for generating initial solutions, splitting and merging of teams, swapping

of jobs and diversifying the search in a multi-start process.

The paper is organized as follows. In Section 3.2, we provide a literature review. We

then present formal descriptions and mathematical formulations of the interday and the



CHAPTER 3. ESSAY 2 65

intraday problems together with an example in Section 3.3. In Section 3.4, we explain

our solution method. Section 3.5 contains the computational study that analyses the

potentials and limitations of the proposed models and the heuristic. Concluding remarks

are presented in Section 3.6.

3.2 Literature

The combined problem of teaming and scheduling of multi-skilled workforce was first

introduced by the optimization challenge ROADEF (2007). The introduced topic was

based on a real-world problem encountered by France Telekom. The considered prob-

lem was to compose teams and to schedule jobs with respect to skills of workers and

requirements of jobs for a single period. Furthermore, the jobs had different priorities

and could be outsourced at some costs, which is bounded by a budget constraint. The

objective of the problem is to minimize the weighted sum of the completion times of

all processed jobs. This study gave rise to a number of competing solution procedures

proposed by the participants of the contest. For instance, Estellon et al. (2009) propose

a combination of a greedy algorithm with local search methods. Hurkens (2009) presents

a two-phase approach where a MIP model is first applied for the identification of jobs to

outsource and a matching model determines then the job-technician-assignment. This

approach was later improved by Firat and Hurkens (2012) who add new matching mech-

anisms. Cordeau et al. (2010) propose a linear optimization model for this problem and

develop a meta-heuristic that combines a construction procedure with an adaptive large

neighbourhood search (ALNS) for an effective solution of real world instances. Khalfay

et al. (2017) introduce further (greedy) heuristics for the model presented by Cordeau

et al. (2010) that can solve larger instances. Similar to Hurkens (2009), Hashimoto et al.

(2011) propose a decomposition approach using optimization models for the outsourc-

ing decision. For the scheduling of the non-outsourced jobs, the authors apply a greedy

randomized adaptive search procedure. Fırat et al. (2016) combine teaming with the
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concept of a so-called stable workforce assignment in which employees show preferences

for performing certain jobs. An assignment is considered stable if each technician per-

forms one of his/her most preferred jobs. In contrast to other studies, every technician

can get assigned at most one job. Since only a single job is assigned to each team in

this problem, routing and scheduling decisions are out of scope of this study. Apart

from ROADEF-related studies, Ho and Leung (2010) address a manpower scheduling

problem from the airline catering industry that combines team construction and job

assignment for a set of employees with different skills. In their study, the maximum size

of each team is restricted to only two employees.

Other authors propose a number of rich extensions of these problems. For instance,

Kovacs et al. (2012) integrate routing of technicians into the model of Cordeau et al.

(2010) and present a corresponding optimization model for the minimization of total

routing and outsourcing cost. For the solution of the resulting problem, they also apply

an ALNS heuristic. A more complex extension is introduced by Zamorano and Stol-

letz (2017) who examine the problem from a multi-period perspective. They develop a

branch-and-price algorithm with two alternative decomposition schemes: day decompo-

sition and team decomposition. The results demonstrate that the proposed algorithm

can solve instances with up to three teams with two technicians each. Finally, Anoshkina

and Meisel (2019) investigate a combined teaming and routing problem that is solved

in a linear decomposition framework under service-, cost- and fairness-objectives. The

service quality is measured by the sum of job completion times. The cost objective

refers to labor cost, which is approximated by the total employee working time. A fair

workload distribution is reached by minimization of the longest working time among

all teams. They show that a decomposition approach helps to find better solutions for

larger problem instances. The results reveal that the chosen objective and the employee

qualifications both have a strong impact on the solution quality.
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Another stream of research focuses on additional aspects but leaves team building

decisions out of scope. Motivated from an application of electronic equipment mainte-

nance, Mathlouthi et al. (2018) combine scheduling and routing of individual technicians

with inventory management for spare parts. Specifically, each technician starts its route

with an initial inventory of spare parts and can later replenish it by visiting the depot.

Chen et al. (2016) investigate home services and analyze the relationship between prac-

tical experience of employees and service times. The addressed problem is modeled as a

Markov decision process. The study reveals that learning effects have a strong impact

on the obtained solutions. Chen et al. (2017) extend this problem to the multi-period

case. Furthermore, Cappanera et al. (2013) investigate asymmetric skill-based routing

problems and propose various models and valid inequalities to derive tight integer lin-

ear programs that can be solved quickly. Finally, Van Eck et al. (2017) investigate the

scheduling of multi-skilled workforce as a part of a business process where organizational

and behavioral aspects come into the play. For a more detailed survey of workforce plan-

ning incorporating skills, we refer the interested reader to De Bruecker et al. (2015). A

related survey with a discussion of applications and solution methods is provided by

Paraskevopoulos et al. (2016).

Although a large number of different aspects has been considered in these works, there

is a lack of general guidance about how a schedule can be adapted to future demand

changes when new jobs appear during the planning horizon that have to be inserted into

the baseline schedule. Studies in this area focus either on rerouting of single employees

(Borenstein et al. (2010), Petrakis et al. (2012), Pillac et al. (2012)) or on staff scheduling

without routing decisions (Siferd and Benton (1994), Patric et al. (2017), Maenhout and

Vanhoucke (2018)). The multi-period approach of Zamorano and Stolletz (2017) is based

on a long term planning and does not support updating of an existing schedule due to

newly arriving jobs. Hence, there is a distinct lack of models and methods addressing
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rescheduling issues in combination with manpower teaming and routing. Furthermore,

consistency requirements have gained an increasing attention in operations research,

but typically as an extension of a classical vehicle routing problem (Gröer et al. (2009),

Smilowitz et al. (2013), Feillet et al. (2014), Coelho et al. (2012), Kovacs et al. (2014)).

Such studies try to increase customer satisfaction by assigning the same caregiver to one

region (driver consistency), by delivering the products with a constant frequency (visit

spacing consistency) or during the same time interval for the client (time consistency),

or by guaranteeing a specified delivery quantity to each client (quantity consistency).

However, no study analyses how the consistency requirement of the workforce teams

can be integrated into multi-period workforce routing and scheduling. To bridge this

gap, we investigate here how to solve the problem sequentially as a period-by-period

interday planning and how to update the generated solutions in an intraday planning

when new jobs arrive, where team consistency is one of the considered objectives.

3.3 Mathematical Optimization Models

3.3.1 Notation and Basic Assumptions

We consider a planning horizon that is divided into a set D of periods and a workforce

that consists of a set M of differently skilled employees, which are available throughout

the whole planning horizon. In each period (e.g., a day), a set of teams T is composed

out of workforce M to perform a given set of jobs that require different qualifications

and experience levels. Each team consists of one or more employees. Each employee

m P M can possess numerous skills from a skill set K at different competence levels

L. The level of competence is related to personal features like experience, education

or specialization of an employee in the corresponding skill domain. We describe the

competences of employee m by the binary matrix Qm. Each column k P K refers to a

skill and each row l P L refers to a competence level. An element Qmpk, lq � qmkl takes

value 1 if the employee is qualified in skill k P K at level l P L and 0 otherwise. We
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assume that qmkl1 ¤ qmkl is satisfied for all l1 ¡ l, i.e., if employee m possesses skill k

at a higher level l1 he/she can also perform jobs that require a lower experience level l

for this particular skill. We give an example of such a matrix Qm with |K| � 3 skills

and |L| � 3 competence levels below. In this example, the considered employee m is

proficient in skill k � 1 at the highest competence level l � 3 (and, thus, also at levels

l � 1 and l � 2), in skill k � 2 only at level l � 1, and in skill k � 3 not at all. Based on

the qmkl values of employees that are grouped in a team, we compute the qualification

level of the team by summing up the skills of the individual team members.

Qm �

k � 1 k � 2 k � 3�
�����

�
����

1 1 0 l � 1

1 0 0 l � 2

1 0 0 l � 3

We denote by Jd the set of jobs that are relevant for the scheduling of teams on period

d P D of the planning horizon. Not all these jobs have to be performed but maximizing

the number of performed jobs is one of the pursued objectives. The jobs can differ in

the number of required employees, their skills and experience levels. Integer matrix Rj

describes the qualification requirement of a job j P Jd. Here, an element Rjpk, lq �

rjkl gives the cumulated number of employees with qualification k and experience level

l required for performing job j. The subsequent matrix shows an example of such

qualification requirements. The part on the left presents the underlying qualification

vectors of employees required in particular skill domains. According to the part on the

right, job j requires three employees with skill k � 1, one being proficient at least at

level l � 3 (which also covers l � 2 and l � 1), one further employee at level l � 2 (which

also covers l � 1) and one further employee at level l � 1. These required skill levels are

indicated by bold values in the left part whereas the implicitly covered skill levels are

non-bold. Furthermore, one employee with proficiency level l � 1 is needed in domain
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k � 2 and two employees must be trained at least at level l � 2 for skill k � 3 (which

also covers l � 1).

Rj �

k � 1 k � 2 k � 3�
�����

�
����

1 � 1 � 1 1 1 � 1 l � 1

1 � 1 � 0 0 1 � 1 l � 2

1 � 0 � 0 0 0 � 0 l � 3

�

k � 1 k � 2 k � 3�
�����

�
����

3 1 2 l � 1

2 0 2 l � 2

1 0 0 l � 3

Each job j is further characterized by a processing time pj. Processing job j has to

start within a given time interval [aj, bj] where aj and bj denote the earliest and the

latest start times correspondingly. Furthermore, the jobs occur at different locations. We

model the corresponding network for a period d P D as a connected graph Gd � pJ0
d , Edq,

where J0
d � t0u Y Jd is a node set that includes the depot 0 and the locations of those

jobs that are given for day d. Ed � tpi, jq|i, j P J0
du is the corresponding set of edges.

Each edge e P Ed is associated with a non-negative travel time gij. Finally, our modeling

and solution approach is based on the following assumptions:

• A job j P Jd can be carried out by a team only if the aggregated team skills meet

the job’s qualification requirements rjkl for all k P K and l P L.

• Job processing times are constant and independent of the team composition. In-

terruption of processing a job is forbidden.

• Jobs that cannot be performed are rejected or outsourced.

• Jobs may arrive in the course of the planning horizon and even within a currently

considered period.

3.3.2 Planning Framework

Our multi-period scheduling concept bases primarily on the following ideas. At the

beginning of period d, teams are composed and routes for the initially known requests
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Jd are determined. The teams then start executing their assigned jobs. Then, in the

course of time, new jobs arrive. According to the urgency of a new job that arrives in

period d, the job is classified as either normal priority or high priority. Normal priority

jobs have time windows for future periods and, thus, are added to the corresponding sets

Jd�1...J|D| for subsequent periods. High-priority jobs j P Jh must be served within the

current period d. For this reason, the scheduling of these jobs assumes short response

time as well as the ability to communicate quickly with the teams for the assignment of

new requests. In addition, it requires real-time knowledge of the positions of all teams

in order to identify the new start nodes of their updated routes and their sets of still

open requests. High-priority jobs that cannot be included in the current schedules of

the teams are rejected or outsourced. As the different time frames for normal and high-

priority jobs call for respective planning approaches, we propose two linked models for

scheduling these jobs. A so-called interday model plans the operations for the subsequent

period d � 1 with respect to the teams composed for the current period d and the jobs

known for the next period d � 1. Planning is made on a daily basis, as, according

to the concept described above, job information about future periods might be highly

incomplete at the time of planning. It thus handles the transition of teams from period

to period while trying to keep team compositions consistent if possible. An intraday

model aims at inserting high-priority jobs Jh into the already determined work plan

for period d that is currently executed by the team. For a better understanding of the

model invoking process, Figure 3.1 illustrates the planning process for four time periods.

At the beginning of the planning horizon an initial schedule S1 is constructed for day

1. High-priority jobs that appear within day 1 lead to an update of schedule S1 which

is done by the intraday model. At the end of day 1, the interday model then generates

the schedule for the next period 2. The same processes are applied to generate and

adapt schedules S2, S3 and S4 in subsequent periods. We present the interday model in
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interday interday interday

days

42 31

intraday intraday intraday intraday

Figure 3.1: Planning procedure

Section 3.3.3 and the intraday model in Section 3.3.4.

3.3.3 Interday Model

The interday model creates a schedule for a day d P D, taking into account the team

composition from the previous day d � 1. By applying this model sequentially for each

day of the planning horizon, we create a sequence of schedules that are linked by the

composition of teams. To handle the interdependencies between the days, we introduce

the binary parameter x1mt that indicates if employee m was assigned to team t on the

previous day d� 1 (x1mt � 1) or not (x1mt � 0). A corresponding binary decision variable

xmt is used for modeling the new team structure on the current day d, i.e., xmt � 1 if

employee m is assigned to team t, 0 otherwise.

Linking periods of the planning horizon, we allow merging or splitting of teams at

consecutive periods. Figure 3.2 shows an example of a team composition at day d � 1

where three employees are assigned to team 1 and two employees to teams 2 and 3 by

decision variables x11 � x21 � x31 � x42 � x52 � x63 � x73 � 1. These variables then

become the input x1mt for the subsequent decision making at day d � 2. The schedule

for day 2 restructures the teams generated on the first day to meet the qualification

requirements of jobs in J2. Thereby, the original team 1 is split into two teams while

the original teams 2 and 3 are merged into a new single team 3, which is expressed

by corresponding decision variables x11 � x21 � x32 � x43 � x53 � x63 � x73 � 1 for

day d � 2. This means that three employees (3, 4, 5) change their team, which can be
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1

2

3

Employees Day 1 Day 2

splitting

4

5

6

Team 1

1,2,3

Team 2

4,5

Team 3

6,7

7

Team 1

1,2

Team 2

3

Team 3

4,5,6,7

merging

Figure 3.2: Rescheduling of teams in interday planning

seen from comparing the xmt decision variables of day d � 2 with the x1mt parameters

derived from the decisions of the previous day. The number of employees that switch

their team is used for assessing the team consistency in the interday optimization model.

Clearly, since the indices of teams are somewhat substitutable, the same measure can

also result from an alternative numbering of teams (e.g. if employee 3 would form a new

team t � 3 and employees 6 and 7 would be merged into team t � 2, we would have

other values of xmt but the same number of total changes). This makes the consistency

measure somewhat arbitrary. Furthermore, one could argue that employees 4, 5, 6 and

7 should have the same value of the consistency binary variable since they are facing

the same outcome, which is that each of them is merged within one large team. From

this employee-perspective, alternative consistency measures might be defined for this

problem. One example of such an alternative is provided in Appendix A. Anyhow, as is

shown there, both measures lead to almost identical results but the measure presented

here is more attractive from a computational perspective.

We furthermore introduce the following decision variables. The routing of teams

at day d is denoted by binary decision variable ztij, which takes value 1 if team t
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performs job i directly before job j and 0 otherwise. The scheduling variable stj defines

the start time of job j by team t. Similar, ftj denotes the completion time of job j

executed by team t. Note that team-specific job start times stj and completion times

ftj are not mandatory in the interday model but later required in the intraday model

for synchronizing two or more teams that jointly perform a job j. Therefore, we employ

stj and ftj in the interday model for reasons of consistency. Furthermore, we conducted

preliminary experiments where omitting index t for these variables did not improve

model performance. Finally, in order to capture the team consistency in the objective

function, we introduce an auxiliary binary variable Xm that takes value 1 if employee

m switches the assigned team from day d � 1 to day d. Using the introduced notation

the interday model is formulated as follows:

minimize: α �
¸
mPM

Xm � β �
¸
tPT

¸
iPJ0

d

¸
jPJd

ztij � γ �
¸
tPT

¸
jPJd

ftj (3.1)

subject to:¸
tPT

xmt ¤ 1 @m PM (3.2)
¸
mPM

xmt � qmkl ¥ rjkl �
¸
iPJ0

d

ztij @j P Jd, k P K, l P L, t P T (3.3)

¸
jPJd

zt0j ¤ 1 @ t P T (3.4)

¸
tPT

¸
iPJ0

d

ztij ¤ 1 @ j P Jd (3.5)

¸
iPJ0

d

ztij �
¸
iPJ0

d

ztji @ j P J0
d , t P T (3.6)

fti � gij ¤ stj �M � p1 � ztijq @i P J0
d , j P Jd, t P T (3.7)

stj � pj ¤ ftj �M �

�
�1 �

¸
iPJ0

d

ztij

�
 @j P Jd, t P T (3.8)

stj ¥ aj �M �

�
�1 �

¸
iPJ0

d

ztij

�
 @j P Jd, t P T (3.9)

stj ¤ bj �M �

�
�1 �

¸
iPJ0

d

ztij

�
 @j P Jd, t P T (3.10)

xmt � x1mt ¤ Xm @m PM, t P T (3.11)
x1mt � xmt ¤ Xm @m PM, t P T (3.12)

stj , ftj ¥ 0 @j P J0
d , t P T (3.13)
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xmt, Xm, ztij P t0, 1u @i, j P J0
d ,m PM, t P T (3.14)

The main goal of the model is to preserve the stability of the team composition. How-

ever, focusing solely on the consistency aspect can have a negative impact on the service

quality. For this reason, we seek for a compromise between team consistency and service

quality. More precisely, the first component of the objective function (3.1) maximizes

team consistency by minimizing the number of employees that change their assigned

team from day d � 1 to day d. The second component maximizes the number of per-

formed jobs and the third component minimizes the total job completion time. Here,

weights α, β and γ are used for expressing different priorities of the three objectives.

Note that we measure service quality primarily by the number of performed jobs. Mini-

mization of the total job completion time is considered merely as a subordinate objective

because completion times might be determined strongly by (tight) time windows. Any-

how, if time windows are wide, minimizing job completion times can be a service issue,

which is why we added it as a minor objective. From this, we assume that α ¡ β ¡ γ.

The proposed objective function captures two issues that are practically relevant for

companies: employee satisfaction and service quality. With this model, we are able to

analyze the tradeoff of these two relevant yet conflicting objectives.

Constraints (3.2) guarantee that each employee is assigned to at most one team.

Constraints (3.3) ensure that created teams are sufficiently qualified for performing

their assigned jobs. Constraints (3.4) demand that each team departs from the depot

at most once. Constraints (3.5) state that each job is visited by at most one team.

Constraints (3.6) ensure that each team visiting a node j also leaves this node. Con-

straints (3.7) determine the start time of job j with respect to the finishing time of the

preceding job i and the corresponding traveling time. Here as well as in further con-

straints,M denotes a sufficiently large positive value. Constraints (3.8) define the time

at which job j is completed by team t. Together, (3.7) and (3.8) also avoid subtours in
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the solution. Constraints (3.9)-(3.10) reflect the time windows for the starting time of

job j. Constraints (3.11)-(3.12) set the auxiliary variables Xm. Constraints (3.13)-(3.14)

specify the domains of decision variables.

3.3.4 Intraday Model

The task of the intraday model is to insert newly appearing high-priority jobs Jh into

the baseline schedule generated for a current period. Figure 3.3 illustrates an example

of a baseline schedule with one new incoming job and two insertion strategies. In this

example, there are three skill domains. For reason of simplicity, we consider only one

qualification level. The vector attached to each job in Figure 3.3a describes the job’s

skill requirements. The vector attached to a team describes the cumulated skills of

those employees that form this team. The first time interval attached to each job in

Figure 3.3a indicates the scheduled service time for performing the corresponding job

in the baseline schedule while the values in square brackets represent the given time

window for the job start time. The consecutive arrows indicate the route for each team.

For instance, team 1 performs three jobs 3, 8 and 9 in this order in the baseline schedule.

As the intraday replanning of jobs j P Jh occurs during the execution of the base-
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Figure 3.3: Intraday planning
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line schedule, this schedule has to be updated with minimal deviation such that the

number of inserted jobs from set Jh is maximized. Thereby, the following consistency

requirements are considered:

• Team consistency: Teams created by the interday model are kept and transferred

to the intraday model as parameter x1mt.

• Schedule consistency: All scheduled jobs j P Jd must be served by the already

assigned teams and cannot be canceled or reassigned to other teams.

• Time consistency: The start time of already scheduled but not yet performed jobs

j P Jd can be changed, but it must still comply with the time window [aj, bj].

• High-priority jobs j P Jh must be scheduled after the point in time τ when they

arrive and before the end of the working day emax. Thus, the time window for

these jobs is raj, bjs � rτ, emaxs. Here, τ either indicates the arrival time of a single

high-priority job or the point in time when the planning is to be conducted for a

set of jobs that arrived up to that time, depending on the planning policy of the

company.

In Figure 3.3b, a single new high-priority job Jh � t10u arrives at time τ � 11:10.

This job’s skill requirements are r10,k,1 � p2, 1, 1q. Based on the above assumptions, we

propose the following rescheduling strategies:

1. Insertion: Job j P Jh is inserted into the existing route of a sufficiently qualified

team t. In the example in Figure 3.3c, the new job is inserted into the route of

team 2 right after job 4.

2. Synchronization: Two or more teams are synchronized for jointly performing job

j if the qualification of one team is insufficient or if j cannot be inserted in the

existing tour of any single qualified team (e.g., due to time windows of already
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scheduled jobs). In the example in Figure 3.3d, the teams 3 and 4 both visit the

location of job 10 for jointly performing this job. Since the teams may arrive at

the job location at different times, we denote by δmax a maximal allowed temporal

distance.

Obviously, at the moment when a new high-priority job arrives, the current positions

of all teams have to be identified. Thereby, one of the following four situations is

observed for each team:

• the team is performing a job (see team 1 in Figure 3.3b),

• the team is on the way to its next job (see team 2 in Figure 3.3b),

• the team has completed its last assigned job and is waiting for a new job (see team

3 in Figure 3.3b),

• the team has not started from the depot yet (see team 4 in Figure 3.3b).

The current location of a team t P T represents the starting point (virtual depot) of

its remaining route, which is denoted as Dt. In Figure 3.3b, we have D1 � 8, D2 � 4,

D3 � 6 and D4 � 0. Furthermore, we denote by f τt the earliest point in time at which

team t becomes available at its location Dt. For our example, f τ1 � f1,8 is the completion

time of the currently processed job 8 according to the baseline schedule, f τ2 � f2,4 is

the planned completion time of job 4 towards which team 2 is currently moving, and

f τ3 � τ as well as f τ4 � τ refer to the current point in time as these teams are ready

immediately.

We further define by Jt the set of jobs that are relevant for team t in the intraday

replanning. This set includes those jobs that are already assigned to team t in the

baseline schedule but that are not yet started at time τ . It furthermore includes all

new high-priority jobs Jh, the virtual depot Dt, and the original depot 0 which is the
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ending location of all routes. For the example above J1 � t0, 8, 9, 10u, J2 � t0, 4, 10u,

J3 � t0, 6, 10u and J4 � t0, 1, 10u.

The corresponding planning decisions are modeled with the same routing variables

(ztij) and scheduling variables (ftj, stj) introduced in Subsection 3.3.3. Note that the

earlier decision variable xmt becomes now the parameter x1mt because the team composi-

tions are not changed in the intraday replanning. Furthermore, we save the start times

stj that are assigned to the jobs in the baseline schedule as parameters s1tj. We also

introduce a continuous variable Stj which denotes the absolute deviation in the start

time of job j by team t after rescheduling. We specify by hj a binary variable which

takes value 1 if high-priority job j P Jh is processed by any team and 0 otherwise. Using

the introduced notation, the intraday model for including a set of high-priority jobs Jh

into a partly executed baseline schedule is formulated as follows.

maximize: α �
¸
jPJh

hj � β �
¸
tPT

¸
iPJt

¸
jPJh

ztij � θ �
¸
tPT

¸
jPJtztJhu

Stj � γ �
¸
tPT

¸
jPJt

ftj (3.15)

subject to:

¸
tPT

� ¸
mPM

x1mt � qmkl �
¸
iPJt

ztij

�
¥ rjkl � hj @j P Jh, k P K, l P L (3.16)

¸
jPJt

ztDtj � 1 @t P T (3.17)

¸
iPJt

ztiDt � 0 @t P T,Dt � 0 (3.18)

¸
iPJt

zti0 � 1 @t P T (3.19)

¸
iPJt

ztij � 1 @t P T, j P JtztDt, 0uzJh (3.20)

¸
iPJt

ztij ¤ 1 @j P Jh, t P T (3.21)

¸
iPJt

ztij �
¸
iPJt

ztji @t P T, j P JtztDt, 0u (3.22)

ftDt � fτt @t P T (3.23)

fti � gij ¤ stj �M � p1 � ztijq @t P T, i P Jt, j P Jtzt0u (3.24)
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stj � pj ¤ ftj �M �

�
1 �

¸
iPJt

ztij

�
@t P T, j P Jtzt0u (3.25)

stj � st1j ¤ δmax �M �

�
�2 �

¸
iPJt

ztij �
¸
iPJt1

zt1ij

�
 @j P Jh, t, t1 P T, t � t1 (3.26)

st1j � stj ¤ δmax �M �

�
�2 �

¸
iPJt

ztij �
¸
iPJt1

zt1ij

�
 @j P Jh, t, t1 P T, t � t1 (3.27)

stj ¥ aj �M �

�
1 �

¸
iPJt

ztij

�
@t P T, j P JtztDt, 0u (3.28)

stj ¤ bj �M �

�
1 �

¸
iPJt

ztij

�
@t P T, j P JtztDt, 0u (3.29)

stj ¥ fτt � gDt,j �M �

�
1 �

¸
iPJt

ztij

�
@t P T, j P JtztDt, 0u (3.30)

stj � s1tj ¤ Stj @t P T, j P JtzJ
h (3.31)

s1tj � stj ¤ Stj @t P T, j P JtzJ
h (3.32)

stj , ftj , Stj ¥ 0 @t P T, j P Jt (3.33)

hj , ztij P t0, 1u @t P T, i, j P Jt (3.34)

Objective function (3.15) maximizes the service quality and minimizes the deviations

from the initial planning. More precisely, the first term of the objective maximizes

the number of scheduled high-priority jobs. The second term minimizes the number of

synchronization processes for high-priority jobs. The third term minimizes the absolute

change of job starting times compared with the baseline schedule. The fourth term mini-

mizes the total job completion time of all scheduled jobs. Here, weights α, β, θ and γ are

used for expressing different priorities of the four objectives. Constraints (3.16) demand

that high-priority jobs are performed by teams with appropriate skills where multiple

teams might be involved in serving a job. Constraints (3.17) guarantee that each team

continues the route from its current position (virtual depot). If the current position Dt

of the team does not correspond to the original depot (node 0), Constraints (3.18) forbid

to return to the virtual depot Dt and, also, to insert jobs before the virtual depot into

the route. Constraints (3.19) stipulate that all teams return to the depot 0 at the end
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of their tour. Constraints (3.20) ensure that each team performs all its already assigned

jobs. Constraints (3.21) state that each high-priority job can be visited by a team at

most once. Constraints (3.22) balance the flow ensuring that each team visiting a node j

also leaves this node. Constraints (3.23)-(3.25) define the start and completion times of

jobs. Note that, similar to the interday model, Constraints (3.24)-(3.25) allow to avoid

subtours in the solution. Constraints (3.26)-(3.27) bound the difference between the

arrival times of synchronized teams. As the number of teams to synchronize for a job j

is not limited, the comparison is performed for every pair of teams. Constraints (3.28)-

(3.29) state that all jobs, if scheduled, have to be performed within the predefined time

windows. Constraints (3.30) establish a lower bound on the start times of jobs. Here,

a not yet processed job j cannot be started before the assigned team t is released at

its virtual depot Dt at time f τt and at least gDt,j time units have elapsed. The latter

is a lower bound on the traveling time in case that the team travels directly from Dt

to j. Constraints (3.31)-(3.32) define the values Stj. Constraints (3.33)-(3.34) specify

domains of decision variables.

3.4 Fix-and-Optimize Heuristic

While the intraday model can be solved relatively fast with a standard MIP solver

for reasonably sized instances, the interday model can be solved quickly only for small

problem instances. This is also because the interday problem includes decisions on team

formation into an underlying uncapacitated VRP, which is known to be NP-hard, see

Balas (1989), Kovacs et al. (2012). As a heuristic solution approach for the interday

problem, we introduce a fix-and-optimize algorithm that combines mathematical pro-

gramming with heuristic search. This method provides an iterative solution approach

that significantly reduces the computational effort.

The interday planning process comprises three interdependent decisions: team build-

ing, job assignment, and routing. The difficulty stems mostly from the large number of
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routing variables ztij. Our heuristic therefore strives for reducing the computational ef-

fort by transferring routing decisions to a subordinate level and by reducing the number

of these variables. For this purpose, we propose a combination of team and job decom-

position techniques meaning that routing has to be optimized for each created (fixed)

team iteratively where the job set is fixed for every candidate team. The heuristic

comprises of four phases: generation of an initial solution (Subsection 3.4.1), improve-

ment by merging and splitting of teams (Subsection 3.4.2), improvement by swapping

of jobs (Subsection 3.4.3) and randomized disturbance for diversifying the search (Sub-

section 3.4.4).

3.4.1 Initial Solution

The purpose of this algorithm is to generate an initial baseline schedule for a period d.

The primary idea here is to use the given workforce teams from the previous period d�1

(for reasons of team consistency) and to process as many jobs as possible from those

jobs Jd that have to be performed in the current planning period d. For initializing

the employee-team assignment for the current period we set xmt � x1mt, where x1mt
refers to the employee-team-assignment of the previous period. These teams form the

set T . For the first period, where no previous employee team-assignment is available,

teams T require an alternative initialization like, for example, adding all employees

to one large team or forming equally large teams. The procedure for generating the

initial schedule for the teams T is outlined in Algorithm 1 in Appendix B. It starts by

initializing sets Jt � t0u of jobs that are allocated to team t (where only the depot 0 is

initially allocated). We next determine for each team t P T the set Jqualt � Jd of jobs

for which this team is sufficiently qualified. We do this by comparing skill vectors of

team members (qmkl) with qualification requirements of each job j (rjkl). Job j enters

set Jqualt if
°
mPM qmkl �xmt ¥ rjkl. Note that sets Jqualt are not necessarily disjunct. The

algorithm then sorts the jobs in Jqualt in ascending order of a team-job overqualification
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factor µtj which is computed as follows:

µtj �
¸
kPK

¸
lPL

� ¸
mPM

qmkl � xmt � rjkl

�
@t P T, j P Jqualt (3.35)

This step aims at reducing overqualification of job-to-team-assignments in the subse-

quent steps of the procedure. The next steps consider the teams one by one in a loop,

see lines 4-14 in Algorithm 1. In each iteration, we first pick the team t P T that is qual-

ified for the smallest number of jobs among all teams (see line 5), where ties are broken

arbitrarily. For this team, we iteratively identify jobs to perform and solve the corre-

sponding routing problem. Therefore, we create a temporary subset J temp that contains

up to λmax jobs. More precisely, this set is composed of all jobs from Jt and further

λmax� |Jt| jobs from Jqualt , see line 7. We set the bound λmax to guarantee that a single

team does not get excessively many jobs where the overall solution quality (e.g., the

total job completion times) might deteriorate from. Furthermore, this bound reduces

the computational time for each routing subproblem and, thus, the total computational

effort. Finally, recall that jobs in set Jqualt are sorted according to their similarity to the

qualifications of the team. From this, considering in each iteration only λmax jobs, we

give priority to the more appropriate jobs to be assigned to this team. We then remove

all currently examined jobs from Jqualt , see line 8. Afterwards, we solve a routing model

for team t and jobs J temp to identify which of those jobs the team can actually process

(see line 9). Although this test could be conducted using simple insertion heuristics or

the like, we solve an optimization problem here to guarantee that the maximum possible

number of jobs is inserted. The corresponding routing model is formulated as follows:

maximize: β �
¸

iPJtemp

¸
jPJtemp

ztij � γ �
¸

jPJtemp

ftj (3.36)

subject to: (3.4), (3.6) � (3.10) and

¸
iPJtemp

ztij ¤ 1 @j P J tempzJt (3.37)

¸
iPJtemp

ztij � 1 @j P Jt (3.38)
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stj , ftj ¥ 0 @j P J temp (3.39)

ztij P t0, 1u @i, j P J temp (3.40)

Objective (3.36) maximizes the number of performed jobs as the main goal and the

job completion times as a subordinate goal (β ¡ γ). Constraints (3.37) demand that

each newly considered job can be visited by the considered team at most once. Con-

straints (3.38) guarantee that all jobs Jt that were already assigned to team t in previous

iterations are still contained in the route. Constraints (3.4) and (3.6)-(3.10), which are

taken from the original interday model, are modified by replacing Jd and J0
d with Jt

(which also includes depot 0).

Having solved this routing problem, we update Jt such that this set contains all jobs

that are actually processed by team t in the obtained route, see line 10. The described

procedure is repeated as long as team t processes less than λmax jobs and there are

further uninspected jobs in Jqualt , see line 6. Finally, the procedure removes those jobs

that are processed by team t from the Jqualt1 sets of all other teams t1 � t (see line 12)

and it removes team t from the list T of teams that need further inspection (see line 13).

Afterwards, the procedure continues with the next team until all teams are processed.

3.4.2 Splitting and Merging of Teams

If, in the current solution, not all jobs are processed, the heuristic proceeds with splitting

and merging of teams and allocating jobs to the new teams (see Algorithm 2 in Appendix

B). We denote by Jun the set of jobs that are not processed in the current solution. This

set is given as input to Algorithm 2. The procedure starts by identifying free teams TF

to which no jobs have been allocated so far (|Jt| � 0), see line 1. In this step, we also

create additional free teams by identifying redundant employees in the already used

teams T . Therefore, we check for each employee m P M in each team t P T with

|Jt| ¡ 0 if m can be removed from t without turning the job assignment infeasible w.r.t.
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qualification requirements. Each redundant employee is removed from t and added as a

new single-person team to set TF . In this way, we invoke a feasible splitting of existing

teams. As free teams are not qualified for performing unprocessed jobs themselves, they

have to be merged into larger teams to meet the qualification requirements of jobs.

Therefore, the unprocessed jobs j P Jun are sorted according to descending difficulty

factor ϑj (see line 2), which is defined as follows:

ϑj �
¸
kPK

¸
lPL

rjkl @j P Jun (3.41)

The algorithm then considers jobs j P Jun one after the other. It first checks if the

aggregated qualifications of the entirety of free teams TF allows serving the considered

job j, see line 4. In this case, it merges free teams until all skills of job j are covered

(see lines 6-10). These teams form the merged team tM . Thereby, in order to provide an

adequate team assignment, we select the next team t P TF to take up into tM according

to the minimum skill gap factor, see line 7. The skill gap factor computes how many of

the job qualification requirements are still unmet if team t would be included into tM .

It is computed as follows:

Ejt �
¸
kPK

¸
lPL

max
#
rjkl�

¸
mPM

qmkl � xmtM�
¸
mPM

qmkl � xmt, 0
+

@j P Jun, t P T (3.42)

After this process, the algorithm has composed a team tM that is qualified for processing

job j. The algorithm then attempts to assign further unprocessed jobs to this team.

Therefore, it first identifies the jobs JqualtM � Jun for which tM is qualified (see line 11).

Afterwards, it assigns chunks of these jobs to team tM and solves the temporary routing

problems (see lines 12-17) like in the process described for Algorithm 1. Subsequently,

it removes all jobs that are processed by team tM from set Jun (see line 18). The process

continues until all unprocessed jobs from Jun are examined.
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3.4.3 Swapping of Jobs

We next try to improve the generated solution by reducing job completion times. The

team consistency objective is respected here by still keeping the initial team composition.

The procedure is outlined in Algorithm 3 in Appendix B. It first initializes the set of

teams T S that have at least one job assigned in the current solution (see line 1). The

algorithm then considers pairs of these teams pt, t1q iteratively. It attempts to swap

jobs between teams t and t1 in order to reduce the total job completion times. For this

purpose, the algorithm first identifies a set JSt1,t of jobs that are currently assigned to

team t1 but that could be served by team t according to job qualification requirements

as well as a set JSt,t1 of jobs that could be moved from team t to team t1. If both sets

are non-empty, we attempt for each job pair pj1, j2q P JSt1,t � JSt,t1 to swap the currently

assigned jobs. This is done by first attempting to insert job j1 in the route of team t

using the routing model (3.36)-(3.40), see line 6. If j1 is served in the resulting route

of team t, the algorithm tries to insert job j2 in the route of team t1 (see line 8). If

this is successful too and the resulting solution has a lower total job completion time,

the obtained solution is saved and the job sets Jt and Jt1 are updated accordingly (see

lines 10-11).

3.4.4 Randomized Disturbance

Finally, we propose a multi-start procedure (Algorithm 4 in Appendix B) that diversifies

the search for good solutions by altering the team compositions. This procedure relaxes

the team consistency requirement in order to improve the two other objectives (maxi-

mizing the number of processed jobs and minimizing the total job completion time). In

order to maximize the number of processed jobs, we conduct a fixed number of I itera-

tions. Each iteration incorporates three steps: 1. modification of the team composition,

2. generation of initial solution and 3. solution improvement by splitting and merg-
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ing of teams. As a starting point, we take in each iteration the initial employee-team

assignment x1mt from the previous day. For modifying this team structure, we remove

randomly selected employees from teams and allocate them to randomly selected other

teams. The extent of this modification is controlled by the number N of employees

that are interchanged, which is a further input parameter of the algorithm. Afterwards,

Algorithm 4 employs the previously described Algorithms 1 and 2 to obtain a solution

for this new team structure. Objective function (3.1) is used to keep track of the quality

improvement of the best known solution. Finally, we attempt to reduce the total job

completion time for the best found solution by calling Algorithm 3. As this algorithm

can only improve the total job completion time without deteriorating the other (more

important) objectives, we invoke swapping of jobs (Algorithm 3) only once at the end

of the procedure.

3.5 Computational Study

The computation experiments aim at testing the performance of the models and methods

described in Sections 3.3 and 3.4 and at exploring the effect of the team consistency

requirement on the scheduling decisions. All tests have been run on an Intel(R) Core

(TM) i7-7700 3.60 GHz with 32 GB of RAM. We used CPLEX 12.8 for solving the MIP

models with a runtime limit of 3600 seconds for the interday planning and of 200 seconds

for the intraday replanning. The fix-and-optimize heuristic was implemented in Java

1.8.0. We next describe the used test instances, which is followed by the presentation

of results for each planning approach.

3.5.1 Generation of Test Instances

For the experimental evaluation of the interday scheduling scheme, we consider a plan-

ning horizon of 5 days. We generate 15 instances differing in the number of jobs per

day (ranging from 8 to 500) and the number of employees (ranging from 4 to 100).
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Instances with up to 20 jobs form the so-called small instances, and with up to 80 jobs

are the medium instances. These instances are used for analyzing the solvability of the

interday model by the CPLEX solver. Instances containing more than 80 jobs form

the large instances that are used for further testing the potentials of the heuristic. All

instances are generated with |K| � 3 skill domains and |L| � 3 competence levels. The

qualification matrix Qm of an employee m is generated as follows. The employee can

be qualified in each skill k � 1, 2, 3 at level l � 1 with independent probability of 0.5

and have the same skill at a higher level with a probability of 0.5l. From this, it is

possible that each employee can be proficient in several skills at different competence

levels. Furthermore, the generation process guarantees that each employee owes at least

one skill (i.e., @m P M : Dk P K ñ qmk1 � 1). The jobs in sets Jd are generated for

each planning period as follows. The job requirement matrix Rj is constructed in such

a way that each element at level 1 is sampled uniformly from the set t0, 1, 2u meaning

that job j either requires no employee for skill k (rjkl � 0) or one employee (rjkl � 1)

or two employees (rjkl � 2). The values at levels l � 2 and l � 3 are 0, rjkl�1 � 1 or

rjkl�1 with a probability of 0.33. It is ensured that each job requires at least one skill.

Time windows of jobs are generated using uniform distributions with aj ∼ U r0, 300s

and bj � aj � 180, where 0 denotes the beginning of the planning horizon. All values

are expressed in minutes and represent an 8-hour workday with a total of 480 minutes.

We defined processing times as pj ∼ U r30, 60s minutes. The jobs and the depot are

randomly located within an area of size 30 � 30 from which travel times gij are com-

puted by the corresponding euclidean distances. For the team synchronization process,

we bound the maximal temporal distance by δmax � 30.

3.5.2 Results for the Interday Planning

We first test the extent to which the proposed interday model can be solved to optimality.

Putting emphasis on consistency, we use the following parameters for evaluating the
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objective function: α � 100, β � 1 and γ � 0.0001. We refer to this configuration

as consistency setting as the parameters represent a dominating preference for team

consistency followed by the subordinate service objectives of maximizing the number of

processed jobs and minimizing the total job completion time. The weights are chosen

such that they clearly separate the objectives and establish a hierarchy among them.

This means that changing teams comes at prohibitively high cost and, thus, teams

will stay the same. In this setting, teaming decisions actually play no role but we use

this setting as a benchmark for the more flexible service setting. This service setting

prioritizes the maximization of the number of performed jobs through parameters α � 1,

β � 100 and γ � 0.0001, which can come along with changes of teams. As a starting

point for both settings, we generate a solution for day d � 1 by setting the objective

coefficients to α � 0, β � 100 and γ � 0.0001, i.e., by completely ignoring team

consistency as there are no teams given from the previous day for the first planning

period. For all subsequent days, we solve the interday model taking into account the

team composition of the preceding day. For example, the employee-team-assignment

obtained for day d � 2 is transferred as an input to the data set of day d � 3 etc.

Table 3.1 reports aggregated computational results of CPLEX for the small and

medium sized instances and each objective setting. The values reported in a row of

this table are averages for the interday solutions of days 2 to 5 in an instance. The first

three columns of the table show instance properties: problem size, number of variables,

and number of constraints in the interday model. The next seven columns display re-

sults for the consistency setting where the reported values are averages of the 4 interday

solutions obtained for each instance. They show the difference in team composition

(column X), the absolute number of performed jobs (column Z), the relative share of

performed jobs (column Z%), the total job completion time (column F ), the total pro-

cessing time of performed jobs (column P ), the total travel time of all teams (column
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Table 3.1: Interday model CPLEX
Instance Problem size Consistency setting Service setting

|Jd| � |M| Variables Constraints X Z Z% F P G T CPU GAP3600 GAP7200 X Z Z% F P G T CPU GAP3600 GAP7200

8 � 4 764 416 0.0 4.5 56% 928 194 128 1.2 0.03 0% 0% 0.2 5.0 63% 1122 213 124 1.0 0.09 0% 0%

8 � 8 1584 864 0.0 5.0 63% 976 213 161 2.2 0.06 0% 0% 0.2 5.5 69% 1094 241 141 2.0 0.13 0% 0%

10 � 5 1285 745 0.0 7.2 72% 1778 323 163 1.2 1.15 0% 0% 0.0 7.2 72% 1778 323 163 1.2 2.44 0% 0%

10 � 10 2660 1540 0.0 7.2 72% 1442 323 185 2.2 0.97 0% 0% 0.0 7.2 72% 1442 323 185 2.2 0.82 0% 0%

15 � 7 3193 2072 0.0 10.5 70% 2235 462 241 2.5 901.28 1% 1% 0.8 11.2 75% 2783 495 219 2.0 1177.18 2% 2%

15 � 15 7065 4560 0.0 12.0 80% 2349 531 322 4.2 4.24 0% 0% 0.5 13.8 92% 2656 617 356 4.5 26.90 0% 0%

20 � 10 7070 4940 0.0 14.5 73% 3499 637 294 3.0 2035.69 2% 2% 1.0 15.2 76% 3712 678 315 3.0 2712.90 0% 0%

30 � 15 20355 15585 0.0 25.8 86% 5852 1119 531 5.2 3600.00 1% 1% 1.8 25.8 86% 5978 1120 549 5.0 3600.00 8% 3%

40 � 20 44140 35680 0.0 26.0 65% 5776 1110 624 8.5 3600.00 14% 14% 2.0 31.8 80% 8209 1369 669 5.2 3600.00 14% 14%

80 � 30 227630 202620 0.0 39.5 50% 9987 1715 880 8.8 3600.00 50% 39% 0.2 26.5 33% 6434 1159 624 8.5 3600.00 67% 59%

G), the number of active teams that process at least one job in the solution (column

T ), the consumed runtime in seconds (column CPU) and the optimality gap after the

runtime limit of 3600 seconds (column GAP3600) and after an extended runtime limit

of 7200 seconds (column GAP7200). The optimality gap expresses the deviation of the

objective function achieved by the interday model to the lower bound value LB reported

by CPLEX as GAP � (Objective - LBq{LB. As the reported CPU times and GAPs are

averages over 4 interday solutions, we might observe GAPs > 0 in combination with

an average CPU time below the runtime limit, if only a subset of the interday models

belonging to a test instance was solved to optimality. The results for the service setting

are presented at the right of the table.

Based on Table 3.1, we see that the consistency setting avoids team reconfigurations

(X � 0.0) as is expected for this configuration. Furthermore, we see that the number of

performed jobs (Z) and the total job completion time (F ) increase with larger instance

size. We observe that about 70 % of jobs are served for instances up to size 40 � 20.

Note that even for those instances that were solved to optimality (GAP3600 � 0%) there

are unprocessed jobs, which is because either the number of workers, the qualifications,

or the given time windows prevent serving all jobs. For the largest instances considered

here (80�30), the service level is even lower because this instance is far from being solved

to optimality. As expected, the solution times increase drastically as the problem size

increases. This is explained by the strong growth of the model size with increasing
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problem size. Hence, finding an optimum solution is possible only for about half of

the considered instances. Considering GAP3600 and GAP7200, there is no significant

improvement of the solution quality, which means that further extending the runtime

limit for CPLEX does not help solving the problem. This indicates that the time needed

for solving large-scale problems would be unacceptably high.

The service setting allows to perform a few more jobs for most instances but also

requires to transfer some employees between teams (X ¡ 0). As this setting exploits

the freedom of reconfiguring teams, the actual number of active teams in a solution (T )

is often smaller in the service setting compared to the consistency setting. Looking at

columns F , we see that the consistency and service setting can deliver identical solutions

with same total completion time, see instances 10 � 5 and 10 � 10. However, for most

instances solved to optimality, we observe higher total completion times in the service

setting, which is because of the above mentioned tendency to serve more jobs under this

prioritization of goals. The service setting is solved slightly slower than the consistency

setting and, again, it cannot be solved for medium sized instances to optimality either.

We even observe that the number of jobs performed for instance 80� 30 is lower for the

service setting than for the consistency setting despite the higher flexibility for forming

teams.

We next evaluate the fix-and-optimize heuristic. To achieve a consistent comparison

with CPLEX, the heuristic is initialized using the same teams as those determined by

CPLEX for the first period of the planning horizon. For all subsequent periods, the

heuristic generates teams using the construction heuristic from Section 3.4. For the

large instances that were not considered for CPLEX, we initialize teams for the first day

by constructing 0.5 � |M | teams to which employees are uniformly distributed. Solutions

of the subsequent days are then again determined one after the other using the fix-

and-optimize heuristic. The parameters that control the heuristic are set as described
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Table 3.2: Interday fix-and-optimize heuristic, consistency setting
Instance Initial solution Swapping

|Jd| � |M| Z F T CPU Z Z% F P G T CPU

8 � 4 4.5 928 1.2 0.05 4.5 56% 928 194 128 1.2 0.00

8 � 8 5.0 1045 2.0 0.04 5.0 63% 1045 213 151 2.0 0.00

10 � 5 7.2 1778 1.2 0.07 7.2 72% 1778 323 163 1.2 0.00

10 � 10 7.2 1574 2.2 0.16 7.2 72% 1574 323 199 2.2 0.08

15 � 7 10.5 2437 2.5 0.30 10.5 70% 2404 462 258 2.5 0.95

15 � 15 12.0 2546 4.5 0.07 12.0 80% 2546 531 342 4.5 0.00

20 � 10 14.5 3712 3.0 0.69 14.5 73% 3636 637 319 3.0 3.56

30 � 15 25.8 6396 5.2 1.27 25.8 86% 6250 1115 529 5.2 3.47

40 � 20 25.5 5960 8.0 0.90 25.5 64% 5960 1119 607 8.0 0.00

80 � 30 59.2 15192 9.0 3.35 59.2 74% 14957 2606 1134 9.0 1.19

100 � 40 53.8 13324 12.5 3.08 53.8 54% 13044 2350 1132 12.5 5.92

200 � 50 114.0 30050 16.8 9.80 114.0 57% 29836 5006 2090 16.8 7.71

300 � 80 187.0 49065 28.8 13.17 187.0 62% 48468 8283 3525 28.8 10.22

400 � 80 188.8 50297 26.0 20.91 188.8 47% 49064 8291 3308 26.0 32.38

500 � 100 257.8 69076 34.8 31.52 257.8 52% 67955 11302 4534 34.8 29.47

in Appendix C. Results obtained by the heuristic are reported in Tables 3.2 and 3.3.

In order to reveal the benefit of the improvement phases, the tables show the results

obtained after each stage of the heuristic. Since the consistency setting forbids modifying

the team compositions, we omit reporting X in Table 3.2 and we restrict the heuristic

to the construction of initial solutions and the improvement by swapping jobs. For the

service setting the heuristic conducts all its phases, see Table 3.3.

Table 3.2 reveals that the heuristic solutions serve the same number of jobs for in-

stances with size up to 30�15 as the exact solutions produced by CPLEX. For instance

40 � 20 the heuristic performs slightly less jobs whereas for instance 80 � 30 it sig-

nificantly outperforms the non-optimal CPLEX solution. Furthermore, the heuristic

requires a significantly lower computational effort. Almost all problem instances are

solved within a fraction of the time that is required by CPLEX. Even for the largest

instance of size 500 � 100 the CPU time for each phase of the heuristic is just half a

minute. As we enforce team consistency in this setting, the only improvement possible

for the heuristic is to reduce completion times through swapping of jobs. This leads to

a reduction of job completion times for 9 out of 15 instances. However, the extent of

these reductions is relatively low, which is explained by the time windows given for the

jobs.
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Table 3.3: Interday fix-and-optimize heuristic, service setting
Instance Initial solution Splitting and Merging Swapping Randomized disturbance

|Jd| � |M| Z F T CPU X Z F T CPU X Z F T CPU X Z Z% F P G T CPU

8 � 4 4.0 824 1.2 0.34 0.0 4.0 824 1.2 0.16 0.0 4.0 824 1.2 0.00 1.0 4.8 60% 962 205 133 1.2 11.85

8 � 8 5.2 1076 2.0 0.33 0.0 5.2 1076 2.0 0.16 0.0 5.2 1076 2.0 0.00 0.8 5.5 69% 1154 241 153 2.0 15.95

10 � 5 7.2 1778 1.2 0.30 0.0 7.2 1778 1.2 0.17 0.0 7.2 1778 1.2 0.00 0.0 7.2 72% 1778 323 163 1.2 18.16

10 � 10 7.2 1574 2.2 0.50 0.0 7.2 1574 2.2 0.16 0.0 7.2 1574 2.2 0.14 0.0 7.2 72% 1574 323 199 2.2 19.61

15 � 7 9.5 2359 2.0 0.70 0.2 10.8 2585 2.5 0.34 0.2 10.8 2549 2.5 1.02 2.2 11.2 75% 2732 493 308 2.8 33.62

15 � 15 13.2 2977 4.5 0.80 0.0 13.2 2977 4.5 0.16 0.0 13.2 2977 4.5 0.01 1.0 13.5 90% 2981 604 345 4.5 28.06

20 � 10 12.0 3059 2.8 0.90 2.8 13.2 3284 3.5 0.47 2.8 13.2 3208 3.5 3.83 4.0 15.0 75% 3681 661 359 4.0 50.13

30 � 15 25.2 6182 5.0 1.88 0.0 25.2 6182 5.0 0.16 0.0 25.2 5968 5.0 7.21 4.2 27.5 92% 6750 1217 551 5.0 75.49

40 � 20 30.5 7500 6.8 2.59 0.0 30.5 7500 6.8 0.16 0.0 30.5 7424 6.8 2.25 3.0 34.5 86% 8628 1499 679 6.2 77.16

80 � 30 59.2 15434 9.8 7.33 2.5 60.5 15767 10.2 0.26 2.5 60.5 15589 10.2 23.76 6.2 64.0 80% 16502 2844 1242 10.5 246.13

100 � 40 66.5 16777 12.5 7.46 5.0 79.0 20037 13.5 1.23 5.0 79.0 19848 13.5 109.04 6.8 85.8 86% 22125 3802 1692 13.5 422.65

200 � 50 120.5 32146 17.2 18.13 4.2 123.5 32924 17.8 0.83 4.2 123.5 32233 17.8 30.02 8.2 127.8 64% 33582 5597 2332 18.2 603.30

300 � 80 185.5 48824 28.5 24.79 6.2 196.8 51749 30.0 1.81 6.2 196.8 50855 30.0 104.74 9.5 204.0 68% 53115 9054 3869 30.2 1145.56

400 � 80 204.8 55139 28.2 35.36 7.2 216.8 58465 29.5 2.42 7.2 216.8 56750 29.5 202.86 11.2 227.2 57% 59244 9958 3930 30.5 1544.05

500 � 100 261.0 70860 36.0 51.09 10.0 273.8 74355 37.0 3.21 10.0 273.8 72376 37.0 124.92 11.8 278.8 56% 73441 12217 4965 38.5 1763.85

Regarding the service setting, Table 3.3 clearly demonstrates that all improvement

strategies contribute to better solution quality. Thereby, this effect is getting stronger

with the increase of the problem size. Splitting and merging of teams allows to serve

up to 12 further jobs compared to the initial solutions. Swapping of jobs contributes

to the reduction of the total completion time for most of the instances. Eventually,

randomized disturbance achieves to process up to 15 additional jobs for an instance.

For the large sized instances, we attain an overall improvement of 7 to 23 additional

jobs being served per instance. Looking at the largest instance tackled by CPLEX

p80 � 30q, we observe that the heuristic serves more than two times as many jobs as

the non-optimal CPLEX solution but it requires merely four minutes of computational

time. Looking at the largest instance of the instance set p500 � 100q, we observe that

the service setting allows the heuristic to serve about 10 % more jobs compared to

the consistency setting, which, however, requires about half an hour of computational

time. Anyhow, even this solution time lies considerably below the preset runtime limit.

Hence, the proposed heuristic appears as a powerful method for solving the considered

optimization problem also for instances of large size.
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3.5.3 Results for the Intraday Replanning

In this subsection, we evaluate the performance of the intraday model. We use as base-

line schedules the solutions generated by the interday fix-and-optimize heuristic under

the consistency setting for days d � 2 to d � 5. Thereby, qualification requirements of

high-priority jobs are such that some of them require synchronization of several teams.

As the main goal here is to schedule as many high-priority jobs as possible, we adopt

the following parameters for evaluating the objective function: α � 100, β � 10, θ � 1,

γ � 0.001. Finally, we set the arrival time of high-priority jobs to τ � 100 minutes.

Table 3.4 shows the results obtained for different numbers of newly arriving high-

priority jobs |Jh| � 1, 3 or 5. The values reported in each block represent averages of

the four intraday solutions of days d � 2 to d � 5. The table reports for each instance and

each number of jobs |Jh| the number of actually inserted high-priority jobs (column H)

and the number of team visits for performing these jobs (column Zh). Here, if H � Zh,

each served job is visited by one team whereas for H   Zh team synchronization is

part of the solution. Furthermore, this table shows the total deviation in start times

of scheduled jobs (column S), the total job completion time (column F ), the needed

runtime (column CPU) and the optimality gap (column GAP ).

As expected, we observe that the required computational time grows noticeably with

increasing size of Jh. However, nearly all instances can be solved to optimality if only

|Jh| � 1 or |Jh| � 3 jobs have to be inserted. Note that the intraday model schedules

not necessarily all high-priority jobs but a feasible solution to the model can always be

found here. For the setting with |Jh| � 1, the new incoming job can be served in almost

all instances while a consistent insertion of all three jobs in setting |Jh| � 3 is possible

for only 8 out of 15 instances. An example of where these jobs are inserted into the

routes is provided in Appendix D. Further, we see that the computation time is at most

83 seconds, which is considerably below the runtime limit of 200 seconds. This indicates
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Table 3.4: Intraday model CPLEX
Instance |Jh| � 1 |Jh| � 3 |Jh| � 5

|J| � |M| H Zh S F CPU GAP H Zh S F CPU GAP H Zh S F CPU GAP

8 � 4 0.5 0.5 0.0 1085 0.03 0% 2.2 2.2 0.0 1678 0.02 0% 3.8 3.8 0.0 2355 0.56 0%

8 � 8 1.0 1.5 0.0 1544 0.01 0% 2.5 3.0 0.0 1992 0.10 0% 4.0 4.8 0.0 2528 11.72 0%

10 � 5 0.5 0.5 0.0 1956 0.02 0% 1.5 1.5 0.0 2435 0.43 0% 1.8 1.8 7.2 2533 31.31 0%

10 � 10 1.0 1.5 0.0 1979 0.01 0% 2.8 3.2 0.0 2445 0.07 0% 4.8 5.5 0.0 3271 2.04 0%

15 � 7 1.0 1.5 0.0 2876 0.02 0% 2.8 3.2 0.0 3482 0.13 0% 4.2 4.8 0.0 4123 70.28 4%

15 � 15 1.0 1.5 0.0 2702 0.01 0% 3.0 3.5 0.0 3168 0.04 0% 5.0 5.8 0.0 3824 1.04 0%

20 � 10 0.8 1.0 0.0 3821 0.03 0% 2.2 2.5 0.0 4513 2.27 0% 3.2 3.5 0.0 4864 142.30 15%

30 � 15 1.0 1.5 0.0 6787 0.05 0% 3.0 3.8 0.0 7722 2.57 0% 5.0 6.2 0.0 8672 98.47 0%

40 � 20 1.0 2.0 0.0 6356 0.05 0% 3.0 5.0 0.0 7217 1.72 0% 5.0 8.8 0.0 8365 110.28 1%

80 � 30 1.0 1.5 0.0 15464 0.17 0% 3.0 3.8 0.0 16463 4.77 0% 4.5 6.2 0.0 17704 185.45 13%

100 � 40 1.0 1.8 0.0 13318 0.10 0% 3.0 5.2 0.0 14271 5.95 0% 5.0 9.8 0.0 15873 200.00 4%

200 � 50 1.0 1.5 0.0 29825 0.30 0% 3.0 3.5 0.0 30834 16.87 0% 3.2 4.0 10.0 30999 200.00 40%

300 � 80 1.0 1.2 0.0 48427 0.54 0% 3.0 3.5 0.0 49387 22.37 0% 4.2 5.8 25.2 50449 200.00 26%

400 � 80 1.0 1.2 0.0 49498 0.77 0% 2.5 3.0 0.0 50376 82.59 21% - - - - - -

500 � 100 1.0 1.2 0.0 66855 1.47 0% 3.0 3.5 0.0 67921 68.34 0% - - - - - -

that the intraday model can cope successfully with up to 3 jobs arriving at the same

time. Looking at columns S, we see that start times of already scheduled jobs are not

changed (S � 0). This can be explained by the time windows for the jobs, which create

time gaps in work schedules that are used for inserting new jobs. Eventually, if |Jh| �

5 jobs become available at a time, the heuristic manages to insert about 4 to 5 of them

for most of the instances. Here, not all instances are solved to optimality (GAP ¡ 0)

within the runtime limit of 200 seconds. For the largest instances (400� 80, 500� 100)

not even a feasible solution is obtained within the runtime limit of 200 seconds for at

least one day of the time span d � 2 to d � 5.

Note thatGAP values of smaller instances are sometimes even higher than those of larger

instances, compare 80 � 30 and 100 � 40 or 200 � 50 and 300 � 80. This indicates that

the GAPs do not only depend on the problem size, which is because large parts of the

routing and job-assignment variables are fixed now. Instead, problem difficulty is also

determined by the particular skill vectors involved in an instance, the synchronization

operations performed in a solution, and the opportunities for inserting high-priority jobs

in the existing routes, which explain the somewhat erratic GAPs observed for medium

and large instances in Table 3.4.

We now briefly analyze how the solution quality responds to differing values of job
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Figure 3.4: Variation of arrival time

arrival time τ . For this purpose, we changed τ from its original value 100 to values 200,

300 and 400. Figure 3.4 shows for three selected instances and Jh � 5 high-priority

jobs the number of inserted jobs Zh for the different settings of τ . For instance 20� 10,

we observe, as expected, that Zh diminishes for high values of τ because inserting jobs

might fail if they arrive too late. Surprisingly, for instance 80�30, we observe an increase

of Zh for increasing values of τ . The explanation for this counterintuitive result is as

follows. While low values of τ indicate early job arrivals and, thus, offer potential for

high-quality solutions, the resulting optimization problem is more difficult to solve than

for higher values of τ that leave only few insertion possibilities. This effects that the

solution under τ � 100 is merely suboptimal (see GAP in Table 3.4) and even worse

than the optimal solution achieved under the more restrictive τ ¥ 300. Hence, it can

be easier for a MIP solver to cope with late arriving jobs where the solutions obtained

within the runtime limit might even be better compared to solutions for earlier arriving

jobs. For the third instance 200�50, we observe just another behavior as all jobs can be

served even if they arrive relatively late, which shows that late arrivals not necessarily

constitute a problem for the intraday rescheduling.

In order to reduce the computational effort of inserting multiple jobs at the same time,

we conduct a further experiment where we insert the jobs Jh one by one. The number of

iterations corresponds to the number of incoming jobs |Jh|. In each iteration, we run the

model only for one high-priority job. If this job is taken up in the solution, we update

the sets Jt for those teams that are involved in performing this job. The results of this

experiment are summarized in Table 3.5. Comparing Tables 3.4 and 3.5 for |Jh| � 1,
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Table 3.5: Intraday model CPLEX (iteratively)
Instance |Jh| � 1 |Jh| � 3 |Jh| � 5

|J| � |M| H Zh S F CPU H Zh S F CPU H Zh S F CPU

8 � 4 0.5 0.5 0.0 1085 0.03 2.2 2.2 0.0 1678 0.04 3.8 3.8 0.0 2355 0.37

8 � 8 1.0 1.5 0.0 1544 0.00 2.5 3.0 0.0 1994 0.06 4.0 4.8 0.0 2549 0.48

10 � 5 0.5 0.5 0.0 1956 0.02 1.5 1.5 0.0 2436 0.13 1.8 1.8 7.2 2539 0.58

10 � 10 1.0 1.5 0.0 1979 0.01 2.8 3.2 0.0 2447 0.04 4.8 5.5 0.0 3271 0.15

15 � 7 1.0 1.5 0.0 2876 0.01 2.8 3.2 0.0 3482 0.07 4.2 4.8 0.0 4127 1.04

15 � 15 1.0 1.5 0.0 2702 0.01 3.0 3.5 0.0 3234 0.04 5.0 5.8 0.0 3893 0.10

20 � 10 0.8 1.0 0.0 3821 0.03 2.2 2.5 0.0 4514 0.15 3.0 3.2 0.0 4840 1.58

30 � 15 1.0 1.5 0.0 6787 0.06 2.8 3.5 0.0 7590 0.32 4.8 6.0 0.0 8625 1.56

40 � 20 1.0 2.0 0.0 6356 0.04 2.8 4.2 0.0 6961 0.21 4.8 8.2 0.0 8060 0.54

80 � 30 1.0 1.5 0.0 15464 0.13 3.0 3.8 0.0 16472 0.93 4.2 6.0 0.0 17557 11.55

100 � 40 1.0 1.8 0.0 13318 0.09 3.0 5.2 0.0 14271 0.61 5.0 9.2 0.0 15676 2.82

200 � 50 1.0 1.5 0.0 29825 0.76 3.0 3.8 0.0 30934 3.84 4.8 7.2 0.0 32575 15.89

300 � 80 1.0 1.2 0.0 48427 0.44 3.0 3.5 0.0 49401 2.38 5.0 7.0 0.0 50900 13.36

400 � 80 1.0 1.2 0.0 49498 0.74 2.8 4.0 16.0 50859 8.94 4.2 6.8 16.0 52200 37.77

500 � 100 1.0 1.2 0.0 66855 0.88 3.0 3.5 0.0 67926 6.44 5.0 5.8 0.0 69068 28.47

we observe identical results (as expected). For |Jh| � 3, iterative insertion of jobs yields

the same solution quality in terms of the number of performed jobs for most instances

but requires much lower computational times of at most 9 seconds. For |Jh| � 5, all

instances are solved feasibly now and within just a few seconds. The computational time

does not exceed one minute even for the larger instances. For the larger instances that

could not be solved to optimality in the original intraday model, the iterative approach

inserts additional jobs (200 � 50, 300 � 80, 400 � 80 and 500 � 100), avoids some of the

synchronization processes (100 � 40) and reduces job completion times (100�40). For

instances (20�10, 30� 15, 40� 20 and 80�30), the iterative insertion integrates one job

less only for one data set (day d � 2 or day d � 5) compared to the original intraday

model. To summarize, the obtained results demonstrate that the intraday model can

be successfully used for updating even large size schedules. The iterative approach is

furthermore suitable for integrating a large number of high-priority jobs within very

short computational time.

3.6 Conclusions

In this paper, we have investigated the interday composition, routing and scheduling of

multi-skilled workforce teams with a consistency requirement and an intraday reschedul-
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ing opportunity for serving jobs that become available on short notice. We have pre-

sented two interrelated optimization models. As large interday problems cannot be

solved exactly, we have proposed and evaluated a fix-and-optimize heuristic that em-

beds a routing optimization model. Computational experiments show that the heuristic

yields an effective solution approach. Test instances, for which exact solutions are gen-

erated by the CPLEX solver in up to two hours, have been solved to similar quality

within a few seconds only. Tests on larger instances confirm that the algorithm produces

good solutions in a consistent and reliable way. Furthermore, the experiments indicate

that the consistency requirement can be successfully integrated into the planning. Fi-

nally, we demonstrate that the intraday rescheduling can be solved as an integer linear

programming problem if only few jobs are to be inserted. If multiple jobs are to be

inserted, a sequential insertion procedure can be applied. Its short computation times

guarantee an almost immediate reaction, which makes the method suitable for practical

application.

In spite of the achieved progress, future research may be conducted to assess team

overqualification by cost, or to integrate within-day team splitting and synchronization

into the interday planning. Furthermore, it could be interesting to consider hiring tem-

porary workers as an alternative to the outsourcing of jobs. Also, while our interday

planning and intraday rescheduling are suitable for settings with (highly) incomplete in-

formation about future jobs, it might be worth to develop a rolling horizon methodology

for settings with (almost) complete information about future jobs. Such a methodol-

ogy could solve the problem for several periods ahead and implement decisions for the

current period only while resolving the multi-period problem in the next period with

updated information and so on. In this way, team consistency might be improved by

exploiting all available information.



CHAPTER 3. ESSAY 2 99

Appendix A. Team Consistency

We describe here an alternative approach for measuring team consistency, which is

based on Hamming distance. We introduce a new binary decision variable ymm1 that

takes value 1 if employees m and m1 work together in the same team on the current

day, 0 otherwise. The corresponding values of these variables from the previous day are

denoted by parameters y1mm1. Thus, if y1mm1 � 1 and ymm1 � 1, employees m and m1

work together at both days no matter whether they stay in the same team of jointly

switch to another team. If y1mm1 � 0 and ymm1 � 0, employees m and m1 are not working

together neither at the previous day nor at the current day. In both cases, no change

takes place from the perspective of the pair m, m1. However, if y1mm1 � 1 and ymm1 � 0,

or if y1mm1 � 0 and ymm1 � 1, team composition changed for pair m, m1 as they no longer

work in the same team or as they are newly assigned to a same team. The idea of the

subsequent model is to establish team consistency by minimizing the number of such

changing employee pairings. For this, we specify an auxiliary binary variable Ymm1 that

takes value 1 if y1mm1 � ymm1, 0 otherwise.

As an example, consider the teaming of employees 1, 2 and 3 in Figure 3.2. We have

the following values for y1,2 � y1,3 � y2,3 � 1 for day d � 1 and, thus, y11,2 � y11,3 � y12,3 � 1

for day d � 2. Furthermore, the pairing of employees at day d � 2 is reflected by y1,2 � 1

and y1,3 � y2,3 � 0, which leads to Y1,2 � 0 and Y1,3 � Y2,3 � 1. This can be continued

similarly for employees in other teams and across teams.

The alternative consistency formulation can be incorporated into the interday model

using the following terms:

minimize:
¸
mPM

¸
m1PM

Ymm1 (3.43)

xmt � xm1t � 1 ¤ ymm1 @m,m1 PM, t P T (3.44)

2 � xmt �
¸

t1PT zttu

xm1t1 ¥ ymm1 @m,m1 PM, t P T (3.45)
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¸
tPT

xmt ¥ ymm1 @m,m1 PM (3.46)

ymm1 � y1mm1 ¤ Ymm1 @m,m1 PM (3.47)

y1mm1 � ymm1 ¤ Ymm1 @m,m1 PM (3.48)

xmt, ymm1, Ymm1 P t0, 1u @m,m1 PM, t P T (3.49)

Objective (3.43) maximizes team consistency by minimizing changes in employee pair-

ing. This objective can be combined with the other objectives as done in (3.1). Con-

straints (3.44) enforce ymm1 � 1 if employees m and m1 are in the same team. Con-

straints (3.45) set ymm1 � 0 if employees m and m1 are assigned to different teams. If

employee m is not assigned to any team, Constraints (3.46) set ymm1 � 0 for all m1.

Constraints (3.47)-(3.48) enforce Ymm1 � 1 if y1mm1 � ymm1.

Corresponding CPLEX results for the interday model with the alternative consistency

measure are reported in Table 3.6. Compared with the results in Table 3.1, it can be

seen that both consistency measures deliver identical solutions regarding the number of

performed jobs and the total job completion time for all those instances that are solved

to optimality. This finding holds for both, the consistency setting and the service setting.

In the consistency setting, this is because team consistency is of utmost importance, i.e.,

total changes in teams are alwaysX � 0 and Y � 0 in Tables 3.1 and 3.6, respectively. In

the service setting, maximizing the number of performed jobs is much more important

than minimizing team consistency, which is why the used consistency measure plays

Table 3.6: Interday model CPLEX (alternative consistency formulation)
Instance Problem size Consistency setting Service setting

|Jd| � |M| Variables Constraints Y Z F T CPU GAP3600 Y Z F T CPU GAP3600

8 � 4 876 444 0.0 4.5 928 1.2 0.08 0% 4.5 5.0 1122 1.0 0.23 0%

8 � 8 2544 984 0.0 5.0 976 2.2 0.22 0% 2.0 5.5 1094 2.0 1.93 0%

10 � 5 1510 790 0.0 7.2 1778 1.2 10.26 0% 0.0 7.2 1778 1.2 17.73 0%

10 � 10 4560 1730 0.0 7.2 1442 2.2 63.91 0% 0.0 7.2 1442 2.2 52.39 0%

15 � 7 3830 2163 0.0 10.5 2236 2.5 960.97 1% 3.8 11.2 2877 2.0 2421.95 2%

15 � 15 13590 4995 0.0 12.0 2349 4.5 1803.84 1% 4.0 13.8 2659 4.5 3600.00 1%

20 � 10 8970 5130 0.0 14.5 3504 3.0 2724.25 2% 1.5 14.5 3525 3.0 3600.00 4%

30 � 15 26880 16020 0.0 25.8 5991 5.0 3600.00 1% 0.5 25.8 5997 5.2 3600.00 8%

40 � 20 59740 36460 0.0 25.2 5720 7.8 3600.00 20% 6.0 22.8 5867 5.8 3600.00 39%

80 � 30 280730 204390 0.0 11.2 2580 3.5 3600.00 86% 0.0 11.8 2700 4.2 3600.00 85%
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Table 3.7: Comparison of different α and β weights in the objective
Instance Service setting (original measure) Service setting (alternative measure)

α, β |Jd| � |M| X Z F T CPU GAP3600 Y Z F T CPU GAP3600
8 � 4 0.0 4.5 928 1.2 0.04 0% 0.0 4.5 928 1.2 0.09 0%

α � 1 8 � 8 0.0 5.0 976 2.2 0.09 0% 0.0 5.0 976 2.2 0.69 0%

β � 1 15 � 7 0.0 10.5 2235 2.5 901.44 2% 0.0 10.5 2236 2.5 1032.68 0%

15 � 15 0.2 13.2 2682 4.0 26.06 0% 0.0 12.0 2349 4.5 3600.00 5%

8 � 4 0.2 5.0 1122 1.0 0.08 0% 0.0 4.5 928 1.2 0.12 0%

α � 1 8 � 8 0.2 5.5 1094 2.0 0.12 0% 0.0 5.0 976 2.2 0.62 0%

β � 2 15 � 7 0.5 11.0 2449 2.5 947.51 2% 0.0 10.5 2236 2.5 1133.05 0%

15 � 15 0.5 13.8 2656 4.5 29.85 0% 0.0 12.0 2349 4.5 3600.00 8%

8 � 4 0.0 4.5 928 1.2 0.04 0% 0.0 4.5 928 1.2 0.11 0%

α � 2 8 � 8 0.0 5.0 976 2.2 0.14 0% 0.0 5.0 976 2.2 0.26 0%

β � 1 15 � 7 0.0 10.5 2235 2.5 457.14 0% 0.0 10.5 2236 2.5 1015.08 0%

15 � 15 0.2 13.2 2682 4.0 17.97 0% 0.0 12.0 2349 4.5 3600.00 1%

no significant role. However, as the alternative measure requires adding new decision

variables and constraints, solvability of the problem deteriorates, which leads to larger

gaps and runtimes for the largest instances considered here. Hence, the alternative

formulation of team consistency does not seem to provide an advantage.

Furthermore, we analyze how the solutions react to variations of weights α and β in

the objective function. Table 3.7 shows results of four instances under both consistency

measures and varied objective function weights. The selected instances have solutions

with team changes (X ¡ 0 and Y ¡ 0) in the service setting of both consistency

measures, see Tables 3.1 and 3.6. Weights α and β are chosen such that the substitution

ratio of ’team changes’ against ’additionally performed jobs’ is 1:1, 1:2 and 2:1. For the

original consistency measure from Section 3.3.3, we observe that relatively small changes

of objective weights can effect an outcome in the solutions. Looking at column Z, we

see that a marginal increase of β results in an increase of the number of performed

jobs for all four instances. Moreover, these results are almost identical to the results

obtained for the service setting with the much higher weight β � 100 in Table 3.1. In

contrast, increasing α keeps the solutions stable with almost no changes in the teams,

which indicates that also team consistency can be controlled through relatively small

variations of weights.

For the alternative consistency measure from Appendix A, the results remain con-
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stant for all three combinations of weights. Thereby, we observe no changes in the team

structure and relatively low numbers of performed jobs. These results coincide com-

pletely with the results achieved under the consistency setting, see Table 3.1. This can

be explained by the fact that relative small changes in the team composition lead to a

quite large number of changes of ymm1 variables. Hence, to generate the same results,

the alternative consistency measure requires a considerably higher difference between

the two objective coefficients. In other words, it seems that the original measure is

somewhat easier to control if one seeks for a tradeoff of team consistency and number

of performed jobs.

Appendix B. Pseudocodes for Fix-and-Optimize Heuristic

Algorithm 1: Interday Planning: Initial Solution

Input: set of teams T , job set Jd

1: Jt Ð t0u @t P T

2: generate sets Jqualt @t P T

3: sort jobs j P Jqualt in ascending order of µtj @t P T

4: while T � ∅ do

5: t Ð arg mint1PT t|J
qual
t1 |u � select team with fewest jobs in set Jqualt

6: while |Jt|   λmax and Jqualt � ∅ do

7: J temp Ð Jt Y pλmax � |Jt|q first jobs from set Jqualt � build set of temporary jobs

8: Jqualt Ð Jqualt zJ temp � remove new considered jobs from Jqualt

9: solve routing problem (3.36)-(3.40) for team t

10: update set Jt according to jobs processed in obtained route

11: end while

12: Jqualt1 Ð Jqualt1 zJt @t
1 P T, t1 � t � remove assigned jobs from Jqualt of all not yet examined teams

13: T Ð T zttu � remove considered team t from the list T

14: end while
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Algorithm 2: Interday Planning: Splitting and Merging of Teams

Input: solution of Algorithm 1, set of still unprocessed jobs Jun

1: create free team list TF

2: sort jobs j P Jun in descending order of difficulty factor ϑj

3: for j P Jun do

4: if aggregated teams in TF are qualified for job j then

5: tM Ð ∅

6: while tM is not qualified for job j do � find teams to merge

7: t Ð arg mint1PTF tEjt1u � choose team t with minimum skill gap factor

8: assign all employees from team t to team tM � extend merged team

9: TF Ð TF zttu � remove the considered team from free team list

10: end while

11: create JqualtM for team tM � identify the set of jobs for which the merged team is qualified

12: while |JtM |   λmax and JqualtM � ∅ do

13: J temp Ð JtM Y pλmax � |JtM |q first jobs from set JqualtM � build set of temporary jobs

14: JqualtM Ð JqualtM zJ temp � remove new considered jobs from JqualtM

15: solve routing problem (3.36)-(3.40) for team tM

16: update set JtM according to obtained route

17: end while

18: Jun Ð JunzJtM � remove assigned jobs from Jun

19: end if

20: end for

Algorithm 3: Interday Planning: Swapping of Jobs

Input: solution of Algorithm 2

1: initialize set of teams for job swapping T S Ð tt|t P T, Jt � ∅u

2: for pt, t1q P T S � T S with t   t1 do

3: create sets JSt1,t and JSt,t1 � job sets that can be moved between teams t and t1

4: if JSt1,t � ∅ and JSt,t1 � ∅ then

5: for pj1, j2q P JSt1,t � J
S
t,t1 do

6: solve routing problem (3.36)-(3.40) for team t with job set J temp Ð Jtztj
2u Y tj1u

7: if j1 is served in the obtained route then

8: solve routing problem (3.36)-(3.40) for team t1 with job set J temp1 Ð Jt1ztj
1u Y tj2u

9: if j2 is served in the obtained route and total job completion time is reduced then

10: save new schedules for teams t and t1

11: Jt Ð J temp, Jt1 Ð J temp
1

12: end if

13: else

14: continue with next j1

15: end if

16: end for

17: end if

18: end for
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Algorithm 4: Interday Planning: Randomized Disturbance

Input: employee assignment on previous day x1mt, number of iterations I, number of employees N to interchange

1: objbest Ð 8

2: for i � 1 to I do

3: exchange N employee assignments in x1mt
4: generate an initial solution (Algorithm 1)

5: improve by splitting and merging of teams (Algorithm 2)

6: calculate objective value obj of current solution

7: if obj   objbest then

8: save new solution

9: objbest Ð obj

10: end if

11: end for

12: improve by swapping of jobs (Algorithm 3)

Appendix C. Selection of Parameters for Fix-and-Optimize Heuristic

In order to determine the best trade-off between efficiency and solution quality, we

carry out preliminary analyses for setting the parameters of the heuristic. First, we

vary the maximal number of jobs λmax transferred to the routing subproblem as well

as the time limit for solving this subproblem. Figure 3.5 demonstrates the impact of

different parameter settings on the number of performed jobs for three selected instances.

On the one hand, larger λmax values enable allocating more jobs in each subproblem

and improving the solution quality. On the other hand, if the time limit is set too

low, the subproblem cannot be solved exactly, which leads to a deterioration of the

solution quality. An increased time limit can be reasonable up to a saturation point

beyond which there is no further improvement obtained. Furthermore, the time limit
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for the subproblem has a major influence on the total CPU time needed for solving an

instance, see Figure 3.6. The figure shows that the total CPU time grows noticeably and

more than doubles with the considered increase of the subproblem time limit. From the

results in Figures 3.5 and 3.6, we find that a good compromise can be reached by setting

λmax � 8 and a runtime limit of 0.5 seconds, which we apply in all further experiments.

We also analyze how the solution quality responds to the number of interchanged

employees N in the randomized disturbance phase of the heuristic. Note that this pa-

rameter is irrelevant for the consistency setting where team consistency is of utmost

importance. For this reason, we only conduct this experiment for the service setting.

Figure 3.7 shows for three instances the number of performed jobs in the final solutions

if the heuristic uses Algorithm 4 with N � 2, 3 . . . 10 employees to be exchanged. Un-

fortunately, the fluctuations shown in the figure do not provide guidance on how to set

N . The parameter appears to be irrelevant for the small sized instance, whereas for the

medium and the large sized instance an increase of N does not necessarily contribute to

the improvement of solution quality. As we aim at maximizing the number of assigned

jobs while minimizing modifications of the team structure, we choose a relatively low

value of N � 3. We also conducted experiments for setting parameter I but omit them

here for reasons of brevity. This parameter is set to I � 30.
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Appendix D. Insertion of High-Priority Jobs

Table 3.8 illustrates where, in the routes, new jobs are inserted at the example of the

intraday solutions for instance 8 � 8. The first column of the table reports the initial

routes and the start times in the baseline schedule with two teams performing 4 out

of 8 jobs. The remaining three columns report the corresponding solutions for settings

|Jh| � 1, |Jh| � 3 and |Jh| � 5 where 1, 3 and 5 high-priority jobs are available. The

high-priority jobs are indexed 9 to 13. They can be all inserted in these solutions. We

observe that most high-priority jobs are inserted at the end of the baseline-routes. An

exception is job 10, which finds a suitable time gap within the route of team 1, where

the subsequently served job 6 keeps its original start time due to its time window. Note

that job 13 requires synchronization of two teams. Thereby, the difference in start times

348 � 318 � 30 respects the maximal temporal distance δmax.

Table 3.8: Insertion of high-priority jobs for instance 8� 8
Baseline Schedule |Jh| � 1 |Jh| � 3 |Jh| � 5

Team 1 Team 2 Team 1 Team 2 Team 1 Team 2 Team 1 Team 2

route 0-1-8-6-0 0-5-0 0-1-8-6-0 0-5-9-0 0-1-8-10-6-0 0-5-11-9-0 0-1-8-10-6-13-0 0-5-9-11-12-13-0

start times 0-94-161-267 0-55 0-94-161-267 0-55-118 0-94-161-217-267 0-55-114-165 0-94-161-217-267-348 0-55-118-164-205-318
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Abstract: We consider a combined problem of teaming and scheduling of multi-skilled

employees that have to perform jobs with uncertain qualification requirements. We pro-

pose two modeling approaches that generate solutions that are robust to possible data

variations. Both approaches use variants of budgeted uncertainty, where deviations in

qualification requirements are bounded by a constraint. In the first approach, we aggre-

gate uncertain constraints to ensure that the total number of job qualifications present

at a job is not less than a worst-case value. We show that these values can be computed

beforehand, resulting in a robust model with little additional complexity compared with

the nominal model. In our second approach, we bound the overall qualification devia-

tion over all jobs. While this approach is more complex, we show that it is still possible

to derive a compact problem formulation by using a linear programming formulation

for the adversarial problem based on a dynamic program. The performance of both ap-

proaches is analyzed on a test bed of instances which were originally provided for a de-

terministic problem version. Our experiments show the effectiveness of the proposed ap-

proaches in the presence of data uncertainty and reveal the price and gain of robustness.

Keywords: Multi-Skilled Workforce Scheduling, Robust Optimization, Budgeted Un-

certainty
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4.1 Introduction

This paper addresses a combined problem of routing and scheduling of multi-skilled

workforce as it is faced by many service-oriented companies that provide installation,

construction, maintenance or delivery services at customer locations. Each service job

to conduct requires employees with different skill domains and at different levels of

expertise. Therefore, teams of technicians have to be formed according to job qualifica-

tion requirements that express the number of employees with specific skills and required

experience in the corresponding domains. In order to increase productivity and to de-

crease labor costs, companies may prefer to hire multi-skilled employees that can be

easily assigned to various jobs as required. This provides more flexibility and allows a

company to focus on customer satisfaction. As teams may be capable of serving multi-

ple jobs, optimal routing plans have to be found for the formed teams. From this, the

investigated Routing and Scheduling Problem of Multi-Skilled Teams (CTRP) can be

considered as an extension of the Vehicle Routing Problem (VRP). Due to its practical

relevance, the CTRP has gained an increasing attention during the last decade and has

been investigated extensively from different perspectives. In this paper, we demonstrate

how the CTRP can be solved in the presence of data uncertainty. In general, different

sources for data variations are existent but we focus here on uncertainty of the qualifi-

cation requirements of a job. Such qualification requirements are usually derived from

communication with customers. As a customer is not necessarily an expert in the cor-

responding field, the required skill types and levels of competence for executing a job

may be wrongly assessed by the customer when issuing the job. Also the company may

misproject these requirements before having executed the job due to a lack of informa-

tion. Moreover, the routing decisions can be affected by variations of travel times due

to traffic conditions or by delays in job processing due to differing employee working

speeds. In light of these findings, it becomes important to have a robust planning ap-
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proach that ensures solution reliability also in the presence of possible data variations.

However, despite the substantial progress in the field of robust optimization, we are not

aware of any approaches that have been so far presented for the formation of worker

teams and their job-routing as is addressed in this paper.

Recently, Anoshkina and Meisel (2019) analyzed the deterministic version of the

CTRP and the potential of decomposition techniques for reducing the complexity of the

planning. Furthermore, CTRP was considered from a multi-period perspective by addi-

tionally emphasizing team consistency in Anoshkina and Meisel (2020). In the present

study, we take the first step to deal with data variations in the context of scheduling

of multi-skilled teams. Namely, we concentrate on developing a linear optimization

framework incorporating demand uncertainty which we define as a variation of job qual-

ification requirements. Our contribution is then threefold: (i) We propose a first robust

model formulation based on the concept of budgeted uncertainty sets as proposed by

Bertsimas and Sim (2003), where the uncertainty affects each job independently. (ii)

We propose a second robust model formulation, where the uncertainty is restricted by

a global constraint over all jobs. (iii) We test extensively the model performance under

the two different robustness strategies by analyzing the impact of the uncertain demand

on the feasibility and quality of solution.

The outline of this paper is as follows. In Section 4.2, we review the relevant literature

on workforce teaming and scheduling. We also discuss important robustness concepts

that constitute the foundation of our later investigation. In Section 4.3, we present

a mathematical formulation of the deterministic problem version. In Section 4.4, we

develop two robust optimization models based on different budgeted uncertainty sets.

Section 4.5 presents experimental results and analyzes the performance of the two ro-

bustness strategies. Finally, Section 4.6 concludes the paper and outlines future research.
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4.2 Literature

The combined problem of teaming and scheduling of a multi-skilled workforce was first

addressed in the works of Estellon et al. (2009), Hurkens (2009), Cordeau et al. (2010),

Hashimoto et al. (2011), and Fırat and Hurkens (2012). The initial focus of the research

has been on scheduling aspects. Specifically, it was considered how multi-skilled employ-

ees can be grouped into teams and assigned to a set of jobs where jobs require multiple

skills at different competence levels. Following these initial contributions, an increasing

number of extensions has been presented. For instance, such features as routing of teams

(Kovacs et al. (2012)), multi-period planning (Zamorano and Stolletz (2017)), employee

preferences for performing a specific job (Fırat et al. (2016)), alternative heuristic solu-

tion methods (Khalfay et al. (2017)), decomposition techniques (Anoshkina and Meisel

(2019)) as well as team consistency and rescheduling (Anoshkina and Meisel (2020))

have been studied. A more detailed description of these studies is provided by Anoshk-

ina and Meisel (2020). Throughout, the authors assumed a deterministic setting where

all input data is completely known with certainty.

However, real-world situations typically involve data uncertainty. Therefore, consid-

erable research has been conducted in developing robust programs that find solutions

which perform well despite variations in the input data. A substantial progress in the

theory of robust optimization has been achieved with concepts presented by Ben-Tal

and Nemirovski (1999) and Bertsimas and Sim (2004). More precisely, Ben-Tal and

Nemirovski (1999) showed that robust counterparts of linear programs with ellipsoidal

uncertainty set are computationally tractable and can be solved as conic quadratic prob-

lems. Bertsimas and Sim (2004) developed the concept of budgeted uncertainty that

enabled to reformulate non-linear robust constraints as linear functions. For general

surveys on robust optimization, we refer the interested reader to Buchheim and Kurtz

(2018); Gabrel et al. (2014); Goerigk and Schöbel (2016).
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The mentioned approaches have opened an avenue for research in many optimization

areas. For instance, Sungur et al. (2008) addressed a VRP with uncertain customer

demand and proposed three robust formulations based on convex, box and ellipsoidal

uncertainty sets. Following the idea of Bertsimas and Sim (2003), Ordóñez (2010)

presented a robust formulation of the VRP incorporating two additional sources of

uncertainty occurring in travel time and travel costs. This line of research was continued

for a number of problem extensions. For instance, Lee et al. (2012) addressed a VRP with

deadlines and uncertainty arising in travel times and customer demand. Han et al. (2014)

combined stochastic programming with robust optimization for the solution of a VRP

with uncertain travel times where penalties are imposed if travel time exceeds a preset

time limit. Demand uncertainty was also studied by Cao et al. (2014) in the context of

open VRPs where vehicles do not necessarily return to the depot after delivering goods.

Chen et al. (2016) analyzed a routing problem arising in road maintenance, in which

each part of a road network has to be monitored by a service vehicle. Thereby, service

times are subject to uncertainty due to various factors like road conditions or accidents.

De La Vega et al. (2019) investigated a VRP with time windows (VRPTW) and multiple

delivery men where a specific number of workers is required to execute deliveries and

customer demand becomes known only when a vehicle arrives at a customer location.

A further VRPTW model with both demand and travel time uncertainty was provided

by Munari et al. (2019) where the authors used a two-index vehicle flow formulation.

The main advantage of this formulation is that the robust counterpart can be derived

directly from the underlying deterministic model and, thus, does not require additional

constraints associated with uncertain parameters.

Compared with the large number of studies addressing robust VRPs, relatively few

papers have been published on robust personnel scheduling. Carello and Lanzarone

(2014) developed a robust optimization model for a home health care problem with
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demand uncertainty and continuity of care. Continuity of care means that all services

required by a patient are provided by the same specialist over a long period. The

demand is considered uncertain due to possible variations in the physical conditions

of patients. Nguyen and Montemanni (2016) proposed a nonlinear mixed-integer pro-

gramming formulation for taking into account uncertainty in nurse availability. Souyris

et al. (2013) examined the problem of dispatching technicians under stochastic service

times. Specifically, the authors developed two different solution concepts distinguishing

between processing time uncertainty related to customers or to technicians. Finally, we

are aware of only one robust optimization approach dealing with scheduling of multi-

skilled employees where the workforce demand is subject to uncertainty. At the example

of a service industry company, Henao et al. (2016) investigate how multi-skilled employ-

ees can be effectively distributed between departments over a planning horizon of one

week. Thereby, the problem also incorporates decisions about training of employees

specialized only in one domain. The goal is to minimize staff training, shortage and

surplus costs. Operations management for the assignment of jobs to teams and routing

decisions, as is considered in our paper, are out of scope of their study.

As results generated by robust programs can deviate significantly from deterministic

solutions, a further stream of research focuses on methods and algorithms that reduce

this so-called price of robustness. Complementing the work of Bertsimas and Sim (2003),

Poss (2013) presented the concept of variable budgeted uncertainty, where dualization

techniques are applied to more general uncertainty polytopes. It was shown by exper-

iments that the proposed approach can yield better results and reduces the price of

robustness by 18%. Furthermore, the robust optimization methodology was extended

by a class of two-stage robust optimization concepts, see e.g. Adjiashvili et al. (2015);

Ben-Tal et al. (2004); Buchheim and Kurtz (2017); Hanasusanto et al. (2015); Liebchen

et al. (2009). These approaches consider problems where decisions can be taken sequen-
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tially. Therefore, a subset of decisions is implemented before the specific data realization

becomes known whereas the remaining decisions can be taken after the uncertainty has

resolved. For a general survey on these approaches, we refer to Yanıkoğlu et al. (2019).

To the best of our knowledge none of the mentioned concepts has been applied so

far to the CTRP. To close this gap, we develop two alternative robust optimization

models that incorporate demand uncertainty in the context of routing and scheduling

of multi-skilled teams.

4.3 Deterministic Model (DM)

The deterministic (nominal) version of the multi-skilled workforce routing and schedul-

ing problem can be described as follows. We are given a set of employees M and a set

of jobs J as well as an extension of this set as J0 � t0u Y J � t0, 1, . . . , |J |u where 0

refers to a depot. Each job j P J is characterized by a service requirement rjkl that gives

the number of employees with qualification in skill k P K and experience level l P L

required for performing job j. Here, K denotes the set of skill domains and L the set

of experience levels. The competences of employee m P M are described by a binary

matrix qmkl where an element takes value 1 if the employee is qualified in skill k P K at

level l P L and 0 otherwise. As each job can require more than one employee, employees

have to be grouped into teams in order to meet a job’s qualification requirements rjkl

for all k P K and l P L. The maximal number of teams T to build is specified by the

minimum of the number of employees and the number of jobs considered in a problem

instance. More precisely, if we consider a problem with 10 employees and 5 jobs, at

most T � mint10, 5u teams are required (or can be built). Note that each job j P J

has to be carried out by exactly one team, whereas a team might perform several jobs

one after the other. Thereby, the completion time of each job cannot be later than a

maximal working time emax that is given for each team. Further, all services associated

with job j are provided at the customer’s location. To each pair of jobs pi, jq P J0 � J0,
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we thus assign a travel time dij that is needed by a team to go from i to j. Additionally,

each job j has a processing time pj that indicates the amount of time that a team has

to stay at customer location j. Here, we assume that pj is given and constant, i.e. pj

does not depend on the team composition or working environment.

A corresponding deterministic model has been provided by Anoshkina and Meisel

(2020). Here we present a slightly modified formulation that constitutes the foundation

of our robust approach. The formulation uses the following decision variables. The

binary decision variable xmt indicates if employee m is assigned to team t or not. The

routes of teams are denoted by binary decision variables ztij that define if team t travels

directly from job i to job j or not. The continuous scheduling variable stj specifies the

start time of job j by team t. Similar, ftj denotes the completion time of job j executed

by team t. Using the introduced notation the deterministic model is formulated as

follows.

maximize: α �
¸
tPT

¸
jPJ0

¸
jPJ

ztij � β �
¸
tPT

¸
jPJ

ftj (4.1)

subject to:¸
tPT

xmt ¤ 1 @m PM (4.2)

¸
mPM

xmt � qmkl ¥ rjkl �
¸
iPJ0

ztij @j P J, k P K, l P L, t P T (4.3)

¸
jPJ

zt0j ¤ 1 @t P T (4.4)

¸
tPT

¸
iPJ0

ztij ¤ 1 @j P J (4.5)

¸
iPJ0

ztij �
¸
iPJ0

ztji @j P J0, t P T (4.6)

fti � dij ¤ stj �M �
�
1 � ztij

�
@i P J0, j P J, t P T (4.7)

stj � pj ¤ ftj �M �

�
1 �

¸
iPJ0

ztij

�
@j P J, t P T (4.8)
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ftj ¤ emax @j P J, t P T (4.9)

stj, ftj ¥ 0 @j P J0, t P T (4.10)

xmt, ztij P t0, 1u @i, j P J0,m PM, t P T (4.11)

The main goal of the model is to maximize the service level, which we define as the

number of performed jobs. Minimization of the total job completion time is considered

as a subordinate objective. Weights α and β are used for expressing different priorities

of these two objectives. Constraints (4.2) forbid to assign an employee to more than one

team. Constraints (4.3) guarantee that each formed team t has an appropriate qualifi-

cation for processing all jobs that are assigned to this team. Constraints (4.4) indicate

that each active team starts from the depot. Constraints (4.5) impose that each job can

be served by at most one team. Constraints (4.6) are the flow balancing constraints.

Constraints (4.7)-(4.8) define the start and completion times of job j performed by team

t. Here,M denotes a sufficiently large positive value. Note that Constraints (4.7)-(4.8)

also prevent subtours in the solution. Constraints (4.9) bound the longest working time

for all teams. Constraints (4.10)-(4.11) specify the domains of decision variables.

4.4 Robust Formulations with Uncertain Job Qualification Requirements

We present two robust problem formulations, which are based on different models to

treat uncertainty in skill demand. For the ease of notation, we denote the two models

by RM1 (first robust model) and RM2 (second robust model), respectively.

4.4.1 First Robust Model (RM1)

Our aim is to generate solutions that are insensitive to demand deviations. By demand

deviation, we understand the variation of skill vectors in a job requirement matrix rjkl.

In the deterministic model presented in Section 4.3, only Constraints (4.3) are affected

by the variation of job skill requirements rjkl. Note that only one element of rjkl is exam-
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ined in each qualification constraint. In the standard technique for robust optimization

(Bertsimas and Sim (2004)), we require constraint-wise uncertainty instead. Otherwise,

we would hedge against the worst case in each parameter, which results in overly con-

servative solutions. To avoid this conservatism, we follow the approach of Bohle et al.

(2010) and Henao et al. (2016) and extend the original deterministic model by redun-

dant constraints expressing the aggregated qualification requirement, which we compute

as the sum of technicians in all skill domains required on all levels of competence:

¸
mPM

¸
kPK

¸
lPL

xmt � qmkl ¥
¸
kPK

¸
lPL

rjkl �
¸
iPJ0

ztij @j P J, t P T (4.12)

We model the uncertain demand r̃jkl for all j P J as an independent, random variable

bounded on the interval r̃jkl P rrjkl, rjkl� r̂jkls, where rjkl denotes the nominal value and

r̂jkl the maximal deviation allowed for rjkl. For each random variable r̃jkl, we define a

level of variability ζjkl ranging within r0, 1s. From this, the skill requirement variation

is formulated as follows:

r̃jkl � rjkl � r̂jkl � ζjkl @j P J, k P K, l P L (4.13)

Furthermore, we assume that any skill and any qualification level can be exposed to

uncertainty. The level of uncertainty for a job j is controlled by parameter Γj P N

that presets the maximum skill and experience deviation allowed for this job. More

precisely, Γj represents an upper bound on the sum of skill and experience deviation

weights ζjkl over all skill domains k P K and levels l P L. From this, Γj serves to

adjust the robustness of the solution against the level of conservatism of a decision

maker (Bertsimas and Sim (2003)). For instance, if Γj � 0, a decision maker assumes

that no element of rjkl is likely to change. This corresponds to a risk seeking attitude

where no protection against demand uncertainty is incorporated in the planning. In

contrast, Γj � |K| � |L| assumes that all elements of rjkl are subject to uncertainty,

which corresponds to a very risk averse decision maker. This guarantees the maximal
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level of protection against all possible variations but, at the same time, results in the

most conservative solution. Based on the previous notation, the uncertainty set for each

job UΓ
j is defined as follows:

UΓ
j �

#
r̃j P R|K|�|L| | r̃jkl � rjkl � r̂jkl � ζjkl, 0 ¤ ζjkl ¤ 1 @k P K, l P L,

¸
kPK

¸
lPL

ζjkl ¤ Γj
+

The aim of the robust model is to find solutions that remain feasible for all possible

qualification requirements r̃j P UΓ
j for each job j.

Using the uncertainty set UΓ
j , the robust counterpart of (4.12) can be formulated as

¸
mPM

¸
kPK

¸
lPL

xmt � qmkl ¥
¸
kPK

¸
lPL

r̃j �
¸
iPJ0

ztij @j P J, r̃j P U
Γ
j , t P T (4.14)

Formulation (4.14) is intractable in its current form since it contains an infinite number

of constraints for all realizations of the continuous parameters ζjkl within the uncertainty

set UΓ
j . To approach this issue, note that

°
iPJ0 ztij is either 0 or 1. Hence, there are

only two cases we need to consider: If
°
iPJ0 ztij � 0, constraint (4.12) is always fulfilled.

If
°
iPJ0 ztij � 1, then we need to calculate the maximum value that

°
kPK

°
lPL r̃jkl can

possibly take. Denoting this value by r̄j, constraint (4.14) becomes

¸
mPM

¸
kPK

¸
lPL

xmt � qmkl ¥ r̄j �
¸
iPJ0

ztij @j P J, t P T (4.15)

To calculate r̄j, we need to solve the problem

r̄j �max
#¸
kPK

¸
lPL

prjkl � r̂jkl � ζjklq :
¸
kPK

¸
lPL

ζjkl ¤ Γj, 0 ¤ ζjkl ¤ 1 @k P K, l P L

+

�
¸
kPK

¸
lPL

rjkl � max
#
r̂jkl � ζjkl :

¸
kPK

¸
lPL

ζjkl ¤ Γj, 0 ¤ ζjkl ¤ 1 @k P K, l P L

+

Calculating this value can be done by sorting the vector r̂jkl in descending order, and

then summing up the Γj many largest values. Then, the robust counterpart of the
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nominal model becomes

maximize: α �
¸
tPT

¸
iPJ0

¸
jPJ

ztij � β �
¸
tPT

¸
jPJ

ftj (4.16)

subject to: (4.2) � (4.11) and¸
mPM

¸
kPK

¸
lPL

xmt � qmkl ¥ r̄j �
¸
iPJ0

ztij @j P J, t P T (4.17)

We further extend this model by measuring how much the required right-hand side

constraint (4.17) is exceeded. This excess creates an additional benefit for the objective

function, i.e., we reward additional robustness in the solution with some weight µ. To

this end, we introduce a new variable ρjt that measures the slack of the right-hand side.

This yields model RM1:

maximize: α �
¸
tPT

¸
iPJ0

¸
jPJ

ztij � β �
¸
tPT

¸
jPJ

ftj � µ �
¸
tPT

¸
jPJ

ρjt (4.18)

subject to: (4.2) � (4.11) and¸
mPM

¸
kPK

¸
lPL

xmt � qmkl ¥ r̄j �
¸
iPJ0

ztij � ρjt @j P J, t P T (4.19)

ρjt ¤M �
¸
iPJ0

ztij @j P J, t P T (4.20)

ρjt ¥ 0 @j P J, t P T (4.21)

The additional constraint (4.20) is required to ensure that the excess is only taken into

account if the job j is actually performed by team t.

4.4.2 Second Robust Model (RM2)

In the previous model, uncertainty sets were applied job-wise, which makes it possible

to find a robust counterpart with little computational overhead. It has the drawback

that solutions may still become overly conservative, as worst-case scenarios are assumed

for each job separately. Furthermore, the aggregation of constraints means that it is

ignored with what skills we hedge against uncertainty, as long as the total number of
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skills present is sufficient. We now follow a more nuanced approach to model uncertainty,

which avoids both problems.

Consider the skill requirement rjkl for job j, skill k, level l. Let us assume we build

a team that reaches a qualification level
°
mPM xmt � qmkl. The buffer is then defined as

bjkl �
°
mPM xmt � qmkl � rjkl.

Let us assume there is an adversary who tries to find a scenario to disrupt as many

jobs as possible. The adversary can increase the required skill level rjkl under the

following conditions: increasing rjkl by one unit has some cost cjkl, which reflects that

higher level skills are less likely than lower level skills (cjkl increases with l) and that it

should be more expensive to increase the demand of skills k that are less likely to be

relevant as judged by expert knowledge. The adversary has a global budget Γ he can

use for skill requirement increases. A job is disrupted if the requirements in one skill

and level are not met.

Given a fixed team and schedule, we hence want to solve the following adversary

problem:

maximize:
¸
jPJ

�¸
tPT

¸
iPJ0

ztij

�
� ζj (4.22)

subject to: ζj ¤
¸
kPK

¸
lPL

ζjkl @j P J (4.23)

¸
jPJ

¸
kPK

¸
lPL

pbjkl � 1q � cjkl � ζjkl ¤ Γ (4.24)

ζj P t0, 1u @j P J (4.25)

ζjkl P t0, 1u @j P J, k P K, l P L (4.26)

Here, binary variable ζjkl indicates if job j is prevented by increasing the requirements

in skill k at level l. Binary variable ζj indicates if job j is prevented overall. Using

constriant (4.23), we enforce that ζj can only be active if at least one of the ζjkl variables

is active as well. Constraint (4.24) ensures that the total budget is restrcited to Γ, where
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the costs on the left-hand side correspond to the required investment to make a job

infeasible. Note that in an optimal solution, one would not increase multiple variables

ζjkl for the same job j, but only choose the cheapest possibility. As the buffers bjkl

depend on the assignment xmt, we do not remove these variables from the problem.

Unfortunately, it is not possible to relax this formulation of the adversarial problem

without changing its objective value. This means that a compact robust formulation

cannot be obtained by simply dualizing the linear relaxation of the adversarial problem.

In the following, we show that a compact formulation can still be obtained by using a

dynamic programming formulation.

Let us denote by F pj, γq the maximum number of jobs from j1 P t0, . . . , ju that can

be interrupted with a budget γ P t0, . . . ,Γu �: Γ0. We have F p0, γq � 0 for all γ P Γ0,

and the recursion

F pj, γq � max
"
F pj � 1, γq, 1 � F pj � 1, γ � min

k,l
pbjkl � 1q � cjklq

*

The value F p|J |,Γq is then equal to the objective value of the adversarial problem. We

can also see this dynamic program as a longest path problem. We define a set of nodes

V � J0 � Γ0 and arcs A � tpj, γ, j1, γ1q P V � V : j1 ¡ j, γ1 ¡ γu. The adversary problem

is then equivalent to solving

maximize:
¸

a�pj,γ,j1,γ1qPA

�¸
tPT

¸
iPJ0

ztij1

�
� c̃apa (4.27)

subject to: p is a path from p0, 0q to p|J |,Γq (4.28)

where

c̃jγ,j1γ1 �

$''&
''%

1 if Dk, l : pbj1kl � 1q � cj1kl ¤ γ1 � γ

0 else
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Dualizing this gives the model

minimize: u|J |,Γ (4.29)

subject to: u00 � 0 (4.30)

uj1γ1 ¥ ujγ �

�¸
tPT

¸
iPJ0

ztij1

�
� c̃j,γ,j1,γ1 @pj, γ, j1, γ1q P V � V : j1 ¡ j, γ1 ¡ γ (4.31)

Combining this dual adversarial model with the deterministic formulation, we obtain

the following compact formulation RM2 for the robust RSPMST:

maximize: α �
¸
tPT

¸
jPJ0

¸
jPJ

ztij � ν � u|J |Γ � µ �
¸
jPJ

¸
kPK

¸
lPL

¸
tPT

ρjklt � β �
¸
tPT

¸
jPJ

ftj (4.32)

subject to: (4.2), (4.4) � (4.9) and¸
mPM

xmt � qmkl ¥ rjkl �
¸
iPJ0

ztij � ρjklt @j P J, k P K, l P L, t P T (4.33)

ρjklt ¤M �
¸
iPJ0

ztij @j P J, k P K, l P L, t P T (4.34)

u00 � 0 (4.35)

uj1γ1 ¥ ujγ � vj1,γ1�γ @j1 P J, j P J0 : j1 ¡ j,

γ1, γ P Γ0 : γ1 ¥ γ (4.36)

M � pvjγ�p1 �
¸
iPJ0

ztijqq ¥

γ � p
¸
mPM

qmkl � xmt � rjkl � 1q � cjkl � 1 @γ P Γ0, j P J, k P K, l P L, t P T (4.37)

stj, ftj, ρjklt ¥ 0 @j P J0, t P T, k P K, l P L (4.38)

xmt, ztij P t0, 1u @i, j P J0,m PM, t P T (4.39)

vjγ P t0, 1u @j P J, γ P Γ0 (4.40)

ujγ ¥ 0 @j P J0, γ P Γ0 (4.41)

The objective function consists of four components. The first component is to maximize

the number of jobs that are taken on. This is reduced by the number of jobs that can be
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interrupted by the adversary, weighed with a factor ν. With a factor ν slightly smaller

than one, we ensure that it is better to plan a job and then have it canceled, than

not planning the job at all. The third component is to maximize buffer sizes, similar

to model RM1. The last component is the travel time. Constraints (4.33)-(4.34) are

modified qualification requirements. Constraints (4.35)-(4.37) are used to calculate u|J |Γ,

the number of interrupted jobs. To this end, the binary variable vjγ is forced to be 1 if°
tPT

°
iPJ0 ztij � 1 (i.e., the job is being taken) and γ is sufficiently large to disrupt job j.

4.5 Computational Study

In this section, we describe the results of a computational study that aims at comparing

the performance of the models described in Sections 4.3 and 4.4 where we explore the

effect of robust planning on the scheduling decisions. Next, we describe our experimental

setup followed by a presentation of the obtained results.

4.5.1 Experimental Setup

Our experiments are based on the 12 instance sets of Anoshkina and Meisel (2019).

Each instance set contains 10 instances and is distinguished according to the number of

jobs and available employees. The first set contains small instances with 4 jobs and 4

employees each, while the last set includes large instances with 20 jobs and 20 employees

each. All instances are available online at www.scm.bwl.uni-kiel.de/de/forschung/

research-data.

In order to estimate the extent to which the skill variations can impact the solution

quality, we use employee and job qualification matrices with |K| � 3 skills and |L| � 3

skill levels. From this, the maximum possible scaled skill deviation for each job in RM1

is Γj � 3 � 3 � 9. In our experiments, we limit Γj for all jobs to value Γj � 4, which

corresponds to a medium level of risk aversion. In contrast, the uncertainty budget Γ

for RM2 has to be defined individually for all instances and instance sets. Therefore,
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preliminary experiments were conducted to estimate Γ manually. For RM1, we set the

maximal skill deviation for each job as r̂jk1 � 2, r̂jk2 � 1 and r̂jk3 � 1. To evaluate

the skill deviation for RM2, we define the cost matrix cjkl randomly as follows. The

cost of increasing the skill requirement at level l � 1 are set to 1 and 2 with an equal

probability. Thereby, cjk1 � 1 means that the corresponding rjkl element is more likely

to be changed. Similar, cjk2 P t3, 4u and cjk3 P t5, 6u. The maximal working time emax

is set to 540 minutes for all instances and models. Putting emphasis on the service

quality, we use the following parameters for evaluating the objective functions: α � 1,

β � 0.0001, µ � 0.01 and ν � 0.99.

All tests have been run on an Intel(R) Core (TM) i7-8700 3.20 GHz with 32 GB of

RAM. We used CPLEX 12.10 for solving the mixed-integer programming models using

a runtime limit of 3600 seconds per instance.

4.5.2 Price of Robustness

The first experiment is conducted to test the extent to which the proposed linear models

can be solved to optimality and to examine the effect of the robust planning on schedul-

ing decisions. In particular, we analyze the so-called price of robustness indicating the

extent to which the optimal robust solution differs from the non-robust deterministic

solution. As performance measure, we consider the difference in the achieved service

levels, which we associate with the number and the complexity of performed jobs.

Table 4.1 reports average results for all instance sets and each modeling approach ob-

tained by CPLEX. The first column of the table shows the problem size. The next five

columns display results for the deterministic optimization model from Section 4.3, where

the reported values are averages for the solutions of 10 instances in the corresponding

instance set. The first column Z shows the number of performed jobs. The second

column C indicates the average complexity of performed jobs. We define the job com-

plexity as the average required skill in all skill domains and at all levels of competence
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Table 4.1: Performance metrics for price of robustness
Instance DM RM1 RM2
|J | � |M | Z C T E F Z C T E F Z C T E F

4 x 4 2.1 5.1 1.8 3.6 692 1.7 3.9 1.3 4.0 591 1.5 3.7 1.0 4.0 514
4 x 8 3.2 5.0 3.1 7.8 1116 2.9 4.6 2.5 8.0 1055 2.1 4.2 1.6 8.0 765
6 x 6 3.7 4.6 3.1 5.5 1329 2.8 4.0 1.8 6.0 1047 2.7 4.1 1.8 6.0 1010
6 x 12 4.8 5.0 4.7 11.0 1706 4.6 4.9 3.6 12.0 1787 3.9 4.5 2.9 12.0 1506
8 x 6 4.4 4.8 3.3 5.6 1553 3.3 4.0 2.2 6.0 1215 3.1 4.5 1.8 6.0 1136
8 x 12 6.2 5.1 5.7 11.5 2206 5.5 4.8 4.1 12.0 2062 5.0 4.6 3.5 12.0 1892
10 x 7 5.1 4.9 3.8 6.7 1750 3.8 4.5 2.4 7.0 1366 4.2 4.7 2.4 7.0 1574
10 x 13 7.7 5.5 6.4 12.5 2802 6.5 4.7 4.6 13.0 2443 6.1 5.2 4.1 12.9 2327
15 x 8 6.7 4.9 4.6 8.0 2376 4.8 3.7 3.0 8.0 1738 4.1 5.1 2.4 7.9 1500
15 x 15 10.3 5.4 7.6 14.6 3897 8.2 4.8 5.0 15.0 3115 6.4 5.3 4.0 14.9 2452
20 x 10 9.0 4.7 6.0 9.9 3157 6.8 4.3 3.5 10.0 2456 6.6 4.3 4.2 10.0 2423
20 x 20 13.7 5.5 10.4 19.9 5001 10.9 4.6 6.8 20.0 4037 8.3 4.9 5.3 19.8 3057

for those jobs that are processed in a solution, i.e., C �
°
jPJsol

°
kPK

°
lPL rjkl{|J

sol|,

where Jsol � J denotes the jobs of the solution. Further, columns T and E specify

the number of active teams in the route plans and the number of employees assigned to

these teams. The next column F gives the total job completion time. The corresponding

results for the robust optimization models are presented in the middle and at the right

of the table.

Based on Table 4.1, the following differences in the performance of the models can be

observed. As expected, we see that DM generates many solutions with a higher service

level than (column Z) RM1 and RM2. This is because DM considers only nominal

qualification requirements without taking risks of data variation into account. Thereby,

we see that the number of performed jobs increases for instances with a larger number

of available employees (|J |   |M |). In general, RM2 is more conservative as the service

level achieved under RM2 is slightly lower for nearly all instances, compared to RM1.

Another aspect is the complexity of the performed jobs. Looking at columns C, we see

a clear tendency for RM1 and RM2 to avoid an assignment of more challenging jobs.

However, no direct correlation can be derived. Comparing both models, we observe

lower (see e.g. instances 4 � 4, 4 � 8 or 6 � 12) as well as higher complexity values (see

e.g. instances 6 � 6, 8 � 6, 10 � 7).

Considering the number of teams and employees used in the solutions (columns T
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Table 4.2: Performance metrics for computation times
Instance DM RM1 RM2
|J | � |M | CPU GAP Opt. CPU GAP Opt. CPU GAP Opt.

4 x 4 0.02 0 10 0.02 0 10 0.16 0 10
4 x 8 0.02 0 10 0.04 0 10 0.46 0 10
6 x 6 0.15 0 10 0.70 0 10 7.06 0 10
6 x 12 0.15 0 10 1.27 0 10 143.37 0 10
8 x 6 0.64 0 10 0.79 0 10 425.68 5 9
8 x 12 128.82 0 10 346.74 0 10 1669.68 22 6
10 x 7 142.72 0 10 237.35 0 10 1468.76 17 7
10 x 13 1621.64 2 7 2720.58 7 4 3522.07 55 1
15 x 8 2865.84 33 3 2883.81 29 3 3600.00 81 0
15 x 15 3600.00 29 0 3600.00 24 0 3600.00 73 0
20 x 10 3600.00 54 0 3600.00 42 0 3600.00 76 0
20 x 20 3600.00 32 0 3600.00 23 0 3600.00 74 0

and E), we observe that RM1 assigns employees to a consistently lower number of

teams than DM. This indicates that larger teams are created in order to guarantee a

greater schedule reliability in the presence of possible data variations. Moreover, we

observe a further decrease of T when comparing RM1 and RM2 for the majority of

instances. Similar to RM1, all employees are involved. An exception to this are large-

sized instances that could not be solved to optimality, see instances 10�13 - 15�15 and

20 � 20. This also demonstrates a similar tendency to increase the level of protection

by increasing the team size.

A further examination shows that, compared to DM, RM1 and RM2 result in a

lower total job completion time due to a lower number of performed jobs.

Table 4.2 provides statistics for the consumed runtime expressed in seconds (column

CPU) and the optimality gap in percent (columns GAP ) reported by CPLEX after

the runtime limit of 3600 seconds per instance. The optimality gap is computed as

GAP � (Objective - LB){LB where „Objective“ denotes the value of the objective func-

tion achieved by the model and „LB“ gives the lower bound value reported by CPLEX.

Column Opt. gives the number of instances solved to optimality in each instance set.

The obtained results show that the computational time increases with an increase

of the instance size. Looking at column Opt., we see that already small instances

containing less that 10 jobs could not be solved to optimality within the preset runtime
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limit. According to Table 4.2, there is no substantial difference in the complexity of DM

and RM1. RM1 delivers almost the same number of optimal solutions as DM does.

Thereby, RM1 demonstrates only slightly lower GAPs values compared to DM, see

instances 15�8 - 20�20. In contrast, RM2 requires a considerably higher computational

effort due to a much larger number of variables and constraints. Already for instances

of size 8 � 6, we observe a positive average GAP and considerably larger CPU times.

4.5.3 Benefit of Robustness

The next two experiments assess the effect of data changes on the solution feasibility.

In other words, we test how many planned jobs the teams can actually perform when

uncertain skill requirements realize in the schedule execution. For this purpose, we

generate for each optimization approach 1, 000 demand scenarios per instance set. Thus,

the results are averages over S � 10 � 1, 000 � 10, 000 scenarios. We start by generating

scenarios of type RM1 which are modeled with Γj � 3, i.e. 3 elements are varied in the

original qualification requirement matrix of each job. The obtained results are reported

in Table 4.3. The first column shows the problem size. Columns A in each block give

the average of the absolute number of performed jobs while columns R indicate the

average relative proportion of processed jobs in all scenarios in percent. For a scenario

s, we compute Rs as Rs � As{Z where Z refers to the number of originally performed

jobs for the corresponding model. Columns B show the relative frequency in percent

with which each robust model outperforms DM. Finally, we report in columns W the

relative frequency with which the service level attained by each robust model is lower

than the nominal one.

The results for DM show that a considerable number of job assignments becomes

infeasible. In fact, the relative service level R drops below 20% for the most instances.

This means that although the deterministic model inserts a lot of jobs in a solution, it

finally fails to process these jobs due to uncertain job requirements and insufficiently
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Table 4.3: Scenarios of type RM1 (Best average service level per row is highlighted in bold)
Instance DM RM1 RM2
|J | � |M | A R A R B W A R B W

4 x 4 0.50 21.33 1.11 63.96 50.63 2.64 1.10 71.36 50.69 2.23
4 x 8 1.02 33.35 1.46 50.12 44.84 12.90 1.73 86.75 57.12 4.29
6 x 6 0.65 18.23 1.76 67.08 73.50 5.74 1.88 73.12 82.37 0.50
6 x 12 1.66 34.93 2.59 55.13 62.60 12.75 3.07 80.78 81.17 1.67
8 x 6 0.78 18.30 1.96 60.80 75.05 4.82 2.12 70.78 85.06 1.82
8 x 12 1.37 22.77 3.02 54.11 78.49 5.44 3.13 61.72 76.56 5.79
10 x 7 0.96 20.12 2.17 56.90 73.29 2.89 2.00 51.69 68.05 4.28
10 x 13 1.39 18.23 2.98 45.96 77.00 9.15 3.32 58.04 88.67 2.12
15 x 8 1.21 18.55 2.63 53.74 73.50 5.84 2.51 66.51 73.10 8.87
15 x 15 1.64 16.19 4.23 51.55 91.00 1.65 3.75 60.75 88.58 3.58
20 x 10 1.55 17.47 3.30 49.08 81.87 4.15 2.80 48.29 69.10 15.03
20 x 20 1.70 11.78 5.03 46.06 96.20 0.92 5.17 72.34 90.94 3.04

qualified teams. This low reliability can be substantially moderated by RM1, which

is confirmed by significantly higher R values ranging between 45% and 67%. However,

note that these values already lie below 100% for Γj � 3. This is because Γj � 4

guarantees the solution feasibility only for the aggregated skill level but not for every

single element of matrix rjkl. This means that a solution can become infeasible also

for skill deviation that is below the defined uncertainty budget Γj � 4. Moreover,

for all instances, we observe significantly higher absolute numbers of still feasible job

assignments (see column A). Looking at column B, we see that RM1 outperforms DM

in 45% to 96% of all scenarios while W ranges between 1% and 13% only. Although

RM1 achieved a lower service level than DM in the first experiment (see Table 5.1),

it now performs clearly stronger under the uncertain problem setting. Also RM2 is

superior to DM. In fact, RM2 delivers better results in 50% to 90% of all scenarios,

see column B. Moreover, compared to RM1, we even observe a higher absolute and

relative service level achieved under RM2 for instances 4 � 8 to 8 � 12, 10 � 13 and

20 � 20. However, solutions for larger instances are less immunized against this type

of uncertainty as they are solved under lower Γ compared to small- and medium-sized

instances. This is due to a higher problem complexity and, thus, computational effort

required by RM2 that does not allow to further increase uncertainty budget within the

preset time limit.
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Table 4.4: Scenarios of type RM2 (Best average service level per row is highlighted in bold)
Instance DM RM1 RM2
|J | � |M | A R A R B W A R B W

4 x 4 0.60 26.60 1.04 64.84 46.03 7.31 1.14 77.39 51.56 4.98
4 x 8 1.05 33.75 1.47 50.97 43.40 14.44 1.69 84.75 54.42 6.71
6 x 6 0.97 26.86 1.85 69.62 64.66 9.90 1.98 75.19 74.24 2.76
6 x 12 1.57 33.96 2.29 48.88 53.63 15.30 3.03 79.83 79.32 2.40
8 x 6 1.04 26.61 1.86 57.15 59.77 11.32 2.21 73.79 75.44 3.01
8 x 12 1.50 24.47 2.94 52.89 75.57 5.02 3.23 63.91 81.24 6.31
10 x 7 1.28 25.68 2.24 58.91 65.55 9.87 2.27 57.85 71.19 8.05
10 x 13 1.93 25.52 3.30 50.13 66.67 13.58 3.46 60.54 76.22 7.21
15 x 8 1.55 23.55 2.79 57.27 67.83 10.29 2.76 71.43 71.17 9.18
15 x 15 2.45 23.92 4.64 56.48 87.19 3.41 4.09 66.31 78.06 7.31
20 x 10 2.04 22.77 3.93 58.26 83.78 4.38 3.16 53.38 67.58 13.94
20 x 20 2.58 18.40 5.71 52.03 93.57 1.95 5.30 72.91 86.73 5.89

To achieve a fair comparison between the two robust approaches, we conduct a second

experiment to evaluate the quality of solutions under scenarios of type RM2. For

this purpose, we create further 10, 000 scenarios (1, 000 for each instance set) with

uncertainty budget Γ � 10 � |J |. Following definition in Section 4.2, the scenarios are

modeled such that the uncertainty budget is bounded over all jobs. To simulate different

skill realizations, the sequence in which the jobs are considered is defined randomly for

each scenario. For each considered job, one element is changed in matrix rjkl. Thereby,

skill domain and the competence level are selected randomly with equal probability of

1{|K| and 1{|L|. The process is continued until the budget is reached.

The obtained results are summarized in Table 4.4. Here, we see that the general trends

are similar to those in the previous experiment. Compared to both robust approaches,

we observe a low solution feasibility for DM with R values that lie under 30% for

the majority of instances. With RM1 this ratio is increased to further 48% to 69%.

Moreover, we observe an increase in R by further 6% to 34% when comparing RM1

and RM2. In absolute terms, RM2 outperforms RM1 in 67% of cases. This holds

especially for instances that could be solved to optimality. Whereas, for the four last

instances, RM1 is again superior to RM2. Analyzing the performance of each single

approach under different uncertainty settings, we observe higher B and lower W values

in the previous experiment for both RM1 and RM2. This is explained by a higher
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uncertainty imposed by scenarios of type RM1 and, thus, a lower number of feasible

job assignments in DM-solution (see column A in Table 4.3 and Table 4.4).

4.5.4 Variation of Uncertainty Budget

To give a more detailed understanding of the differences between the two robust planning

approaches, we conduct a sensitivity analysis by varying the uncertainty budget for the

generation of scenarios. Note that we do not recompute the model solutions in the

simulation but evaluate feasibility of each scenario based on job assignments reported in

Table 4.1. For scenarios of type RM1, Γj is varied on the interval [0, 6]. Here, value 0

means that no skill deviations are considered, whereas value 6 means that six elements

of the job requirement matrix can deviate from their nominal values simultaneously.

For scenarios of type RM2, Γ is varied on the interval r0, 16 � |J |s. Figures 4.1 and 4.2

show the impact of different parameter settings on the service level for three selected

instance sets. Each plot relates to the average solutions of 10, 000 scenarios generated

under different Γ-settings. Scenarios were generated according to the process described

in the previous subsection.

The results demonstrate that the service level is inversely correlated with the level

of uncertainty. We can see a decline in the number of performed jobs with higher

Γj and Γ as the data becomes more and more uncertain. Thereby, marginal cost of

robustness increase with an increase of the instance size. In general, solution quality in

RM1-scenarios worsens at a strong rate. The service level drops to substantially lower

values already in the middle of the examined interval. This is an expected outcome.

As the uncertainty budget defined for RM1 is aggregated job-wise, Γj-variations are

more challenging and incur a higher price of robustness. Further, we observe that RM1

achieves the same or even better service level at the interval Γj P r0, 3s, whereas RM2

generates a more robust solution for Γj P r4, 6s, see Figure 4.1. To this end, the both

proposed approaches significantly outperform DM.
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Figure 4.1: Influence of uncertainty on the number of performed jobs with scenarios of type
RM1

A similar pattern emerges in Figure 4.2. Here, we also see that RM1 is superior to

RM2 if the expected skill variation is relatively low. However, the break even point

is now reached after only Γ � 8. This is explained by the fact that RM2 is more

conservative with our choice of Γ. This confirm the results reported in Table 4.1 where

the service level achieved under RM1 is consistently higher compared to RM2. From

this, a higher level of data uncertainty is required by RM2 to produce a significant

impact on performance indicator.

To summarize our results, we can conclude that all proposed robust approaches can

successfully handle the demand uncertainty. RM2 provides a higher solution feasibility

than RM1 for our choice of Γ, but tends to give the best performance on a wide range

of levels of uncertainty, and even on scenarios that are generated in the style of RM1.

The advantage of RM1, on the other hand, is its reduced computational complexity,
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RM2
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which makes it possible to find robust solutions even on the largest instances.

4.6 Conclusions and Future Research

In this paper, we have investigated the problem of routing and scheduling multi-skilled

teams under demand uncertainty where the variations of job qualification requirements

are captured through uncertainty sets. For the solution of the problem, we have de-

veloped and analyzed two robust modeling approaches. Computational experiments

showed that deviations in qualification requirements can have an extremely negative

impact on the quality and the feasibility of the obtained solutions in a non-robust plan-

ning. This can be significantly moderated by the proposed robust approaches. The

degree of solution robustness can be controlled not only by choosing uncertainty budget

Γ but also by choosing an appropriate method to model the uncertainty set. Specifically,

we demonstrated that a higher protection against any demand variations is provided if

the demand uncertainty can be distributed over the complete customer network where

uncertainty cost are defined for each particular skill. Alternatively, uncertainty might

be aggregated for each job separately. This allows to reach a reasonable compromise

between the risk aversion and the achieved service level.

As this study represents a first step to incorporate uncertainty into scheduling of

multi-skilled teams, there are still many promising avenues for future research. For

instance, this study can be extended to other variants of uncertainty sets. In practice,

the changes in job qualification requirements are often coupled with changes in job

processing times. From this, it could be interesting to model interdependencies between

these two parameters in the context of robust optimization. Finally, as the optimization

models cannot be solved to optimality for large-scale problems, it would be worthwhile

to develop further heuristic approaches.
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Routing and Scheduling of Multi-Skilled Teams with Simultaneous

and Sequential Use of Skill

Yulia Anoshkinaa,
a School of Economics and Business, Christian-Albrechts-University of Kiel, Germany

Abstract: In this paper, we consider a problem of teaming and scheduling of multi-

skilled employees that have to perform a set of geographically distributed jobs. In

particular, we focus on a competence-based estimation of job processing times. Based

on a hierarchical competence concept, this work proposes a linear optimization model

that incorporates a so-called sequential use of skill where employees can contribute

to multiple skill domains sequentially and the job processing time is considered as a

function of team size and competence level. The effect of sequential use of skill on

large sized instances is evaluated by means of an adaptive large neighborhood search

heuristic (ALNS). Extensive experiments are conducted to analyze the effectiveness of

the proposed approach and to reveal the impact on the achieved service level.

Keywords: Multi-Skilled Workforce Scheduling, Team Scheduling, Sequential Use

of Skill, Hierarchical Skill, Competence-Based Model, Adaptive Large Neighborhood

Search

5.1 Introduction

A problem where a set of employees proficient in different skill domains at different levels

of competence have to be grouped and routed to perform a set of jobs is referred to as

a service technician routing and scheduling problem (STRSP), see Kovacs et al. (2012).

141
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Such a problem is faced by telecommunication, construction or consultancy companies,

among others. Since the first investigation of such a problem in 2007, a number of

competing solutions together with numerous extensions have been proposed, see e.g.

Estellon et al. (2009), Hurkens (2009), Cordeau et al. (2010), Kovacs et al. (2012),

Fırat et al. (2016), Zamorano and Stolletz (2017), Khalfay et al. (2017), Anoshkina

and Meisel (2019). Detailed literature surveys with a discussion of applications and

solution methods can be found in Paraskevopoulos et al. (2016), De Bruecker et al.

(2015) or Anoshkina and Meisel (2020). Although a number of different aspects has

been investigated, the role of skill distribution within a team has received less attention.

Specifically, it was assumed that employees can contribute to the job progress in all

domains in that they are qualified simultaneously. According to the classification of

workforce planning problems by De Bruecker et al. (2015), the problem investigated

in our paper involves so-called hierarchical skills. This class of skills summarizes the

following features:

1. experience: skills are discretized into several qualification levels,

2. substitution: higher skilled employees can perform tasks requiring a lower level of

qualification,

3. workload: employees with a higher skill level can perform more tasks,

4. working speed: employees with a higher skill level can perform certain tasks better

or faster.

When modeling skill requirements, previous optimization studies focused on the first

three determinants of hierarchical skills. Regarding working speed, previous papers as-

sume that job processing times remain constant and independent on other factors, see

e.g. Cordeau et al. (2010), Kovacs et al. (2012), Firat and Hurkens (2012), Hashimoto
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et al. (2011) and Anoshkina and Meisel (2019), Anoshkina and Meisel (2020). How-

ever, working speed has a direct impact on job processing times and, thus, represents

an important scheduling aspect. Thereby, in the context of team scheduling, working

speed entails more the effect of team composition rather than the performance of a

single employee. The empirical study of Cassera et al. (2009) demonstrates that team

size is the second most important factor after job complexity accounting for variability

in processing time. However, in quantitative studies, competence-based performance is

usually considered in other contexts. For instance, studies devoted to project manage-

ment (Walter and Zimermann (2016), Karam et al. (2017)) underline that each worker

can execute only one operation (skill) of a project task at any time period. Thereby, the

time required to perform an operation in a particular skill domain is negatively related

to the efficiency in practicing this skill by the assigned employees. To integrate em-

ployee’s efficiency into project scheduling, a number of non-linear optimization models

have been presented in recent years. Thus, the primary interest lies in exploring the

evolution of an employee’s skill levels over time. The most common representation of

this evolution is the non-linear learning curve, see Heimerl and Kolish (2010), Gutjahr

et al. (2010), Attia et al. (2014), Qin et al. (2016), Zha and Zhang (2014). A more

recent contribution (Chen et al. (2020)) accounts for a relation between an employee’s

efficiency and product quality.

Apart from project scheduling, Malachowski and Korytkowski (2016) propose a static

competence model for deriving and updating qualifications of multi-skilled employees

undertaking repetitive tasks. Thereby, individual learning rates and experiences serve

as a basis for defining minimal and maximal durations of operations in each working

station. Chen et al. (2016) incorporate an experienced-based learning function in the

daily routing of technicians. For the solution of the problem, the authors propose a

modeling framework based on a Markov decision process together with a variant of a
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so-called record-to-record travel algorithm. In a further study, Chen et al. (2017) extend

the problem by stochastic customer demand which becomes known only on the day of

service.

Although helpful for our analysis, the cited works demonstrate some significant differ-

ences from the problem investigated in this paper. Project scheduling does not involve

teaming decisions. Furthermore, the key aspect of our study is not the evolution of em-

ployee efficiency over the planning horizon but an adequate estimation of job processing

times at the considered planning period. Our literature survey did not reveal any prior

studies that consider the problem from this perspective. To bridge this gap, we propose

a concept of sequential use of skill that assumes that each employee can perform only

one job operation at a time. If an employee has to contribute to the job progress in more

than one skill domain, all required operations are performed in a sequential manner, i.e.

one-by-one. The job processing time varies with the number and competence level of

assigned employees. Our contribution is then threefold.

• First, we develop a competence-based performance model for multi-skilled teams

that can derive the job-skill-contribution of each single employee and use it to

estimate job processing times.

• Second, we introduce a linear optimization model that involves a skill-based esti-

mation of job processing times as a function of team size and competence level.

• Third, we propose an ALNS algorithm that includes three different team construc-

tion schemes designed specifically for the problem considered. To this end, we

adopt destroy and repair operators to the sequential skill setting and propose an

additional restart mechanism to diversify and accelerate the search.

The remainder of this paper is structured as follows. Section 5.2 presents the back-

ground of the problem together with the linear formulation of the sequential STRSP.
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Section 5.3 includes the description of the heuristic solution approach. Section 5.4

describes the test problems and the computational experiments. Finally, Section 5.5

concludes with findings of this work and areas for future research.

5.2 Mathematical Optimization Model

5.2.1 Basic Notation

The multi-skilled scheduling and routing problem can be defined on a connected graph

G � pJ0, Eq, where J0 � t0u Y J is a vertex set and E � tpi, jq|i, j P J0u is the

corresponding set of edges. An arc pi, jq represents the possibility to travel between two

vertices i and j. Each trip between vertices pi, jq implies a non-negative travel time

dij. Vertex 0 represents a depot and vertices J � t1, ...|J |u denote the locations of jobs

1...|J |. Each job is associated with service that has to be started within the prescribed

time window raj, bjs, where aj and bj denote the earliest and the latest start times

correspondingly. The services have to be performed by a set of employees trained in

different skill domains at specific levels of competence. The job skill requirement Rjpk, lq

represents a two-dimensional matrix, where columns k P K refer to skill domains and

rows l P L refer to experience levels. A matrix element rjkl gives the required number of

employees qualified in domain k at experience level l for performing job j. The matrix in

the middle of Figure 5.1 shows an example of such a skill requirement. In this example,

two employees have to be trained in skill domain k � 1, one at least at level l � 3 and

another one at least at level l � 2. The underlying skill vectors of these employees are

p1, 1, 1q and p1, 1, 0q. Similar, one employee proficient at level l � 2 is needed in domain

k � 2, and one further employee must be trained at least at level l � 1 of skill k � 3.

In order to satisfy all service requirements, employees are grouped into teams. Each

job j P J can be performed by at most one team that has an appropriate qualification

level for performing this job. Note that the team can also be overqualified. We analyze

the overqualification from two perspectives: in terms of aggregated competence level
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a) Simultaneous use of skill

1

b) Sequential use of skill
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Figure 5.1: Use of skill

in each skill domain possessed by the team members as well as in terms of number

of employees in the team. For a better understanding, we illustrate in Figure 5.1 two

different team compositions conceivable for job j. The figure shows individual skill-

qualification vectors of each employee m P M in a binary matrix Qm that is built

according to the first three principles of the hierarchical skill concept as follows.

1. Experience: the elements qmkl of matrix Qm show employee m’s proficiency in skill

domain k P K at level l P L.

2. Substitution: qualification vectors are arranged in such a way that qmkl1 ¤ qmkl,

where l1 ¡ l. From this, an employee that is trained in domain k at a particular

level l, is also qualified for all lower competence levels in the respective domain.

For instance, employee 1 is proficient in skill k � 1 exactly at the level l � 2

required by job j and is even overqualified in domain k � 2, see Figure 5.1a.

3. Workload: employee m can perform operations in more than one skill domain if°
kPK qmk1 ¡ 1.

The aggregated competence levels of team t in each domain are defined as the sum of all

individual skills possessed by team members and are summarized in team skill matrices

τt, where values τt ¡ rjkl indicate team skill overqualification.

Eventually, teams must be sufficiently large to have the required expertise. As a

job’s skill requirement matrix is arranged monotonically decreasing in the skill levels,

the required team size Maxj represents the sum of skill requirements at the lowest level
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l � 1:

Maxj �
¸
kPK

rjk1 (5.1)

Thus, we have Maxj � 2 � 1 � 1 � 4 for Rj in Figure 5.1. If the team size corre-

sponds exactly to Maxj, work can be allocated across the team members such that

each employee contributes to the job progress only in one particular skill domain, see

Figure 5.1a. Hence, all service operations are performed simultaneously. We refer to

this as simultaneous use of skill.

Since each employee can possess multiple skills, job j might be performed by a team

with a lower team size, see Figure 5.1b. The minimal team size Minj corresponds to

the maximum qualification requirement at level l � 1:

Minj � max
kPK

trjk1u (5.2)

Here, we have Minj � maxt2, 1, 1u � 2 for Rj in Figure 5.1. In this scenario, the

assigned employees have to perform operations in more than one skill domain. As we

assume that single operations involved in a job have to be performed one-by-one, we

refer to this as sequential use of skill.

5.2.2 Modeling Simultaneous Use of Skill

Optimization models for the STRSP with simultaneous use of skill have been proposed

by Cordeau et al. (2010), Kovacs et al. (2012), Zamorano and Stolletz (2017) and

Anoshkina and Meisel (2019, 2020). The central idea of simultaneous skill modeling

is that the job processing time pj is a given parameter that remains constant and in-

dependent of the team size no matter whether the team size is different from Maxj.

To later derive the sequential STRSP, we first describe here an adapted version of the

model with simultaneous use of skill as provided by Anoshkina and Meisel (2020). The

following decision variables are introduced. The binary decision variable xmt indicates



CHAPTER 5. ESSAY 4 148

if an employee m is assigned to team t. The routing of teams is denoted by a further

binary decision variable ztij, which takes value 1 if team t performs job i directly before

job j and 0 otherwise. The scheduling variable stj defines the start time of job j by

team t. Similar, ftj denotes the completion time of job j executed by team t. Using the

introduced notation, the optimization model is formulated as follows.

maximize: α �
¸
tPT

¸
iPJ0

¸
jPJ

ztij � β �
¸
mPM

¸
tPT

xmt � γ �
¸
tPT

¸
jPJ

ftj (5.3)

subject to:¸
tPT

xmt ¤ 1 @m PM (5.4)

¸
mPM

xmt � qmkl ¥ rjkl �
¸
iPJ0

ztij @j P J, k P K, l P L, t P T (5.5)

¸
jPJ

zt0j ¤ 1 @ t P T (5.6)

¸
tPT

¸
iPJ0

ztij ¤ 1 @ j P J (5.7)

¸
iPJ0

ztij �
¸
iPJ0

ztji @ j P J0, t P T (5.8)

fti � dij ¤ stj �M �
�
1 � ztij

�
@i P J0, j P J, t P T (5.9)

stj � pj ¤ ftj �M �

�
1 �

¸
iPJ0

ztij

�
@j P J, t P T (5.10)

stj ¥ aj �M �

�
1 �

¸
iPJ0

ztij

�
@j P J, t P T (5.11)

stj ¤ bj �M �

�
1 �

¸
iPJ0

ztij

�
@j P J, t P T (5.12)

stj, ftj ¥ 0 @j P J0, t P T (5.13)

xmt, ztij P t0, 1u @i, j P J0,m PM, t P T (5.14)

The main goal of the model is to maximize the service quality. For this purpose,

the first component of the objective function (5.3) maximizes the number of jobs that

are assigned to teams and, thus, processed in the solution. The second component
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minimizes the number of assigned employees to avoid inefficient team composition. The

third component refers to the minor objective of minimizing the total job completion

time. Weights α, β and γ express different priorities of the three objectives. We assume

α " β ¥ γ. Constraints (5.4) state that each employee can be a part of at most one

team. Constraints (5.5) ensure that the team composition is appropriate to cover all

skills required by each job assigned to this team. Constraints (5.6) demand that each

team starts its tour at the depot at most once. Constraints (5.7) guarantee that each

job can be performed at most once by at most one team. Constraints (5.8) balance

the flow of team at each job j. Constraints (5.9) specify the time at which team t

starts performing job j. Constraints (5.10) determine the completion time of job j if

performed by team t. Constraints (5.11)-(5.12) state that the jobs are started within

the time windows. Constraints (5.13)-(5.14) specify the domains of decision variables.

5.2.3 Modeling Sequential Use of Skill

In this subsection, we formalize the sequential skill setting and provide the correspond-

ing optimization model. First, we discuss the computation of the effective team size.

For each job-team pair (j, tq, we interpret the effective team size as the number of those

employees in team t that can actually contribute to the work progress of job j. Here,

we adopt the working speed principle of the hierarchical skill concept as follows. Con-

sidering an individual job contribution, we assume that employees that are qualified in

a skill domain at a lower qualification level than is required by the job can contribute

to the work progress partially but need more time to complete the task. Hence, the job

processing time varies with the level of competence of assigned employees. As a numeri-

cal example consider the scenario shown in Figure 5.2 with a job requiring qualifications

in 3 out of 4 skill domains and a team of 6 employees. Following equation (5.1), we find

that Maxj � 6. Though Maxj is equal to the number of employees in the given team,

not all employees can progress at a similar rate. For example, employee 5 can perform
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Figure 5.2: Effective team size

operations in domains k � 3 and k � 4, but, since the respective job does not require

any operations in domain k � 4, employee 5 can contribute only in domain k � 3. Fur-

thermore, the competence level of employee 5 for skill k � 3 is significantly below the

required one. Moreover, employee 6 does not possess any skills required by the job. To

identify such patterns, we specify an individual job-skill-coefficient εmjk that indicates

to what extent an employee m can be used to perform a particular skill k required by

job j. As Constraints (5.5) guarantee that the job skill requirements are covered at all

experience levels including the highest ones independing on the team composition, it

suffices to examine the minimal job skill requirement rminjkl in order to define εmjk. To

derive rminjkl , we iteratively split each qualification requirement in matrix Rj into single

skill vectors and select the vector with the least highest experience level. For matrix Rj

in Figure 5.2, we obtain:

Rj �

k � 1 k � 2 k � 3 k � 4�
�������

�
������

1 � 1 � 1 1 � 1 1 0

1 � 1 � 1 1 � 1 1 0

1 � 1 � 0 0 � 0 1 0

rminjkl �

k � 1 k � 2 k � 3 k � 4�
�������

�
������

1 1 1 0 l � 1

1 1 1 0 l � 2

0 0 1 0 l � 3

More formally, for a job j and a skill k, the minimal required level lminjk is equivalent to

the maximal qualification level in matrix rminjkl (see bold values in example matrix rminjkl ):

lminjk � maxtl P L | rminjkl ¡ 0u @j P J, k P K (5.15)
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Similar, we define the maximal level of skill k possessed by employee m as:

lmaxmk � max � tl P L | qmkl ¡ 0u @m PM,k P K (5.16)

Then, the job-skill-coefficient εmjk is given as

εmjk �

$'''&
'''%
min

!
1, l

max
mk

lminjk

)
, if rminjk1 ¡ 0

0, otherwise
(5.17)

Note that, if skill k is not needed for performing job j (rminjk1 � 0), εmjk also takes

value 0 even though employee m can be qualified in domain k (lmaxmk ¡ 0). Furthermore,

the level of an employee’s expertise exceeding the required level does not result in a

reduction of job processing time, which is why the min-function in (5.17) bounds εmjk

to value 1. Generally speaking, the contribution ratio cannot exceed 100%. As example,

considering employee 2 in Figure 5.2, we have ε1j1 � 1, ε1j2 � 0, ε1j3 � 0.66, ε1j4 � 0.

Using εmjk, we can now derive an employee-job-contribution Qmj, which is the best

employee m can contribute to job j over all skills. As each employee can be trained

in different domains and, hence, can be deployed for performing different skills, Qmj is

defined as the maximum of the job-skill-coefficients:

Qmj � max
kPK

tεmjku @j P J,m PM (5.18)

For the example above, we obtain Q1j � maxt1, 1, 1, 0u � 1, Q2j � maxt1, 0, 0.66, 0u � 1,

Q3j � maxt1, 1, 0.33, 0u � 1, Q4j � maxt0, 0, 1, 0u � 1, Q5j � maxt0, 0, 0.33, 0u � 0.33,

Q6j � maxt0, 0, 0, 0u � 0.

To this end, the set of redundant employees has to be identified. Employees are called

redundant if they cannot contribute to the job progress though Qmj ¡ 0. For instance,

employees 4 and 5 can perform operations only in domain k � 3 but only one employee

is required in this domain for the example job j. We thus define for each job j the

sets of employees M jc with contribution in identical skill domains. Here, c refers to the
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index of such employee set and Cj denotes the index set for job j such that c P Cj.

Considering a pair of employees m and m1, we say that m,m1 PM jc, if

εmjk ¡ 0 for all k P K where εm1jk ¡ 0 and

εmjk � 0 for all k P K where εm1jk � 0

For instance, comparing εmjk for employees 1 and 3, we see that both employees can

perform operations in domains 1, 2 and 3 (ε1j1, ε1j2, ε1j3, ε3j1, ε3j2, ε3j3 ¡ 0) while ε1j4 �

ε3j4 � 0. Similar, employees 4 and 5 can contribute only in domain 3 as ε4j3, ε5j3 ¡ 0.

Whereas for domains 1, 2 and 4, we have ε4j1 � ε4j2 � ε4j4 � ε5j1 � ε5j2 � ε5j4 � 0.

From this, Cj � t1, 2u with M j1 � t1, 3u and M j2 � t4, 5u. Next, we denote by τjc

the number of employees actually required from set M jc for performing job j. Since

employees m P M jc are proficient in the same domains, it is sufficient to examine skill-

coefficients of any single employee from the respective set, say employee m1, to derive

τjc:

τjc �
¸
kPK

rjk1 j P J, c P Cj,K � tk P K | εm1jk ¡ 0u (5.19)

To compute τjc for set c � 1, we sum up the service requirements of job j at level l � 1

for skill domains k � 1, k � 2 and k � 3 as employees 1 and 3 are proficient in these

three domains. Here, we get τj1 � 3 � 2 � 1 � 6. Since employees 4 and 5 in set c � 2

are experienced only in domain k � 3, τj2 � rj31 � 1. Let σjtc be a new decision variable

that denotes the number of redundant employees in team t for set c. Suppose job j is

performed by team t. Then, σjtc is calculated as

σjtc � max
#

0,
¸

mPM jc

Qmj � xmt � τjc

+
@j P J, c P Cj, t P T (5.20)

To now derive the effective team size, we have to reduce the aggregated employee-job-

contribution of team t by the number of redundant employees in sets c P Cj:

¸
mPM

Qmj � xmt �
¸
cPCj

σjtc @j P J, t P T (5.21)
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To model the sequential processing time, we introduce a continuous variable δj that

measures the additional time needed for performing job j if the team size is belowMaxj.

To this end, we define parameter ςj that specifies the time increase per one employee that

has to perform job operations sequentially. The number of such employees corresponds

to

Maxj �

� ¸
mPM

Qmj � xmt �
¸
cPCj

σjtc

�
@j P J, t P T (5.22)

Using the introduced notation, STRSP with sequential use of skill is formulated as

follows:

maximize:

α �
¸
tPT

¸
iPJ0

¸
jPJ

ztij�β �
¸
mPM

¸
tPT

xmt� γ �
¸
tPT

¸
jPJ

ftj � θ �

�¸
jPJ

δj�
¸
jPJ

¸
tPT

¸
cPCj

σjtc

�
(5.23)

subject to:

(5.4) � (5.9), (5.11) � (5.14) and

δj ¥ ςj �

�
Maxj�

� ¸
mPM

Qmj � xmt�
¸
cPCj

σjtc

��

�M�
�

1�
¸
iPJ0

ztij
	

@j P J, t P T (5.24)

δj ¥ 0 @j P J (5.25)

σjtc ¥
¸

mPM jc

Qmj � xmt � τjc �M �
�

1 �
¸
iPJ0

ztij
	

@j P J, c P Cj, t P T (5.26)

σjtc ¥ 0 @j P J, c P Cj, t P T (5.27)

stj � pj � δj ¤ ftj �M �
�

1 �
¸
iPJ0

ztij
	

@j P J, t P T (5.28)

Objective (5.23) extends objective (5.3) by additionally minimizing the total increase

in job processing time weighted by θ. Constraints (5.24)-(5.25) compute the exten-

sion of the processing time for each single job j under team t that serves this job.

Constraints (5.26)-(5.27) represent a general reformulation of (5.20). Specifically, the
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number of redundant employees with an identical job-skill-contribution is given for each

job-team pair. Constraints (5.28) define the completion time of job j if performed by

team t including the additional time δj.

5.3 Adaptive Large Neighborhood Search

The optimization models presented in Section 5.2 can assess the impact of a sequential

skill setting on the achieved service level only partially due to the limited instance size

that can be solved by a commercial MIP solver like CPLEX. To demonstrate the effect

on larger problem instances, we propose an adaption of ALNS that was successfully

applied to solve the STRSP with simultaneous use of skill by Cordeau et al. (2010) and

Kovacs et al. (2012). Compared to their method, we propose new schemes to design the

teams, two additional destroy operators, and a restart mechanism based on an iterative

search heuristic. To this end, we adapt existing destroy and repair operators to the

sequential skill setting. In the following subsections, we describe each component of

ALNS in more detail.

5.3.1 Initial Solution

An initial solution is obtained by a two-phase approach. During the first phase, a con-

structive heuristic is used to initialize the team configuration, see Section 5.3.1.1. Trying

to find the compromise between the size and the number of created teams, the heuris-

tic oscillates between three schemes designed to create teams. The minimum scheme

assigns employees based merely on job qualification requirements. Hence, it guarantees

that the team size is at least as large as Minj. The maximum scheme attempts to

extend the teams up to Maxj. The average scheme represents an intermediate stage

between the two other schemes and creates teams of size Minj�Maxj
2 . For the ease of

notation, we denote the schemes by MinS, MaxS and AvS correspondingly. For each

scheme, routes for the teams are constructed using an iterative insertion procedure, see
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Section 5.3.1.2. Finally, the solution with the best value of the objective function is

selected.

5.3.1.1 Construction of Teams

The procedure starts by initializing a sequence in which jobs that have not been assigned

so far are examined. We denote these jobs by Ju. The jobs are sorted by a job complexity

factor ϑj in descending order. The job complexity incorporates not only the job’s skill

requirements but also the maximum number of employees Maxj required by the job:

ϑj � ξ �Maxj � µ �
¸
kPK

¸
lPL

rjkl @j P Ju (5.29)

Thereby, the weights ξ and µ are used to express the priority of both components, where

we assume ξ ¡ µ. The rational behind this is explained as follows. More challenging

jobs require a larger number of more qualified employees. Teams of a larger size are, in

turn, not only qualified for a larger number of jobs but can perform the assigned jobs in

a shorter period of time due to a large number of simultaneously performed operations.

Iterating over the created job sequence, the algorithm generates three team variants

for each candidate job until there are no further uninspected jobs or no free employees

are available. Initially, all employees in set M are considered as „free“. To construct the

MinS-team, available employees m P M are incrementally assigned to the team until

all service requirements are covered. Thereby, we first select employees with a lower

value of their skill gap factor. The skill gap factor cumulates the sum of a job’s skill

requirements that are still unmet after employee m has reinforced the team. Formally,

we have

εjm �
¸
kPK

¸
lPL

max

$&
%0, rjkl �

¸
tPT

¸
m1PMztmu

qm1kl � xm1t � qmkl

,.
- @j P J,m PM (5.30)

Giving the preference to better qualified employees, we increase the number of jobs that

can be potentially performed by the team in the later optimization process.
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To generate the MaxS or AvS-team, we reinforce the MinS-team by adding further

employees until the team size attains Maxj or Minj�Maxj
2 respectively. Note that this

time, we sort the employees in set M by the aggregated skill level in ascending order to

guarantee that enough qualified employees remain available at the end of the procedure

to construct further teams. The aggregated skill level is defined as follows:

εm �
¸
kPK

¸
lPL

qmkl @m PM (5.31)

Once a team is constructed, employee set M is updated and the algorithm proceeds to

the next job for which a team is to be built yet.

5.3.1.2 Construction of Routes

Once the teams are formed, the iterative search heuristic is applied to create the routes.

The algorithm starts by initializing the job sets Jqualt that the created teams t P T can

potentially perform. Formally,

Jqualt �

#
j P Ju |

¸
mPM

qmkl � xmt ¥ rjkl @k P K, l P L

+
@t P T (5.32)

Next, the teams are considered one by one in sequential manner. Thereby, we start

with the team that is qualified for the smallest number of jobs. For this team, a set of

temporary routes is initialized in order to diversify the search. The number of temporary

routes corresponds to the number of seed jobs Jseedt that can serve as starting point of the

route. To identify set Jseedt , we derive the minimal earliest starting time slmin among all

jobs j P Jqualt for which team t is qualified. Further, we define an additional parameter

λ specifying the maximal positive deviation from slmin. We set the bound λ to control

the number of seed jobs and, thus, the solution quality and the computational effort.

The parameter tuning is described in Appendix A. Formally, Jseedt is defined as follows:

Jseedt � tj P Jqualt |aj ¤ slmin � λu @t P T (5.33)

Starting from each seed job in Jseedt , we define one temporary route by incrementally

inserting unprocessed jobs if job j’s time window complies with the current working
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time of the team fti, i.e. if fti � dij ¤ bju. Here, index i refers to the last job served

by team t. Among all jobs that fulfill this criterion, the job with the least increment

to the routing cost is inserted into the next feasible tour position. The selected job is

then removed from sets Jqualt of all teams t P T . Formally, the routing cost of team t

are given as

Costrt � ft � dij � pj � δj � wj �W. (5.34)

Here, binary parameter wj incorporates the ability to extend the tour. More precisely,

wj takes value 1 if at least one further job can be inserted into the tour after job j which

reduces the routing cost by some value W , wj � 0 otherwise.

The process is continued until no more jobs are can be inserted. The quality of a

temporary route of team t is assessed by the objective function:

obj � α �
¸
iPJ0

¸
jPJ

ztij � β �
¸
jPJ

ftj (5.35)

If a newly generated temporary route yields a higher objective function value obj than

a previously determined one, the new route is stored as a current best solution.

5.3.2 Destroy Operators

We now describe four destroy operators used in the algorithm. We introduce a time-

and a complexity-related operator. The random and employee related destroy have been

proposed by Cordeau et al. (2010) and are adapted here to the sequential skill setting.

Whenever applicable, the number of destroyed jobs N is defined as N � n � |Js|, where

n denotes the destroy ratio and Js refers to the number of currently scheduled jobs.

The entire search is divided into time segments that correspond to a certain number of

iterations. Initially, n is set to a prescribed minimal value nmin. At the end of each time

segment, we increase n by 0.1. When n reaches its maximal value nmax, the algorithm

restarts from nmin. Note that the bounds are set differently for small and large problem
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instances. More precisely, we gradually increase n in the interval [0.6, 0.9] for small

sized instances while for large sized instances n P [0.3, 0.6]. The parameter tuning is

described in Appendix A.

5.3.2.1 Time Related Destroy

The time related operator selects jobs that are most closely related to each other in

terms of their start time, see Ropke and Pisinger (2006). Thereby, a first job is selected

randomly. The main idea behind this operator is that it would be easier to relocate jobs

within the same time period than within different ones. Two jobs are considered as time

related if s� � t� ¤ stj ¤ s� � t�, where s� denotes the start time of the candidate job in

the current solution and t� denotes a maximal deviation from s�.

5.3.2.2 Maxj Related Destroy

This operator first picks out 0.5 � N jobs with highest Maxj values. As these jobs are

challenging in terms of both, the required processing time and the number of required

employees, removing these jobs from a solution creates large time gaps in the routes and

frees a large number of redundant employees. This, in turn, creates more freedom for

the repair heuristic to perform an exchange of jobs. However, as it might be difficult to

exchange only the most difficult jobs, further 0.5 �N jobs are selected randomly.

5.3.2.3 Random Destroy

The random destroy is based on the removal heuristic proposed by Cordeau et al. (2010)

and Kovacs et al. (2012). The destroy operator randomly selects N scheduled jobs and

removes them from the assigned routes.

5.3.2.4 Employee Related Destroy

Having removed jobs by one of the three destroy operators from Section 5.3.2.1 to 5.3.2.3,

all teams are examined in order to identify redundant employees that can be removed
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without turning the current job-team assignment infeasible. These employees are used

to form new teams or to reinforce the current teams, such that jobs that have not been

assigned so far can be processed. The idea to use redundant employees has already been

considered in the context of STRSP by Cordeau et al. (2010), Kovacs et al. (2012) and

Anoshkina and Meisel (2020). However, the feasibility analysis is now constrained by two

perspectives: skill feasibility and processing time feasibility. Skill feasibility guarantees

that the aggregated skills of the remaining members in team t are still sufficient to

perform all assigned jobs. Formally,
°
mPMztm1u qmkl � xmt ¥ rjkl @k P K, l P L, where

m1 denotes the candidate employee checked for removal. Time feasibility refers to the

changes in processing times due to changes of the team size. Therefore, when removing

employee m1, we update the δj values and the start times for all jobs assigned to the

team. A removal is successful if the new start times still comply with time window

constraints. If more than one employee could be removed, we first select the employee

with a higher aggregated skill level εm.

5.3.3 Repair Operators

Following Kovacs et al. (2012), we implement three types of insertion heuristics to repair

the partly destroyed solution. In the following, we briefly recall the main ideas behind

each repair approach and explain how the sequential skill aspect is embedded into the

repair process.

5.3.3.1 Greedy Insertion

The operator calculates the insertion cost for all unprocessed jobs j P Ju and all feasible

insertion positions p P P within the routes of all teams. In each iteration, the algorithm

selects the job with the least cost insertion position and inserts this job at its best

position. The process continues until there are no more unprocessed jobs or no more
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feasible insertion positions. We define insertion cost 4f pj, pq as

4f pj, pq �
¸
j1PJt

ftj1 � %j �Q (5.36)

where Jt denotes the jobs assigned to team t in the current iteration including job j

and %j whether job j blocks the tour. The tour is blocked if no further jobs can be

scheduled after the insertion of job j. In this case, %j � 1 and 4f pj, pq is increased by

a sufficiently large penalty Q. If at least one further job can be assigned at p � 1 or at

the last tour position, %j � 0.

5.3.3.2 Regret Insertion

The regret operator is a more sophisticated repair operator that incorporates a look-

ahead. At each decision point, the algorithm selects the candidate job with the maximal

regret value that corresponds to the difference in cost between the first best 4f pj, pq1

and the k-th insertion position 4f pj, pqk. In our experiments, we use k � 2 and k � 3.

Generally speaking, the regret represents the opportunity cost that have to be paid if

the best assignment becomes infeasible due to other insertion decision. Formally, the

best insertion position p� is defined as

p� � arg max
pPP

p4f pj, pqk �4f pj, pq1q (5.37)

5.3.3.3 Sequential Insertion

The sequential insertion operator repairs one route at a time. Starting from the first

route, the algorithm iteratively inserts jobs at their minimum cost position until no

further unprocessed jobs are available or the routes of all teams have been examined. As

the routes are examined one by one, the sequence in which teams are iterated constitutes

the most important factor that impacts the solution quality. For some instances, it may

be more suitable to rank the teams in the decreasing order of the number of jobs that
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are still assigned to them after destroy. The reverse order may be more suitable for

some other instances. We therefore consider both orders in the sequential insertion.

5.3.3.4 Skill-Time-Based Estimation of Insertion Position

Since job processing times and team composition are interrelated, 4f pj, pq cannot be

accurately identified until the team composition becomes known. To address this issue,

we create a fictive team for each job-team combination. The procedure is as follows.

Recall that the set of redundant employees is updated after each destroy process, see

Section 5.3.2.4. We use this set to extend the team first to its MinS configuration

and then to its MaxS configuration. Subsequently, temporary value of parameter δj

are computed for all considered teams and jobs j P Ju. As the completion times of

already assigned jobs can be affected by a new team composition, we have to reset

δj also for jobs j P Jt. Afterwards, value 4f pj, pq are defined and the best insertion

position is identified. To this end, the corresponding destroyed team is replaced by its

fictive counterpart. The list of redundant employees is updated correspondingly, see

Section 5.3.2.4. Note that as the number of redundant employees is varied, we have to

recompute the insertion cost of all positions after each insertion operation.

As a numerical example consider the process illustrated in Figure 5.3. Suppose there

is one insertion position for job j in each of the routes of team 1 and team 2. Three

redundant employees 4, 5 and 6 are available after the destroy process. To estimate the

insertion cost, two fictive teams are created. To meet the job’s qualification requirement,

team 1 is reinforced by employees 4, 5 and 6. Due to the limited number of redundant

employees only MinS configuration can be constructed for this team but not MaxS.

By definition (5.24), δj � ςj � p5�4q � ςj. For team 2, MinS is first composed by adding

employee 4. Next, the effective team size is extended to MaxS (Maxj � 5) by also

adding employee 6. From this, δj � ςj � p5�5q � 0. Let the insertion position of team 2’s

route be the best one. Then, the set of redundant employees is updated as follows. It
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Figure 5.3: Repair process

can be seen that employees 7, 4 and 2 can be removed from the team without violating

skill constraints. Note that the removal of employee 4 or employees 4 and 2 reduces the

effective team size to 4 or 3 and, thus, extends the job completion time by ςj or 2 � ςj

respectively. However, if time window constraints are still satisfied, all three employees

are considered redundant.

5.3.4 Restart Mechanism

The main objective of the restart procedure is to diversify the search and prevent an

early stagnation. If the solution has not been improved for a certain number of iterations

IR, we destroy the complete schedule and restart by constructing a new initial solution.

Recall that initial solutions are generated by an iterative search method. From this,

the skill requirement of the previously examined job affects the skill level as well as

the number of employees available for the subsequent team construction process. For

instance, the sorting of jobs by complexity applied in Section 5.3.1.1 forms a schedule

with a structure, where the team size and the number of allocated jobs decreases while

moving from the top to the bottom of the team list. To generate a new solution, we have

to modify the order in which the jobs are examined. Therefore, the restart mechanism

randomly shifts a number of jobs in the list, which gives more priority to less challenging

jobs when creating the team. The level of diversification, i.e. the number of shifted jobs,

is sampled uniformly from the set t0.3 � |J |, 0.5 � |J |, 0.6 � |J |u. Eventually, the routes are
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reconstructed by the iterative insertion heuristic described in Section 5.3.1.2 and the

solution is updated according to acceptance criteria defined in Section 5.3.4.1.

5.3.4.1 Acceptance Criteria

The proposed ALNS framework includes 15 pairs of destroy and repair operators. To

select a particular pair in each iteration of the ALNS, we follow the approach suggested

by Ropke and Pisinger (2006) and Kovacs et al. (2012) that is based on a roulette

wheel principle. To decide about the acceptance of the generated solution, we apply an

acceptance probability that follows the principal of simulated annealing as proposed in

Ropke and Pisinger (2006).

5.4 Computational Study

5.4.1 Generation of Test Instances

This section describes the test instances that are used to evaluate the performance of the

proposed solution approaches. In order to capture a wide range of problem structures,

we created 20 data sets. Each data set is composed of 10 problem instances of identical

size. The size is determined by the number of jobs, employees, skill domains and the

competence levels. The number of jobs and employees vary from 4 to 500 and from 2

to 100, correspondingly. Instances with up to 10 jobs are referred to as small, with up

to 40 as medium and with 80 jobs and more as large instances. The number of skill

domains and competence level is set to |K| � 3 and |L| � 3 for all instances in each

data set. In total, 200 problem instances are examined in the experiments.

The input parameters are generated following the procedure described in Anoshkina

and Meisel (2020). To compute the extension of the processing time, we bound ςj � 30

for all jobs.

The experiments were conducted on an Intel(R) Core (TM) i7-7700 3.60 GHz with

32 GB of RAM. The MIP models were solved using CPLEX 12.8. The ALNS heuristic
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was implemented in Java 1.8.0. We set a runtime limit of 3600 seconds for both the

exact and heuristic approach.

5.4.2 Results of CPLEX MIP Solver

In this section, the mathematical models are evaluated on small and medium-size in-

stances. Table 5.1 reports aggregated computational results obtained from CPLEX.

These results have been obtained by applying the following weighting for the coeffi-

cients of the objective function: α � 1, β � 0.0001, γ � 0.0001 and θ � 0.0001. The

first column denotes the instance size. The next columns list average solution values ob-

tained from 10 instances in the corresponding instance set for each skill setting. Here,

we denote the settings by SM (simultaneous use of skill) and SQ (sequential use of

skill). The first two columns in each block show the number of variables (column Var.)

and the number of constraints (column Con.) in the optimization model. Column Z

gives the number of jobs that are performed in the solutions. Columns M and T report

the total number of assigned employees and the number of active teams in the route

plans. Column Delta denotes for SQ the total extension of job processing times. We

omit Delta for SM since the job processing times are fixed for this setting. Instead,

in column Zδ we report the number of jobs scheduled under SM that could also be

performed if the sequential processing times would be applied. Column CPU gives

the consumed runtime in seconds. Finally, column GAP reports the percentage gap of

the generated solution with respect to the lower bound value LB reported by CPLEX.

Formally, GAP � pObjective - LBq {LB.

Based on the results in Table 5.1, we observe that SQ consistently generates solutions

with a lower number of performed jobs. This is an expected observation due to the

extended processing times involved in SQ, which are reported in column Delta. For the

same reason, we observe that total completion time values under SQ can be higher even

for instances with a lower number of assigned jobs, e.g. see instances 4 � 4, 6 � 6 and
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Table 5.1: CPLEX solution for small and medium sized instances
Instance Simultaneous Use of Skill (SM) Sequential Use of Skill (SQ)
|J| � |M | Var. Con. Z M T Zδ F CP U GAP Var. Con. Z M T Delta F CP U GAP

4 � 2 158 74 1.0 0.9 0.6 0.9 292 0.01 0% 189 84 0.9 1.1 0.6 21 283 0.01 0%
4 � 4 312 156 3.2 3.3 1.2 2.7 939 0.03 0% 378 175 2.9 3.9 1.2 77 941 0.05 0%
6 � 3 381 198 2.8 2.5 1.1 2.2 728 0.04 0% 450 218 2.5 2.8 1.1 60 707 0.05 0%
6 � 6 756 414 5.1 5.7 2.1 4.4 1387 0.25 0% 936 471 4.8 6.0 1.8 152 1519 0.43 0%
8 � 4 732 412 4.5 3.5 1.3 3.1 1297 1.19 0% 859 448 4.0 4.0 1.3 75 1252 0.68 0%
8 � 8 1456 856 7.5 7.5 2.8 6.0 2143 58.39 0% 1793 965 6.9 8.0 2.3 135 2178 424.23 0%

10 � 5 1235 740 5.8 4.5 1.9 3.7 1678 27.99 0% 1453 805 5.1 5.0 1.7 87 1576 37.08 0%
10 � 10 2460 1530 9.7 9.4 3.7 7.5 2663 3071.87 1% 3027 1719 9.2 10.0 3.0 227 2999 3368.90 6%
15 � 7 3095 2065 9.8 6.9 2.8 6.8 2820 3271.00 27% 3618 2229 8.1 7.0 2.4 149 2467 3269.07 39%

15 � 15 6615 4545 15.0 14.8 5.5 11.7 4136 3600.00 0% 8131 5086 13.9 15.0 4.3 378 4576 3600.00 8%
20 � 10 6870 4930 14.4 9.8 3.8 9.4 4191 3600.00 28% 7981 5296 11.9 10.0 3.4 191 3669 3600.00 41%
20 � 20 13720 10060 19.6 19.9 7.9 15.1 5281 3600.00 2% 16777 11199 17.7 20.0 5.9 431 5566 3600.00 12%
30 � 15 19905 15570 20.7 14.7 6.2 13.9 5832 3600.00 31% 22885 16626 17.0 15.0 5.1 228 5108 3600.00 43%
40 � 20 43340 35660 24.3 18.8 7.2 15.1 6921 3600.00 39% 49433 37927 19.2 20.0 6.0 351 5850 3600.00 52%

8 � 8. Note that Delta represents an average over 10 instances and, thus, we observe

values that are not necessarily multiples of the minimal preset value ςj.

Looking at columns M and T in Table 5.1, we see a clear trend for SQ to generate

larger teams by allocating more employees to a somewhat lower number of teams.

The average difference in the number of performed jobs under SM and SQ ranges

between 0.1 and 0.7 for small sized instances. This can be partially explained by the

above mentioned tendency of SQ to compensate the longer processing times by in-

creasing team sizes. Indeed, looking at column Zδ, we see that the actual number of

performed jobs in a SM solution would be lower if sequential processing times would be

applied here. For medium sized instances, we observe that a higher share of jobs (1.1 -

5.1 jobs) of SM solutions becomes infeasible. However, we also observe very high opti-

mality gaps and drastically increasing computational time for both, SM and SQ. Due

to these high GAP values, it is unclear if only the corresponding skill concept accounts

for the difference in performance. Intuitively, we can expect higher differences with

increasing problem size. This is confirmed by the results of the subsequent experiment.

5.4.3 Results of ALNS

In this section, we compare the effect of SM and SQ for the entire set of instances.

The comparison is performed by applying the ALNS heuristic to each skill setting and
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each problem size. Since the team composition under SM has no impact on the job

processing time, we use only the MinS to create fictive teams during the repair process.

However, to achieve a fair comparison between both skill settings, we iterate over all

three team configuration schemes in the initial solution and the restart mechanism no

matter whether SM or SQ is applied. The parameter settings are also the same for

both problems considered. To set the parameters, preliminary experiments have been

conducted on subsets of instances, see Appendix A. The preliminary experiments show

that the sequential search heuristic can produce high quality solutions that are very close

to the optimal ones, see Appendix B. As the solution converges fast, we opt to perform

I � 1.000 iterations. In order to randomize and accelerate the search, we employ the

restart procedure described in Section 5.3.4 every IR iterations. For completeness, we

state all further parameters in Table 5.2.

Table 5.2: Parameter setting of ALNS
Parameter I IR t� W λ ε µ Q
Value 1000 20 120 100 60 2 1 500

Table 5.3 shows the results obtained for each skill setting. From the reported Z values,

we can clearly see that the service level achieved under SQ is lower in comparison to

the corresponding SM values for all instances. The gap between both settings does not

exceed 0.6 jobs for small sized instances. The difference widens further with an increase

of the problem size. For medium sized instances, the gap ranges between 0.9 - 5.9 jobs.

These observations are in line with results observed in Section 5.4.2.

Considering the quality of the solutions, we observe that ALNS and CPLEX perform

similarly well for small instances. Specifically, the maximal average deviation does not

exceed 0.1 job for instances 8� 4 and 10� 5. For medium sized instances ALNS clearly

outperforms CPLEX. For large sized instances, ALNS obtains solutions of high quality

within a few minutes of computation time. Here, we also observe a further decrease in

SQ service levels from around 11.7 to 63.5 jobs. Moreover, values reported in column
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Table 5.3: ALNS solution
Instance Simultaneous Use of Skill (SM) Sequential Use of Skill (SQ)
|J| � |M | Z M T Zδ F CP U Z M T Delta F CP U

4 � 2 1.0 0.9 0.6 0.9 292 1.53 0.9 1.1 0.6 21.0 283 1.52
4 � 4 3.2 3.5 1.2 2.7 943 2.70 2.9 4.0 1.3 82.5 948 2.72
6 � 3 2.8 2.5 1.1 2.2 728 2.65 2.5 2.8 1.2 69.0 733 2.65
6 � 6 5.1 5.6 2.0 4.2 1417 2.90 4.8 5.9 1.9 174.0 1554 2.89
8 � 4 4.5 3.7 1.3 3.0 1318 2.80 3.9 4.0 1.3 117.0 1224 2.85
8 � 8 7.5 7.3 2.6 5.6 2244 3.13 6.9 7.8 2.3 165.0 2274 3.23

10 � 5 5.7 4.5 1.8 3.9 1695 2.91 5.1 4.9 1.7 105.0 1608 3.03
10 � 10 9.7 9.5 3.2 7.1 2838 3.51 9.2 10.0 3.2 307.5 3102 3.57
15 � 7 9.8 6.8 2.6 5.4 2977 3.39 8.5 6.8 2.6 273.0 2854 3.36

15 � 15 15.0 14.7 5.1 10.2 4394 4.48 14.0 14.9 4.3 469.5 4843 4.78
20 � 10 14.8 10.0 3.8 9.0 4476 3.52 12.7 10.0 3.6 327.0 4270 3.38
20 � 20 20.0 19.6 6.5 14.9 5743 4.51 19.1 20.0 6.0 681.9 6503 4.42
30 � 15 23.8 15.0 5.6 13.7 7129 4.65 19.9 15.0 5.3 519.4 6561 4.48
40 � 20 32.1 20.0 7.1 17.6 9572 6.25 26.2 20.0 6.9 639.0 8589 5.98
80 � 30 55.8 30.0 11.3 29.5 16513 15.88 44.1 30.0 10.1 945.0 14250 15.97

100 � 40 73.2 40.0 15.5 38.7 21883 31.82 59.0 40.0 14.4 1360.0 18933 31.71
200 � 50 115.0 50.0 20.8 57.0 33888 106.75 90.2 50.0 20.5 1674.0 28797 109.71
300 � 80 183.1 80.0 32.3 91.4 53774 428.48 143.0 80.0 28.8 2360.3 45171 462.16
400 � 80 207.8 80.0 33.3 97.3 60834 669.10 160.0 80.0 31.8 2713.5 50489 675.36

500 � 100 266.0 100.0 41.8 121.8 77784 1260.03 202.5 100.0 39.2 3525.5 64033 1365.72

Zδ cast this difference in a more dramatic light. Here, we see that a significantly higher

share of jobs become infeasible if sequential skill processing times would be applied to

a SM solution. This share attains 50% or more for all large sized problems. This

finding strongly implies the importance to integrate skill-based processing times into

the operations management of multi-skilled teams.

Looking at columns M and T, we observe that SQ consistently creates larger teams

for all instances, compared to SM. However, compared to CPLEX, the total number of

assigned employees is slightly lower, which is due to the heuristic’s tendency to discon-

nect as many as possible employees in the repair process. This, in turn, explains higher

Delta values and total completion times.

Finally, the results illustrate that the CPU time tends to be larger with problem size.

However, most problem instances are solved within in a fraction of the given time limit.

Even for the largest instances, the CPU time lies significantly under the preset time

limit of 3600 seconds. This indicates that the heuristic can be successfully applied for

solving problems of even large size.
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5.5 Conclusions and Future Research

Although many studies have investigated variants of STRSP, the relationship between

team competences and job processing times has hardly been questioned so far. This

paper presented a skill-based concept that incorporates the team composition into an

estimation of processing times. Based on this concept, two linear mixed integer opti-

mization models have been presented for simultaneous and sequential use of skill. Both

skill settings have been evaluated by means of an ALNS framework. The framework

uses existing operators and new operators designed specifically for the problem type

considered here. Moreover, a new restart mechanism has been implemented to acceler-

ate the search. The computational experiments show that the sequential skill concept

can be successfully integrated into the planning. Moreover, neglecting the relationship

between job processing times and team composition can have an extremely negative

impact on the schedule feasibility. This holds especially for medium and large problem

instances for which a considerable share of the workload cannot be performed within

the predefined time windows if a solution would be generated based on simultaneous use

of skill but the job processing time would actually depend on a sequential use of skill.

Finally, comparing the results of ALNS with the solutions obtained from CPLEX, we

have demonstrated that the algorithm can find good quality solution within reasonable

time for any medium and large sized instances.

Despite the results achieved, there is still potential for future research. For instance,

an important issue is the data uncertainty that can arise in job qualification requirements

or travel times. From this, it could be interesting to consider the sequential use of skill

within the context of robust optimization.
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Appendix A. Parameter Tuning of ALNS

Varying λ, we analyze how the route construction algorithm performs under different

numbers of seed jobs generated in each routing subproblem. From the results displayed

in Figure 5.4, we see that λ has no impact on the solution quality of small sized instances.

This can be explained by a small number of seed nodes and, thus, by a small number

of available seed jobs. For medium and large sized instances, we observe a considerable

increase in the number of performed jobs for λ P r0, 60s whereas λ strictly above 60 does

not necessarily contribute to a further improvement. In view of these results, we set

λ � 60.
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Figure 5.4: Influence of λ on the solution quality

Next, we demonstrate the impact of the destroy ratio n on the solution quality. To

assess the effect, we test the heuristic performance with n ranging between 0.3 and

0.9. Table 5.4 reports average results of 10 instances obtained for two small, medium

and large sized data sets. Generally, the larger n is, the more freedom the repair

algorithm has for exchange and, thus, it is more probable to find a new best neighbor.

Note that in the context of SQ, also higher n values unlikely lead to improvements

if the team destroy does not create a sufficiently large pool of redundant employees,

see Section 5.3.3.4. Since the number of scheduled jobs Js for large sized instances is

relatively high, small n values (e.g. n � 0.3) can already provide a sufficient number

of disconnected jobs and, thus, employees available for reoptimization. However, a too

large destroy ratio can slow down the repair process. Therefore, we observe that the

solution quality deteriorates with an increase of n for medium and large sized instances.



CHAPTER 5. ESSAY 4 170

Table 5.4: Computational results for varied destroy ratios
Instances Destroy Ratio
|J| � |M | 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8 � 4 3.6 3.7 3.6 3.7 3.8 3.8 3.9
10 � 10 8.4 8.6 8.6 8.6 9.0 8.7 8.7

20 � 10 12.0 12.0 12.1 12.2 11.6 11.9 11.6
40 � 20 25.4 25.6 25.2 25.0 25.6 25.3 24.5

80 � 30 43.0 43.0 42.6 41.6 43.0 40.3 42.4
100 � 40 56.2 55.6 55.2 55.9 54.7 54.9 53.7

The situation is rather the reverse for small sized instances. Due to a small number of

available employees, a significantly larger destroy ratio is required to create an employee

pool sufficient for exchange. Therefore, we notice that the higher n values yield better

solution quality. In view of these results, we opt to gradually increase n in the interval

[0.6, 0.9] for small sized instances, while for medium and large sized instances n is varied

in the interval [0.3, 0.6].

Finally, we demonstrate how the solution quality responds to variations in the number

of iterations. Specifically, we compare an ALNS heuristic with an ALNS framework that

also embeds the iterative search. Table 5.5 reports the results obtained for one set of

small, medium and large sized instances. The first column gives the instance size. The

next five columns report the number of jobs (Z) achieved after 1.000, 5.000, 10.000 and

20.000 iterations. Considering the first row, we see that ALNS assigns 9 jobs already

after 1.000 iterations if iterative search is invoked. Otherwise, ALNS has only 7 jobs

after 1.000 iteration and starts to increase the number of performed jobs not until after

10.000 iterations. The obtained results show that the combination of ALNS with the

iterative search is seen to converge significantly faster while the ALNS achieves the same

results after approximately 20.000 iterations.

Table 5.5: Solution convergence
Instances no iterative search with iterative search
|J| � |M | I � 1.000 I � 5.000 I � 10.000 I � 20.000 I � 1.000

10 � 10 7 7 8 9 9
40 � 20 24 26 27 28 28

100 � 40 57 59 60 60 62
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Appendix B. Iterative Search Heuristic

To demonstrate the effect of the iterative search method, we report in Table 5.6 the re-

sults obtained after 10 iterations for all set of small and medium sized instances. Looking

at column Z, we observe that the heuristic achieves a lower service level compared to

CPLEX (see Table 5.1) for both SM and SQ. However, the obtained results are very

close to the corresponding results generated by CPLEX. The maximal deviation does

not exceed 1 job and ranges between 0.2 and 0.9 for small sized instances and between

0.3 and 1 for medium sized instances. Whereas, for the two last instance sets, we observe

even higher service levels of the iterative search compared to CPLEX.

Table 5.6: Iterative search
Instance Simultaneous Use of Skill (SM) Sequential Use of Skill (SQ)
|J| � |M | Z M T Zδ F CP U Z M T Delta F CP U

4 � 2 1.0 1.2 0.8 0.9 292 0.26 0.9 1.2 0.7 21.0 283 0.26
4 � 4 3.2 4.0 1.2 2.7 944 0.43 2.9 4.0 1.3 79.5 947 0.42
6 � 3 2.8 3.0 1.3 2.2 734 0.42 2.3 3.0 1.2 72.0 656 0.42
6 � 6 4.8 6.0 2.1 4.1 1276 0.41 4.4 6.0 2.0 121.5 1338 0.42
8 � 4 4.3 4.0 1.5 3.1 1221 0.41 3.7 4.0 1.3 66.0 1110 0.42
8 � 8 7.2 8.0 2.6 5.7 2128 0.42 6.5 8.0 2.3 157.5 2041 0.42

10 � 5 5.6 5.0 1.9 3.9 1640 0.42 4.8 5.0 1.6 79.5 1463 0.42
10 � 10 9.4 10.0 3.6 7.3 2739 0.42 8.3 10.0 3.3 217.5 2598 0.42
15 � 7 9.0 7.0 2.7 6.1 2554 0.42 8.1 7.0 2.6 219.0 2646 0.43

15 � 15 14.5 15.0 5.6 11.1 4177 0.43 12.9 15.0 4.7 426.0 4248 0.43
20 � 10 13.7 10.0 4.0 8.9 4016 0.43 11.5 10.0 3.5 246.0 3647 0.43
20 � 20 19.8 20.0 7.3 14.2 5721 0.43 17.4 20.0 6.0 487.5 5651 0.43
30 � 15 22.0 15.0 5.6 13.0 6352 0.43 18.2 15.0 5.1 415.5 5745 0.44
40 � 20 30.5 20.0 7.4 17.7 8811 0.45 24.7 20.0 7.2 678.4 7908 0.45
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