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Abstract

While the productivity effects of the application of modern inputs, such as im-
proved seeds or inorganic fertilizer, are well known, farmers in Sub-Saharan
Africa tended to underinvest in purchased inputs. This underinvestment appears
related to the unpredictable nature of agricultural production that is subject to
risks and shocks. Farmers make production decisions before climatic and other
shocks are realized. They, therefore, have no certainty about the outcome of
their decisions. This makes investments in agricultural inputs very risky. This
paper uses recent data for Senegal to identify the main drivers of the decision
to purchase risky inputs (seeds and/or fertilizers), the level of investment and to
quantify the impact of the use of risky inputs on household welfare. Using a Heck-
man model, results show that the main drivers of the decision to purchase risky
inputs include household composition, farmer organization, farm size, access to
livestock income, and crop diversification. Drivers of the level of investment in
risky inputs are gender, extension services, farm size, agricultural capital, and
cropping patterns. Using an endogenous switching regression, we find a posi-
tive impact on the adoption of risky inputs on farm profit per hectare, and food
available from production. The expected impact for non-adopters is found to be
higher than that for adopters because they are involved in rice production (which
is more responsive to inputs use) and in millet production (which is central for
food security).

Keywords: Risky inputs, purchased fertilizers, purchased seeds, household welfare,
Senegal
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1 Introduction

Access to input markets is considered to have positive effects on agricultural productivity
and therefore on poverty reduction and food security. However, in Sub-Saharan Africa
few farmers invest on inputs even though the returns of such an investment was high
(De Groote et al., 2005; Duflo et al., 2008; Marenya and Barrett, 2009; Karlan et al.,
2014). This low level of investment is partly related to the random nature of agricultural
production. Rainfed agricultural production is a risky endeavor, risks relate to climate,
presence of pests (invasions of plant bugs), presence of herds of cattle that can destroy
crops, etc. Agricultural production and returns on investments are highly dependent on
rainfall occurrence (Rosenzweig and Udry, 2013; Karlan et al., 2014) and on the other
risks previously mentioned. In Senegal, D’Alessandro et al. (2015) observed that a major
limiting factor to the widespread adoption of improved seeds and fertilizer among small-
holder farmers is the reluctance to assume risks associated with increased productivity.
This is intuitive because agricultural production processes take place over time. Farmers
must make some decisions regarding inputs before the beginning of the production sea-
son and therefore before the occurrence of the shocks affecting the productivity of these
inputs. Furthermore, once a shock has occurred there is no way to retrieve the invested
resources. This implies that when a farmer decides to invest in inputs, he/she does so
without any certainty about the outcome of such a decision. Therefore, investments in
agricultural inputs such as seeds (improved seeds or not) and fertilizers are considered
risky investments.
Solutions exist, at least in theory, to manage this risk. The literature identifies several

strategies for managing production risks. Some of these include diversification (Bezabih
and Di Falco, 2012; Bezabih and Sarr, 2012; Di Falco et al., 2010; Obiri et al., eds,
2017; Birthal and Hazrana, 2019; Ullah and Shivakoti, 2014), formal insurance products
such as index-based products (Velandia et al., 2009; Enjolras et al., 2012; D’Alessandro
et al., 2015; Obiri et al., eds, 2017; Wang et al., 2016), agronomic practices such as
conservation farming practices, mulching, sustainable land management (Liniger et al.,
2011; Obiri et al., eds, 2017; Choudhary et al., 2016) and adoption of risk-reducing inputs
or technologies8 such as improved and high yield seeds, fertilizer, pesticides, and irrigation
(Barnett et al., 2008; Kahan, 2008; Obiri et al., eds, 2017). Thus, the adoption of such
innovations can mitigate the consequences of risks by enabling farmers to optimize their
production choices and thus achieve higher profits (Rosenzweig and Udry, 2013). In a
nutshell, the adoption or use of these risky inputs allows farmers to make riskier but more
profitable decisions.
However, not all producers have easy access to these solutions. The literature has

shown that investment constraints are due to farmers’ inability to use existing theoretical
solutions due to incomplete financial and insurance markets resulting in low access to
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capital, insurance, information, etc. Therefore, farmers who do not have access to a well-
functioning insurance market will tend to act conservatively by investing less on their
farms and making crop decisions (crop choice, production techniques, etc.) that reduce
the volatility of farm profits (Rosenzweig and Udry, 2013) Thus, farmers’ investments
in developing countries are conditioned by their financial environment and incomplete
insurance markets that limit risky decisions that can lead to high expected profits. Risk-
averse producers will prefer production choices that reduce risk even if it means giving up
riskier choices that lead to higher expected profits. Karlan et al. (2014) show that when
farmers are insured, they are able to find the funds to facilitate their investments.
To increase participation in input markets, policies in Sub-Saharan Africa have focused

on reducing risk (insurance, climate information systems) or increasing access to capital
(access to credit). In Senegal, where rural households depend mainly on agriculture,
policies and programs have encouraged farmers to invest in risky inputs by subsidizing
the purchasing price of inputs (fertilizers and seeds), managing the risk associated with
rainfall through the introduction of subsidized insurance products and promoting climatic
information systems and improving access to credit or agricultural implements (Ribeiro
and Koloma, 2016; Sall, 2015; CIAT and BFS/USAID, 2016).
These efforts show the importance of such investments. However, in Senegal, empirical

results on the constraints to private investment in risky inputs is scanty despite the high
return on investment demonstrated in other countries in sub-Saharan Africa (Duflo et
al., 2008; Karlan et al., 2014; Wiredu et al., 2015; Manda et al., 2016; Liverpool-Tasie,
2017; Mensah and Brummer, 2015; Suri, 2011). Therefore, there is a real need to produce
evidence for the country. To help reduce this gap and better inform these constraints, this
study aims to understand the factors that influence the decision to invest in seeds and
inorganic fertilizers, the level of investment, and the welfare impacts of such investment.
The rest of the paper is organized as follows. The next section briefly summarizes the

literature on risks faced by smallholder farmers. Section 3 discusses the theoretical frame-
work of household decision making under uncertainty and our empirical specifications. In
section 4, we present the source of data and briefly describe the sample. Section 5 presents
and discusses the results and finally, section 6 concludes the study and highlights some
policy recommendations on risky inputs adoption policies.

2 Review of the literature

Agricultural commodities production are subjects to many risks that cause distortions
in production, incomes and hence farm households’ welfare. These risks, which includes
climatic risks, biological risks, and market risks are numerous, complex, interconnected,
and vary in their levels of frequency and severity. Risk in general play a crucial role in a
great variety of economic decisions and is widely acknowledged as one of the factors that
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shape agricultural behavior such as farmers’ technology adoption decisions (Byerlee, 1993;
Knight et al., 2003; Gillespie et al., 2004; Baerenklau and Knapp, 2005). For instance,
several studies (Rosenzweig and Udry, 2013; Alem et al., 2010; Zerfu and Larson, 2010;
Gebregziabher and Holden, 2011; Berhane et al., 2015; Fufa and Hassan, 2006; Cavatassi
et al., 2011; Yu et al., 2011; Dercon and Christiaensen, 2011) have observed that in
anticipation of covariate shocks, such as droughts, poor farm households are especially
prone to selecting less risky technology portfolios so as to evade lasting damage and these
often also generate lower returns on average.
The presence of risk, therefore, stifles agricultural investments and imposes ex-ante bar-

riers to the use of technologies, which in a nutshell, affect agricultural productivity and
economic growth (Barnett et al., 2008; Di Falco and Chavas, 2009; Dercon and Christi-
aensen, 2011; Demeke et al., 2016). At the same time, a substantial strand of the empirical
literature suggests that uninsured risk and uncertainty may be the main driver of the low
levels of adoption of new and improved technologies. For example, in India, Lamb (2003)
shows that in the absence of incomplete insurance, risk avoidance as a strategy employed
by farmers may be key in understanding limited fertilizer use. Hence the protection from
downside risk has been observed to be a key determinant of technology uptake among sub-
sistence agricultural households (Liu and Huang, 2013; Mobarak and Rosenzweig, 2012;
Elabed and Carter, 2014; Karlan et al., 2014; Cai et al., 2015; Farrin and Miranda, 2015).
However, limited access to credit or formal insurance markets makes it challenging for

farm households to manage the myriad production risks that they face. Therefore, farm
households mostly rely on a range of alternative strategies to avoid or minimize losses.
Most of these are centered on the adoption of agronomic practices such as conservation
farming practices, mulching, sustainable land management (Liniger et al., 2011; Di Falco
and Veronesi, 2013; Obiri et al., eds, 2017; Choudhary et al., 2016), and diversification
which could be crop or income-based (Mishra and Goodwin, 1997; Harwood et al., 1999;
Adger et al., 2003; Ullah and Shivakoti, 2014; Obiri et al., eds, 2017; Birthal and Hazrana,
2019). Another strand of literature also suggests the adoption of the so-called "risk-
reducing inputs or technologies" such as improved and high yield seeds, inorganic fertilizer
and pesticides (Holzmann and Jørgensen, 2001; Bank, 2005; Barnett et al., 2008; Kahan,
2008; Chetaille et al., 2011; Obiri et al., eds, 2017). However, these "risk-reducing inputs
or technologies" have also been observed to be potentially risk increasing (Just and Pope,
1979; Horowitz and Lichtenberg, 1993; Gardebroek et al., 2010; Moser and Mußhoff, 2017).
In parallel, several other studies have evaluated the impact of these "risk-reducing in-

puts or technologies". In fact, the general conclusion of these studies is that interventions
built on the adoption of productivity-enhancing technologies such as quality fertilizers,
better seeds, improved livestock, etc. improve household welfare outcomes. For instance,
Graf et al. (2015) show that potential gains from adopting productivity-enhancing tech-
nologies increase the incomes of smallholder farmers between 80-140%. In Burkina Faso,
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Koussoubé and Nauges (2017) find that the profitability of fertilizer use, which they mea-
sured through the marginal value cost ratio (MVCR), was 1.4 on plots on which fertilizers
were applied. In using the endogenous switching regression approach, Abdoulaye et al.
(2018) found that the adoption of improved maize varieties in Nigeria increased maize
grain yield by 574 kg/ha and per-capita total expenditure by US77(US 0.21/day). Fur-
thermore, they found that poverty incidence among adopters would have been higher by
6% without adoption. Similarly, by using the endogenous switching regression approach,
Asfaw (2010) finds that the adoption of improved varieties of chickpea and pigeonpea in
Ethiopia and Tanzania has a significant positive impact on crop income.
Biru et al. (2019) in a panel data analysis via a multinomial endogenous switching re-

gression model found that the adoption of improved technologies significantly increases the
consumption expenditure of Ethiopian farm households. Furthermore, they observed that
the likelihood of a household remaining poor or vulnerable decreased with the adoption of
different complementary technologies. In Ethiopia, Mekonnen (2017) finds a positive and
significant effect of improved technology adoption on rural households’ crop productivity
and welfare. Cunguara and Darnhofer (2011) find that rural Mozambican households
using improved maize seeds and tractors have significantly higher incomes.
Kassie et al. (2014) found that on average, the adoption of improved maize varieties in

Tanzania reduced the probabilities of chronic and transitory food insecurity from between
0.7 and 1.2 % and between 1.1 and 1.7 %, respectively. Comparably, Zeng et al. (2017) in
evaluating the impact of improved maize varieties adoption on child nutrition outcomes
using a household survey from rural Ethiopia, found positive and significant impacts of
adoption on child height-for-age and weight-for-age. They further observed that such
impacts were largest among children with the poorest nutrition outcomes. Kassie et al.
(2011) also found that the adoption of improved groundnut varieties significantly increases
crop income of Ugandan farm households and reduces poverty. Similarly, Khonje et al.
(2015) found that the adoption of improved maize in Zambia had significant poverty-
reducing impacts. They find that adoption leads to significant gains in crop incomes,
consumption expenditure, and food security. Wopereis-Pura et al. (2002) in evaluating the
effect of nitrogen application on rice yield, grain quality, and profitability in the Senegal
River valley, finds that the benefit to cost ratios of nitrogen application for farmers ranged
from 2.8 in the wet season to 5.4 in the dry season.

3 Conceptual framework and estimation strategies

Risky inputs investment decision and household welfare

In microeconomic theory, uncertainty occurs when the outcome of a decision is not known
with certainty. While the decision-maker may know the probabilities of the different
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possible outcomes, the outcome of the decision is only known when it occurs (Jehle and
Reny, 2011). This phenomenon is observed in agricultural production where farmers make
production decisions before rainfall and other risks are realized. Thus, farmers have no
certainty about what their production will be when they decide what crops to produce,
what investments to make, etc. Here, our focus is on investment decisions on risky inputs,
particularly seeds and fertilizers. The risky nature of these expenditures is exacerbated
by their high opportunity cost in a context where liquidity constraints are severe.
We model the farmers’ decision to purchase risky inputs (seed and inorganic fertilizer)

in Senegal following the theoretical framework suggested by Karlan et al. (2014) and
extended by Magruder (2018). The model accounts for credit constraints, production
risks, and imperfect information. Two periods model is considered where farmers purchase
inputs (x) at time 0 before random rainfall risk is realized at period 1. Uncertainty related
in period 1 implies the existence of several potential states of the world, s ∈ S. This state
of the world occurs with probability πs and affects the production that a farmer can
anticipate realizing from any input choice.
Another barrier to technology adoption is related to incomplete information, especially

about purchased inputs mainly in developing countries (Bold et al., 2017; Magruder,
2018). Indeed, in addition to rainfall variability faced by farmers, the quality of inputs is
crucial for its potential productivity under different states of the world. For example, a
test of fertilizer and seed products in local markets in Uganda by Bold et al. (2017) showed
that about 30% of nutrient is missing in fertilizer, and hybrid maize seed is estimated to
contain less than 50% authentic seeds. However, various instruments may be used by
farmers to reduce this risk. Farmer organization, and extension services allows farmers to
get more information on inputs and the most reliable input providers. Thus, information
emerges in the model as an additional dimension of the state space, t ∈ T .
Suppose the farmer’s beliefs about the probability of any technological realization t

are given by πt. A household obtains the utility u0
s at period zero and u1

t,s at period 1.
Preferences are represented by a Von Neuman and Morgenstern utility function. The
household consumes c0 in the initial period (t = 0) and c1

t,s in the second period (t = 1)
and maximizes its expected utility:

u(c0) + β
∑

t,s∈TxS
πtπsu(c1

t,s) (1)

Subject to budget constraints:

c0 = y − x− a (2)

c1
t,s = ft, s(x, z) +Ra (3)
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x ≥ 0 (4)

a ≥ ā (5)

where y is its wealth at period 0 that the household uses to buy its inputs x and saves
a, which is a risk-free asset which has a return R in the next period.β is the discount
factor. fs,t(x) is a state-specific production function.
Constraint (5) represents a constraint on borrowing. Thus, this model incorporates all

three constraints: Credit is constrained by ā , risk is generated through the realization of
s, and incomplete information enters through the realization of t.
At time 1, we assume there are two states of the world that may be good (g) or bad

(b) rainfall; thus, the state of nature that is known at period 1 is s ∈ S = {g, b}. In the
absence of incomplete information issue, the expected yield is higher when the state of the
world is ’good’: fb(x) < fg(x). Considering the full information context and assuming the
Inada conditions on fs(x), farmers solving this problem realize the following first-order
conditions:

u′(c0) = β
∑
s∈S

πsf
′
s(x)u′(c1

s) (6)

and
u′(c0) = βREu′(c1

s) + λa (7)

The derivative of the first-order conditions on x with respect to ā shows that if credit
constraints bind a = ā , then optimal input use is increasing in the amount of available
credit (dx∗

dā
< 0). Second, it is straightforward to observe that risk (or imperfect insurance)

reduces input use: If there were perfect insurance, then c1
s = c1I ∀s . If we denote λIa,

the multiplier associated with full insurance, then the two first-order conditions point out
that:

βR + λIa
E (u′(c1I)) = β E (f ′s(x)) (8)

In contrast, absent perfect insurance, we know that for some λa ,

βR + λIa
E (u′(c1

s))
= β E (f ′s(x)) + cov(f ′(x), u′(c1

s)
E (u′(c1

s))
. (9)

When farmers are not credit constrained, cov(f ′(x), u′(c1
s), and λa = 0 suggests that the

implication of fundamental risk is to reduce investment in inputs, x. A second implication
is that risk reduces the demand for credit: In an unconstrained case (where λa = 0), we
know that input use is lower in period 1 and hence that marginal utility of consumption
in period 1 is lower at any given borrowing choice λa. Therefore, first-order condition
7 implies that farmers must reduce their consumption in period 1 as well, which is ac-
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complished by borrowing less. This model lays out a clear priority for research: Credit
constraints and risk can both reduce the adoption of new technologies, and the presence
of risk further reduces the demand for credit. However, a good risk management behavior
of farmers may qualify these theoretical expectations. A lot of studies currently focus
on farmers’ risk perceptions and managements (Huang et al., 2015; Finger et al., 2011;
Smit and Pilifosova, 2003; Bryan et al., 2009). Therefore, accounting for various risk
management strategies of farmers is central to understanding technology adoption.
Regarding now the limited information case, according Magruder (2018), the absence of

full information on inputs emerges as an additional uninsured risk. Therefore, incomplete
information will have similar influence on technology adoption and on demand for credit
as with climatic risks. As said previously, information related uncertainty may be reduced
at farm household level through different channels such as farmer organization, extension
services, and education. We may expect also that inputs purchased from cooperatives or
government recommended shop may be of better quality.
For the empirical part of this study, two main issues will be investigated: (i) the drivers

of risky investment, and (ii) the impact of risky investment decision of farm household
outcomes. We considered two outcomes which are agricultural profit per hectare and
food production (in calories) per adult-equivalent per day. The first outcome measures
the economic return of investment in crop production, whereas the second outcome tend
to measure household’s self-sufficiency in food production. The latter is very important
for households and for policy makers since most farm households in Senegal are involved
in staples production and that they only sell a marginal part of produced food crops. As
argued by Kassie et al. (2015), food productivity is a good proxy for food security since
for most farmers in Sub-Saharan Africa “the availability of food –and access to food –
is crucially determined by the production of basic staples at the household level due to
pervasive market weaknesses, poverty and subsistence orientation”.

3.1 Heckman selection model

From the theoretical model, it is clear that the level of investment on risky inputs depends
on a set of factors such as production risks, credit constraint, information on inputs, and
other factors including risk management strategies, and farm households’ characteristics.
On the other hand, all farm households in the sample do not buy risky inputs. Based
on market participation literature, the decision to purchase inputs is genuinely linked
among others to various transaction costs (Asfaw et al., 2012b; Barrett, 2008; Alene et
al., 2008; Key et al., 2000; Goetz, 1992; Staal et al., 1997). Therefore, a Heckman model
is commonly used to explain in the first step the binary decision to buy risky inputs, in
our case, then accounting for selection bias, a regression model is used to identify drivers
of the level of investment made.
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Since individuals self-select in a group (those who invest and those who do not), there is
a latent variable D∗i that dictates the decision to invest. Assume U1 and U0, the expected
utilities related to the decision to invest or not. We define D∗i = U1 − U0, the difference
between the expected utilities that is not observed because we do not observe the expected
utilities.

D∗i = Q′

1,iγ + ui, ui ∼ N(0, 1) (10)

Individual i decides to invest in inputs if the utility derived from the investment is
higher than the utility obtained when he/she does not invest. Thus, the decision to invest
in risky inputs Di is defined according to D∗i :

Di =

1 if D∗i > 0

0 if D∗i ≤ 0
(11)

Once the decision to purchase risky inputs is made, the corresponding investment level
(X) is modeled as follow:

Xi = Z′

1iβ + εi (12)

Where Q1,i are non-stochastic vectors of observed farm and non-farm characteristics
determining adoption, Zi represents a vector of exogenous variables thought to influence
the level of risky investment. Equations (11) and (12) are simultaneously estimated using
the Maximum Likelihood method with the assumption that the two error terms follow a
bivariate normal distribution with ρ as covariance between the two distributions:

(ui, εi) ∼ N [
0

0

 ,

1 ρ

ρ σ

] (13)

The existence of a selection bias between the two decisions depends of the covariance
ρ. If ρ is significantly different from zero, we conclude that there is a selection bias,
otherwise, either the selection equation is mispecified or there is no selection bias.
For the Heckman model to be identified, it is important to have at least one variable

in the selection equation (11) that is not included in the intensity equation (12). As
instruments, we considered three factors. The first one is the farmer’s self-report need
for extension services on agricultural best practices. The second instrument considered
is the farmer’s self-report need for insurance. The last one is the distance to the nearest
market. All these factors have a direct effect on the decision to buy risky inputs but do
not directly affect the level of investment.
One common issue related to this kind of estimation is the problem of endogeneity

of some explanatory factors such as farmer organization, access to extension services,
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access to credit, and the participation in the off-farm activity. For all these factors, it is
possible to think of a scenario of reverse causality between these factors and the decision
to invest in agricultural inputs. To account for this endogeneity, we used the control
function approach as exposed in Wooldridge (2015). For binary endogenous variables,
the correction is made by adding the generalized residuals as an additional factor in the
selection equation. This additional factor is computed from a standard probit model where
each potential endogenous variable is the dependent variable1. In the absence of obvious
instruments for each of these endogenous variables, we considered as instruments the
department level average of the following factors: (i) farmer organization membership,
access to extension services, access to credit, off-farm activity dummy, the expressed
extension services need, and that of agricultural insurance. The average is computed as
the total number of farmers with a value 1 for the selected dummy minus one divided by
the number of farmers in the department. This gives the share of other farmers with a
value of 1 for a selected factor.

3.2 Endogenous switching regression model

Endogenous Switching Regression (ESR) model is commonly used to assess the impact of
a treatment when especially experimental data are not available (Abdulai, 2016; Khonje
et al., 2015; Abdulai and Huffman, 2014; Asfaw et al., 2012a; Di Falco et al., 2011).
Consider the following model, which describes the welfare outcome of households with
two regression equations, and a criterion function Ii that determines which regime the
household faces:

I∗i = Q′

2,iγ + εi (14)

Regime 1: Y1i = Z′

2iβ1 + u1i if Ii = 1 (15)

Regime 2: Y1i = Z′

2iβ2 + u2i if Ii = 0 (16)

where I∗i i is the unobservable or latent variable for technology adoption, Ii is its
observable counterpart, Q2,i are non-stochastic vectors of observed farm and non-farm
characteristics determining adoption, Yi is either agricultural profit per hectare or per
adult food production in calories, Regimes 1 stands for adopters (buying risky inputs)
and Regime 2 for non-adopters, Zi represents a vector of exogenous variables thought
to influence the considered welfare outcome, and u1i, u2i and εi are the error terms of the
three equations (14, 15, 16) and follow a trivariate normal distribution of zero mean and
variance-covariance matrix specified as follows:

1The curious reader is referred to Wooldridge (2015, pages 427 - 428).
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cov(εi, u1i, u2i) =


1 . .

σ1ε σ2
1 .

σ2ε . σ2
2

 (17)

The variance of εi is equal to 1, σ2
1 and σ2

2 represent the variance of the error terms
u1i and u2i, σ1ε is the covariance of εi and u1i and σ2ε is the covariance of εi and u2i.
The covariance of the error terms u1i and u2i, (σ12 or σ22) is not defined because the two
regimes Y1i and Y2i are not observed simultaneously. The selection equation is used to
calculate the inverse Mills ratios λ1i and λ2i which are incorporated in equations (15) and
(16) to correct the selection bias:

λ1i =
φ(Q′

2,iγ)
Φ(Q′

2,iγ) , and λ2i =
−φ(Q′

2, iγ)
1− Φ(Q′

2,iγ) (18)

From the theoretical framework, factors include in Qi and Zi are production risks
face by farmers, the production structure (land allocation across crops), credit constraint,
information on inputs (prices and origins), output prices, risk management strategies, and
household characteristics (e.g., age, gender, family size, education, and other household
composition indicators).
According to Lokshin and Sajaia (2004), given the joint normality of the error terms

in equation 14 and equations 15 and 16, to obtain robust standard errors, the model
can be estimated using the Full Information Maximum Likelihood (FIML) which allows
the parameters of the three equations to be estimated simultaneously. For identification
purposes, one need to include at least one instrument (Lokshin and Sajaia, 2004; Di
Falco et al., 2011; Asfaw et al., 2012a; Abdulai and Huffman, 2014) which is expected
to influence the adoption of risky inputs (equation 14) but not the welfare outcome of
interest (equations 15 and 16). The same identification strategy is used as explained in
the previous section.

3.3 Conditional expectations, treatment and heterogeneity
effects

The previously estimated model allows us to calculate the average treatment effect on the
treated (ATT) and the average treatment effect on the untreated (ATU). The estimations
of the ATT and ATU is presented in Table 1. The impact on adopters is measured by
the ATT, which corresponds to the difference between the average predicted agricultural
profit of investors in the situation where they invested (observed in the sample) and in
the situation where they did not invest (unobserved, counterfactual). The ATU allows us
to have the difference between the average predicted agricultural profit of non-investors in
the situation where they invested (not observed in the sample, counterfactual) and in the
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situation where they did not invest (observed in the sample) (Di Falco et al., 2011; Khonje
et al., 2015). Following Carter and Milon (2005); Di Falco et al. (2011), one could also
investigate "the effect of base heterogeneity" for the group of farm households within the
same treatment decision. The first base heterogeneity (BH1) is the difference of predicted
outcome of treated farmers in the treatment group and that in the untreated group in the
situation where they invested (counterfactual). The second base heterogeneity (BH2) is
the difference in the predicted outcome of treated farmers in the treatment group in the
situation where they did not invest (counterfactual) and the untreated group. Finally,
the difference between the ATT and the ATU measures the "transitional heterogeneity"
(TH) which compares the effect of already adopters to not yet adopters of risky inputs.

Table 1: Treatment effects

Sub-samples
Decision

Effects
To buy risky inputs Not to buy risky inputs

Investors E (y1i|I = 1;x) = x1iβ1 + σε1λ1i (a) E (y2i|I = 1;x) = x1iβ2 − σε2λ1i (c) ATT=(a)-(c)
Non-investors E (y1i|I = 0;x) = x2iβ1 + σε1λ2i (d) E (y2i|I = 0;x) = x2iβ2 − σε2λ2i (b) ATU=(d)-(b)
Heterogenous effects BH1 = (a) - (d) BH2 = (c) -(b) TH = ATT - ATU

Source : Adapted from Di Falco et al. (2011)

The equations (a) and (b) in Table 1 represent the situations observed in the sample:
(a) would be the predicted outcome of investors if they decide to buy risky inputs and (b)
would be the predicted agricultural outcome if non-investors do not invest; ii) the counter-
factual situations are expressed in equations (c) and (d) and allow to obtain respectively
the predicted agricultural outcome if investors and non-investors had not invested.

4 Data and descriptive summary

Data used in this study were collected under the PAPA2 project, which is an initiative of
the Government of Senegal funded by USAID-Senegal as part of the "Feed The Future"
initiative and the implementation for a period of 3 years (2015 - 2018) by the Ministry
of Agriculture and rural facilities with the International Food Policy Research Institute
(IFPRI).
A two-stage sampling method was used with the primary units being the census dis-

tricts (CDs) as defined by the 2013 General Census of Population, Housing, Agriculture
and Livestock (RGPHAE3) and the secondary units being agricultural households. The
sample for rain-fed led agriculture is 4,533 farm households distributed across all the 42
agricultural departments of the country (except the urban departments of Dakar, Pikine
and Guediawaye).

2Official website of the project is http://www.papa.gouv.sn/.
3Recensement Général de la Population, de l’Habitat, de l’Agriculture et de l’Élevage
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Data collection took place between April and May 2017. After data cleaning, the final
sample size for this analysis is 4465 farm households. In order to control for influential
observations, we remove from the analysis outcome values lower than its first centile (1%)
or greater than the highest centile (99%).
The survey gathered information on household characteristics, input quantities and

prices, output quantities and prices, experience of production (climatic) shocks, risk man-
agement strategies, as well as social and institutional characteristics.
Treatment variable. The treatment variable is based on the reported expenditure

at the household level on at least one of the two main inputs in crop production: seeds
and inorganic fertilizers. We created a binary variable equal to 1 if the total expenditure
on these inputs is different from zero. The focus here is not on the quality of the input
used, but on the presence of an investment. The objective being to identify factors that
may increase input market participation in general and an increase in farm household’s
investment in agricultural investment. In our sample, the share of households that had
purchased seeds (49.79 %) was higher than for inorganic fertilizers (35.30 %), while the
number of households investing in both technologies at the same time was very low (4.97
%).
Outcome variables. To assess the benefits of investing in risky inputs (seeds and

fertilizers), this study considered two outcomes: farm profit per hectare and food avail-
ability (in calories) per adult equivalent per day. The cropping profit per hectare, which
measures the economic return of investment in crop production, which is computed as the
value of crops produced per hectare net of the total production costs per hectare. The
production is valued using the average crop-specific price received by farmers on the local
market. On the other hand, the total cost includes expenditure on seeds, fertilizers, the
wage paid, equipment rental cost, land rental cost, and other inputs cost reported. The
second outcome measures the household level of self- sufficiency in food production. This
indicator is very important for households and for policymakers since most farm house-
holds in Senegal are involved in staples production and that they only sell a marginal part
of produced food crops. The food crops considered are cereals (millet, sorghum, maize,
rice, and fonio) and cowpeas. Using the West African Food Composition Table (Stadl-
mayr and Others, 2012), we converted food crops production (millet, sorghum, maize,
fonio, rice, and beans) into calories (kcal). The total food available (kcal) was divided
by total household size adjusted for adult equivalent using weights provided by Claro et
al. (2010) and converted to daily food available by dividing by 365. The reference food
requirement for an adult (men and women from 19 to 50 years of age) was 2550 kcal/day
(Claro et al., 2010).
Table 2 shows that households produced on average 1461 kcal of food per adult equiva-

lent per day (AED). According to FAO (2010), Senegalese population got about 62 percent
of the energy requirement from cereals. Therefore, food crops considered here should pro-
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vide more 1600 kcal per AED. On average, households who invested on risky inputs were
able to produce this required food while non-buyers produced only 1238 kcal/AED.

Table 2: Variables definition and summary
Variable Variable description All sample Investors Non-investors Difference

Treatment variable

Treatment 1 if households spent
on risky inputs, 0 oth-
erwise

0.63

Seed investment 1 if households invested
in seeds, 0 otherwise

0.50 0.79

Fertilizer investment 1 if households pur-
chased fertilizers, 0
otherwise

0.35 0.56

Joint investment 1 if households jointly
purchased both inputs,
0 otherwise

0.22 0.34

Risky investment Value of the risky in-
vestment (1000 FCFA)

41.69 65.73

Outcome variables

Food availability 1461.96 1593.75 1238.49 355.27***
Profit per hectare 115.00 115.88 113.47 2.41

Household characteristics

Gender Household head is fe-
male (1=YES)

0.07 0.06 0.08 -0.02***

Household size The household size in
adult equivalence scale

8.91 9.34 8.17 1.16***

Age Household head age
(years)

53.07 53.33 52.61 0.72*

Age squared Household head age
(years), squared

2996.28 3027.53 2942.12 85.41*

Formal education Household head
received a formal
education (1=YES)

0.24 0.25 0.22 0.03**

Extension services Access to extension
services (1=Yes)

0.10 0.12 0.08 0.04***

Organization Membership of farmer
organization (1=YES)

0.09 0.12 0.04 0.08***

Access to credit Household received
credit (1=YES)

0.03 0.04 0.01 0.03***

Livestock activity Has a livestock income
(1=YES)

0.33 0.35 0.28 0.08***

Off-farm activity Has an off-farm income 0.27 0.25 0.30 -0.04***
Remittance Has received remit-

tances (1=YES)
0.09 0.10 0.08 0.02

Farm characteristics

Farm size Total cultivated area
(hectare)

4.46 5.23 3.11 2.12***

Farm equipment value Value of agricultural
equipment (1000
FCFA)

106.75 130.46 65.65 64.8***

Number of crops Number of crops pro-
duced

2.35 2.51 2.07 0.44***
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Cash crops Land share allocated to
cash crops (%)

0.35 0.39 0.27 0.12***

Diversification index Herfindahl-Hirschman
Index of crop diversifi-
cation

0.43 0.47 0.36 0.11***

Owned plough/tractor Mechanization (1= if
plough or tractor)

0.09 0.08 0.09 -0.01

Owned cart Transportation equip-
ment (1= if cart)

0.44 0.49 0.35 0.14***

Seed quality Certified and subsi-
dized seeds (1,0)

0.24 0.37 0.00 0.37***

Fertilizer quality Fertilizers purchased
from parastatal agen-
cies

0.23 0.37 0.00 0.37***

Risk variables/indicators

Risk events (count) Number of risk events
reported (past 5 years)

2.19 2.24 2.11 0.12**

Risk attitude 1 if household reduced
cultivated area or reori-
ented in off-farm activ-
ities

0.47 0.46 0.48 -0.01

Rainfall 2010-2015 (std
dev)

Monthly rainfall stan-
dard deviation over
2010-2015 in rainy
season

93.17 88.42 101.39 -12.97***

Rainfall 2016 Annual rainfall ob-
served in 2016 during
the rainy season

675.37 644.77 728.42 -83.65***

Instrument variables

Distance Distance to the nearest
market (km)

13.62 12.46 15.63 -3.17***

Best practices
1 if farmers reported to need support on

farming best practices, 0 otherwise
0.49 0.53 0.42 0.11***

Insurance need 1 if farmers reported to
need agricutural insur-
ance, 0 otherwise

0.38 0.41 0.32 0.09***

Organization2 Share of farmers mem-
bers of farmer organi-
zation at department
level

0.08 0.09 0.06 0.03***

Ext. services need Share of farmers that
need extension services
supports at the depart-
ment level

0.72 0.73 0.71 0.02***

Best practices2 Share of farmers that
need supports on best
practices at the depart-
ment level

0.48 0.49 0.45 0.05***

Ext. services2 Share of farmers that
received extension ser-
vices at department
level

0.10 0.10 0.08 0.03***

Credit2 Share of farmers that
received credit at de-
partment level

0.02 0.02 0.02 0.01***
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Off-farm activity2 Share of farmers in-
volved in off-farm ac-
tivities at department
level

0.26 0.24 0.30 -0.06***

Insurance need2 Share of farmers that
need insurance prod-
ucts at department
level

0.37 0.38 0.34 0.03***

Regional dummies

Dakar Dakar 0.01 0.01 0.00 0.01***
Ziguinchor Ziguinchor 0.08 0.03 0.16 -0.14***
Diourbel Diourbel 0.09 0.09 0.09 0
Saint-Louis Saint-Louis 0.03 0.05 0.01 0.04***
Tambacounda Tambacounda 0.10 0.08 0.13 -0.04***
Kaolack Kaolack 0.09 0.12 0.05 0.07***
Thies Thies 0.07 0.08 0.06 0.02***
Louga Louga 0.08 0.09 0.06 0.03***
Fatick Fatick 0.06 0.05 0.08 -0.03***
Kolda Kolda 0.10 0.10 0.09 0.01
Matam Matam 0.04 0.01 0.10 -0.09***
Kaffrine Kaffrine 0.12 0.15 0.06 0.09***
Kedougou Kedougou 0.05 0.05 0.05 0
Sedhiou Sedhiou 0.08 0.08 0.07 0.01
Observation Sample size 4133.00 2621.00 1512.00 0***

Explanatory variables. The choice of explanatory variables is based on both theoret-
ical and empirical reasons. The most important factors include farm characteristics (farm
size, crop diversification, etc.), production risks factors (rainfall standard deviation over
the past years, number of risks events reported by households), the risk attitude of house-
holds (whether farmers reduced cultivated area or reoriented towards non-farm activities
due to the production shocks experienced), and household characteristics (gender, age,
and education of the household heads). Factors relative to services are considered, among
which are farmer organization membership, access to extension services, access to credit.
Farm mechanization (plow and tractor) dummy, as well as ownership of transportation
equipment (cart), are considered in the model. Dummy variables accounting for other
sources of income of the households are also included.
At the farm level, we considered the total cultivated area, the value of the farm equip-

ment, the total number of crops produced, the share of the farm size allocated to cash
crops to measure the market orientation of households, the quality of seeds and that of
fertilizers. We assume here that inputs purchased from parastatal agencies or farmer
organizations are of better quality. We also controlled for regional heterogeneity and
differences by including in the model regional dummies.
Instrument variables. The identification of the different models estimated required

to find some instruments variables that may directly affect the decision to invest in seeds
or fertilizers but will not directly influence various outcomes. As explained in the method-
ology section, we consider distance to the nearest market, farmer’s willingness to receive
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extension services on farming best practices, and that to access to insurance products.
Regarding the issue of endogeneity raised, we used the average of various indicators at
the department level.

5 Results and discussion

5.1 Investment in risky inputs

Table 3 shows the results from the Heckman model of the decision to buy risky inputs
(seeds and fertilizers) and the corresponding investment. For each model, the coeffi-
cient estimates as well as the standard error (see Eqs. (11) and (12)) are presented.
Heteroskedasticity-corrected standard errors using cluster approach at district of census
are displayed. The Wald test of the hypothesis that all regression coefficients are jointly
equal to zero is highly rejected. Similarly, the Wald test of the hypothesis that there is
no selection bias (rh0=0) is highly rejected. Therefore, Heckman model is appropriate
in modeling investment on risky inputs. The exogenous test for potential endogenous
variables (farmer organization, extension services, access to credit, and off-farm activity)
reveals that only farmer organization and off-farm activity participation are not exoge-
nous in the model. Therefore, the final model corrected that for these two variables. The
same specification is used in the endogenous switching regression model.
The decision to invest in risky inputs is linked to household and farm characteristics,

risk factors, and access to services. We find that household size, household head age and
educational level, membership of farmer-based organizations and having livestock income
sources positively and significantly drives the decision to invest in risky inputs. The effect
of the household head age on the decision to invest in risk inputs is positive but very small.
Conversely, we find that access to extension services and participation in off-farm activities
is negatively related to the decision to invest in risk inputs. Both results here are a bit
surprising, but the negative effect of extension access on risky inputs investment decisions
can be modulated by the need for extension services which is positively and significantly
related to the investment decision. Hence farmers that have a need for extension services
are more likely to invest in risky inputs. Furthermore, since access to information can be
obtained through farmer-based organizations, we find that membership of farmer-based
organizations is positive and significantly correlated to the decision to invest in risky
inputs. This modulating effect is supported by many empirical studies (Conley and Udry,
2010; Isham, 2002; Abdulai, 2016; Hailu et al., 2017; Husen et al., 2017).

Table 3: Drivers of investment on risky inputs, Heckman model results

Selection equation Log input investment
Estimate SE Estimate SE

Household characteristics
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Gender 0.132 0.085 -0.339*** 0.112
Household size (adult equivalent) 0.018*** 0.006 0.006 0.006
Age -0.013 0.01 0.027** 0.012
Age squared 0.000* 0 -0.000** 0
Formal education 0.091* 0.055 0.04 0.056
Extension services -0.232*** 0.087 0.248*** 0.089
Organization 1.599*** 0.256 0.113 0.095
Access to credit 0.113 0.14 0.089 0.115
Livestock activity 0.300*** 0.056 -0.157*** 0.054
Off-farm activity -0.573*** 0.206 0.032 0.058
Remittance 0.064 0.077 -0.136 0.086
Farm characteristics
Farm size (log, ha) 0.082** 0.038 0.605*** 0.044
Farm equipment value (log) 0 0.012 0.039*** 0.014
Number of crops 0.122** 0.053 -0.291*** 0.057
Cash crops (% of farm size) 0.340*** 0.098 0.645*** 0.13
Diversification index 0.076 0.204 0.567** 0.25
Owned plough/tractor -0.022 0.085 -0.108 0.097
Owned cart 0.059 0.052 -0.007 0.062
Risk variables/indicators
Risk events (count) 0.012 0.016
Risk attitude 0.06 0.043
Std. rainfall 2010-2015 -0.363*** 0.133
Instruments used
Distance to market (log) -0.003 0.019
Extension services need 0.159*** 0.037
Insurance need 0.036 0.043
Organization (RES) -0.678*** 0.133
Off-farm activity (RES) 0.357*** 0.123
Regional fixed effects
Ziguinchor -0.418*** 0.142
Diourbel -0.352*** 0.063
Tambacounda -0.627*** 0.075
Louga -0.317*** 0.086
Fatick -0.423*** 0.084
Kolda -0.438*** 0.076
Matam -1.381*** 0.237
Constant 1.551** 0.635 2.663*** 0.332
rho -0.929 -0.929
Wald chi2 (1) for rho = 287.2*** 287.2 287.2
Wald chi2 (18) = 405.1*** 405.1 405.1
Number of clusters 945 945
Sample size 4,133 4,133

Note: Bootstrapped standard errors are reported. rho denotes the correlation coefficient
between the error term of the selection equation and the error term of the outcome equa-
tions. Organization (RES) and Off-farm (RES) denote the generalized residuals from
the first-stage regressions farmer organization membership and off-farm activity partici-
pations, respectively. Significance: *** p <0.01, ** p <0.05, * p <0.1. Source: Authors
from PAPA data (2017).

The gender of the household head, credit access, and remittance do not significantly
affect the decision to invest in risk inputs. The results obtained here are congruent with
some studies in the empirical literature. For instance, Asfaw et al. (2012a) found the
education level of a household head to drive the adoption of Pigeonpea in Tanzania.
Muzari et al. (2012) also find gender-related differences in technology adoption in Sub-
Saharan Africa. Due to gender inequalities in sub-Saharan Africa, women have less access
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to production resources such as land, lower access to education and information on new
technologies (Muzari et al., 2012). In addition, women are sometimes disadvantaged in
terms of access to credit (Muzari et al., 2012) that reduces their financial ability to have
higher levels of investment in risky inputs compared to their male counterparts.
We find that farm-related variables including size, number of crops grown, and the

share of land allocated to cash crops correlates positively to the decision to invest in
risky inputs. The effects are also highly significant. At the same time, the value of farm
equipment and ownership of a plow or tractor is negatively related to the decision to
invest in risky inputs although the effect is not significant. The standard deviation of
rainfall was found to negatively correlate to the decision to invest in risky inputs and the
effect is significant. Hence as rainfall becomes more and more variable, farmers are less
likely to invest in risky inputs.
Our regional fixed effect variables are all significant at 1%, implying that the location of

a farmer likely influences their decision to invest in risk. The estimates for the potential
endogenous variables4, membership of a farmer-based organization and participation in
an off-farm activity are significant, meaning that endogeneity was indeed present and well
controlled for in the model.
Results of the second stage estimation show that the gender of the household head, age,

extension access, and livestock income sources significantly drive the levels of investment
in risky inputs. We, however, find the effect of gender and livestock ownership to be
negative. Hence, female-headed households invest less in seeds and fertilizers compared
to male-headed households. Furthermore, households that have livestock income sources
invest less in risky inputs. On the contrary, the effect of a household’s head age on
the level of risky input investments decreases with increasing age. Extension access is
related to increasing levels of investment in risky inputs. The effect of remittance is,
however, negative which implies that households that receive remittances reduce the level
of investment in risky inputs.
Farm characteristics including size, equipment value, the share of land allocated to

cash crops and diversification are significant and positively correlated to investment levels
of risky inputs. On the contrary, despite being significant, the number of crops grown
decreases the level of investment in risky inputs. We also find that ownership of farm
equipment (plow/tractor and cart) decreases investment levels in risky inputs but the
effect is not significant.
In summary, we find the age of a household head, extension access, having livestock

income sources, farm size, the number of crops grown and the share of land allocated to
cash crops to simultaneously affect the decision to invest in risky inputs and the level of
investment in these inputs. Extension access, on the other hand, has an opposing effect,

4We do not include the residuals of the other potentially endogenous variables, credit access and exten-
sion because they were not statistically significant. They are however available on request.
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it reduces the probability of investing in risky inputs but increases the level of investment.
The effect of livestock income sources and the number of crops grown has the opposite
effect of extension access. The presence of livestock income sources and the number of
crops grown increases the probability of investing in risky inputs but decreases the level
of investment. Farm size and the share of land allocated to cash crops have a consistently
positive effect across the decision to invest in risky inputs and the levels of investment.
They both significantly increase the probability of investing in risky inputs and the level
of investment in risky inputs.

5.2 Household welfare impacts

Since the drivers of agricultural profit are not the main interest of this study, we directly
discussed the impact of the decision to invest in risky inputs. Detailed results of the model
are presented in the Supplementary materials section. Table 4 shows the predicted welfare
outcomes of risky investments under actual and counterfactual conditions for Senegal.

Table 4: Predicted outcomes and treatment effects

Decision stage
Treatment effects

To invest Not to invest

(Outcome 1): Profit per hectare (1000 FCFA)

Farm households who invested (a) 79.5 (0.7) (c) 55.4 (0.5) ATT = 24.2*** (0.5)
Farm households who did not invested (d) 218.9 (2.4) (b) 87.7 (1) ATU = 131.2 (1.6)
Heterogeneity effects BH1 = -139.3*** (2.1) BH2 = -32.3*** (1) TH = -107*** (1.4)

(Outcome 2): Food availability (Kcal/AED)

Farm households who invested (a) 1219.1 (16.6) (c) 980.7 (12.8) ATT = 238.4*** (7.7)
Farm households who did not invested (d) 2038.4 (40.3) (b) 987.1 (17.6) ATU = 1051.3*** (25.1)
Heterogeneity effects BH1 = -819.3*** (37.7) BH2 = -6.4 (21.5) TH = -812.9*** (21.7)

Note: Standard errors in parentheses. Significance: *** p <0.01, ** p <0.05, * p <0.1. Source: Authors from PAPA
data (2017).

The results showed that investment in risky inputs (fertilizers and/or seeds) has a
positive and significant impact on the profit per hectare and on food produced per AED.
The treatment effect on the treated was estimated at 24 000 FCFA5 per hectare for the
profit and 238 kcal per AED for food availability. This is equivalent to a 44 percent
increase in the profit per hectare and a 24 percent increase in food availability per AED
relative to the expected outcome if they did not purchase risky inputs. Moreover, if non-
buyers had purchased risky inputs, their average profit per hectare and food availability
per AED would have increased by 150 percent and 107 percent, respectively. Therefore,
investment in risky inputs increases household welfare measured in terms of crop profit
per hectare or food availability.

5FCFA = XOF is the local currency in Senegal and most of West African countries. 1 USD is approxi-
matively equal to 550 FCFA.
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However, surprisingly, results also reveal that the treatment effect is higher for non-
buyers than for actual buyers. De Janvry et al. (2010) stated that such a situation
may occur if technology adoption increases risks. In the absence of a perfect insurance
market, poor farmers will not be able to adopt, unlike richer farmers who can adopt
the technologies even if their expected gain is low. Therefore, the treatment effect on
the untreated may exceed the treatment effect on the treated. On the other hand, the
transitional heterogeneity effect for the two outcomes is negative; that is the effect is lower
for farm households that did invest compared to the ones that did not invest.

Table 5: OLS regression of the differential impact)

Profit equation Food equation

Estimate Std. Err Estimate Std. Err
Land share to groundnut (%) 14.139*** 4.850 -986.701*** 62.827
Land share to Maize (%) 6.188 5.545 4.744 64.552
Land share to Millet (%) 10.147** 4.650 310.568*** 55.513
Land share to Rice (%) 32.391*** 5.014 -185.241*** 60.114
Farm size (Ha) -7.931*** 0.562 59.309*** 6.440
farm size, squared 0.196*** 0.020 -0.788*** 0.231
Extension services (0,1) 24.297*** 3.423 348.713*** 39.472
Credit (0,1) -17.245*** 6.114 231.101*** 69.648
farmer organization (0,1) 18.148*** 3.764 163.236*** 43.454
Value of agric. Equipment (1000 FCFA) -0.001 0.002 -0.051** 0.024
Owned cart 1.788 2.085 113.262*** 23.981
Mechanization (0,1) 15.457*** 3.630 186.260*** 41.636
Number of crops 6.917*** 1.228 -15.515 14.587
Education 4.658** 2.345 46.771* 26.919
Gender (1=Female) -23.824*** 3.977 -217.998*** 46.446
Age 0.141* 0.074 0.649 0.847
Constant 50.228*** 6.002 412.322*** 71.682
Observations 4,133 3,863
R-squared adjusted 0.120 0.168

Note: Robust standard errors are reported. Significance: : *** p<0.01, ** p<0.05, * p<0.1.
Source: Authors from PAPA data (2017).

To gain further understanding of results, we also examined the differential impact of
investing in risky inputs by running an OLS estimation on a set of factors where our
interest is on the production structure (share of the total cultivated area allocated to
millet, maize, rice, and groundnut). Table 5 shows results from this simple OLS regression.
Results show that the most influential crops are groundnut, millet, and rice. A test of

differences between the yield and the land size share allocated to these crops across the
groups reveals that the most important yield gap between adopters and non-adopters is
present in rice production with an average gap of 543 kg/ha. In addition, non-adopters
had allocated more land area to that crop (14%) than adopters (7%). This finding clearly
explains why the expected profit for non-adopters is clearly higher than for adopters.
Regarding the food production gap observed, it is explained by the fact that adopters
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had allocated less land size to millet than non-adopters. Moreover, there is no yield gap
for millet between the two groups (see Table 6).

Table 6: Comparison of mean of yield and land allocation across groups

Yield (kg/ha) land size share (%)

Adopters Non-adopters T-Stat Adopters Non-adopters T-Stat

Groundnut 604.65 639.31 -1.25 0.35 0.25 12.17***
Millet 447.80 478.28 -1.87* 0.28 0.32 -5.06***
Maize 614.38 550.92 1.73* 0.12 0.13 -0.46
Rice 1664.36 1120.93 4.34*** 0.08 0.14 -7***

6 Conclusions

Using recent data of rain-fed agriculture in Senegal, this study provides an analysis of the
investment decision of farm households in Senegal on "risky inputs". More than half of
the households in the sample had bought either inorganic fertilizers or seeds during the
campaign of interest. However, the level of spending on these inputs is quite low. There is,
thus, a need to investigate the drivers of the investment decision, the level of investment,
and the potential impact of the household’s welfare in order to convince farmers to adopt
and policymakers to use results to design appropriate interventions.
In summary, we find the age of a household head, extension access, having livestock

income sources, farm size, the number of crops grown and the share of land allocated to
cash crops to simultaneously affect the decision to invest in risky inputs and the level of
investment in these inputs. Farm size and the share of land allocated to cash crops have
a consistently positive effect across the decision to invest in risky inputs and the levels of
investment. They both significantly increase the probability of investing in risky inputs
and the level of investment in risky inputs.
The main drivers of the decision to purchase risky inputs are household size, education

of household heads, membership in a farm organization, access to credit, farm size, the
number of crops and existence of livestock income. On the other hand, results reveal
gender, farm size, the number of crops grown and the share of land allocated to cash crops,
crop diversification, the value of agricultural capital, rainfall variability, and extension
services as the determinants of the level of investment on risky inputs. In terms of
impact, results show a positive effect of risky investment on farm profit per hectare, and
food produced per adult equivalent per day. This positive effect is higher for current non-
adopters. This greater expected impact on non-adopters is explained by their cropping
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patterns. Most of them are involved in rice production which is found to be more sensitive
to inputs investment.
Our results highlight that efforts made so far to encourage investments in inputs need

to be strengthened through the revision of government interventions’ strategy to ensure
public expenditure efficiency and substantial impacts on beneficiaries of the promotion of
private (farm) investment in terms of adoption and investment intensity. Private invest-
ments could be promoted through several complementary channels that affect both the
decision to invest and the amount invested. Access to information can play an important
role in the decision to invest in agricultural activity, particularly in improved inputs. The
sources of information identified here are membership of a farm organization, access to
advisory support, possession of means of transportation that allow households to access
information. Another source of information would be climate information systems. Since
liquidity constraints hinder agricultural investment, any policy that promotes access to
credit could generate important returns. Efforts to ease access to credit would have to be
accompanied by measures to manage agricultural risks.
Interventions along the lines proposed above could reduce the impact of agricultural

risks and increase farmers’ willingness to invest to increase their well-being. In addi-
tion, based on the positive effect of the use of risky inputs on farm profit per hectare,
food availability, private operators may be interested to support public efforts to improve
technology adoption and poverty reduction.
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