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Summary
Fungal plant pathogens pose a serious threat to global food safety and security. Infections of crops

by phytopathogens can result in significant yield loss. Fungal plant pathogens have evolved with

their hosts during the history of crop domestication. While some fungal phytopathogens of modern

crops have maintained the ability to infect the wild relatives of these crops, many have evolved

host-specificity  due  to  the  evolutionary  arms  race.  Co-evolution  between  plants  and  their

pathogens spans many generations. Therefore, we have employed the pathosystem of the fungal

pathogen  Cercospora  beticola and  its  hosts  Beta  vulgaris ssp.  (domesticated  beet)  and  B.

maritima (sea  beet).  This  pathosystem  is  exceptional  as  sugar  beet  has  a  relatively  short

domestication history of ~300 years, compared to several thousand year history of other modern

crops. Investigating the effect crop domestication has on fungal evolution in such a short  time

frame may provide insight into the early processes underlying the evolution of host-specificity. 

The availability of whole genome sequencing data for entire populations of fungal plant pathogens

has enabled detailed analyses of  genomic variation within and among field populations.  Using

population genomic data, we are able to detect population structure of a phytopathogenic fungus,

identify  regions  that  are  highly  differentiated  between  isolates,  and  predict  the  evolutionary

trajectory of disease epidemics. The primary focus of this thesis was to describe the population

genomics of the fungus Cercospora beticola, and determine the influence of host domestication on

recent evolution and population structure of the fungus.

In Chapter 1, we have addressed the challenge of assembling and analysing population genomic

data of species with structural variation, as is the case for many pathogenic fungi. We compared

and  contrasted  two  variant  calling  methods  used  in  population  genomics.  We  show that  the

commonly used method of variant calling, reference mapping-based approaches, as well as more

recently  adapted  multiple  genome  alignment-based  methods  perform  equally  well  at  high

sequencing depths in species with variable amounts of repetitive content. However, we also found

that reference mapping-based approaches are reliable at average and high sequencing depths,

regardless of repetitive content. We offer a perspective of using multiple genome alignment-based
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approaches when considering assemblies produced from third-generation sequencing platforms,

as well as with genomes where high quality assemblies can be produced with next-generation

sequencing platforms in fungal population genomics studies.

In Chapter 2, we analyse the population genetic structure of C. beticola with the aim of comparing

the genetic variation in populations of domesticated and wild beet species. Specifically, we make

use  of  population  genomics  tools  to  elucidate  whether  C.  beticola isolates  from  wild  and

domesticated hosts show strong signals of host specialisation. Sugar beet is comparatively novel

crop,  and  provides  insight  into  the  early  specialisation  processes  pathogens  of  domesticated

plants. We collected isolates from wild and domesticated beet from Europe and North America and

show that there are not clear populations of  C. beticola isolates that infect wild or domesticated

beet. We show that  C. beticola isolates are likely a global population, with substantial admixture

between individuals from all hosts and locations. While there is admixture between individuals from

all locations, isolates from sea beet in the UK showed more differentiation from the isolates from

other locations suggesting some barriers to gene flow and distinct population histories of the sea

beet isolates. We investigated regions where the isolates from the UK are different from isolates

from mainland Europe and North America, and showed that there are likely phenotypic differences

between isolates from Croatian sea beet and the English sea beet isolates. We illustrate a region

where the isolates from Croatia  contained a  premature  stop codon in  a gene involved in  the

production of an aflatoxin in high frequency, while it was present at a low frequency the isolates

from English sea beet. Thus, we show that while  C. beticola may not show strong signatures of

host  specialisation  yet,  there  are  some  differences  between  isolates  from  different  locations

indicating the potential for future population divergence.

In Chapter 3, we compare and contrast C. beticola to four other Cercospora species to elucidate

differences and similarities in genome content and synteny within the genus. We show that  C.

beticola has  a  higher  number  of  genes  encoding  proteins  that  are  involved  host-pathogen

interaction. We also note that the other Cercospora species that has a broad host range included

in this,  C. cf. flagellaris, has a similar repertoire of genes. We also show that these two species
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share substantial  synteny.  We postulate that  they most  recent  common ancestor of  these two

species likely had a plastic genome that underwent several translocation events.

Taken  together,  we  show  that  the  Cercospora genus  is  shaped  by  its  interactions  with  its

environment and the various hosts. We show that C. beticola has not yet shown strong association

with either host or location.
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Zusammenfassung
Pflanzenpathogene Pilze stellen eine ernsthafte Bedrohung für die weltweite 

Lebensmittelsicherheit dar. Infektionen von Nutzpflanzen mit phytopathogenen Pilzen können zu 

erheblichen Ertragseinbußen führen. Die phytopathogene Pilze entwickelten sich zusammen mit 

ihren Wirten während der Geschichte der Domestizierung von Nutzpflanzen. Während einige 

phytopathogene Pilze moderner Nutzpflanzen die Fähigkeit behalten haben, die wilden 

Verwandten dieser Nutzpflanzen zu infizieren, haben viele aufgrund des evolutionären Wettrüstens

eine Wirtsspezifität entwickelt. Diese Koevolution zwischen Pflanzen und ihren Pathogenen 

erstreckt sich über viele Generationen. Daher haben wir das Pathosystem des Pilzerregers 

Cercospora beticola und seiner Wirte Beta vulgaris ssp. (domestizierte Rübe) und B. maritima 

(Meerrübe) verwendet. Dieses Pathosystem ist besonders, da die Zuckerrübe eine 

vergleichsweise kurze Domestikationsgeschichte von etwa 300 Jahren aufweist, verglichen mit der

mehrere tausend Jahre langen Geschichte anderer moderner Nutzpflanzen. Die Untersuchung des

Einflusses der Domestizierung von Nutzpflanzen auf die Pilzevolution in einem so kurzen 

Zeitrahmen kann einen Einblick in die frühen Prozesse geben, die der Evolution der Wirtsspezifität 

zugrunde liegen. 

Die Verfügbarkeit von Daten der Ganzgenomsequenzierung gesamter phytopathogener 

Pilzpopulationen hat detaillierte Analysen der genomischen Variation innerhalb und zwischen 

Feldpopulationen ermöglicht. Mit Hilfe dieser genomischen Populationsdaten sind wir in der Lage 

die Populationsstruktur phytopathogener Pilze zu erkennen, sich zwischen Isolaten stark 

unterscheidende Regionen zu identifizieren und den evolutionären Verlauf von 

Krankheitsepidemien vorherzusagen. Der primäre Fokus dieser Arbeit lag darauf, die 

Populationsgenomik des Pilzes Cercospora beticola darzustellen und den Einfluss der 

Wirtsdomestikation auf die rezente Evolution und Populationsstruktur dieses Pilzes zu bestimmen.

In Kapitel 1 stellten wir uns der herausfordernden Aufgabe die populationsgenomischen Daten von

Arten mit struktureller Variation, wie sie bei vielen pathogenen Pilzen der Fall ist, zu assemblieren 

und zu analysieren. Wir verglichen zwei in der Populationsgenomik verwendete Methoden zum 
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Detektieren von Varianten („variant calling“). Wir zeigen, dass die am häufigsten verwendete 

Methode des „variant calling“, die Referenz-Mapping-basierten Ansätze, sowie neuere Multiple-

Genom-Alignment-basierte Methoden bei hohen Sequenzierungstiefen in Arten mit variablen 

Mengen an repetitiven Elementen identische Leistungen erbringen. Wir fanden jedoch heraus, 

dass Referenz-Mapping-basierte Ansätze auch bei mittleren und hohen Sequenzierungstiefen 

zuverlässige Ergebnisse hervorbringen, unabhängig vom repetitiven Anteil des Genoms. Wir 

bieten daher die Möglichkeit zur Verwendung Multiple-Genom-Alignment-basierter Methoden in 

populationsgenomischen Studien von Pilzen unter der Berücksichtigung von Genom-

Assemblierungen, die mit Sequenzierplattformen der dritten Generation erzeugt wurden, sowie 

Genom-Assemblierungen, die durch qualitativ hochwertige Assemblierungen des Next-Generation 

Sequencing erzeugt wurden.

In Kapitel 2 analysierten wir die populationsgenetische Struktur von C. beticola, um die genetische

Variation in Populationen von domestizierten und wilden Rübenarten zu vergleichen. Insbesondere

nutzten wir die Analyse-Tools der Populationsgenomik, um aufklären, ob C. beticola-Isolate von 

wilden und domestizierten Wirten starke Signale der Wirtsspezialisierung aufweisen. Die 

Zuckerrübe ist eine vergleichsweise neue Kulturpflanze, die einen Einblick in die frühen 

Spezialisierungsprozesse von Pathogenen domestizierter Pflanzen gibt. Wir sammelten Isolate 

von wilden und domestizierten Rüben aus Europa und Nordamerika und zeigen, dass es keine 

eindeutigen Populationen von C. beticola-Isolaten gibt, die entweder wilde oder domestizierte 

Rüben infizieren. Wir zeigen, dass es sich bei den C. beticola-Isolaten voraussichtlich um eine 

globale Population handelt, mit einer erheblichen Vermischung zwischen Individuen aus 

verschiedensten Wirten und Standorten. Während es eine Vermischung zwischen Individuen aller 

untersuchten Standorte gab, unterschieden sich Isolate aus Meeresrüben in Großbritannien 

stärker von den Isolaten anderer Standorte, was auf Barrieren für den Genfluss und 

unterschiedliche Populationsgeschichten der Meeresrüben-Isolate schließen lässt. Wir 

untersuchten Regionen, in denen sich die Isolate aus Großbritannien von Isolaten vom 

europäischen Festland und aus Nordamerika unterscheiden, und zeigen, dass es vermeintliche 
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phänotypische Unterschiede zwischen Isolaten aus kroatischen Meeresrüben und den englischen 

Meeresrübenisolaten gibt. Wir veranschaulichen eine Region, in der die Isolate aus Kroatien in 

hoher Frequenz ein vorzeitiges Stopcodon in einem an der Produktion eines Aflatoxins beteiligten 

Gens enthalten, während es in den Isolaten aus englischen Meerrüben in niedriger Frequenz 

vorhanden ist. Wir zeigen daher, dass C. beticola bisher zwar keine starken Anzeichen einer 

Wirtsspezialisierung aufweist, dass es aber einige Unterschiede zwischen Isolaten von 

verschiedenen Standorten gibt, die auf das Potenzial einer zukünftigen Populationsdivergenz 

hinweisen.

In Kapitel 3 vergleichen wir C. beticola mit vier anderen Cercospora-Arten, um Unterschiede und 

Gemeinsamkeiten im Genominhalt und in der Syntänie innerhalb dieser Gattung aufzuklären. Wir 

zeigen, dass C. beticola eine höhere Anzahl von protein-kodierenden Genen besitzt, die an der 

Wirt-Pathogen-Interaktion beteiligt sind. Wir stellen fest, dass eine weitere Cercospora-Art mit ein 

breites Wirtsspektrum, C. cf. flagellaris, ein ähnliches Repertoire an Genen aufweist. Wir zeigen 

zudem, dass diese beiden Arten eine erhebliche Syntänie aufweisen. Wir postulieren, dass der 

jüngste gemeinsame Vorfahre dieser beiden Arten wahrscheinlich ein plastisches Genom hatte, 

das mehrere Translokationsereignisse durchlief.

Zusammengenommen zeigen wir, dass die Gattung Cercospora durch ihre Interaktionen mit ihrer 

Umwelt und ihren unterschiedlichen Wirten geprägt ist. Wir zeigen, dass C. beticola bisher keine 

starke Assoziation mit ihren Wirten oder den verschiedenen Standort aufweist.
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General Introduction

Introduction

Humans have always been relying on plants for nourishment. However, plant domestication did not

occur until 9500 BC with the birth of agriculturally based societies (Allaby et al., 2008). It is widely

believed that localised climate change following the last ice age resulted in the transition from

hunter-gatherer groups to settled villages during the Neolithic revolution (Olsson and Hibbs, 2005).

Due to long dry periods, the villages were forced to stockpile seeds and tubers to ensure that food

was available throughout the year. Initially only animals were purposefully domesticated with plants

following about 2000 years later around 9500 BC. Concentrated domestication efforts of plants

was not required as some of the first grain species were domesticated naturally through continued

cultivation during the Epi-Paleolithic period (Hillman et al.,  2001). Rye was the first plant to be

domesticated by humans in the Epi-Paleolithic period (Hillman et al.,  2001). Some of the other

plant species that were domesticated later by humans, termed the Neolithic founder crops, were

emmer wheat, einkorn wheat, barley, lentil, pea, chickpea, and bitter vetch (Zohary et al., 2012). 

Initially it was thought that plants were rapidly domesticated rather than during prolonged selection.

Phylogenetic  analyses  of  the  eight  major  ancient  crops  have  contributed  significantly  to  our

understanding of crop domestication. If there was only one domestication event of each crop, the

accessions would all be monophyletic. However, it has been found that several crop species have

polyphyletic origins (Londo et al., 2006; Molina-Cano et al., 2005; Zohary, 1999). It has also been

supported by the staggered, rather than simultaneous, appearance of agriculturally important traits

(Fuller, 2007). For example, in domesticated grasses, traits for grain size and shape were selected

for before non-shattering ears or panicles (Fuller, 2007).

The  term  domestication  syndrome  was  coined  by  Hammer  (Hammer,  1984)  to  describe  the

accumulation of traits favoured by concentrated domestication efforts. The genetic consequences

of the domestication syndrome have been studied extensively, and with the increased application

of systems biology, the true effects of are being discovered  (Martínez-Ainsworth and Tenaillon,
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2016; Moyers et al., 2018). Many of the traits selected for  have pleiotropic effects. One of major

efforts in plant breeding is to reduce the plant’s susceptibility to various biotic and abiotic factors

that result in yield loss. These factors include drought resistance, nutrient uptake and utilisation,

and pathogen resistance as few examples. 

Plant  disease  is  a  vital  biotic  component  considered  by  breeding  efforts  due  to  the  threat

pathogens pose to global food security and safety (Fisher et al., 2012). Fungal plant pathogens are

known to cause severe crop loses (Fones et al., 2020; Godfray et al., 2016). Global climate change

and increased mono-culture based farming,  and globalised trading pose risks to  future fungal

pandemics (Almeida et al.,  2019; Fones et al.,  2020). As such, breeding efforts towards fungal

resistant and tolerant crop varieties have been underway for all major crop types (Melchers and

Stuiver, 2000; Zuccaro and Langen, 2020). In many crop species, including wheat and tomato,

disease resistance, as well as other favourable traits are bred into crops from wild relatives (Hajjar

and Hodgkin, 2007; Harlan, 1976; Migicovsky and Myles, 2017; Pimentel et al., 1997).

Below, I will summarise our current knowledge on the effect of plant domestication on pathogen

evolution. Moreover, I will provide an overview of molecular plant-pathogen interactions which are

crucial in driving host-pathogen co-evolution. Finally, I will introduce the model system studied in

this research, the fungus Cercospora beticola and its host plant species of Beta.

Domestication Processes Affecting Fungal Pathogen Evolution

Many modern crops were domesticated around 7000-10000 years ago (Balter, 2007). Pathogens

have been associated with crops since domestication occurred (Diamond and Guns, 1997). The

breeding of new crop species has resulted in the evolution of novel plant pathogens as well as

significant  changes in the populations that  infected the wild ancestor populations (reviewed by

Stukenbrock and McDonald, 2008).There are many differences between wild and domesticated

plant populations that have the potential to drive evolution of pathogens of domesticated plants

including, among others the use of pesticides, lack genetic variation, introduction of R-genes, and

crop rotations in agricultural systems. 
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The agricultural landscape is very different from that of the natural ecosystems. The density of

monoclonal  plants  is  much  higher  in  agricultural  systems.  In  natural  ecosystems,  there  is  a

considerably larger heterogeneity in ecological and genetic conditions (Figure 1). It is hypothesised

that the virulence of a pathogen is an interplay between the pathogen’s ability to colonise and

reproduce within a host and transmission between hosts (Anderson and May, 1982; May et al.,

1983; Stukenbrock and McDonald, 2008). If a pathogen is excessively virulent and kills its host

prior  to  successful  reproduction,  the spread of  the disease is  unlikely  to  occur.  However,  if  a

pathogen is less virulent, the chances of successful reproduction and  infection of new plants are

increased.  Due to the compact  nature of  agricultural  fields,  transmission of  inoculum between

plants is made significantly easier than it would be in wild ecosystems. There is also an abundance

of  genetically identical  hosts that removes the selective pressure against  evolving less virulent

phenotypes.  This,  in  turn,  allows  for  the  evolution  of  more  virulent  pathogens  in  agricultural

ecosystems than in natural ecosystems (Thrall and Burdon, 1999).

Figure 1: An illustration of the environment that the domesticated beet, sugar beet (A) and the

wild beet, sea beet (B) are encountered in. 1A: Sugar beet are grown closely to one another

with no genetic diversity between plants. Soils are supplemented with nutrients, pesticides are

applied, and fields are irrigated regularly. Photograph was taken at an experimental sugar beet

field from the British Beet Research Organisation (BBRO) in Norfolk, UK in September 2018.
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1B: Sea beet are interspersed between other naturally occurring plant species. The soils are

usually poor in nutrients, no unnatural irrigation occurs, and no disease control measures are

taken. The photograph was taken in Orford, UK in September 2018

In addition to host density and distribution, plants grown in agricultural settings are also treated by

artificial  means  to  support  their  growth.  These  treatments  include  being  supplemented  with

nutrients to maximise their output (Johnston et al.,  2000). In many instances, plants grown on

nutrient poor soil are more susceptible to disease than plants that are grown in soils with a suitable

nutrient  profile  (Spann  and  Schumann,  2010).  While  a  balanced  nutrient  profile  in  the  soil  is

beneficial for plant growth, other soil-borne microorganisms can also make use of the available

nutrients to proliferate, and potentially metabolise the nutrients before they can be used by the

plants  (Rovira,  1965).  Therefore,  preventative  measures,  such  as  fungicide  application,  are

important in agriculture (Poole and Arnaudin, 2014). 

The use of pesticides drives different evolutionary trajectories between pathogens in domesticated

and  wild  host  populations  (Russell,  2005;  Stukenbrock  and  McDonald,  2008).  The  use  of

pesticides  provides  a  strong  selective  pressure  on  fungi  infecting  crops  (Hahn,  2014).  The

evolution of fungicide resistance not only threatens global food security (Lucas et al., 2015). It also

threatens the biodiversity of local ecosystems, and should be used with caution (McMahon et al.,

2012).  There  are  several  different  classes  of  fungicides  employed  in  agriculture,  namely

benzimidazoles, demethylation inhibitors, Qo respiration inhibitors, and dicarboximides (Ma and

Michailides, 2005). There are four primary modes of fungicide resistance that have evolved by

fungi: (1) altering the target site of the fungicide so that binding is reduced, (2) expression of an

enzyme that binds to the fungicide’s target, (3) over-expression of the target of the fungicide to

ensure  that  some  products  remain  active,  and  (4)  a  reduction  in  the  uptake  or  an  active

extracellular  export  of  the  fungicide (Fluit  et  al.,  2001;  Gisi  et  al.,  2000;  Gullino  et  al.,  2000;

McGrath, 2001). There are likely other undiscovered mechanisms employed by fungi to overcome

the use of fungicide, and the ability can evolve rapidly (Ma and Michailides, 2005). As such, it is

vital  not  to rely  solely on fungicide use to control  fungal diseases.  One of  the most  important
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contributing factors to fungal plant disease management is the use of resistance breeding (e.g.

Melchers and Stuiver, 2000; Secor and Gudmestad, 1999; Singh and Reddy, 1991).

The  responses  to  the  various  different  environmental  pressures  are  mediated  through  three

primary mechanisms that act similarly under the various pressures. Fungicide resistance can arise

in various ways (reviewed by Hawkins et al.,  2019). The response to environmental pressures,

such  as  fungicide  resistance  can  arise  from  de  novo mutations,  standing  variation  in  the

population, and interspecific transfer of resistance genes. New mutations that give rise to fungicide

resistance will increase in frequency at sites where fungicide is applied. At population level, this

leaves a signature in the genome represented by a selective sweep (Messer and Petrov, 2013).

Standing variation can contribute differently to fungicide resistance, depending on the frequency

that the trait is present in the population (Barrett and Schluter, 2008). If the trait is present at a low

frequency, selective pressures can contribute to the mutation becoming fixed in the population. If

the trait is already present at a high frequency prior to the environmental change, the population

can be considered to be intrinsically resistant to the environmental change (Lucas et al., 2015).

Finally, fungicide resistance may be acquired through interspecific gene transfer whereby distinct

species of  pathogens hybridise.  Hereby,  one species carrying a fungicide resistance allele will

transfer its resistance to another species. Genome studies have, in the recent years, documented

that  interspecific  hybridisation  occurs  more  frequently  than  previously  though,  and  may  be  a

relevant mechanism in the evolution of new fungicide resistance (Lucas et al., 2015; Stern, 2013). 

The different evolutionary pressures on pathogens of wild and domesticated plants can result in

gene  flow into  wild  populations  from populations  on  domesticated  plants.  In  instances  where

populations are undergoing parallel evolution, alleles can flow freely between populations until a

reproductive barrier between the populations evolves. This allows for changes in allele frequency

in the wild population driven by diversity found in pathogens of domesticated plants that could be

detrimental to wild plants. In many cases, host specialisation becomes an important reproductive

barrier  between  populations  on  wild  and  domesticated  plants,  or  when  resistant  cultivars  are

planted that limit a fungus from completing its life cycle (Gavrilets, 2004; Giraud et al., 2010). As
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such, cross-infection between hosts cannot occur freely, and pathogens cannot undergo sexual

reproduction  on  their  non-native  host  (Tellier  et  al.,  2010).  This  limits  gene  flow between the

populations, and often increases population segregation. As this specialisation occurs, the plant’s

ability to resist or tolerate the diseases caused by the different populations changes (Mercier et al.,

2019).

The  distinction  between  disease  resistance  and  disease  tolerance  is  important  to  note  in

discussions regarding plant-pathogen interactions. Disease tolerance is a measure of the plant’s

ability to grow and yield a crop despite infection, while disease resistance pertains to the ability of

the  plant  to  resist  infection  by  a  pathogen  by  preventing  the  infection,  establishment,  and

reproduction of the pathogen (Graham and Webb, 1991). The outcome of which is determined by

the molecular interactions between the plant and the infecting pathogen.

Evolutionary Theory on the Effect of Domestication on Fungal 

Pathogens

There are two primary categories of theories describing the evolution of a plant-pathogen system.

One category pertains to co-evolutionary dynamics, and the other to environmental factors that

drive evolution. Within the category relating to co-evolutionary dynamics, there are two primary

hypotheses. The first is the Red Queen hypothesis (Van Valen, 1977). This hypothesis proposes

that species must constantly evolve and reproduce in the face of opponents, and ties in with the

arms race discussed previously (Clay and Kover, 1996). This hypothesis is supplemented by the

Black Queen hypothesis that argues that communities of microbes are able to selectively lose

genetic  content,  assuming  that  other  members  of  the  community  are  able  to  supplement  the

function of the lost content (Morris et al., 2012). In the category relating to environmental factors,

the most widely discussed theory is the Court Jester hypothesis (Barnosky, 2001). This hypothesis

states abiotic factors drive evolution, rather than interactions between individuals in a system. The

three  hypotheses  have  been  seen  to  contribute  in  the  interaction  of  plants  and  their  fungal

pathogens, and the resulting signatures can be detected within genomes.
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Mutations  occur  naturally  at  different  rates  within  individual  genomes,  and  the  fates  of  these

mutations depends on several factors. The fitness effect of a mutation influences the distribution of

mutations (Eyre-Walker and Keightley, 2007). If a mutation is deleterious, but not lethal, or simply

neutral, the chances of the mutation spreading through the population and becoming fixed (i.e.

shared by all individuals) are lower than if the mutation has a fitness benefit (reviewed by Loewe

and Hill,  2010).  If  the  effects  of  a  mutation  are  strongly  deleterious,  selection  against  it  acts

effectively (Keightley and Eyre-Walker, 2010; Trindade et al., 2010). If mutations are only slightly

deleterious, these can accumulate within genomes through random genetic drift and non-random

mating (Glémin, 2003; Kondrashov, 1995; Ohta, 1973). Mutations with a strong fitness benefit are

rarer, but contribute heavily to evolution (Eyre-Walker, 2006). Mutations can become fixed by either

random genetic drift, or selection.

Selective sweeps are a process by which a mutation becomes fixed in a population by means of

positive selection (reviewed by Stephan, 2019). Through selective sweeps, the mutation landscape

of the region may lack genetic variation due to the regions hitchhiking along with the beneficial

mutation (Smith and Haigh, 1974). There are three types of sweeps: i) a hard selective sweep

where the beneficial mutation rapidly becomes fixed in a population (Smith and Haigh, 1974), ii) a

soft  sweep  from  standing  genetic  variation  driven  by  external  factors  such  as  environmental

pressures (Hermisson and Pennings, 2005), and iii) a multiple origin soft sweep where mutations

are common in a population and the same mutation occurs against different genomic backgrounds

and no hitchhiking occurs (Pennings and Hermisson, 2006). Selective sweeps can be detected by

large  haplotypes  being  present  in  a  population  that  result  in  reduced  diversity  at  linked  loci

(reviewed by Booker et al., 2017).

The  use  of  population  genomics  is  fundamental  in  the  identification  of  the  genomic  regions

underlying such phytopathogenic phenotypes. One of the phenotypes studied is the genomic basis

of host specialisation, particularly within a single fungal species that has a wide host range. In the

case  of  Botrytis  cinerea,  several  different  populations  exist  which  infect  more  than  1400

dicotyledonous and monocotyledonous plant  species (Mbengue et  al.,  2016;  Williamson et  al.,
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2007; 2016). The agriculturally important crops B. cinerea is known to infect include grapevine and

tomato. Since isolates obtained from tomato and grapevine are known to cause more disease on

their respective hosts, this system has been used extensively to study host specialisation (Mercier

et al., 2019, 2020). Microsatellite markers indicate population subdivision between isolates from

various hosts in  France,  and suggests that  populations include a collection of  generalists with

some  specialist  individuals  (Mercier  et  al.,  2019).  Populations  of  B.  cinerea also  showed

differentiation between individuals isolated from greenhouses and from outdoor hosts (Walker et

al., 2015). Population genomics approaches have been used to locate the genomic regions in the

various populations to determine which genes are under some degree of positive selection that

may be important for host specialisation (Mercier et al., 2020). Several PCWDEs are shown to be

under different selective pressures in the various populations, suggesting that these are important

for host specialisation. In addition, two CAZymes that are known virulence factors in other species

are  unique  to  populations  from  grapevine  (Beauvais  et  al.,  2013;  King  et  al.,  2017).  These

CAZymes are  known to contribute  to host  recognition  and fungal  morphology,  and thus  likely

contribute to B. cinerea’s ability to infect grapevine more effectively. In the populations that infect

tomato, a phytotoxin that is present  in all  B. cinerea populations was found to undergo strong

positive selection (Schouten et al.,  2008). Additionally,  regions containing secondary metabolite

(SM) clusters were also shown to be part of a selective sweep. SMs are known to impact host

range (Thynne et  al.,  2019).  Therefore,  this  cluster  may also  be a  contributing  factor  to  host

specialisation.

Taken together, the interaction between plants and their pathogens drive genome evolution under

various scenarios. In order to overcome plant defenses, the fungal genome must constantly adapt

to the environment and changes in the hosts.

Plant-Pathogen Interactions During Infection

Plants possess an immune system allowing them to recognise and defend against pathogens. In

order  to  evade  the  plant’s  immune  system,  fungal  pathogens  must  either  avoid  detection,  or

manipulate the immune response (Boyd et al.,  2013). Plant defense responses operate on two
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levels distinguished by the host plant detecting the phytopathogen, mounting a defense against the

pathogen, and the pathogen managing the response (Jones and Dangl, 2006).

Upon  infection,  plants  detect  pathogen  associated  molecular  patterns  (PAMPs),  resulting  in  a

PAMP triggered immune (PTI) response within the plant (Jones and Dangl,  2006).  PAMPs are

often integrated components of pathogen cell walls or cell components. Plants have evolved the

ability to detect PAMPs due to the conserved nature of these molecules. In fungi, chitin is one of

the most  commonly recognised PAMPs (Felix  et  al.,  1993).  PAMPs are recognised by pattern

recognition receptors (PRRs) localised on the plant’s cell surface, and trigger the PTI response

(Zipfel, 2014). PRRs trigger a cascade of internal responses, one of the first in the cascade is an

oxidative burst aimed at killing the invading pathogens (Torres et al., 2006). Later PTI responses

include callose deposition, and the production of phytohormones including ethylene and salicylic

acid (Zipfel and Robatzek, 2010). 

 Following the PTI response, pathogens must manipulate the cellular space to ensure successful

establishment in the host (Boyd et al., 2013). To achieve this, pathogens must suppress the host

immune response,  and manipulate  the environment  to  allow for  successful  establishment  and

propagation. This is often achieved by the expression of effectors. Effectors can fulfill a multitude of

functions,  and  often  defines  host  ranges  (Kim  et  al.,  2016).  Effectors  are  small,  cystein-rich

peptides that interact with proteins or cell wall components of plants (Stergiopoulos and de Wit,

2009). The response to effectors is known as effector triggered immunity (ETI) (Jones and Dangl,

2006).  Phytopathogenic  fungal  genomes  can  contain  hundreds  of  different  effector  genes  (Lo

Presti et al., 2015). Some of effectors are small secreted proteins (SSPs) that are involved in host

colonisation (Rep, 2005). A number of effectors have been functionally characterised and revealed

a multitude of ways to manipulate host defenses (e.g. Kleemann et al., 2012; Lo Presti et al., 2015;

Stergiopoulos and de Wit, 2009). However, for the vast majority of effector proteins, the functional

relevance is still unknown.

In  addition  to  the arsenal  of  effectors,  phytopathogens also  make use  of  carbohydrate  active

enzymes (CAZymes) during the infection process (Zhao et  al.,  2013).  CAZymes are enzymes
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targeting only carbohydrates. Plant cell walls are rich in carbohydrates, therefore the use of these

enzymes  to  break  down cell  walls  for  cell  invasion  and  nutrient  acquisition  is  vital  (Karr  and

Albersheim,  1970).  There  are  many different  classes  of  CAZymes,  grouped  based  on  their

biological  function  and  amino  acid  similarity  (Henrissat,  1991;  Henrissat  and  Bairoch,  1993;

Lombard et  al.,  2010).  The genomic composition  of  CAZyme content  differs  between different

fungal phytopathogens, depending on the plants they infect (Zhao et al., 2013). Pathogens that rely

on “brute force” to overcome the plant immune system tend to have a higher number of CAZymes

in their genomes to successfully destroy the plant’s cell wall (Bolton et al., 2006).

In response to the pathogen expressed effectors plants launch the ETI response. The response is

triggered by the expression of resistance (R) genes within the plant. The response is commonly

mediated by leucine rich repeat (LRR) proteins. This R/Avr recognition pattern is often a gene-for-

gene resistance system (Bergelson et al., 2001). Within-species polymorphisms between R genes

are  not  uncommon,  and  are  commonly  non-synonymous  substitions  located  in  the  exposed

residues of the LRR protein (e.g. McDowell et al., 1998; Meyers et al., 1998; Parniske et al., 1997).

R-genes are also present in various copy numbers within a species (reviewed by Dolatabadian et

al., 2017). 

The  evolutionary  arms race  that  plants  and  their  pathogens  are  engaged  in  result  in  various

evolutionary scenarios that influence fungal genome evolution. Phytopathogens often evolve new

mechanisms  to  overcome  the  plant  defense  responses  (Knogge,  1996).  Many  of  these

mechanisms rely on genomic variation.

Genome Evolution in Fungal Plant Pathogens

Fungal genomes, like most genomes, are influenced by small and large scale mutational events

(reviewed  by  Priest  et  al.,  2020).  Variable  mutation  rates  between  species  as  well  as  within

genomes influences the rate of evolution. These mutational events can occur as single nucleotide

polymorphisms  (SNPs),  and  structural  variants.  Structural  variants  that  include  large

rearrangements such as inversions, insertions, deletions, and translocations, chromosome gains
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and/or  losses,  large-scale  HGT,  and  polyploidy.  These  rearrangements  can  be  driven  by

transposable elements (TEs),  meiotic recombination, and double stranded break repairs during

mitosis (reviewed by Priest et al., 2020). 

Genome size differs drastically among fungi and oomycetes (reviewed by Raffaele and Kamoun,

2012) (Figure 2). The species considered by Raffaelle and Kamoun showed a 15-fold difference

between the smallest genome used, that of Ustilago maydis, with a size 21 Mb and the largest 280

Mb in  Phytophthora infestans (Haas et al.,  2009; Raffaele et  al.,  2010). Since the review was

published in 2012, several other similar comparative studies have been performed, noting similar

variation in genome size, gene content, and repetitive content (e.g. Aylward et al., 2017; Mohanta

and Bae, 2015; Möller and Stukenbrock, 2017). Gene gains and losses, accessory chromosomes,

and repetitive content variation all drive fungal evolution in various manners.

One contributing factor to genome variation in fungi are accessory compartments, in some cases

even accessory chromosomes. Accessory chromosomes occur in a variety of plant pathogenic

fungi, but they are not a trait unique to fungi, and also occur in various plant and insect species

(e.g.  Alfenito  and  Birchler,  1993;  Camacho  et  al.,  1997;  John  and  Lewis,  1966;  Möller  and

Stukenbrock, 2017; Raffaele et al., 2010; Wilson, 1907). These chromosomes have been detected

using pulsed field gel electrophoresis, and more recently with next and third generation sequencing

(NGS) technologies (Croll and McDonald, 2012; van Dam et al., 2017; Weiland and Koch, 2004).

With  advances  in  genome  sequencing,  the  possibility  to  identify  and  characterise  accessory

chromosomes  in silico has become easier. The gene content of these regions is quite variable

between species (Croll  and McDonald,  2012).  In some instances, these chromosomes contain

genes that are important for successful infection of the host plant (Coleman et al., 2009; Ma et al.,

2010;  Miao  et  al.,  1991).  In  other  species,  the  accessory  chromosomes  do  not  contribute  to

successful  host  infection,  and  possibly  carry  negative  fitness  consequences  (Houben,  2017).

Inheritance of these chromosomes sometimes follows Mendelian patterns, while in other species

they do not (Habig and Stukenbrock, 2020; Möller et al., 2018).
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Figure 2: The review by Raffaele and Kamoun (2012) illustrates the differences between

various fungi and oomycetes phytopathogens. The review shows differences in genome

size, number of protein coding genes, repetitive genome content, as well as gene family

expansions. The following is the key used in the review: CDC, conditionally dispensable

chromosome; chr., chromosome; CNV, copy number variation; CRN, Crinkler; CWDE, cell

wall-degrading enzyme;  GPCR, G protein-coupled receptor;  GSR,  gene-sparse region;

incl.,  including; LS, lineage-specific; ND, not determined; NRPS, non-ribosomal peptide

synthetase;  P/A,  presence/absence;  PKS,  polyketide  synthase;  pos.  sel.,  positive

selection;  rec.,  recombination;  RIP,  repeat-induced  point;  SMB,  secondary  metabolites

biosynthesis;  SNPs,  single-nucleotide  polymorphisms;  SSP,  small  secreted  protein;

TE,transposable element.
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TEs  are  important  drivers  in  genome  evolution  (Kazazian,  2004).  These  elements  are  often

considered to be parasitic, or selfish genetic elements that can lead to an increase in genome size

(Möller and Stukenbrock, 2017; Wendel et al., 2018). TEs exist as retrotransposons (class I)

that transpose themselves with an RNA transcript intermediate, while DNA transposons (class II)

that are transposed without the RNA intermediate (Wicker et al., 2007). Genomes contain a varying

amount of TE’s from relatively few to up to 80%. The insertion of TEs can be detrimental to the

genome. TE insertion can disrupt genes inherited together, alter gene expression, and promote

recombination (Kent et al., 2017; Laricchia et al., 2017; Werren, 2011). Class I TEs can result in

novel or pseudogenes once the mRNA intermediates are incorporated into the genome, and can

influence  the  phenotype  of  the  organism  (Vinckenbosch  et  al.,  2006).  An  important  example

showed that a long terminal repeat relic of a retrotransposon in a major facilitator gene promoter

resulted in fungicide resistance in  Zymoseptoria tritici (Omrane et al.,  2018).  Most TEs remain

silent  or  inactive,  and evolve in  a neutral  manner,  but  some may contribute to rapid  genome

evolution and promote adaptation (Arkhipova, 2018).  The location of TEs is often spread evenly

across the genome in a non-random manner (Muszewska et al., 2019). Compact genomes contain

more TE remnants in genes than in genomes that have more non-genic space. Fungal pathogens

also have more TEs inserted in genes than in species that are not pathogenic. SSPs are, however,

generally not strongly associated with TE neighbourhoods (Muszewska et al., 2019).

The invasion of TEs is controlled by several genome defense mechanisms. These mechanisms

include,  among  others,  DNA  methylation,  RNA  interference  (RNAi),  and  a  fungus  specific

mechanism  termed  “repeat-induced  point  mutations  (RIP)” (John  Clutterbuck,  2011;  Torres-

Martínez  and  Ruiz-Vázquez,  2017;  Zemach  et  al.,  2010). Genome  defense  mechanisms  are

crucial to maintain the integrity of the genome, as shown when these mechanisms are inactivated

(e.g. Wang et al., 2020). 

RNAi is a eukaryotic regulatory mechanism mediated by small non-coding RNA molecules of 20-30

nucleotides (reviewed by Dang et al.,  2011). By this mechanism, incorrectly transcribed RNA is

recongised  by  the  RNA complex,  converted  to  dsRNA,  processed,  then  packaged  into  the
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Argonaute proteins (Nakayashiki et al., 2006). Within the broad scope of this process, fungi show a

great deal of variation in the proteins (Fulci and Macino, 2007; Li et  al.,  2010). In  Neurospora

crassa,  RNAi  is  shown  to  be  important  in  the  post-transcriptional  silencing  of  repetitive  or

homologous sequences in the vegetative or asexual state, while in the non-vegetative or sexual

stage, RIP and meiotic silencing are responsible for this (Romano and Macino, 1992; Selker, 1990;

Shiu et al., 2001).

DNA methylation is a genome defense mechanism found in all domains of life (Zilberman, 2008).

However, some species have lost the function, including yeast (Capuano et al., 2014). TEs and

other repeats are consistently methylated in species that possess the ability to methylate DNA,

indicating that methylation is important for the regulation of TEs as well as gene regulation (Goll

and Bestor,  2005;  Henderson and Jacobsen,  2007).  Methyl  groups are added to adenine and

cytosine  nucleotides  by  various  enzymes,  including  mehyltransferases  DIM2 and  DMNT1 that

recognise CG dinucleotides and methylate the cytosine, causing the DNA strands to coil  more

tightly together (Jeon et al., 2015; Jullien et al., 2012; Kouzminova and Selker, 2001; Tamaru and

Selker, 2001). DNA methylation silences target regions, including those that were affected by RIP

(Honda et  al.,  2010;  Lewis  et  al.,  2010;  Selker  et  al.,  2003).  DNA methylation  is  also  rarely

encountered in genes, and most in transcription activation sites, contributing to the theory that DNA

methylation is a genome defense mechanism.

RIP is a homology based silencing mechanism employed in some ascomycete fungi to regulate

selfish genetic elements (Selker, 1990; Selker et al., 1987). RIP is present in many, but not all fungi

at different levels of activity and has only been experimentally proven in ascomycetes (Van Wyk et

al., 2020). RIP targets duplicated regions larger than ~400 bp with sequence identity of higher than

80%, and introduces G:C to T:A mutations (Cambareri et al., 1991; Watters et al., 1999). Following

RIP mutation, up to 30% of the C:G pairs can be mutated. RIP signatures are more prominent in

the accessory compartment of the genome due to its association with TEs and other repeated

sequences (van Wyk et al., 2019, 2020). RIP is present in a variety of ascomycete fungi, but many

species have lost the ability to induce RIP (Horns et al., 2012; John Clutterbuck, 2011; Selker and
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Stevens, 1985; Selker et al., 1987; Van Wyk et al., 2020). RIP is restricted to fungi that are actively

recombining as the process is confined to the cell cycle that immediately precedes meiosis (Selker,

1990; Selker and Garrett, 1988).

Fungal genomes contain a variety of mechanisms to ensure that genome integrity remains intact.

The level of redundancy seen at the various levels shows the evolutionary pressure that selfish

genetic elements place on the genome. While these selfish genetic elements come with a fitness

cost, they contribute to the ability of fungal pathogens to evolve rapidly in response to changed

environmental conditions. Genomes are clustered into two primary compartments. The first usually

contains  housekeeping  genes  with  fewer  TEs,  and  evolves  more  slowly  than  the  other

compartment  that  has  more  TEs  along  with  genes  that  are  important  for  plant-pathogen

interactions (Dong et al., 2015).

Due to the rapidly evolving nature of genome compartments that are enriched with TEs, new genes

can  be  more  readily  gained  (Dong  et  al.,  2015).  A primary  genes  that  are  enriched  in  such

compartments are effectors. The origin and location of effectors is tightly linked with the location of

TEs in gene sparse regions (Castanera et al., 2016; Dutheil et al., 2016; Faino et al., 2016; Rouxel

et  al.,  2011;  Yoshida  et  al.,  2016).  Effectors  can  evolve  from pre-existing  genes,  or  de  novo

mutations. Effectors originate from gene duplications more often than genes that are not effectors.

Effectors often lack homologous copies in closely related species, and likely evolve from orphan

genes (reviewed by Plissonneau et al., 2017). Orphan genes are genes that are exclusive to a

species or  a lineage,  therefore it  is  unsurprising that  these are a source of  pathogen specific

effectors (Tautz and Domazet-Lošo, 2011) (Figure 3). The evolution of orphan genes can occur

through two different scenarios, but often involve duplication of already existing genes. New gene

copies may mutate due to relaxed evolutionary pressure, and may progressively lose homology to

the original gene. Eventually new functions may evolve. De novo evolution of gene sequences can

occur by mutations in transcription factor binding sites combined with mutations that generate an

open reading frame (McLysaght and Guerzoni, 2015). The second scenario is less likely than the

first due to the high selective pressure on genes involved in virulence. De novo genes tend to be
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expressed  at  a  consistently  low  level  throughout  the  cell  cycle  (Carvunis  et  al.,  2012).  The

transcription of these genes is also tightly controlled during the various stages of plant infection

(Haueisen et al., 2019; Kleemann et al., 2012; Palma Guerrero et al., 2016; Soyer et al., 2014)‐Guerrero et al., 2016; Soyer et al., 2014) .

This control is also important during the shifts of lifestyles, such as biotrophic and necrotrophic

infection stages (Haueisen et al., 2019). 

The product of effector genes results in proteins that are often secreted, and interact directly with

the  pathogen’s  host.  The  effects  of  effectors  include  altering  cell  metabolism  and  hormone

homeostasis, disabling the host’s ability to detect the pathogen, as well as lead to necrosis (Cook

et al., 2015). Fungi contain hundreds of different effectors that perform these functions (Lo Presti et

al., 2015). While many effectors are lineage-specific, core effectors that are present in most fungi

exist  (Akcapinar et al., 2015; Jonge et al., 2012;  Sánchez-Vallet et al., 2015). Effectors that are

recognised by the plant are quickly lost (Plissonneau et al., 2017). As a result, core effectors may

be mistaken as orphans in some species. 

Figure 3:  The two evolutionary scenarios of gene birth modified from (Plissonneau et  al.,  

2017). In the first scenario, genes are duplicated and one copy diversifies until little to no  
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homology to the original gene remains while the original copy maintains its function. In the  

second  scenario,  a  transcription  factor  binding  site  exists  within  the  genome,  and  the  

downstream regions mutates to become an open reading frame that could become a viable 

product when expressed.

Description of Model System

The evolutionary arms race between plants and their fungal pathogens is an interplay between

environmental factors, plant evolution, and the fungal ability to adapt and overcome the changes.

Several well studied model systems exist, but there are many other evolutionary scenarios that

have  not  been  studied  yet.  Here,  we  use  the  fungal  pathogen,  Cercospora  beticola of

domesticated and wild beet to determine whether a view of early host speciation can be obtained.

This pathosystem is of interest due to the relatively modern domestication of sugar beet compared

to other extensively studied crop species. Additionally, the relationship of  C. beticola species on

wild beet and sugar beet remains unknown. Following, a description of the domestication process

of beet, as well as an overview of what is known about C. beticola.

Beta species

Currently, 20% of the world’s total sugar is extracted from sugar beet, Beta vulgaris, (International

Sugar  Organisation;  https://www.isosugar.org/sugarsector/sugar,  FOA  2009,

http://www.eastagri.org/publications/pub_docs/4_Sugar_web.pdf).  Due  to  climate  change  and

resulting  water  shortages,  it  is  projected  that  the  amount  of  sugar  produced  by  sugar  beet,

particularly in Northern Europe will increase dramatically (Jones et al., 2003). As with all plants,

sugar  beet,  and  its  wild  relative,  sea  beet,  are  also  threatened  by  biotic  and  abiotic  factors

(Biancardi et al., 2011). Understanding the evolution of the pathogen and its association with its

hosts in relation to how other pathogens interact and evolve with their hosts may allow predictions

of future evolutionary trajectories and disease emergence.

The evolutionary history, as well as the domestication history of beet is well studied. The genus of

Beta  is  a  member  of  the  Betoideae  sub-family  that  diverged  from  the  ancestral  family  of
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Chenopodiaceae 38 to 27 million years ago based on molecular dating (Hohmann et al., 2006).

Various beet species have been associated with humans for thousands of years (Biancardi et al.,

2011; Olmo and Simmonds, 1976). The domestication of beet occurred around 8000 B.C after the

knowledge of plant domestication traveled with ships from the fertile crescent to the Mediterranean.

There,  wild  beets  were  domesticated  in  high  altitudes  in  cool  growing  climates.  Following

domestication, a number of varieties arose, and to this day, a high level of diversity of beet species

exists in the Mediterranean. Mitochondrial DNA analyses have shown that there was a unique

ancestor to all cultivated beets that is no longer in existence  (Santoni and Bervillé, 1992). Even

after domestication of beet, wild beet are still commonly collected for food. 

The distribution of beet remnants throughout Europe aids in dating the domestication and spread

of the crop. In regions that are far from the native distribution range of wild beet, it is assumed that

beet  was introduced with agriculture. The anatomical similarities between the wild and various

cultivated  beets  makes  it  very  difficult,  almost  impossible  to  distinguish  the  wild  from  the

domesticated beets. As such, traces of pollen, seeds, and roots within excavation sites have been

used to date the distribution of beet throughout mainland Europe (Kubiak-Martens, 1999, 2002;

Robinson and Harild, 2002; Voigt et al., 2008).

The closest extant wild relative to the original wild beet that beets were domesticated from is sea

beet, or wild beet (Figure 4). Sea beet is known to be able withstand very stressful conditions

including high soil salinity, drought, and nutrient deficiencies (Shaw et al., 2002). Sea beet can

therefore out-compete neighbouring plants in harsh conditions (Biancardi and De Biaggi, 1979). In

comparison, sugar beet is grown under comparably milder conditions. Unlike sea beet, sugar beet

requires soils with high nutrient content, and the ability to store a lot of moisture (Rolph, 1917). 
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Figure 4: The roots of sea beet (A) and sugar beet (B). As both species are very closely  

related,  the  structure  of  the  root  remains  consistent.  However,  sea  beet  roots  contain  

significantly less sucrose than that of sugar beet, and are generally smaller.

The different growth conditions have an effect on microbes associated with the plants. Seeds of

sugar  beet  can  transmit  microbes  between  generations  (Dent  et  al.,  2004).  Comparative

microbiome studies have shown that sea and sugar beet share a core microbiome associated with

the genus, with some differences at higher taxonomic levels (Zachow et al., 2014). It has been

proposed that these differences contribute to the survival of the plant, however this hypothesis

remains to be tested. The microbiome of sugar beet was shown to consist of species with higher

antagonistic potential against pathogens than sea beet (Zachow et al., 2014). This may be due to

the locations that sea and sugar beet grow in as the harsher conditions that sea beet usually grow

in have lower pathogen pressure (Biancardi et al., 2011). Plants grown in an agricultural milieu also

lack the protection that the genetic diversity provided by natural ecosystems (Latz et al., 2012).

The microbes associated with sea beet were, however, able to withstand more drastic conditions

such as high salt concentrations and drought, similar to what sea beet can endure (Biancardi and

De Biaggi, 1979; Shaw et al., 2002; Zachow et al., 2014).

Despite their differences, introgression between domesticated, wild, and weedy  Beta plants has

become a textbook case to illustrate gene flow between domesticated and wild plants (Arnaud et

al., 2010; Bartsch, 2010; Ellstrand et al., 2013; Van Geyt et al., 1990). In sea beet populations that
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grow near domesticated beet, alleles that are common in domesticated beet but rare in wild beet,

were  common  (Bartsch  et  al.,  1999).  Although  there  was  hybridisation  between  wild  and

domesticated populations, the genetic diversity of the wild beet population was not affected. There

are no reproductive barriers between sea and sugar beet facilitating spontaneous hybridisation

events (Abe and Shimamoto, 1989; Bartsch, 2010). This hybridisation is sometimes problematic

when it comes to controlling bolting traits (Arnaud et al., 2010). Bolting is controlled by the B locus

that is recessive (bb)  in sugar beet.  Breeders have been selecting against  plants carrying the

dominant allele (B) to maximise the vegetative growth stage of beets, ensuring increased yield

(Abegg, 1936). Beets carrying the dominant  B-allele reproduce without vernalisation within their

first year of growth when exposed to long day conditions, while beets carrying the recessive  b-

allele require vernalisation to reproduce before being exposed to long day conditions (Abe et al.,

1997; Bell and Bauer, 1942; Owen, 1954; Owen et al., 1940). Sea beets contain high levels of

variation at the B-locus compared to sugar beet populations (Dohm et al., 2014). 

Comparative genomic analyses between sugar  and sea beet  genomes shows that  sugar beet

accessions have regions in the genome without diversity, so-called “variation deserts” (Dohm et al.,

2014). One of the genes contained in one of these regions is the B locus. Once beets have bolted,

their  roots become woody,  potentially  damaging farming equipment,  and their  sucrose yield is

reduced. Seedlings of hybrids are impossible to distinguish from non-hyrids, and can easily cross

with one another into introgressed wild weed populations that survive well in sugar beet fields

(Arnaud et al., 2010; Bartsch, 2010; Ellstrand et al., 2013). 

Introgression can also occur from the domesticated species into wild beets. Instances of gene flow

from sugar beet to sea beet have been reported in Denmark and Southern Europe (Andersen et

al.,  2005; Arnaud et al.,  2009). Most sugar beet propagation takes place in Northern Italy and

Southern France due to favourable climate conditions for sugar beet maturation and harvest. More

recently, also Denmark has become a significant contributor to sugar beet seeds (Andersen et al.,

2005; Bornscheuer et al., 1993). In Southern California, the wild beet species B. metacarpa may

have evolved from feralised populations of B. vulgaris ssp. vulgaris and hybridised with B. maritima
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species (Bartsch and Ellstrand, 1999). These instances are important to note as the receiving gene

pool may undergo evolutionary changes due to the gene flow, and potentially undergo extinction if

the population is too small (Levin et al., 1996). In addition to the biodiversity concerns, the use of

genetically  modified  organisms  may  result  in  unnatural  alleles  being  introduced  into  wild

populations (Bartsch et al., 2003).

While unintentional hybridisation between sea and sugar beet is potentially problematic, guided

crosses have many positive aspects for agriculture. Sea beet is often a source for the introduction

of resistance to diseases in domesticated beet (e.g. Skaracis and Biancardi, 2000; Stevanato et

al., 2001; Yu et al., 1999). While resistance can be bred into sugar beet, the inheritance of these

traits between generations of sugar beet is relatively low (Smith and Ruppel, 1974). The genetic

differences  and  similarities  between  domesticated  and  wild  beet  allow  for  comparisons  of

pathogens of the various populations to establish whether these drive pathogen evolution, or not.

The Ascomycete Genus Cercospora

The Cercospora genus contains 650 species all of which are associated with plants (Groenewald

et al., 2013). Most species are causal agents of leaf spot diseases, but some are associated with

lesions  on  fruit,  seeds,  and  flowers  (e.g.  Silva  and  Pereira,  2008).  The  phylogeny  of  the

Cercospora genus has been difficult to establish (Goodwin et al., 2001; Groenewald et al., 2013).

Phylogenetic studies have used conserved marker regions, such as the internal transcribed spacer

(ITS) region, β-tubulin, and actin. However, these regions do not contain sufficient informative sites

per  gene  to  construct  a  reliable  phylogeny,  and  combinations  of  multiple  genes  have  been

employed to reconstruct phylogenetic relationships (Groenewald et al., 2013).

Cercosporin is a photoactivated toxin produced by a many Cercospora species (Daub, 1982; Daub

and Ehrenshaft, 2000). Due to the widespread nature of the toxin in the genus, it was postulated

that  all  Cercospora species produce cercosporin.  However,  as more Cercospora species were

described, this was found to be inaccurate (Assante et al., 1977; Goodwin et al., 2001; Groenewald

et al.,  2013).  Cercosporin is a perylenequinone toxin that, once activated by light, interact with
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oxygen  to  produce  activated  oxygen  species  such  as  singlet  oxygen  that  destabilises  cell

membranes (Daub and Briggs, 1983; Daub and Chung, 2007; Valenzeno and Pooler, 1987). The

destabilisation happens when lipids in the cell membrane are peroxidated, leaving the membrane

porous, and eventually results in cell death. Cercosporin has been shown to play an important, and

often vital  role in  the successful  infection of  plants by various Cercospora species (Daub and

Ehrenshaft,  2000). The deletion of the cercosporin gene cluster results in significantly reduced

disease  suggesting  that  in  some species  it  is  not  critical  for  infection,  merely  one  of  several

virulence factors (Choquer et al., 2005). Cercosporin production is inhibited beyond 30oC, and is

additionally influenced by environmental factors such as pH, carbon:nitrogen ratio, as well as the

source of the carbon and nitrogen elements (Daub and Ehrenshaft, 2000).

Cercosporin is a universal toxin, but Cercospora species that produce the toxin are themselves

immune to its effects (Daub et al., 2005). Other fungi that also produce perylenequinones are also

resistant to cercosporin, as well  as some bacteria including  Xanthomonas campestris pathovar

zinniae (Chen et  al.,  2007;  de Jonge et  al.,  2018;  Taylor  et  al.,  2006;  Upchurch et  al.,  2002).

Resistance is conferred by an oxidoreductase (Taylor et al., 2006). Cercosporin is accumulated by

the protein expressed by the cercosporin facilitator protein (CFP) gene (Callahan et al., 1999). CFP

has  high  similarity  to  other  known membrane  transporters  of  the  major  facilitator  superfamily

(MFS).  These  proteins  are  presumed  to  be  important  in  the  export  of  cercosporin  from  the

mycelium. The deletion of CFP gene also results in heightened sensitivity towards cercosporin in

Cercospora species, and introduction of the gene introduces resistance in other species (Upchurch

et al.,  2002). The vitamin B6 pathway has also shown to confer resistance with an antioxidant

activity (Denslow et al., 2005; Ehrenshaft et al., 1999). 

The Molecular Interaction of Cercospora beticola and its Beta Hosts

As with many Cercospora species, C. beticola has a wide host range (Chupp, 1953; Groenewald et

al.,  2006a).  C. beticola has been described to form lesions on a variety of  domesticated beet

species including B. vulgaris subspecies such as sugar beet, table beet, fodder beet, and Swiss

chard (Pool and McKay, 1916; Vestal, 1933). Importantly, Beta maritima, commonly known as sea
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beet, is also commonly afflicted with CLS. Agriculturally important plants outside of the Beta genus

are also affected by C. beticola, including safflower, lettuce, and spinach (Hotegni Houessou et al.,

2011; Lartey et al.,  2005; Vestal,  1933). Several species in the genera  Acanthus, Amaranthus,

Apium, Atriplex, Chenopodium, Chrysanthemum, Cycloloma, Goniolimon, Limonium, Malva, and

Plantago were also shown to be susceptible to C. beticola (Bobev et al., 2009; Groenewald et al.,

2006a; Jacobsen and Franc, 2009; Rooney-Latham et al.,  2010). Cross infection studies of  C.

beticola on a variety of plant hosts confirmed the ability of the fungus to infect the broad host

range, but with varying degrees of success (Knight et al., 2019a). It is, however, sonsidered that C.

beticola can infect some of its alternate hosts following insect damage to the leaf surface, or in

combination with other lesion forming fungi (Knight et al., 2019a).

The C. beticola inoculum that is responsible for sugar beet infection can take various forms (Figure

5). Stromata overwinter in the soil on leaf debris after a growing season, or the fungus grows as

vegetative  saprophytic  mycelia  (Weiland  and  Koch,  2004).  C.  beticola can  survive  in  this

saprophytic  manner  between  10  and  22  months  (Khan  et  al.,  2008).  Once  conditions  are

favourable, conidiation results in spores that are transferred to leaves by water splash or wind

(Lawrence and Meredith, 1970; Meredith, 1967; Pool and McKay, 1916). Healthy plants can then

be infected by wind-borne conidia, and stromata from other plants (Khan et al., 2008; Skaracis et

al., 2010; Tedford et al., 2018). Recently, it has been shown that C. beticola can also be detected in

seeds produced from infected plants (Knight and Pethybridge, 2020). In an agricultural setting,

inoculum is  also  spread  across  fields  by  human  activity  that  includes  moving  diseased  plant

material  and  infected  machinery  (Knight  et  al.,  2018,  2019b).  The  introduction  of  C.  beticola

inoculum from external sources has been responsible for CLS epidemics (Vaghefi et al., 2017a).
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Figure 5: The disease cycle of  C. beticola on sugar beet (figure obtained from Rangel et al.

(2020)).  Infection  begins  by  dispersed  conidia  that  penetrate  the leaf  surface through  the

stomata. This is followed by intercellular hyphal growth. Seven days after infection leaf spots

start  forming.  Pseudostromata  develop  within  the  lesions,  and  produce  spores  via

asexualbreproduction.  These  pseudostromata  can  result  in  multiple  infections  per  growing

season, as well as overwinter in the soil to serve as inoculum for the next growing season. The

sexual stage of C. beticola has never been observed in the field

Management of CLS is vital for successful sugar beet cultivation. Strategies include the use of crop

rotation, fungicides, and resistance breeding. To reduce the risk of inoculum from crop remains, a

three year rotation period is often used in sugar beet fields (Pethybridge et al., 2018). Physical

distance between fields may also be advantageous to reduce the effects of CLS dispersal among

fields. 
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The lifecycle of C. beticola predisposes it to be an efficient pathogen. Isolates are able to undergo

multiple asexual cycles within a single growing season.  In populations in some locations, the two

different homothallic individuals exist within single populations, in other of heterothallic populations

the various mating type (MAT) genes are present in almost equal ratios, while in other populations

these  ratios  deviate  from  the  expected  1:1  ratio  (Bakhshi  et  al.,  2011;  Bolton  et  al.,  2012;

Groenewald et al., 2006b, 2008). However, the ancestral state of the mating system in Cercospora

was likely heterothallic due to the fragments of the  MAT locus interspersed randomly across the

genome (Bolton et al., 2014). While no sexual cycle has been observed in C. beticola, possibly due

to the loss of the ability to form a teliomorph, population genomics studies have suggested the

widespread occurrence of sexual recombination (Goodwin et al., 2001; Groenewald et al., 2006b,

2008; Knight et al., 2018, 2019b).

Population studies on  C. beticola have been conducted using several population genetics and

genomics  approaches.  Population  genetics  approaches  that  have  been  used  prior  to  the

widespread use of whole-genome sequencing, amplified fragment length polymorphisms (AFLPs),

microsatellites, and SNPs in single genes were used (Groenewald et al., 2007; Turgay et al., 2010;

Vaghefi et  al.,  2017b). The microsatellites developed for population genetic studies have since

been widely applied for clone correction, a step necessary for several population genetic analyses.

Earlier  population  genetics  studies  were  focused  on  providing  evidence  for  migration,  sexual

recombination, and the mutational landscapes (Rangel et al., 2020). These studies showed high

genetic diversity that coincided with the high phenotypic diversity among isolates (Moretti et al.,

2004;  Ruppel,  1972).  More  recent  studies  based  on  population  genomic  sequencing  have

confirmed the gene flow between C. beticola isolates form Europe and North America, indicating

that there is a long dispersal range for C. beticola (Vaghefi et al., 2017b). C. beticola populations in

North America were determined to be more diverse than those in Europe. This leaves much to be

discovered in terms of population genomics in terms of global population dynamics, direction of

gene flow, and whether hosts exert different evolutionary pressures on the fungus.
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Beta vulgaris and Cercospora beticola as a Model System

This model system is interesting out of both a biological and a historical point of view. As sugar

beet is a relatively modern crop compared to other domesticated beets, and other widely used

crops,  studying the host-pathogen interactions  between sea beet,  sugar  beet,  and  C. beticola

would be of great interest. Due to the recent domestication of sugar beet, many of the evolutionary

processes that have occurred in more ancient agrosystems, may not have occurred in this system.

It also allows for the unique opportunity to track the recent evolution of a pathogen associated with

wild and domesticated hosts. There have been several studies on other domesticated plants that

have a  longer  domestication history than sugar  beet,  their  wild  relatives,  and their  associated

fungal pathogens. Much of this research is driven by the need to understand the mechanisms that

confer disease tolerance or resistance in wild populations. Understanding how host domestication

drives  evolution  allows  concentrated  breeding  efforts  to  allow  for  resistant  plants,  as  well  as

potential fungicide development to inhibit the growth of pathogens. Further, this systems allows for

the characterisation of gene flow between populations in managed and wild ecosystems.
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Scope of the Thesis
Chapter 1

On variant discovery in genomes of fungal plant pathogens

Fungal pathogens often exhibit a large extent of structural variation in their genomes. This presents

a challenge to the analyses of genome-wide polymorphisms, including structural variants. There

are two primary approaches to calling variants,  namely reference-based mapping and multiple

genome  alignment-based  methods.  Currently,  reference-based  mapping  approaches  are  most

frequently used in fungal population genomics.  Multiple genome alignment approaches can be

used to determine structural variants as well as SNPs without using additional tools, and may be a

viable replacement for reference-based mapping approaches. Therefore, the main objectives of

this study are:

• Determined the difference in  accuracy between the reference-based mapping approach

and the multiple genome alignment approach

• Quantify  the  influence  genomic  repeat  content  has  on  the  reliability  of  variant  calling

methods

• Establish the effect read depth has on the reliability of variant calling methods

• Recover structural variants using the multiple genome alignment approach

Chapter 2

Population genomics of Cercospora beticola suggests that recent host domestication has

not influenced genome evolution

Cercospora beticola is the causal agent of Cercospora Leaf Spot in domesticated and wild beet in

Europe and North America. Sugar beet is a very recently domesticated crop, and therefore its

pathogens may not have had enough time to undergo host specialisation. However, there was
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more differentiation between isolates from sea beet in the UK and the remaining isolates from

mainland Europe and North America from various domesticated beet and sea beet. This study

aimed to:

• Asses the genetic diversity of C. beticola isolates found on sea beet in the UK

• Determine if location or host domestication influences population structure

• Identify regions that differentiate C. beticola from different hosts and locations

• Describe the biological relevance of the differentiated regions

Chapter 3

Genome Content of the Cercospora Genus Predicts Host Range

In chapter 2 we showed that the recent host domestication of  Cercospora beticola has not yet

driven  clear  populations  to  form  between  isolates  from  wild  and  domesticated  hosts.  The

Cercospora genus contains several species that are host specific as well as many species that

have a wider host range. The carbohydrate active enzyme (CAZyme) and effector repertoires of

these specialist  and generalist  Cercospora species  have not  been compared.  Additionally,  the

Cercospora genus has proven to be challenging to establish a reliable phylogeny. To investigate

this, we aimed to:

• Establish a species tree for the Cercospora genus

• Characterise CAZyme and effector repertoires of included Cercospora species

• Compare and constrast the  CAZyme and effector repertoires of two generalist Cercsopora

species to those of specialist species

• Describe the genome-wide synteny between the two generalist species
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Abstract

Comparative  genome  analyses  of  eukaryotic  pathogens  including  fungi  and  oomycetes  have

revealed extensive variability in genome composition and structure. The genomes of individuals

from the same population can exhibit different numbers of chromosomes and different organization

of chromosomal segments, defining so-called accessory compartments that have been shown to

be crucial to pathogenicity in plant-infecting fungi. This high level of structural variation confers a

methodological  challenge  for  population  genomic  analyses.  Variant  discovery  from  population

sequencing data is typically achieved using established pipelines based on the mapping of short

reads to a reference genome. These pipelines have been developed, and extensively used, for

eukaryote genomes of both plants and animals, to retrieve single nucleotide polymorphisms and

short insertions and deletions. However, they do not permit the inference of large-scale genomic

structural variation, as this task typically requires the alignment of complete genome sequences.

Here,  we  compare  traditional  variant  discovery  approaches  to  a  pipeline  based  on  de  novo

genome assembly of short read data followed by whole genome alignment, using simulated data

sets with properties mimicking that of fungal pathogen genomes. We show that the latter approach

exhibits levels of performance comparable to that of read-mapping based methodologies, when

used  on  sequence  data  with  sufficient  coverage.  We  argue  that  this  approach  further  allows

additional  types of  genomic diversity  to  be explored,  in  particular  as  longread third-generation

sequencing  technologies  are  becoming  increasingly  available  to  generate  population  genomic

data.
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Introduction

Comparative genome studies of fungal and oomycete pathogens have revealed highly variable

genome  architecture  and  content  [reviewed  by  Raffaele  and  Kamoun,  2012;  Möller  and

Stukenbrock, 2017]. The genome size and ploidy level of pathogenic fungi and oomycetes can

vary significantly between individuals of the same species. Differences can be attributed to the

dynamics of transposable elements, chromosome instability,  and genome compartmentalization

(Möller and Stukenbrock, 2017). Fungal genomes are known to contain accessory compartments

that  are  thought  to  be  relevant  for  rapid  evolution  of  phytopathogens  [reviewed by  Croll  and

McDonald, 2012; Möller and Stukenbrock, 2017]. Typically, these compartments contain a lower

density of genes than the core genome, and have a higher content of repetitive elements (Coleman

et  al.,  2009;  Ma et  al.,  2010).  Rapidly  evolving genome compartments  were shown,  in  some

species,  to  encode virulence determinants (e.g.  Does et  al.,  2016).  However,  in  spite  of  their

functional importance, it is challenging to analyze genetic variation in these regions due to the high

extent of structural variability of the genomic sequences.

Population genomic datasets based on next generation sequencing (NGS) can be used to recover

genomic  variants  such  as  single  nucleotide  polymorphisms  (SNPs),  insertions  and  deletions

(indels),  and  structural  variants  (SVs).  The  latter  category  includes  translocations,  inversions,

duplications, either tandem or interspersed, deletions, and novel sequence insertions (Alkan et al.,

2011). Two different frameworks are traditionally used for the detection of variants (Mahmoud et al.,

2019).  Firstly,  a  reference-based  approach,  whereby  short  read  data  generated  from NGS is

mapped on a reference genome, is used to recover SNPs and short indel variants (Horner et al.,

2010;  El-Metwally  et  al.,  2013).  Secondly,  from whole  genome alignments  based on de novo

assembled genomes. The recovery of small structural variants from short read mapping makes use

of mapping distance and orientation information of the reads, as well as read depth and pair-end

discordance (Chen et al., 2009; Rausch et al., 2012; Layer et al., 2014). State-ofthe-art methods

further use a local assembly of the identified inserted material (e.g. (McKenna et al., 2010; Rimmer
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et al., 2014). Conversely, recovery of large-scale structural variants is typically achieved by first

assembling individual genomes, which are then combined into a whole genome alignment (WGA)

(Tian et al., 2018). The WGA enables the accurate location of large indels (typically larger than 3

kb) (Nattestad and Schatz, 2016; Tian et al., 2018).

While  typically  used  to  compare  distinct  species,  if  applied  at  the  population  level,  WGAs

potentially provide a crucial resource to conduct population genomic analyses in species with a

significant proportion of structural variation since they can, in principle, capture both large and

small  variants  (Faino et  al.,  2016).  However,  methods  for  calling  variants  in  populations  from

WGAs are currently limited and the available approaches have not been benchmarked with fungal

genome data. In this study, we take the first step to compare variant discovery approaches for

population genomic analyses of fungal pathogen genomes. We assess the accuracy of a pipeline

based on de novo genome assembly followed by whole genome alignment (referred to as dnWGA,

Figure 1) to simultaneously recover single nucleotide polymorphisms (SNPs) and large structural

variants known (Wu et al., 2017). The resulting called positions can be subsequently classified into

one of four categories: (1) correctly identified variant positions [true positives (TP)], (2) correctly

identified non-variant positions [true negatives (TN)], (3) variants incorrectly called in non-variant

positions [false positives (FP)], and (4) variable positions that were not identified by the calling

method [false negatives (FN)] (Rosner, 2006). The proportion of variants falling in each of these

categories  allows to  compute  several  measures  of  performance (Goutte  and Gaussier,  2005).

Hereby “precision” is defined as the proportions of correctly inferred positives (TP/(TP + FP)), while

the “recall” measure denotes the proportion of variable positions that were recovered (TP/(TP +

FN)). Like many classification procedures, most variant calling methods are subject to a trade-off

between precision (the higher the precision value, the more confident we can be in the prediction),

and  recall  (the  higher  the  recall  value,  the  more  exhaustive  the  variant  discovery  is).  The

performance of a given method along this trade-off can be captured by the F1 score, defined as

the harmonic mean of the precision and recall values:

F1 = 2  (recall  precision)/(recall + precision) ∗ (recall ∗ precision)/(recall + precision) ∗ (recall ∗ precision)/(recall + precision) 
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The F1 score is,  therefore,  a global measure of  the reliability of  the variant  discovery method

(Goutte  and  Gaussier,  2005).  Several  studies  have  demonstrated  that  the  data  used  for

benchmarking of variant callers is critical (e.g. Hwang et al., 2015; Sandmann et al., 2017; Wu et

al.,  2017;  Bian  et  al.,  2018).  Notably,  human population  genomic  data  have  been considered

producing well-defined benchmarking tools, including the “Genome in a Bottle” project that has

published a set of high-confidence variants for a reference genome (see1 : Hwang et al., 2015).

Since fungal pathogen genomes differ from human genomes in many aspects, we here aimed to

compare variant calling approaches on data sets specifically mimicking the characteristics of fungal

pathogen genomes, including accessory genome compartments and high nucleotide diversity.
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Method Overview

To  compare  the  performance  of  dnWGA and  referencebased  mapping  for  variant  calling,  we

generated  population  genomic  data  sets  from  chromosomal  sequences  of  two  fungal  plant

pathogens,  Cercospora beticola and Zymoseptoria  tritici  using simulations (see Supplementary

Methods for  a detailed description of methods and materials).  We selected these two different

species with distinct repeat content, since repeats are known to hamper the variant calling process.

While the C. beticola chromosome was virtually deprived of repeats (0.2% of 5.8 Mb) (de Jonge et

al., 2018), a comparatively high proportion [11% of 6.2 Mb (Grandaubert et al., 2015)] is annotated

in the chromosome of Z. tritici. We employed the chromosomes to simulate a population genomic

data set that resembled empirical population genomic data. The genetic diversity of the simulated

populations, measured by Watterson’s theta, was 0.0077 and 0.0073 for C. beticola and Z. tritici,

respectively (Watterson, 1975). The simulated population data sets comprised SNPs, indels, and

accessory  genome segments  at  known positions  allowing us  to  evaluate  the variant  recovery

(Figure 1). 

We simulated  NGS reads  from the  simulated  genomes with  both  low (25X)  and  high  (100X)

sequencing coverage. To compare the efficacy of SNP discovery methods on each of the four data

sets (two species, and two depths of coverage), we computed the recall, precision, and F1 scores

in each case. We further assess whether the large SV were properly recovered by the dnWGAs.

Details on the data generation and analyses are provided in the Supplementary Text.
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Figure 1: Overview of  the  pipelines  used for  the compared approaches.  Samples  of  20  

individuals  were  simulated  from  C.  beticola and  Z.  tritici chromosomes.  The  simulated  

chromosome samples were used to establish a set of true variant and non-variant positions. 

Reads were simulated from the simulated chromosomes at both low (25X) and high (100X) 

read depth. The reads were then processed by the read mapping pipeline and the dnMGA 

pipeline. The variant and non-variant positions recovered by each approach at each read  

depth  were then compared to  the known introduced variants,  and the recovery statistics  

computed.
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Results and Discussion

While WGAs are used to infer structural variation, how well they can recover single-nucleotide

variation has not been systematically tested in fungi. We first set out to compare the performance

of  SNP  recovery  of  dnWGA and  reference-based  approaches.  We  specifically  ask  how  the

sequencing depth and repeat content of the genomes affect the relative performance of the two

methods: the F1 score of the reference-based approach was found to be higher than 99.7% for

both Z. tritici and C. beticola, at low (25X) and high (100X) coverage. The F1 score of the dnWGA

approach, however, depends on the sequence depth and the species (Figure 2A). When using

high coverage data, the F1 score in both species reaches 99.9%. When low coverage sequencing

was used, however, the F1 score was found to be similarly high (99.9%) for C. beticola, but only

43% for the Z. tritici data set. This effect is essentially due to the precision getting as low as 28%,

while the recall value remains comparatively high (93%), suggesting that the false positive rate is

high for the repeat rich chromosome with low sequencing coverage (Supplementary Table S1).

We further investigated the drop of performance at low coverage of the dnWGA approach in the

repeat-rich Z. tritici data set by comparing the genome assemblies. N50 was equal to 219 kb with

the 100X data set, but only 12 kb when using a 25X read depth (Supplementary Tables S2, S3). In

comparison, the de novo assemblies of the C. beticola chromosomes showed a comparable N50

of 1.8 Mb and 1.7 Mb at 100X and 25X, respectively (Supplementary Tables S4, S5) underlining

the  impact  of  high  repeat  content  in  Z.  tritici  on  chromosome  assemblies.  We  used  Quast

(Gurevich et al., 2013) to further quantify the accuracy of the assembled genomes and identify

misassemblies, defined as regions of the de novo assemblies that did not align to the original

chromosome at  the  correct  positions.  In  the  repeat  poor  C.  beticola  data  set,  the  number  of

misassemblies  remained  comparable  for  both  sequencing  depths.  For  the  Z.  tritici  data  set,

however, we find four times more misassemblies in the 25X than in the 100X data. Therefore, we

conclude  that  the  low  performance  of  the  dnWGA procedure  at  low  sequencing  coverage  is

essentially due to failure of de novo assembling the chromosome sequences in the presence of a

higher repeat content.
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Figure 2: Comparison of  the efficacy of  variant  calling pipelines.  A: distribution of  the F1

scores of SNP recovery methods for  C. beticola and  Z. tritici at 25X and 100X sequencing

depths. B: Recovery of non-reference sequences (accessory regions) in the multiple-genome

alignments (MGA) for both species and at  both sequencing depths. Six accessory regions

have  been  introduced  in  the  simulated  chromosomes:  one  long  region  (290  kb)  in  five

individuals, and five smaller regions (58 kb) in one individual.  Each segment corresponds to a

synteny block  in  the  MGA.  Segments have been ordered by decreasing frequency in  the

sample (y-axis). The x-axis represents the resulting cumulative sum of segment lengths. Each

segment  is  classified  as  true  (black)  or  false  (grey)  positive,  according  to  whether  it

corresponds to a simulated insertion or not. A false positive is a sequence detected as non-

reference in the final MGA but which was not inserted during the simulation process (i.e. an

artefact of either assembly or alignment) or a sequence inserted during the simulations but

recovered in only some of the genomes and/or at an incorrect position.

We  then  investigated  whether  the  dnWGA approach  could  recover  the  simulated  accessory

regions.  Such  regions  should  appear  in  the  WGA as  synteny  blocks  that  do  not  contain  the

reference sequence. We extracted such synteny blocks from the WGA and compared their size

and  sequence  to  the known introduced regions to  identify  false  and  true positives.  In  the  C.

beticola alignment, the accessory regions were recovered entirely as single regions and in all the

chromosomes they were introduced into (Figure 2B). The accessory regions introduced in the Z.

tritici  chromosomes  could  be  recovered  with  a  similar  level  of  quality  at  a  depth  of  100X.

Conversely, at 25X, all recovered insertions were fragmented, but 542 out of the 580 kb inserted

(93%) were recovered (Figure 2B). False positive regions (non-reference DNA fragments that did

not match with the introduced sequences in all WGA) were also detected in all data sets, with a

total size ranging from 15 kb to 116 kb per WGA. These regions were found to be comparatively

small, and more abundant in the repeat-rich Z. tritici data set. In summary, we find that dnWGA

allows the recovery of accessory regions in population genomic datasets. For genomes with a low
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frequency  of  repeats  high  performance  is  achieved  even  with  low  coverage  data,  while  high

coverage data is required in the presence of repeats.
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Perspective

The genomes of  eukaryote pathogens including fungi  and oomycetes  can comprise  extensive

structural variation such as accessory regions, not found in reference genomes. So far, methods to

analyze genetic variation in populations of individuals with different genome content and structure

are sparse. Whole genome alignment of de novo assembled genomes permits the joint analysis of

genetic variation ranging from single nucleotide substitutions to large structural variation. We here

show that  SNPs can be called from WGAs with  a precision similar  to  that  of  mapping-based

approaches when sufficient sequencing coverage is achieved. We note that with our benchmark

based  on  fungal  data,  the  performance  of  the  dnWGA approach  was  higher  than  what  was

observed in previous comparisons performed on human datasets, where the precision and recall

were 87 and 50% at  20X, and 93 and 56% at  50X (Wu et  al.,  2017).  Moreover,  the dnWGA

approach also allowed us to recover accessory chromosome fragments, genomic features that

were shown to occur frequently in fungal genomes. The computational framework based on de

novo assembled genomes, therefore, also potentially allows for the analyses of genome segments

encoding orphan genes, the comparison of highly dynamic genome compartments, the detection of

accessory chromosomes, and the study of repeat dynamics within a population.

In genomes with high frequencies of SVs and accessory regions, the use of dnWGA allows for

reference-based mapping to be skipped entirely for variant discovery. However, current methods

based on WGA are computationally more demanding than reference-based mapping approaches.

As assembly algorithms are improving in quality and efficiency, fostered by the development of

long-read sequencing technologies, whole genome alignment constitutes the next methodological

challenge.  Current  state-of-the-art  methods  are  designed  for  interspecific  comparisons  and

relatively small sample sizes (typically less than 100 genomes). As such, they are not sized to cope

with population genomic data sets, for which mechanisms such as recombination can no longer be

ignored and prohibits the use of a single guide tree when aligning multiple genomes. The average

higher  similarity  of  genomes  from  a  single  species,  however,  should  permit  more  efficient
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alignment algorithms. A new generation of genome aligners is, therefore, needed to exploit the full

potential of long-read sequencing technologies to characterize genome variation in populations.
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Supplementary Materials for Chapter 1

Supplementary Tables

The  Supplementary  Material  for  this  article  can  be  found  online  at:

https://www.frontiersin.org/articles/10.3389/fmicb.  2020.00626/full#supplementary-material.  Here,

only Table S1 will be shown.

All  custom  scripts  cited  in  this  text  are  available  at  https://gitlab.gwdg.de/alice.feurtey/variant-

discovery-methods

All data used in this text are available at the DOI: 10.5281/zenodo.3696563

Table S1: Recovery statistics of known variant and non-variant sites in the simulated C. beticola

and Z. tritici populations from the reference based mapping and MGA approaches at  25X  and

100X read depth

Species Variant
Recovery
Method

Read Depth Precision Recall F1 score

C. beticola GATK 25X 0.999 0.999 0.999

100X 0.999 0.999 0.999

MultiZ 25X 0.999 0.999 0.999

100X 0.999 0.999 0.999

Z. tritici GATK 25X 0.999 0.995 0.997

100X 0.999 0.999 0.999

MultiZ 25X 0.276 0.993 0.425

100X 0.991 0.999 0.995

List of Supplementary Tables Available Online

Table S2: QUAST report for genome assemblies of C. beticola isolates at 25X read depth

Table S3: QUAST report for genome assemblies of C. beticola isolates at 100X read depth

Table S4: QUAST report for genome assemblies of Z. tritici isolates at 25X read depth

Table S5: QUAST report for genome assemblies of Z. tritici isolates at 100X read depth
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Population Simulation

In order to simulate data with different characteristics (such as sequence composition or repeat content)

similar to that of fungal pathogens, we based our simulations on two Dothideomycete species for

which a complete genome sequence was available:  Cercospora beticola, the causative agent of

cercospora leaf spot on sugar beet as well as a variety of uncultivated plants (de Jonge et al.,

2018),  and  Zymoseptoria  tritici,  the  causal  agent  of  the  wheat  disease  septoria  leaf  blotch

(Goodwin et al., 2011). 

The  first  simulations  were  based  on  chromosome  1  of  the  C.  beticola (accession  number:

PRJNA270309, chromosome: CM008499.1).  The chromosome sequence was extracted and all

ambiguous characters were removed. The final sequence used here includes 5.8 Mb and had an

average GC content of 50.3%. The second simulations were based on the first chromosome of Z.

tritici (accession number: PRJNA19047, chromosome: CM001196.1). The sequence used was 6.1

Mb  in  length  and  had  an  average  GC  content  of  53.06%.  The  repeat  content  of  these

chromosomes is  different:  0.2% for  C.  beticola,  and 11% in  Z.  tritici,  allowing us  to  take into

account the impact of repeats on the variant recovery.

From the two chromosome sequences,  we  simulated a  population  of  20 individuals  with  ALF

(Dalquen et al., 2012). ALF allows simulating full genome sequence from an ancestral sequence

under a given evolutionary model along a tree. We made use of the native birth-death model from

ALF to generate a random tree, and applied an HKY substitution model (Hasegawa et al., 1985). A

total tree height of 5 and 0.3 were set for the  C. beticola and Z. tritici simulations respectively, to

ensure that resulting samples have a Watterson’s theta value of 10 -3 to resemble empirical data

sets (Stukenbrock and Dutheil, 2018).

We  used  MafFilter  to  determine  the  variant  positions  from  the  multiple  sequence  alignment

produced by ALF (Dutheil et al., 2014). We used simuG (Yue and Liti, 2018) to simulate indels

according to the genealogies simulated by ALF and a custom python script to insert them into the

simulated genomes.  In  one branch of  the  tree an accessory  region that  was 5% of  the  total

genome size was inserted, and 5 orphan regions each 1% the size of the total chromosome were
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added in a single individual.  From these simulated genomes Illumina reads of  25X and 100X

coverage were generated with ART (Huang et al., 2012). The simulated genomic reads were used

in two separate pipelines (Figure 1).

Short Variant Calling

In the following, we define the reference chromosome as the ancestral sequence from which the 

synthetic population was simulated. In the reference-based mapping pipeline, the short reads were

mapped to the reference chromosome using BWA-mem (Li and Durbin, 2009). The alignment files 

were sorted, indexed, and duplicates were removed with the SAMtools (Li et al., 2009), and further 

processed with the Picard Tools (http://broadinstitute.github.io/picard/). Short variant discovery was

done with GATK v4.1.0.0 (Auwera et al., 2013; DePristo et al., 2011; McKenna et al., 2010). 

HaplotypeCaller was used to produce gVCF files. These were combined with CombineGVCFs, and

the resulting SNP coordinates and frequencies were written in a VCF file with GenotypeGVCFs, 

following the GATK Best Practices Workflow 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-

SNPs-Indels-).

In the dnWGA pipeline, the short reads were de novo assembled with SPAdes (Bankevich et al., 

2012). The quality of each assembly was determined by QUAST (Gurevich et al., 2013). Whole 

genome alignment of the de novo assembled genomes with the reference chromosome by MultiZ 

(Blanchette et al., 2004) was run in parallel with GNU parallel (Tange, 2011). The alignment was 

projected on the reference sequence with maf_project (Blanchette et al., 2004), and SNPs were 

called using MafFilter (Dutheil et al., 2014).

The variants called by the two pipelines were stored as VCF files and filtered to remove all missing 

data and indels with the VCFtools (Danecek et al., 2011).  We compared the filtered variants using 

a custom R script. We computed the precision, recall, and F1 score of each method (Goutte and 

Gaussier, 2005) by comparing the variants discovered by each pipeline to the true set of variants 

from the simulations.
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Recovery of Accessory Regions

The multiple genome alignments from MultiZ were used to call accessory regions, which are not

part of  the reference genome. The alignments were filtered with MafFilter to remove all  blocks

smaller than 1 kb. A custom python script was used to determine the identity of scaffolds contained

in alignment blocks. Another custom R script was used to extract the coordinates of the synteny

blocks that did not contain any reference sequence. The corresponding regions were extracted

from the assemblies with the bedtools getfasta function (Quinlan and Hall, 2010).  These regions

were then compared to the simulated genomes with BLASTn (Altschul et al., 1990) to determine

the location of the unaligned regions. These were compared to the known locations of the inserted

accessory regions in order to identify true and false positives in the recovery of accessory regions,

with  a  true positive  being  defined  as  a  block  in  which  the  correct  number  of  sequences  are

recovered and matching the correct coordinates. 
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Abstract

Cercospora beticola is the fungal pathogen of wild and domesticated beets, causing Cercospora

Leaf Spot (CLS) in all  species. Sea beet is the extant wild ancestor of all  domesticated beets.

Sugar beet is a relatively modern crop, and has only been domesticated ~300 years ago. Here we

have employed population genomics approaches to determine whether recent host domestication

has influenced the genome evolution of C. beticola. We included C. beticola isolates from wild and

domesticated beet from Europe and North America to study signatures of population dynamics,

admixture, and population differentiation.  We have found that  C. beticola isolates show a high

levels of admixture, and that these exist in a global population that experiences substantial gene

flow. We have not found that clusters of  C. beticola exist that are strongly associated with either

host or location. However,  C. beticola  isolates from the UK showed slightly different patterns of

admixture, and showed some differentiation in the phylogenetic network. Therefore, we aimed to

determine what differentiated these accessions from those from the remaining sampling locations.

We found regions within the genomes of isolates between the UK and the remaining sampling

locations that  indicate some differentiation between individuals.  These regions contain protein-

coding genes that are likely important in the fungus’s biology, and may be regions involved in

future evolution and host specialistion.

64



Introduction

Sugar beet is becoming an increasingly important agricultural crop (Jones et al., 2003). In the 300

years  following  its  domestication,  sugar  beet  production  has  been  expanded  and  the  sector

currently contributes 14-20% of the global sugar production, with Germany as one of the leading

producers  (https://www.isosugar.org/sugarsector/sugar). The contribution of sugar beet to global

sugar production is strongly debated with some projections suggesting that it will increase due to

climate change, while others suggest that the ratio of sugar refined from sugar beet will remain

relatively constant (Jones et al., 2003; Michèle, 2018). Both crops are also used in the production

of biofuels. Sugar beet has several advantages over sugarcane that is traditionally used to refine

sugar. Sugar beet can be grown in temperate conditions and requires less water to be cultivated

successfully than sugar cane (Biancardi et al., 2011). The refining of sugar beet is also not as time

sensitive as that of sugarcane Due to the important economic and agricultural roles that sugar beet

fulfills, understanding factors that lead to crop loss are becoming more important.

Sugar beet was domesticated from fodder beet, Beta vulgaris subsp. vulgaris L., ~300 years ago,

and therefore a crop that is significantly younger than most other crops currently used (Hanelt et

al., 2001). Mitochondrial phylogenetic analyses have shown that the sea beet is the extant species

most closely related to the wild ancestor of beets (Santoni and Bervillé, 1992). All beets, including

beetroot, table beet, sugar beet, and sea beet are all subspecies of Beta vulgaris, and are able to

cross with ease (Arnaud et al., 2010; Bartsch, 2010; Ellstrand et al., 2013; Van Geyt et al., 1990).

As sea beet is often used to breed resistance traits into sugar beet populations, surveying the

diseases  present  in  wild  populations  might  shed  light  onto  the  future  of  infections  in  the

domesticated populations  (Van Geyt et al.,  1990). Wild plant populations can potentially act as

reservoirs that can lead infection for nearby domesticated crop species (Power and Mitchell, 2004).

Furthermore, host domestication has also been shown to be an important factor driving pathogen

evolution in some, but not all, crops (Gladieux et al., 2010; Munkacsi et al., 2007; Shapiro et al.,

2012, 2018). Some fungi with broad host ranges are able to infect both wild and domesticated

hosts, that may result in gene flow between isolates from the different hosts (Feurtey et al., 2020).
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The genomes of several sea and sugar beet accessions have been sequenced (Dohm et al., 2014;

Rodríguez Del Río et al., 2019). The 567 Mbp sugar beet genome was predicted to contain 27421

protein-coding genes, and a repetitive content of 42.3%. The sea beet genome was slightly larger

and was 590 Mbp long, and predicted to contain 16102 protein-coding genes. Previous studies

showed  high  genotypic  divergence  within  the  Beta  genus,  and  was  further  confirmed  when

comparing whole genome sequences of various sugar beet accessions (Dohm et al., 2012, 2014;

Schneider  et  al.,  2007).  Regions  of  low  diversity,  so-called  “variation  deserts”  were  identified

among sugar beet accessions, and are a product of selective breeding. These regions contain the

bolting locus that is of agricultural importance. These variation deserts were not present in sea

beet genomes.

Cercospora  beticola is  a  fungal  pathogen  that  causes  Cercospora  Leaf  Spot  (CLS)  on

domesticated and wild beet as well as a variety of other weeds including white goosefoot and bitter

dock  (Knight et al., 2019a; Pool and McKay, 1916; Vestal, 1933). CLS causes leaf spots on the

adaxial leaf surface, reducing the photosynthetic potential of the plant leading to smaller roots that

contain less sucrose (Weiland and Koch, 2004). Infection with C. beticola can also lead to more

rapid root spoiling prior to refining as well as increased molasses  (Skaracis et al., 2010). All of

these consequences result in economic losses. 

Understanding the effect of host domestication as well as geographical isolation on the evolution of

phytopathogens (e.g.  De Gracia et al.,  2015; Giraud et al.,  2008, 2010). Domestication of host

plants often drives divergent evolution of fungal plant pathogens of either domesticated and/or wild

pathogens due to the evolutionary arms race between the host and the fungus (Anderson et al.,

2010;  Frenkel  et  al.,  2010;  Xhaard et  al.,  2011).  In  addition  to  the plant-pathogen interaction

influences  on  evolution,  agro-ecosystems  are  also  markedly  different  from  wild  ecosystems

(Stukenbrock and McDonald, 2008). Some of these differences include higher genetic diversity in

wild  ecosystems,  higher  frequency of  monoclonal  plants  in  agro-ecosystems,  and the human-

mediated management of pests and diseases.  The abundance of genetically identical  hosts in
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agro-ecosystens removes the slective pressure of evolving less virulent phenotypes, resulting in

the evolution of more virulent pathogens in agricultural ecosystems (Thrall and Burdon, 1999). 

There is substantial variation among fungal plant pathogens isolated from agro-ecosystems. This

variation is influenced by the crop as well as the geographic location of the crop.  In the plant

pathogen Botrytis cinerea, accessions isolated from different hosts showed reduced ability to infect

hosts other than the one they were isolated from due to selective sweeps (Mercier et al., 2019). In

Sclerotinia sclerotiorum, there are two main geographic clusters, and a selective sweep in one

population that was close to a gene that may affect nutrient uptake in the host (Derbyshire et al.,

2019). In Fusarium graminearum, a gene cluster that produces a novel mycotoxin, and other genes

related to host-pathogen interactions, were divergent in North American isolates (Kelly and Ward,

2018). It is proposed that the differentiated traits reflect the evolutionary trajectories followed by F.

graminerum populations during their  host  shift  from an endophytic  lifestyle  on wild  grass to a

pathogenic lifestyle when infecting domesticated cereals (Kelly and Ward, 2018). F. graminearum

isolates in Germany have been shown to form part of a recombining meta-population (Talas and

McDonald, 2015). However, isolates from North America exist as multiple populations that have

recently evolved to infect the introduced domesticated cereals (Lofgren et al., 2018).

The comparison between the same fungal plant pathogen that infects both the wild ancestor of a

modern crop and the crop itself shows the effect that host domestication has on the domestication

of its pathogens. In domesticated crops,  F. graminearum causes Fusarium head blight, but infect

native grasses in an asymptomatic manner with little to no accumulation of mycotoxins (Lofgren et

al., 2018). This may be due to the long evolutionary history the fungus shares with the wild hosts,

resulting  in  distinct  biochemical  interactions.  In  Venturia  inaequalis,  the transition  from wild  to

agricultural apple trees resulted in larger spores and increased sporulation capacity (De Gracia et

al., 2015). These few examples are several of many detailing plant-pathogen interactions, and the

impact host domestication has on fungal evolution.

Prior  population  studies  of  C.  beticola populations  have  illustrated  global  genetic  diversity  of

isolates  infecting  domesticated  beet.  These  studies  have  mostly  been  carried  out  on  various
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populations using microsatellite markers  (Groenewald et  al.,  2007;  Knight  et  al.,  2018,  2019b;

Vaghefi  et  al.,  2017a).  In  some populations  recent  expansions were detected suggesting  that

population structure can be influenced by local demographic events  (Knight et al., 2019b). Long

range dispersal of  C. beticola has also been shown, with population clusters in the USA arising

from a Eurasian population, as well as another unknown location (Knight et al., 2019b). C. beticola

has been detected in  seeds of  sugar beet,  and sugar beet  seeds used in  the USA are often

produced  in  Australia,  Europe,  South  America,  and  South  Africa  (Noel  Knight,  personal

communication Knight and Pethybridge, 2020). While the viability of the C. beticola has not been

confirmed to be a source of inoculum for infections, seed dispersal may contribute to the spread of

Eurasian  isolates  to  North  America,  as  has  been  the  case  with  several  other  fungal  species

(reviewed by  Fisher et al., 2012). These studies have been restricted to  C. beticola accessions

isolated from sugar beet, with little known about the C. beticola isolates from sea beet.

We hypothesise that there will be weak signals of host specialisation as the host system is very

modern compared  to  other  domesticated  plants,  and the wild  and domesticated  hosts  readily

hybridise.  We further  hypothesise  that  the  high  levels  of  admixture  seen  in  other  C.  beticola

populations will also be present in the isolates from sea beet. While we hypothesise that there will

be little differentiation between populations, we anticipate that some genomic regions may show

the hallmarks of early differentiation. This study aims to compare populations of  C. beticola from

wild  and  domesticated  beet  using  whole  genome  sequences.  Since  there  have  been  no

comparisons  between  isolates  from  wild  and  domesticated  hosts  in  this  system,  questions

regarding the effect host domestication and location have on pathogen evolution. Therefore, we

aim to 1) determine the genetic diversity of C. beticola isolates on sea beet on the East coast of the

UK, 2) establish whether host and/or location influences population structure, 3) identify what the

regions that differentiate the isolates from the UK from the C. beticola isolates from the rest of the

sampling sites, and 4) predict the biological implications of the differentiated regions. Our analyses

will allow us to gain novel insights into the recent evolution of this important sugar beet pathogen.
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Understanding the population dynamics of pathogens on wild and domesticated plants is crucial to

develop novel crop protection strategies.
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Methods and Materials

Sample Collection and Clone Correction

In order to compare genetic diversity of C. beticola on wild and domesticated plants, we conducted

a field collection of sea beet isolates. Sea beet plants infected with C. beticola were sampled on

the East Coast of the United Kingdom in September 2018. Three locations, Southwold, Orford, and

Bawdsey Quay, were selected listed from North to South. Up to 10 infected leaves were collected

per site, and between 7 and 10 sites were selected for each site, depending on the prevalence of

sea beet infected with C. beticola. There was at least 10 m between each sampled plant. For each

leaf with more than one leaf spot, two spots were chosen at random for spore isolation.

Spores from leaf spots were isolated by dislodging these with 10 μl of water containing ampicillinl of water containing ampicillin

(0.1 mg/l) and transferred to water agar plates. The drop containing the spores was spread across

the surface of the agar with an additional 50 μl of water containing ampicillinl of water and a sterile hockey stick. The plates were

incubated in the dark at room temperature for up to 14 days, and inspected daily for germinated

spores. Most plates contained more than one germinated spore after 5 days with enough growth to

identify C. beticola. Two germinated spores with hyphae spatially separated from contaminants and

other germinated spores were cut from the water agar plates. These squares were transferred to

tomato juice agar plates containing streptomycin (0.1 mg/l) that were made with the house brand

tomato juice from the local supermarket, Rewe (Supplementary Methods). Isolates were incubated

in the dark at room temperature, and underwent several rounds of pure culturing until each isolate

was free from contaminants.

The resulting pure cultures were used to extract DNA from, and placed in long-term storage. DNA

was extracted following the CTAB protocol  (Clarke, 2009).  C. beticola isolates were cultivated in

liquid tomato juice based media in the dark at room temperature for 5 days, while being gently

shaken at 30 rpm. Hyphae were removed from the media, and ground with a mortar and pestle

with liquid nitrogen and transferred to 2 ml Eppendorf tubes. 1.2 ml of extraction buffer was added

to each sample, and shaken with a vortex briefly (Supplementary Methods). The samples were
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incubated at 65°C for 1 hour, and shaken every 15 minutes. Samples were spun in a centrifuge for

10  minutes  at  13500  g.  The  supernatant  was  transferred  to  a  fresh  tube,  and  800  μl of water containing ampicillinl

phenol/chloroform was added. Samples were mixed on a rotating platform for 20 minutes at room

temperature, and spun in a centrifuge at 13500 g for 10 minutes. The aqueous phase was washed

again with phenol/chloroform and spun. The aqueous phase was transferred to 800 μl of water containing ampicillinl ice cold

isopropanol and incubated at -20°C. Samples were spun in a centrifuge for 10 minutes at 13500 g,

and the supernatant was discarded. The pellet  was suspended in 250 μl of water containing ampicillinl  TE buffer,  and 25 μl of water containing ampicillinl

RNase was added and samples were incubated at 37°C for 30 minutes. 25 μl of water containing ampicillinl NaOAc and 600 μl of water containing ampicillinl

ice cold 100% EtOH were added to the samples, and incubated overnight at -20°C. Samples were

spun in a centrifuge at 13500 g for 10 minutes, and the supernatant was discarded. The pellet was

washed twice with 70% EtOH, and air dried. The pellet was suspended in 100 μl of water containing ampicillinl TE buffer. The

DNA  concentrations  were  determined  by  fluorometry  and  quality  was  assessed  by  gel

electrophoresis. 

To optimise conditions and primers for clone correction, a small subset of the isolates were used to

test the primers used for  C. beticola clone correction  (Vaghefi et al., 2017a). Unlabeled primers

were used to test the successful amplification of all target regions by the polymerase chain reaction

(PCR) (Supplementary Table 1).  The microsatellite markers were also used to confirm species

identity. The markers only successfully amplify C. beticola, and commonly used genes such as ITS

are not useful for  C. beticola due to the lack of informative sites within the genus (Vaghefi et al.,

2017a). 

A PCR amplification of each target region was performed using the same reaction mix and cycles,

but  with  different  annealing  temperatures  (Table  1).  A subset  of  11  C.  beticola isolates  were

randomly  chosen  to  optimise  the  amplification  reaction  with  fluorescent  primers.  DNA

concentration, number of amplification cycles, and primer concentration were important to ensure

that the peaks were not too high. This was also done to establish which markers were informative

for the isolates. From the original 12 primer pairs, 6 pairs were informative for these populations,

and these were further used to genotype the remaining isolates (Table 1). The allele sizes of the
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indivduals was with determined with GeneMapper 5 (Applied Biosystems). Haplotype Analysis v

1.05 was employed to determine haplotypes and compute genetic diversity (Eliades and Eliades,

2009). 

Table  1:  Microsatellite  primers  used  for  C.  beticola clone  correction  and  species

confirmation. Included are assigned primer names, accession, primer sequences, and dyes

from previous research, as well as the optimised multiplexes and annealing temperatures

optimised for this study.

Primer 

name

GenBank 

Accession 

Number

Sequence Multiplex Annealing 

Temperature

Dye Reference

SSRCb1 F: TGCGATCTGGGCATAAATATC

R:AGATTTGCATTTGCCCACAC

2 55oC Hex (Groenewald

et al., 2007)

SSRCb3 F: ATAGAGTCAAACCAAGCCAAG

R: CCCGTTATAGCGCCCTTAG

2 55oC Fam (Groenewald

et al., 2007)

SSRCb21 KX452351 F: GACTTTGGCATTCGAGAAGATGG

R: 

CCACTAAACGTATCTCTTTGCTGT

2 55oC Fam (Vaghefi et 

al., 2017a)

SSRCb22 KX452352 F: GCCACTTCATTACCACCTTGAAT 

R: 

TGAGCTGATGTGAAAGGTAGAGG

1 58oC Fam (Vaghefi et 

al., 2017a)

SSRCb25 KX452355 F: GACGAGCATTCCATTGAGAAGTC

R: TCGTCGTTTTGGTCCTCTTCTTC

1 58oC Hex (Vaghefi et 

al., 2017a)

SSRCb27 KX452357 F: CGTCAAAGCAGTCCCTCGAT 

R: AATTGAACAAGCGCCCAACC

1 58oC Fam (Vaghefi et 

al., 2017a)

Genome Sequencing

To analyse genome-wide variation, we generated a population genomic dataset of the C. beticola

isolates. In addition to the populations from the UK that were collected, Melvin Bolton (USDA,

Fargo, USA) contributed DNA samples of C. betiola isolated from sea beet plants in two locations

in  Croatia.  We  also  included  five  C.  beticola isolates from  Germany,  from  the  Institut  für

Zückerrübenforschung (IFZ,  Göttingen,  Germany).  These isolates were sequenced at  the Max

Planck Genome Center in Cologne along with the isolates from the UK. Illumina sequencing was

performed using the HiSeq 3000 platform to render paired end reads of 150 bp. An average of 20X

read coverage was requested.
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Quality Analysis and Read Processing

To determine high quality variants, read processing and read mapping was performed. The NGS

data received was inspected for primer contamination and overall sequence quality with FastQC

v0.11.6 (Andrews, 2010). Number of reads were calculated with GNU parellel and a custom script

(count.reads.sh)  (Tange, 2011). All scripts are available in the supplementary material as well as

online  (https://github.com/lpotgieter/phd.scripts).  The reads were trimmed to remove regions of

poor quality with FASTQ quality trimmer, a function of FASTX Toolkit v0.0.14 (Gordon and Hannon,

2010), and read pairs were extracted with BBmap (https://sourceforge.net/projects/bbmap/). Reads

were  mapped  to  the  10  fully  assembled  chromosomes  of  the  C.  beticola reference  genome

(GCA_002742065.1, all chromosomes over 1 Mb in size (de Jonge et al., 2018)) with bwa-mem (Li

and Durbin, 2009). Aligned reads were processed with SAMtools to sort and index reads, as well to

remove PCR duplicates  (Li et al., 2009). Where isolates were resequenced, SAMtools was also

used to merge the reads from both runs. Read groups were added with Picard  (Horner et al.,

2010). Variant sites were determined by GATK v4.1.0.0 (Auwera et al., 2013; DePristo et al., 2011;

Poplin  et  al.,  2018).  First,  HaplotypeCaller  was used to  produced genomic  variant  call  format

(GVCF) files for each sample. Second, CombineGVCFs was used to merge the GVCFs from each

sample into a combined GVCF file. Finally, GenotypeGVCF was used to produce a combined VCF

that was used in the subsequent analyses.

Analyses of Population Structure

To establish population structure, variants were filtered to remove low quality variants, as well as

linked sites. Before the variant file was used in downstream analyses, poor quality positions were

filtered, and basic statistics about the quality of the variants computed. Variants were filtered with

VCFtools (minimum quality per site 15; minimum mean depth per site 3, maximum mean depth per

site 100) to remove positions that had low quality as well as disproportionate sequencing depth as

well as insertions and deletions (indels)  (Danecek et al., 2011). These parameters were selected

based  on  the  average  read  depth  across  the  genome  for  all  individuals  deduced  from  the

alignment files. A minimum mean depth per site of 3 allowed for rare variants that are likely true

73



variants. A maximum mean depth per site of 100 was 3 times the average sequencing depth, and

would remove excessive coverage of repetitive regions such as transposable elements. The stats

function of BCFtools was used to calculate the mean read depth, the number of variant sites, and

the amount of missing data for each individual  (Li et al., 2009). Population statistics including pi

and Tajima’s D were also calculated with VCFtools. To  determine whether Tajima’s D values differ

significantly between geographic locations and hosts, an ANOVA was performed (anova.of.tajd.R).

All plots were made using a custom R script (cercospora.plots.R). 

Biallelic sites across the genome were extracted, converted to the nexus format using PGDSpider2

(Lischer  and  Excoffier,  2012),  and used  to  construct  a  reticulation  network  with  SplitsTree  v4

(Huson, 1998). The biallelic sites across the genome were used to perform a principle component

analysis (PCA) with PLINK v1.9 (Purcell et al., 2007). 

To determine the distance at which SNPs were linked, the decay of linkage disequilibrium (LD) was

calculated.  Due  to  computational  restraints,  the  mimimum  number  of  SNPs  on  a  single

chromosome across all populations was determined and used to subsample the SNPs on each

chromosome. PLINK was employed to calculate a windowed R2 for each chromosome based on

the size of each chromosome. A custom R script (ld.R) was used to calculate the decay across

each chromosome for each sampling site. The distance at which the maximum R2 value halved,

was used to thin the genome wide SNPs for subsequent population structure determination.

To quantify the population structure, sNMF as a part of the LEA v2.0 R package was used (Frichot

and François, 2015). Genome wide SNPs that were thinned to 5 kb were converted to a genotype

format  with  a  custom script  (vcf2geno.sh).  A custom R script  (snmf.R)  was  used  to  compute

K=2..20 over 10 iterations. 

Analyses of Population Differentiation

Individuals  from  the  UK  clustered  differently  from  the  other  C.  beticola isolates,  and  further

analyses were performed to explore these differences. From the reticulation network, PCA, and

ancestry analyses, it was not clear whether the differences between the isolates from the various
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sites was due to the host  they were isolated from or the location they were isolated from. To

quantify the differences between the isolates collected from different sites, the fixation index (FST)

was calculated in a pairwise manner between all sampling sites with VCFtools in 50kb windows.

The regions 50 kb up- and downstream of the global maxima of FST were further used. The genes

published annotation was used to query the NCBI database with a blastn to determine homologous

genes in other species as well as their function with Blast2GO v5.1  (Conesa et al., 2005). The

products of these genes were also queried to determine whether they contained signal peptides

with SignalP (Petersen et al., 2011). EffectorP 2.0 was employed to evaluate whether the genes

were potentially effectors  (Sperschneider et al., 2016). To detect fine-scale selection, Tajima’s D

and FST were calculated for each gene with VCFtools. The functional effect of SNPs within the FST

outlier regions was determined by SnpEff v4.3t (Cingolani et al., 2012).

As  the  reference  genome  was  hard  masked,  several  ambiguous  regions  were  located.  To

determine whether these ambiguous regions could be recovered in other genomes, a small subset

of genomes were assembled in a de novo manner with SPAdes v3.11.1 (Bankevich et al., 2012).

The regions flanking the ambiguous regions were used to query the  de novo assemblies with a

local blastn to determine the homologous contigs  (Altschul et al.,  1990). To align the identified

contigs with the reference genome, reference chromosome and the identified contigs were aligned

with nucmer, a part of mummer v3.9.4 (Delcher et al., 2003). The show-coords function was then

used to determine the coordinates of the contigs from the assemblies. 
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Results

Sample Collection and Clone Correction

To characterise genetic variation of C. beticola on sea beet, we collected isolates from three field

sites in the UK. The three sites on the East Coast of the UK had different distributions of sea beet,

and had varying environments. As such, different numbers of spores germinated from each site,

and  different  numbers  of  isolates  were  used for  clone  correction  from each  site.  Overall,  the

success rate of obtaining pure cultures from sea beet was low. The antibiotics used eradicated the

vast majority of bacterial contaminants, but the fungal contaminants were more difficult to control.

Often this contamination was only found after revival of the isolates from -80oC conditions since C.

beticola takes a longer time to start growing than many other fungi. The final number reported in

Table 2 consisted only of pure cultures that were able to withstand freezing and thawing cycles.

Microsatellite markers were used to identify potential clones between the isolates collected. The

preliminary test of the primers on the isolates collected from the UK showed that six out of the

original 12 primer pairs provided sufficient resolution to identify clones. Several primer pairs also

had a high error rate when used to amplify the target regions (Supplementary Table 1). Since there

was  no  ambiguity  regarding  the  clonal  nature  of  isolates  using  only  the  six  primers,  further

optimisation was not required. The primers used identified between 4 and 16 different alleles for

each region respectively (Table 3).
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Table 2: Description of the sampling sites, germination, and pure culturing success rate of

C. beticola isolates collected from the UK.

Location Description of Site Number of 

Plots 

Sampled

Number of 

Pure 

Isolates

Number of 

Isolates 

Included for

Whole 

Genome 

Sequencing

Southwold Fishing harbour

High human activity around plants

Moderate distribution of sea beet plants

Sea beets of a moderate size

13 29 18

Orford Grassland surrounding military base

Human activity contained to paths

Across the path from a healthy sugar 

beet field

High prevalence of sea beet plants

Large sea beet plants

10 27 14

Bawdsey 

Quay

Quay

High human activity

Harsh winds

Low distribution of sea beet plants

Small sea beet plants

8 12 10
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Table 3: Number of haplotypes identified by each microsatellite primer pair, as well as the

allele sizes

Primer Name Number of Haplotypes Allele Sizes (bp)

SSRCb1 4 221, 223, 225, 237

SSRCb3 10 245, 262, 264, 271, 273, 275, 279, 284, 291, 345

SSRCb21 5 165, 167, 173, 178, 180

SSRCb22 4 185, 188, 191, 199

SSRCb25 7 231, 235, 255, 258, 261, 264

SSRCb27 16 368, 373, 376, 379, 382, 398, 404, 406, 410, 418, 

425, 427, 433, 436, 439, 442

The microsatellite markers was used to compare the genetic diversity between the three sampling

sites, as well as selecting unique isolates (Table 4). The number and frequency of shared and

unique haplotypes was used to calculate haplotypic richness, genetic diversity, and mean genetic

diversity  between individuals  within  each sampling site.  These measures showed that  isolates

collected  from  Southwold  harboured  the  highest  amount  of  genetic  diversity  (Table  4).  The

populations in Orford and Bawdsey Quay contained similar levels of genetic diversity, and were

less diverse than the population collected from Southwold. Although the population from Orford

contained more than double the amount of individuals than the population from Bawdsey Quay,

both the measure for genetic diversity and diversity between individuals was comparable. This

diversity  is  reflected in  the  distribution  of  haplotypes  among the sites  (Figure  1).  From these

isolates, the unique isolates were selected for whole genome sequencing to represent the genetic

diversity present in the populations of C. beticola from the sampling sites (Supplementary Table 2).
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Table 4: Population statistics from microsatellite markers from each sampling site in the UK

Sampling 

Site

Sample 

size

Number of 

Haplotypes

Detected

Number of 

Private 

Haplotypes

Effective 

Number of 

Haplotypes

(Ne)

Haplotypic 

Richness 

(Rh)

Genetic 

Diversity

(He)

Mean 

Genetic 

Diversity 

Between 

Individuals

(D^2 sh)

Southwold 29 20 18 15.868 9.23 0.97 17693.702

Orford 27 13 12 6.451 6.758 0.877 5470.108

Bawdsey 

Quay

12 7 6 4.8 6 0.864 5376.29

Figure 1: Haplotype frequencies at each of the 3 sampling sites on the East coast of the 

UK. Haplotypes were determined by six unique microsatellite markers. Each colour 

represented a different haplotype. In total, 38 haplotypes were identified among all isolates.
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Genome Sequencing, Quality Analysis and Read Processing

The unique  C.  beticola isolates  from the UK as  well  as  isolates  provided by  M.  Bolton were

sequenced by the Max Planck Genome Center in Cologne, Germany (Supplementary Table 2). For

most individuals, the requested number of reads were delivered after the first run. For those that

had a lower than requested coverage, a second run was performed. These were merged later in

the read mapping pipeline. Prior to filtering, isolates contained between 3.4 million and 7.6 million

forward  and  an  equal  number  of  reverse  reads.  The  reads  mapped  more  than  69%  of  the

reference genome for all but four isolates (Supplementary Tables 3 and 4). 

Detection of Population Structure

We combined the data from our  own collection with the genome data provided by M.  Bolton.

Hereby, we have a collection of  C. beticola representing diversity of the pathogen in Europe and

North America on wild and cultivated accessions (Table 5). The distribution of isolates from sea

beet,  sugar beet,  and table beet was spread across Europe and North America. Isolates from

sugar beet were collected from North Dakota and Italy, isolates from sea beet from the UK and

Croatia, and a single population of isolates from table beet was collected from New York. To ensure

that the data included in the subsequent analyses was of good quality, each site was filtered to

remove sites that were potentially false positives. All individuals had an average coverage of at

least 10X per site (Supplementary Table 4, Supplementary Figures 1 and 2).
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Table 5: Number and geographic origin of  C. beticola genomes, as well as the host from

which they were isolated, included in this study

Location Host Number of Genomes

Southwold, UK Sea beet 18

Orford, UK Sea beet 14

Bawdsey Quay, UK Sea beet 10

Antenal, Croatia Sea beet 9

Jadransko, Croatia Sea beet 15

Various, Italy Sugar beet 17

Various, Germany Sugar beet 5

Fargo, ND, USA Sugar beet 88

Foxhome, ND, USA Sugar beet 17

New York, NY, USA Table beet 24
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Figure 3: Box plot of the mean read depth per individual of all individuals at each sampling

site. There was variation between the sample size between the number of isolates from the

various locations, namely Southwold, UK (n = 18), Orford, UK (n = 14), Bawdsey Quay, UK

(n = 10), Antenal, Croatia (n = 9), Jadransko, Croatia (n = 15), Germany (n = 5), Rivigo,

Italy (n = 5), Venezia, Italy (n = 5), Bologna, Italy (n = 5), Ferrara, Italy (n = 2), Fargo, USA

(n = 88), Foxhome, USA (n = 17), New York, USA (n = 24).

To confirm that the majority of the genome was included, the fraction of missing sites per individual

was calculated. No isolate had more than 8% of the sites missing (Supplementary Figure 3). From

the combination of read depth per site, average quality per individual, and fraction of missing sites,
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the quality of the data used for the remainder of the analyses was considered to be of sufficient

quality for downstream analyses.

Figure 4:  Box plot  illustrating  the  number  of  variant  positions  from isolates  from each

sampling site. There was variation between the sample size between the number of isolates

from the various locations, namely Southwold, UK (n = 18), Orford, UK (n = 14), Bawdsey

Quay, UK (n = 10), Antenal, Croatia (n = 9), Jadransko, Croatia (n = 15), Germany (n = 5),

Rivigo, Italy (n = 5), Venezia, Italy (n = 5), Bologna, Italy (n = 5), Ferrara, Italy (n = 2),

Fargo, USA (n = 88), Foxhome, USA (n = 17), New York, USA (n = 24).
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The comparison of individuals collected from the different hosts and locations was conducted on

an individual as well as on a population scale. On an individual scale, the number of SNPs were

counted. The individuals collected from sea beet in the UK contained more SNPs relative to the

reference genome than isolates from Croatian sea beet, and isolates collected from domesticated

beets.  Between  the  individuals  collected  from domesticated  beet,  isolates  from  North  Dakota

contained the lowest number of SNPs relative to the reference genome. This was likely due to the

origin of the reference genome. The reference genome was collected from sugar beet found in the

USA (de Jonge et al., 2018).

Due to the distribution  of  SNPs per  individual,  population  statistics  were determined for  each

location (Table 6). The number of SNPs per location varied between 265850 and 514434, with a

combined total of  774662 SNPs across the whole genome (Figure 4, Supplementary Figure 4,

Supplementary Table 5). The average pi across the genome ranged between 0.00322 and 0.00424

(Supplementary Figure 5). The average Tajima’s D measure was also not highly divergent from 0,

indicating that the vast majority of the sites within each population were not represented by an

excess or an absence of rare alleles (Figure 5).

Table 6: Population statistics of the C. beticola populations, including the number of SNPs,

average pi and Tajima’s D across the genome in 50 kb windows.

Population Host Number of 

Individuals

Number of 

SNPs

Average Pi Average Tajima’s D

All Combined Combined 217 774662 0.00429 0.016

Croatia Sea beet 24 514434 0.00424 -0.007

UK Sea beet 42 494315 0.00403 0.781

Germany Sugar beet 5 265850 0.00364 -0.055

Italy Sugar beet 17 368872 0.00325 0.134

North Dakota Sugar beet 105 508751 0.00322 0.24

New York Table beet 24 424795 0.00361 0.301
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Figure 5: Violin plots of the Tajima’s D distribution across the genome for C. beticola in 50

kb windows from the various sampling sites.

Figure 6: The variance between the Tajima’s D distribution in 50 kb windows along the 

genome was significantly different among all locations and all hosts.

Significance values were indicated as follows: p≈0 ‘***’, p<0.001 ‘**’, p<0.01, ‘*’ p<0.05 

To  compare  how  closely  individuals  were  related  to  each  other  purely  based  on  sequence

similarity,  an identity by state matrix was constructed. The range of identities of biallelic SNPs
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between individuals ranged from 0.72 to 0.99, with median decent by state of 79%. To establish the

phylogenetic relationships individuals have to one another, a reticulation network was computed

(Figure 7). The network showed that the individuals were all closely related, and did not separate

into clear populations. The isolates from the UK clustered separately from the isolates from the

other locations in  two groups.  The isolates from the UK also showed some genetic  exchange

between the three locations in one of the clusters, and less in the other. The cluster that showed

less genetic exchange between the individuals was more closely related to isolates collected from

domesticated beet.  One of  the sites from Croatia,  Antenal,  also  clustered separately  from the

isolates collected from the UK and USA, and shared ancestry  with some of  the isolates from

Jadransko.  The  other  isolates  from  Jandransko   were  more  closely  related  to  isolates  from

domesticated beet from domesticated beet.  The  C. beticola isolates from domesticated beet in

Europe and USA were not separated by location or host. The reticulation network also showed that

there was genetic exchange between all individuals, as seen with the reticulation at the center of

the network. In some clusters, there have been more reticulation events confined to individuals

more closely related to one another.
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Figure 7: The reticulation network of the C. beticola isolates included. The isolates from the

UK and Anetnal were the only isolates with a distinct separation from the other isolates

among  themselves.  The  remaining  isolates  did  not  show  clear  separation,  and  were

interspersed between each other in the network. Individual labels were highlighted based

on sampling location as indicated in the key. C. beticola isolates from the UK clustered by

themselves while the other isolates were more closely related to each other, and did not

cluster by location. The reticulation events indicated in the center of the network showed

that there was genetic exchange between isolates.

To further examine the relationship between isolates, a PCA was performed (Figure 8). The first

component  component  explained  38%  of  the  variation,  and  the  second,  25%.  As  with  the

reticulation network, some of the isolates from the UK clustered separately from the other isolates

while others were more closely related.

Figure 8:  The principle component analyses of  the  C. beticola isolates included.  The first

component explained 38.74% of the variation observed among the isolates, and the second

24.6%.  In  agreement  with  the  reticulation  network,  the  isolates  from  the  UK  clustered
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separately from the remaining isolates. Isolates collected from sea beet are indicated with

circles, those from sugar beet with triangles, and the isolates from table beet were squares.

The country that the isolates were collected from were shown with different colours.

The reticulation network, and the PCA showed no strong population separation based on either

host  or  location,  but  that  there were some differences between the various locations in  North

America  and  mainland  Europe.  To  quantify  the  differences  between  the  population  ancestry

between  the  individuals,  the  unlinked  SNPs  were  extracted.  Linkage  distance  was  used  to

determine the distance at which SNPs were considered to be no longer linked.

Linkage distance instead of R2 was used for filtering because none of the sampling locations had

comparable R2 profiles, but most chromosomes had a similar distance at which R2 decayed to half

of its maximum (Figure 9). Isolates collected from Antenal and Orford showed similar patterns of

LD, with almost no reduction in the first 100 kb of most chromosomes, but started decreasing at

greater distances with minima similar to that of the other sampling sites for each chromosome

(Supplementary Figure 6,  Supplementary Table 6).  The R2 decayed to half  of  its  maximum at

between 5 and 10 kb for each sampling site.  As such, a global thinning distance of 5 kb was

selected to ensure that SNPs used for the population ancestry were unlinked.

89



Figure 9: R2 decay over the first 100 kb of each chromosome separated by sampling site.

The R2 value was not comparable between the populations. However, the R2 value reduced

to half of its maximum in all populations on each chromosome at 8 kb.

Following the thinning of the sites, the signals of admixture among the individuals was determined.

Thinning to an 5 kb distance reduced the number of SNPs to 6184 variant positions across the

entire  genome.  The  cross  entropy  estimate  did  not  reach  a  constant  minimum,  and  was  not

informative for indicating an ideal number of populations present. The cross entropy estimation

started decreasing at K = 2, and thus, K = 2-5 were shown since these were the only scenarios

with likely biological explanations (Figures 10 and 11, Supplementary Figure 7). For each K, only

the most supported iteration was shown.
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Figure 10: Cross entropy value for the different values of K after thinning the genome wide

SNPs at 5 kb distances. At K=2 a decrease in cross entropy begins, but a value close to 0

was never achieved.
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Figure 11:  Population structure of  the  C. beticola isolates.  SNPs were thinned to 5 kb

distance of one another. 6184 SNPs were used to perform the admixture analyses. K = 2-5

were selected as the most  likely  to  explain the biological  implications of  the data.  The

isolates from the UK showed higher levels of admixture than isolates from mainland Europe

and the USA.

Regions Differentiation the C. beticola Isolates from the UK from the Isolates 

from Mainland Europe and North America

To determine what distinguishes the UK population from the other four sampling sites, regions that

were more differentiation were determined. The pairwise FST among all sampling locations showed

that, on average, the isolates from the UK were more differentiated from the isolates from the other

sampling sampling sites (Table 7). The pairwise FST between the UK population and the isolates

from the other four broad sampling locations, Croatia, Italy, North Dakota, and New York, showed

that most of the genome was not greatly differentiated. There were some regions that were higher

than that of the surrounding regions (Figure 12).

Table  7:  Weighted  pairwise  FST between  C.  beticola isolates  from  different  sampling

locations in 50 kb windows

Locations UK Croatia Italy North Dakota New York

UK 0 0.26 0.32 0.33 0.24

Croatia 0 0.14 0.18 0.21

Italy 0 0.14 0.24

North Dakota 0 0.23

New York 0
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Figure 12: Pairwise FST in 50 kb windows between the isolates from the UK and the four

other sampling sites, Croatia, Italy, North Dakota, and New York, per chromosome.

The  average  FST between  the  sampling  locations  was  comparable  (Table  8).  The  mean  FST

between the various sites and the UK ranged between 0.147 and 0.201. The FST between the

isolates from sea beet in the UK showed that these isolates were the least differentiated, and that

the UK population was the most differentiated from the C. beticola isolates from sugar beet found

in Italy. While the mean FST between locations was comparable, there were regions that showed a

higher fixation index than the mean in each sampling location (Table 9).  Here, only the global

maxima of the pairwise FST indexes were considered for further characterisation.
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Table  8:  Mean  and  median  FST between  C.  beticola  isolates  from  different  sampling

locations relative to isolates from the UK along the genome in 50 kb windows

Location Host
Mean FST Weighted FST

Mean Median Mean Median

Croatia Sea beet 0.147 0.158 0.245 0.235

Italy Sugar beet 0.201 0.187 0.304 0.289

North Dakota Sugar beet 0.191 0.178 0.310 0.296

New York Table beet 0.150 0.137 0.222 0.202

Table 9:  Regions identified  from the pairwise FST analysis  along the genome in  50 kb

windows. Values in bold typeface indicate FST outliers

Chromosome Contig 
coordinate of 
the start of 
the outlier 
region

Mean FST per Sampling Location

Croatia
Sea beet

Italy
Sugar beet

North Dakota
Sugar beet

New York
Table beet

CM008499.1 650001 0.357 0.420 0.637 0.410

CM008502.1 2950001 0.635 0.054 0.186 0.124

CM008504.1 1200001 0.382 0.974 0.428 0.980

Characterising the Region on Conting CM008504.1 Located at 1.2 Mb

The region with a high degree of differentiation was detected with large windows of 50 kb. The

region preceding the window with the global maximum between the isolates from Italy and New

York, and the isolates from the UK, consisted of solely ambiguous characters. As such, no genes

could be annotated within this region. As an example, the de novo assembly of isolate 10.2.2B to

bridge the ambiguous region will be shown. Additional assemblies were also used, but the region

could not be characterised.
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Characterising the FST Outlier Region on Contigs CM008499.1 and 

CM008502.1

The regions of the chromosomes surrounding the target region was well assembled and did not

contain  many  ambiguous  characters.  The  gene  annotations  of  ten  genes  upstream  and

downstream of the start of the outlier regions were extracted and compared to the NCBI database,

and the best  characterised match was extracted (Supplementary Tables  7 and 8).  The genes

contained in the regions 50 kb and and downstream were varied, and had different FST when the

genes from the various sampling locations were compared to the UK (Supplementary Tables 9 and

10, Figures 13 and 14). Most genes were not effectors, and did not contain signal peptides (Table

10). 

Figure 13: The pairwise FST between the  C. beticola isolates from the UK and the other

locations  around  the  650  kb  region  of  the  CM008499.1  chromosome,  the  number  of

variants in the region, as well as the Tajima’s D distribution for the corresponding region.

There was an increase in Tajima’s D directly after the region that showed a higher FST than

the surrounding regions.
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Figure 14: The pairwise FST between the  C. beticola isolates from the UK and the other

locations  around  the  2.95  Mb region  of  the  CM008502.1  chromosome,  the  number  of

variants in the region, as well as the Tajima’s D distribution for the corresponding region.

There was a decrease in Tajima’s D directly before the region that showed a higher FST than

the surrounding region.
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Table 10: Notable gene exceptions that are likely involved in the interaction of C. beticola

with its hosts

Chromosome mRNA ID Signal 
peptide

Effector Description FST Tajima’s D

CM008499.1 XM_023592896.1 No No HC-toxin efflux 
carrier

Croatia: 0.24
Italy: 0.47
ND: 0.29
NY: 0.48 

1.83

XM_023592900.1 Yes No No similarities Croatia: 0.04
Italy: 0.008
ND: 0.28
NY: 0.04

2.42

XM_023592906.1 No No Tubulin gamma 
chain

Croatia: 0.39
Italy: 0.43
ND: 0.66
NY: 0.46

-1.05

XM_023592912.1 No No Zinc finger 
protein

Croatia: 0.57
Italy: 0.15
ND: 0.35
NY: 0.57

0.03

XM_023592913.1 No No No similarities Croatia: 0.38
Italy: 0.5
ND: 0.51
NY: 0.21

2.8

XM_023592916.1 No No Vegetative 
incompatibility 
protein HET-E-1

Croatia: 0.56
Italy: 0.53
ND: 0.76
NY: 0.56

0.2

XM_023592924.1 Yes Yes 60S ribosomal 
protein L14-B

Croatia: 0.21
Italy: 0.45
ND: 0.26
NY: 0.28

0.16

XM_023592926.1 No No Phosphatidylserin
e decarboxylase 
proenzyme 3

Croatia: 0.11
Italy: 0.61
ND: 0.13
NY: 0.2

4.52

CM008502.1 XM_023597588.1 No No Ethanolamine-
phosphate 
cytidylyltransfera
se

Croatia: 0.29
Italy: 0.37
ND: 0.02
NY: 0.41

0.22

XM_023597609.1 Yes No Alpha-L-
fucosidase

Croatia:  0.69
Italy: 0.003
ND: 0.4
NY: 0.17 

4.36

XM_023597610.1 No No O-
methylsterigmato
cystin 
oxidoreductase

Croatia: 0.75
Italy: 0.04
ND: 0.35
NY: 0.14

2.9

XM_023597613.1 No Yes Putative 
oxidoreductase

Croatia: 0.75
Italy: 0.14
ND: 0.17
NY: 0.14

2.52
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The region spanning  XM_023597609.1  to   XM_023597613.1  was further  analysed  as  several

genes next to each other showed a high level of differentiation between the isolates from UK and

Croatia. Within the genome, this region was 11.6 kb long. This corresponded closely with the R2

determined, and indicated that SNPs within this region were linked in the isolates from Croatia. The

XM_023597611.1 did not contain any variants and it  is likely evolutionary conserved as it  is a

mediator of RNA polymerase, a conserved function. Two genes within this region were predicted to

encode oxidoreductases. In  XM_023597613.1, the mutations were only synonymous mutations

(Supplementary  Table  11).  Within  the   XM_023597610.1  mRNA,  isolates  from  the  different

locations harboured different frequencies of early stop codons at the first SNP (Supplementary

Table 11). Isolates from the UK had the lowest frequency of the premature stop codon, and it was

present at a frequency of 0.05. Similarly, in isolates from Italy the premature stop codon was also

present in 6% of isolates. 25% of isolates from New York, and 51% of isolates from North Dakota

contained this mutation. In isolates from Croatia, this premature stop codon was present in 79% of

individuals.  The  product  of  XM_023597613.1  was  predicted  to  be  a  O-methylsterigmatocystin

oxidoreductase  that  was  homologous  to  proteins  that  play  important  roles  in  plant-pathogen

interactions in other phytopathogens. The individuals that did not contain the premature stop codon

clustered with the isolates from North America and Italy in the reticulation network, that indicated

that  this  mutation may be beneficial  for  the survival  and successful  infection  of  C. beticola  in

domesticated  beet.  The  individuals  that  do  not  contain  this  premature  stop  codon,  may  be

indicators  that  there  are  some  genetic  barriers  to  the  ability  of  all  C.  beticola isolates  to  be

transferred between wild and domesticated hosts.

In summary, our detailed inspection of outlier regions revealed a set of candidate genes, some of

which may play a role in plant-pathogen interactions. The presence of the premature stop codon in

XM_023597613.1 showed that there may be differences between isolates collected from wild and

domesticated beets, and that these variants may be important drivers of future host specialisation.
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Discussion

This  study  aimed  to  determine  the  effect  of  host  domestication  on  the  evolution  of  a  fungal

pathogen that was associated with both hosts. To quantify this effect, a variety of measures were

considered, including genetic diversity, linkage decay, population structure, and FST. Regardless of

which measures were included, a clear distinction between whether host or location influenced the

evolution  of  the  fungus  could  not  be  confirmed.  Overall,  there  was  little  support  for  strong

population structure or genetic diversity based on host or location. What was well supported in all

analyses of genetic distance was that the individuals from the UK were different from the isolates

from wild  and domesticated hosts from mainland Europe and the USA.  Here,  we will  discuss

findings from this system in the broader scope of existing literature, and evaluate whether this

system can be used as an insight into the early stages of pathogen specialization due to host

domestication.

Genetic Diversity of C. beticola from Sea Beet in the UK

The  isolates  from the  UK were  isolated  from three  distinct  sampling  locations.  The  locations

differed in the level of human impact on the environment that has resulted in a change in the plants

surrounding the sea beet plants. The first site, Southwold, was a small commercial harbour with

sea beet plants growing along the edges of the walkways with little competition from other plants.

The second site, Orford, was next to a naval base, and next to a sugar beet field. There, the sea

beet plants grew among tall grasses, and the density was much higher than at the other two sites.

Interestingly, the sugar beet field next to the infected sea beet plants did not show signs of infection

along the edges of the field aside from a single plant that had two CLS lesions. The third site,

Bawdsey Quay,  was a  quay with  fewer  sea beet  plants than the other  two sites.  Wind is  an

important dispersal mechanism for  C. beticola spores, and alongside human activity, may have

contributed to the dispersal of  C. beticola among plants (Lawrence and Meredith, 1970; Weiland

and Koch, 2004).
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The three sites showed different degrees of genetic diversity. Isolates from Southwold were the

most diverse, and had the higher number of effective haplotypes. Each site had several clones

isolated from different plants that showed that short range dispersal occurs within each site. Each

site had a high percentage of private haplotypes that showed that there is not much dispersal

between the three sites. Southwold shared a single haplotype with Bawdsey Quay, and a different

haplotype with Orford. These isolates may have been transported between sites by human activity.

The haplotype that is shared by Orford and Southwold occurred on four separate plants in Orford

and on a single plant in Southwold. It was likely that the isolate was transferred from Orford to

Southwold. The shared haplotype was found on a single plant in both sites, and no direction of

infection can be deduced from this. The lower levels of genetic diversity between individuals at

Bawdsey Quay could be attributed to the size and abundance of sea beet at the site. The harsher

weather conditions might also contribute to the selection of individuals that are able to establish

infect the plant more quickly before the wind blows the spores away. Isolates from Southwold and

Orford were not challenged by the environment as much, which could have resulted in the sites

accumulating isolates with a range of virulence as they might undergo less pressure to infect plants

quickly. An abundance of sea beet plants may also reduce the pressure on the isolates to infect

plants more quickly. Future cross infection studies of these isolates on sea and sugar beet would

shed light on whether this is indeed the strategy used by these isolates. Additionally,  in planta

infection assays would also be important to determine whether these isolates are able to infect

sugar beet to explain why the sugar beet field was not infected by C. beticola. 

The isolates collected and used for clone correction were sampled using a different strategy from

previous studies of  C. beticola.  One of the most recent  C. beticola studies using microsatellite

markers used in this study sampled few plants very intensively and comprised of 649 individuals

from various locations in the USA compared to the 68 isolates used here (Vaghefi et al., 2017b).

Isolates were clustered based on the sampling site, and Nei’s index of gene diversity (He) ranged

between 0.29 and 0.57, drastically lower than that of isolates included in this study. This difference

may be due to differences in sampling strategies and sample size.  An explorative study of  C.
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beticola isolated from table beet in New York also showed an He ranging from 0.045 to 0.566

(Knight et al., 2018). A more in-depth survey of C. beticola across the USA and Europe showed He

ranging from 0.05 to 0.64  (Knight et al.,  2019b). In these studies, the sample sizes from some

different  fields  were  comparable  to  the  ones  used  in  this  study.  Therefore,  the  C.  beticola

populations from the sites in the UK were shown to be more diverse than the isolates from table

beet and sugar beet.

Fungal  isolates  from  wild  and  agricultural  hosts  show  differences  in  genetic  diversity.  In  S.

sclerotiorum the inverse of what was seen in C. beticola was observed (Kohn, 1995). Isolates from

Canadian canola and Norwegian  Ranunculus ficaria, fungal diversity was higher in the isolates

from agricultural fields. Due to the distribution of DNA fingerprints, it  was difficult to distinguish

clonality from inbreeding in isolates from wild populations. In most cases, however, pathogens of

wild species harbour more diversity than pathogens of domesticated crops (reviewed Burdon and

Thrall,  2008).  Wild  plant  populations  are  more  diverse  than  crops,  and  therefore  drive  the

maintenance in the diversity within their associated pathogens. 

Does Location of Host Domestication Have a Clear Influence on Population 

Structure?

To assess the presence or absence of population structure, a reticulation network, a PCA, and an

admixture  analysis  were  performed.  There  is  a  difference  between  the  analyses  that  can  be

performed  downstream  differ  on  data  sets  that  contain  individuals  that  form  clear,  and  well

supported  populations  compared  to  those  that  do  not  have  clear  structure  or  high  levels  of

differentiation. Among the  C. beticola isolates used, there was no clear distinction clustering of

individuals based on either host or location. Instead, there was a gradient in most cases, with some

individuals from that were very closely related even though they were isolated from different hosts

or continents, while others were less closely related to isolates that share a host or a location with

them. 

In the phylogentic analyses, the isolates from the UK were the most distantly related to the isolates

from mainland Europe and the USA. Within the UK population, there was variation between the
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individuals regarding how closely they were related to the remaining isolates. The first and second

components of the PCA illustrated this well. Regardless of the host they were collected from, the

isolates from mainland Europe and the USA clustered more closely together. Although it was not

definitely separated from the main cluster, a second cluster containing the individuals from the UK

as well as two individuals from Croatia. Unlike many fungal pathogens that have been isolated on

different hosts, the reticulation network did not show strong differentiation among the isolates. 

The LD differences between the various sampling locations was indicative of sexual reproduction

occurring within the species.  LD has been shown to be closely  correlated to the frequency of

sexual reproduction a fungus undergoes (Nieuwenhuis and James, 2016). In species that undergo

very frequent or obligatory sexual reproduction, LD half-decay is very short as in  Schizophyllum

commune where this distance is merely 110 bp (Baranova et al., 2015; Nieuwenhuis and James,

2016). In species that don’t undergo sexual reproduction and are known to be highly clonal, the

distance at which LD reaches its half-decay value exceed 100 kb. In the case of Candida albicans,

the distance of LD half decay is 162 kb (Hirakawa et al., 2015; Nieuwenhuis and James, 2016).

The LD half-decay of C. beticola was comparable to that of other fungi that have mixed modes of

reproduction, i.e. where both sexual and clonal reproduction occurs. In Saccharomyces cerevisiae

the LD half-decay is 2.3 kb while in Saccharomyces pombe it is closer to 20 kb (Bergström et al.,

2014; Nieuwenhuis and James, 2016). It has also been shown that LD half-decay can vary among

populations of the same species (Derbyshire et al., 2019). As LD half-decay is closely associated

with reproduction strategy, the presence of LD decay in C. beticola strongly suggests that sexual

reproduction occurs at different rates within, and potentially between isolates from the different

locations.  The  reticulation  network  further  confirmed that  there  was  genetic  exchange  among

individuals (Huson and Bryant, 2006). The differences in the LD decay among chromosomes could

be indicative of different recombination rates among chromosomes. Future studies to detail the

recombination landscape of C. beticola would be required to confirm this.

To further confirm that the  C. beticola isolates did not cluster in distinct populations, admixture

analyses were used. The population structure analysis showed a high level of admixture among C.
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beticola isolates included in this study, and that there were different patterns of admixture based on

both host  and geography.  Fungal  plant  pathogens have been known to cluster  in  populations

based  on host,  as  well  as  geographic  origin.  In  a  study  considering  whole  genome SNPs of

Sclerotinia  sclerotiorum isolates  from  different  hosts,  the  corresponding  reticulation  network

showed two distinct clusters as well as several genotypic outliers (Derbyshire et al., 2019). These

populations were further supported by an admixture analyses that showed that the clusters were

indeed supported as distinct populations. In other fungal phytopathogens such as Botrytis cinerea,

the lack of structure associated with geography has been attributed to frequent migration and/or

large populations  (Walker  et  al.,  2015).  However,  B.  cinerea populations  are  often subdivided

based on the host they were isolated from (Mercier et al., 2020). In the case of C. beticola, it could

be shown that the host that the fungus was isolated from did not influence the population structure.

The  lack  of  strong  population  structure  among  C.  beticola  isolates  is  unsurprising.  Fungal

pathogens  of  many  of  the  major  crops  have  had  several  thousand  years  to  establish  a  co-

evolutionary dynamic (Lo Presti et al., 2015; Stukenbrock et al., 2007). Due to the co-evolutionary

dynamic,  differences in  evolutionary  pressures  in  wild  ecosystems and agro-ecosystems drive

different evolutionary trajectories in fungal pathogens  (Kohn, 1995; Stukenbrock and McDonald,

2008). Fungal populations contain substantial genetic variation that allows for the rapid evolution of

advantageous phenotypes  (Barrett  and Schluter,  2008).  This  allows phytopathogens to  rapidly

overcome host resistance, as well as evolve to adapt to new environments (Brown, 2015; Rouxel

et al.,  2003). While co-evolution of fungi with the host occurs within wild plant populations, the

selective pressures are not always as strong as those presented by agro-ecosystems (Burdon and

Thrall, 2009; Möller and Stukenbrock, 2017). 

The comparison of  C. beticola to a more ancient crop pathogen shows the effect of a longer co-

evolution relationship.  Zymoseptoria tritici is the causal agent of  Septoria tritici blotch (STB) on

wheat (reviewed by McDonald et al., 2015). It has been hypothesised that Z. tritici evolved from an

ancestral  species that  colonised grasses ~11000 years ago and speciation occurred alongside

wheat domestication (Stukenbrock et al., 2007). Z. tritici populations have high genetic diversity, as
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well  as  a  high  rate  of  adaptive  substitutions  (Grandaubert  et  al.,  2019;  Linde  et  al.,  2002;

Mekonnen et al., 2020). The pangenome of Z. tritici shows an equal plasticity (Plissonneau et al.,

2018). Isolates from different geographic regions also cluster in distinct populations (Linde et al.,

2002; Vagndorf et al., 2018). Given the large evolutionary scale that has given rise to the variation

in Z. tritici, it is expected that a modern crop, like sugar beet, and its pathogens may not show the

same  variation,  structure,  and  differentiation  as  seen  in  an  ancient  species.  To  date,  global

population genetics surveys of other pathogens that share wild and domesticated beets as host

has not been done.

The high degree of gene seen between isolates from mainland Europe and North America may be

a cause of  concern for  plant  breeders.  In the pathosystem of  Puccinia graminis and wild and

domesticated oats, gene flow from pathogens from wild oats to those on domesticated oat resulted

in the evolution increased virulence of  P. graminis isolates on domesticated oat  (Burdon et al.,

1992; Oates et al., 1983). The fungal pathogen Magnaporthe oryzae causes several blast diseases

on rice and various grasses.  Gene flow among between multiple lineages of  this fungus from

different  hosts  occurs,  and  detection  thereof  has  indicated  the  need  for  surveillance  against

emerging plant diseases, particularly in the case of multi-host pathogens (Gladieux et al., 2018).

Taken  together,  the  population  genomics  confirmed  what  previous  microsatellite  studies  have

suggested. These studies have suggested the C. beticola exists as a global population with little

differentiation, and high levels of gene flow (Groenewald et al., 2008; Knight et al., 2019b; Vaghefi

et al., 2017a). These studies did not consider isolates collected from sea beet. Here, it was shown

that the same assertions hold true for these accessions, as well.

What Differentiates the Isolates Found on Different Hosts and at Different 

Locations?

While strong population structure does not exist within the C. beticola global population, there are

some differences between isolates collected from the different sites. For this, additional population

genomic statistics were used to locate regions that could be of biological relevance.
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The statistics used in this study can illustrate several biological scenarios. Tajima’s D is a statistic

that measures the mean number of pairwise differences between sequences and the number of

segregating sites  (Tajima, 1989). This can be used to evaluate whether a sequence is evolving

neutrally or whether it  is undergoing non-random evolution. If  Tajima’s D is close to 0, usually

including values from -1 to 1,  the sequence is  considered to evolve neutrally.  If  Tajima’s D is

positive,  usually  greater  than  1,  it  is  due  to  the lack  of  rare  alleles.  This  may be  caused  by

balancing selection, or a sudden population contraction. If Tajima’s D is negative, usually smaller

than -1, there is an excess of rare alleles in the population. This can be caused by due to a recent

selective sweep, or recent population expansion. FST is a measure of relative divergence between

individuals developed from Wright’s F-statistic (Wright, 1950). An FST = 0 indicates no divergence

between individuals while FST = 1  indicates no similarity between individuals. FST can be used to

measure demographic history of selected regions within the genome (Holsinger and Weir, 2009).

As more whole genome data is becoming available for population genomics studies, the methods

employed to detect signatures of selection and differentiation change. Until recently, demographic

analyses  were  an  important  aspect  of  determining  the  presence  of  genes  under  selection.

However, in the past two years, several studies have shown that using a combination of Tajima’s D

distribution and pairwise FST,  regions that are undergoing selection can be identified accurately

(Mercier et al., 2020). This was particularly advantageous for this study as most selection detection

approaches  rely  on  very  clear  population  structure.  As  explained  above,  C.  beticola isolates

included in this study did not show clear population structure, and as such, most methods cannot

be  used  without  overextending  the assumptions  these  models  incorporate.  However,  FST is  a

measure  of  relative  divergence,  and  can  also  detect  signals  that  are  not  related  to  external

selection pressures (Schirrmann et al., 2018).

By extracting regions were the FST was higher than the rest of the genome, genes surrounding the

area most impacted by differentiation could be assessed. In other studies that refined the data by

using both relative and absolute divergence outliers, the regions surrounding the genes with the

highest divergence are often not considered, only the genes that are outliers (e.g.  Mercier et al.,
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2020). Some studies do, in fact, consider the genomic landscape surrounding the location of a

selective sweep (e.g. Derbyshire et al., 2019). Due to time constraints, this study solely made use

of the latter approach. Future studies including these isolates should extend to the entire genome,

considering regions that are less pronounced than the two regions considered here.

Unsuprisingly, some of the genes that show differences in their FST when compared to the UK

population.  An Alpha-L-fucosidase has been shown to be over-expressed when the Dutch elm

pathogen,  Ophiostoma novo-ulmi changes its morphology between a yeast and mycelium stage

(Nigg et al., 2015). The putative oxidoreductase encoded for by XM_023597613.1 is an interesting

target for future studies. In some populations there was a high rate of synonymous mutations, and

no non-synonymous mutations in any individual. While the function of this enzyme has not been

characterised in any related species, this may be indicative that there is a strong pressure on this

enzyme  to  maintain  its  integrity. The  O-methyl  strigmatocystin  oxidoreductase  encoded  by

XM_023597610.1 is homologous to oxidoreductases in Aspergillus species that function in the final

step in the production of the aflatoxin B1 (Gengan et al., 2006). The premature stop codon occurred

fairly early in the mRNA, and indicated that this enzyme is likely inactive in the accessions that

contained it. Further, there was a difference in the distribution of individuals that contained this stop

codon. Within the North American individuals, this stop codon was present in a random manner.

However,  in  the isolates from Croatia,  the individuals  that  contained the stop codon clustered

separately in the reticulation network while those that did not contain it were interspersed among

the North American isolates (Supplementary Figure 7). This may be indicative that this pathway

has a functional role within C. beticola, as well. It may also be indicative that other genes within this

region are under selection, and that this stop codon is merely hitch-hiking and has no functional

effect.  Further  studies  would  be  important  to  confirm  this.  These  studies  include  in  planta

characterisation of expression of this gene and regions surrounding it during cross-infection studies

on  wild  and  domesticated  beet  that  consider  specifically  isolates  that  are  closely  related,  but

represent different XM_023597610.1 genotypes.
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Conclusions and Perspectives

This study has shown that, as of yet, C. beticola does not show strong signs of distinct evolution

driven by host domestication. This study confirmed that  C. beticola exists as a global population

rather than distinct populations based on host or location. However, there were some differences

between isolates collected from the various locations. The C. beticola population sampled in the

UK showed higher levels of diversity than other previously sampled populations. This may be due

to the genetic diversity of hosts driving higher diversity in the fungal populations. The geographic

isolation of  these isolates minimises the opportunity  for  them to undergo admixture with other

isolates from mainland Europe. This may allow for the maintenance of standing genetic diversity.

While the Croatian isolates were also isolated from sea beet, these isolates were not as diverse as

those from the UK, and are admixed with isolates from sugar beet. Whole genome studies on

unique isolates showed that there was no strong population structure based on host, but that the

clusters from different locations showed that there were different signatures of admixture within the

locations. Using population genomics approaches, two target regions that are likely under selection

were identified. Genes contained within these regions were often stress-related genes. There was

a single oxidoreductase within the highly divergent region that contained a premature stop codon in

some isolates. 

Following this  study,  several  open questions pertaining to  C. beticola remain.  Firstly,  in  planta

experiments should be performed to validate the ability of C. beticola isolates from sea beet and

sugar beet to infect the other respective host. This would also test whether the divergent region on

chromosome CM008502.1 is  an important  target  for  emerging host  specialisation.  Secondly,  a

survey of  C. beticola on sugar beet in the UK should be performed to determine whether the C.

beticola isolates  infecting  domesticated  beet  there  are  significantly  different  from  the  isolates

infecting sea beet,  as well  as those infecting sugar  beet  in  Europe and the USA.  Thirdly,  the

direction of gene flow must be examined to establish whether the isolates from sea beet donate

genetic material to the isolates in the domesticated fields through sexual reproduction. Finally,  in
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vitro expression analyses of the regions identified by this study should be performed to qualify

whether they are functionally important in the lifecycle of C. beticola.
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Supplementary Materials

Supplementary Tables

Supplementary Table 1: Microsatellites and multiplexes from Vaghefi et al. 2017, and comments 

regarding performance in C. beticola isolates from the UK

Primer Multiplex Allele Sizes (bp) Comments

SSRCb22 1 185,188, 191, 199, 203 Use

SSRCb24 1 312,313, 316, 323, 326, 332
1 bp difference in allele sizes 
between samples makes use difficult

SSRCb25 1 231, 235, 241, 255, 258, 264 Use

SSRCb1 2 208, 210, 221, 223, 225 Use

SSRCb3 2
262, 264, 271, 273, 275, 279, 284, 
291, 345

Use

SSRCb21 2 165, 167, 173 Use

SSRCb2 3 195, 197
Good amplification, but does not fit in
to existing multiplexes

SSRCb23 3 276, 287, 293, 298, 304 Did not work on many isolates

SSRCb27 3
376, 379, 382, 398, 404, 406, 410, 
418, 425, 427, 433, 436, 439, 442

Use

SSRCb4 4 157, 190, 193
Good amplification, but does not fit in
to existing multiplexes

SSRCb6 4 228, 232, 234 Did not work on some isolates

SSRCb20 5 157, 165, 168 Did not work on many isolates

SSRCb26 5 354, 355, 359, 368
1 bp difference in allele sizes 
between samples makes use difficult
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Supplementary Table 2: Haplotype information for C. beticola isolates from sea beet in the UK 

established using 6 microsatellites.

Sample Dataset Haplotype Code Haplotype

2A10.1A Southwold 1 10 245 178 188 14 15 

55A3A Bawdsey Quay 2 10 271 167 185 255 442 

3.5.1 Southwold 3 10 271 180 188 255 373 

2B10.1A Southwold 4 10 271 180 199 253 368 

4A9.1A Southwold 5 10 291 173 188 255 410 

21.5.1B Orford 6 221 11 12 199 258 398 

3.9.1A Southwold 7 221 11 167 188 258 376 

8B3.2A Southwold 7 221 11 167 188 258 376 

8B3.2B Southwold 7 221 11 167 188 258 376 

4C6.2A Southwold 8 221 262 167 185 14 418 

4C6.2B Southwold 9 221 262 167 185 235 418 

55A11.1 Bawdsey Quay 10 221 264 173 188 231 382 

56.12.1B Bawdsey Quay 10 221 264 173 188 231 382 

57.1.2A Bawdsey Quay 10 221 264 173 188 231 382 

57.1.2B Bawdsey Quay 10 221 264 173 188 231 382 

23.2.1B Orford 11 221 264 173 199 231 382 

23.6.2B Orford 11 221 264 173 199 231 382 

26.8.2 Orford 12 221 271 167 185 235 436 

24.1.2 Orford 13 221 271 167 199 235 439 

24.2.1A Orford 13 221 271 167 199 235 439 

24.2.1B Orford 13 221 271 167 199 235 439 

21.5.1A Orford 14 221 271 167 199 255 439 

24.4.1A Orford 14 221 271 167 199 255 439 

24.4.1B Orford 14 221 271 167 199 255 439 

27.5.1B Orford 14 221 271 167 199 255 439 

27.7.1A Orford 14 221 271 167 199 255 439 

27.7.1B Orford 14 221 271 167 199 255 439 

27.7.2A Orford 14 221 271 167 199 255 439 

27.7.2B Orford 14 221 271 167 199 255 439 

29.5.1B Orford 14 221 271 167 199 255 439 

4A3.2A Southwold 14 221 271 167 199 255 439 

4A8.1A Southwold 14 221 271 167 199 255 439 

1A5.2B Southwold 15 221 271 167 199 255 442 

21.8.1A Orford 16 221 271 173 185 235 439 

21.8.1B Orford 16 221 271 173 185 235 439 

25.1.1A Orford 17 221 271 180 185 255 373 

4A2.1B Southwold 18 221 271 180 188 261 368 

30.5.2B Orford 19 221 271 180 199 253 368 

23.6.2A Orford 20 221 271 180 199 255 373 

25.1.2A Orford 21 221 273 167 185 14 436 
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Supplementary Table 2 (continued): Haplotype information for C. beticola isolates from sea beet 

in the UK established using 6 microsatellites.

Sample Location Haplotype Code Haplotype

25.13.1A Orford 21 221 273 167 185 14 436 

54.6.1B Bawdsey Quay 22 221 273 167 199 255 379 

8A11.1 Southwold 22 221 273 167 199 255 379 

26.8.1 Orford 23 221 273 167 199 255 442 

30.7.2A Orford 24 221 273 167 199 264 379 

30.7.2B Orford 24 221 273 167 199 264 379 

56.2.2 Bawdsey Quay 25 221 275 167 199 255 379 

51.7.1 Bawdsey Quay 26 221 284 167 188 255 398 

51.7.2B Bawdsey Quay 26 221 284 167 188 255 398 

51.9.2B Bawdsey Quay 26 221 284 167 188 255 398 

2B10.1B Southwold 27 221 284 167 199 235 442 

4A3.1B Southwold 28 221 291 173 188 255 404 

4B9.2A Southwold 29 221 291 173 188 255 406 

4A8.2B Southwold 30 221 291 173 188 255 410 

5.7.2A Southwold 30 221 291 173 188 255 410 

5.7.2B Southwold 30 221 291 173 188 255 410 

4B5.1B Southwold 31 221 291 173 191 255 410 

24.3.1A Orford 32 221 345 167 185 264 379 

53A7.2 Bawdsey Quay 33 223 11 165 188 258 379 

8A11.2B Southwold 34 223 279 165 188 258 433 

8A2.2A Southwold 34 223 279 165 188 258 433 

8A2.2B Southwold 34 223 279 165 188 258 433 

10.2.1B Southwold 35 223 279 173 199 231 382 

10.2.2B Southwold 35 223 279 173 199 231 382 

55A9A Bawdsey Quay 36 225 271 165 185 255 425 

9.10.1A Southwold 37 225 271 165 188 255 427 

9.10.1B Southwold 37 225 271 165 188 255 427 

4A8.1B Southwold 38 237 11 167 188 258 376 
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Supplementary Table 3: Sequencing information for C. beticola. Isolate name, location, host, 

number of reads per forward and reverse read file for each sequencing run, as well as number of 

reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of 
reads per 
forward 
and reverse
sequencing
file

Number of reads per
forward and reverse 
re-sequencing file 

Total of 
reads 
mapped 
to 
reference 
genome

1A5.2B UK Southwold Sea beet 4014608 4277957 12878654

2B10.1A UK Southwold Sea beet 4005394 2883070 10121566

2B10.1B UK Southwold Sea beet 4194642 2072976 9794933

3.5.1 UK Southwold Sea beet 5538310 1745420 11023518

4A2.1B UK Southwold Sea beet 1048925 7608192 12267388

4A3.1B UK Southwold Sea beet 1048925 12145034

4A3.2A UK Southwold Sea beet 3294464 5157388 14349197

4A8.1B UK Southwold Sea beet 9090071 12761815

4A8.2B UK Southwold Sea beet 7285356 10695207

4A9.1A UK Southwold Sea beet 6972409 9500414

4B5.1B UK Southwold Sea beet 4964279 2007704 10975391

4B9.2A UK Southwold Sea beet 3920290 2188929 9604326

5.7.2A UK Southwold Sea beet 8840454 12561573

8A11.1 UK Southwold Sea beet 6862518 9980729

8A11.2B UK Southwold Sea beet 6779565 10512469

8B.3.2B UK Southwold Sea beet 4672286 4222834 14319469

9.10.1A UK Southwold Sea beet 6027799 1164390 8953385

10.2.2B UK Southwold Sea beet 5435092 2797075 13307111

21.5.1A UK Orford Sea beet 4320997 3563404 11712504

21.5.1B UK Orford Sea beet 5915621 1228669 10444621

21.8.1A UK Orford Sea beet 4175894 3980993 12884536

23.2.1B UK Orford Sea beet 7106172 9528468

23.6.2A UK Orford Sea beet 2734860 4371879 10462082

24.2.1A UK Orford Sea beet 5918371 2060355 12250855

24.4.1B UK Orford Sea beet 6326170 9735819

25.1.1A UK Orford Sea beet 4809961 3583927 14491747

25.1.2A UK Orford Sea beet 4248345 4235352 6760468

26.8.1 UK Orford Sea beet 5040701 2059658 10519965

27.7.2B UK Orford Sea beet 6645185 10123208

29.5.1B UK Orford Sea beet 4831103 3848328 13558404

30.5.2B UK Orford Sea beet 8816292 12164184

30.7.2B UK Orford Sea beet 908355 7192564 11632926

51.7.1 UK Bawdsey Quay Sea beet 6076995 9156094

53A7.2 UK Bawdsey Quay Sea beet 4272510 3247948 11891672
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Supplementary Table 3 (continued): Sequencing information for C. beticola. Isolate name, 

location, host, number of reads per forward and reverse read file for each sequencing run, as well 

as number of reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of reads 
per forward and 
reverse 
sequencing file

Number of 
reads per 
forward and 
reverse re-
sequencing file

Total of 
reads 
mapped to
reference 
genome

54.6.1B UK Bawdsey Quay Sea beet 6644294 9723179

55A11.1 UK Bawdsey Quay Sea beet 5040469 2164109 12388047

55A3A UK Bawdsey Quay Sea beet 5293188 3029257 12185421

55A9A UK Bawdsey Quay Sea beet 4255416 2730803 10964613

56.12.1B UK Bawdsey Quay Sea beet 2913000 2540203 8949071

56.2.2 UK Bawdsey Quay Sea beet 2134662 6756842 13464223

57.1.2A UK Bawdsey Quay Sea beet 8735115 11715712

57.1.2B UK Bawdsey Quay Sea beet 6546248 9961563

MB1.10 Croatia Antenal Sea beet 8466069 11755318

MB1.11 Croatia Antenal Sea beet 7157596 10307355

MB1.14 Croatia Antenal Sea beet 8719346 11917096

MB1.18 Croatia Antenal Sea beet 9092338 12474262

MB1.23 Croatia Antenal Sea beet 8521666 11617333

MB1.4 Croatia Antenal Sea beet 8719287 12493618

MB1.6 Croatia Antenal Sea beet 8756277 12431381

MB1.8 Croatia Antenal Sea beet 7112249 10023792

MB1.9 Croatia Antenal Sea beet 7098880 9738204

MB2.25 Croatia Jadransko Sea beet 8767278 12185544

MB2.27 Croatia Jadransko Sea beet 8682433 12371147

MB2.28 Croatia Jadransko Sea beet 6724870 9730075

MB2.30 Croatia Jadransko Sea beet 6288138 1674708 11954677

MB2.34 Croatia Jadransko Sea beet 8768204 12730012

MB2.36 Croatia Jadransko Sea beet 7182364 10542347

MB2.37 Croatia Jadransko Sea beet 4701739 3047241 12269765

MB2.39 Croatia Jadransko Sea beet 6015158 1606023 11568217

MB2.40 Croatia Jadransko Sea beet 6939809 9992150

MB2.42 Croatia Jadransko Sea beet 7223839 2344796 14579464

MB2.44 Croatia Jadransko Sea beet 5099261 7733998

MB2.47 Croatia Jadransko Sea beet 4822687 2722110 11558002

MB2.55 Croatia Jadransko Sea beet 6301393 875609 10581206

MB2.57 Croatia Jadransko Sea beet 5604576 2148123 11667028

MB2.62 Croatia Jadransko Sea beet 5967526 2005039 13003119

22E Germany Germany Sugar beet 9446916 12290189

71E Germany Germany Sugar beet 6515317 8974748

138C Germany Germany Sugar beet 7381168 9871961
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Supplementary Table 3 (continued): Sequencing information for C. beticola. Isolate name, 

location, host, number of reads per forward and reverse read file for each sequencing run, as well 

as number of reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of reads 
per forward and 
reverse 
sequencing file

Number of reads 
per forward and 
reverse re-
sequencing file 

Total of 
reads 
mapped to
reference 
genome

71D Germany Germany Sugar beet 8097640 4126640 11072196
135E Germany Germany Sugar beet 4126640 2272982 6355050

5.8 Italy Venezia Sugar beet 4530725 2986716 10992865
5.36 Italy Venezia Sugar beet 4408171 2821026 10516845
5.44 Italy Rovigo Sugar beet 3625002 4455295 11539328
5.46 Italy Rovigo Sugar beet 3865896 4487761 11902725
5.52 Italy Rovigo Sugar beet 4641173 3277607 11494393
5.60 Italy Rovigo Sugar beet 4979613 2887423 11539100
5.69 Italy Rovigo Sugar beet 4723570 2867161 11224094
5.75 Italy Bologna Sugar beet 4031636 3656645 11339277
5.81 Italy Bologna Sugar beet 4170547 3804380 11483576
5.89 Italy Bologna Sugar beet 3801205 4225454 11427745
5.94 Italy Ferrara Sugar beet 4158605 3835141 11586957

6.4 Italy Venezia Sugar beet 5037477 2643143 11282397
6.14 Italy Venezia Sugar beet 4226818 3626363 11432664
6.28 Italy Venezia Sugar beet 4353402 2929162 10564701
6.51 Italy Ferrara Sugar beet 5003050 2476620 10703934
6.84 Italy Bologna Sugar beet 4815756 3125972 11356955
6.94 Italy Bologna Sugar beet 8563007 12554776

1 USA Fargo Sugar beet 7077611 11184177
2 USA Fargo Sugar beet 7405318 11656073
3 USA Fargo Sugar beet 5885382 9763662
4 USA Fargo Sugar beet 7027467 11346789
5 USA Fargo Sugar beet 5216614 8610802
6 USA Fargo Sugar beet 6503251 10594080
7 USA Fargo Sugar beet 6607268 10722562
9 USA Fargo Sugar beet 7136108 11334213

10 USA Fargo Sugar beet 6190651 10021786
11 USA Fargo Sugar beet 6157368 9827287
12 USA Fargo Sugar beet 6255043 10236851
13 USA Fargo Sugar beet 4841106 7999765
14 USA Fargo Sugar beet 6175383 10087169
15 USA Fargo Sugar beet 5433209 8997590
16 USA Fargo Sugar beet 7911416 12660879
17 USA Fargo Sugar beet 5962635 9867351
18 USA Fargo Sugar beet 5450102 9242201
19 USA Fargo Sugar beet 6534601 10933059
20 USA Fargo Sugar beet 6100778 10111838
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Supplementary Table 3 (continued): Sequencing information for C. beticola. Isolate name, 

location, host, number of reads per forward and reverse read file for each sequencing run, as well 

as number of reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of reads 
per forward and 
reverse 
sequencing file

Number of 
reads per 
forward and 
reverse re-
sequencing file 

Total of 
reads 
mapped to 
reference 
genome

21 USA Fargo Sugar beet 6337046 10383771

22 USA Fargo Sugar beet 6916031 11117831
23 USA Fargo Sugar beet 5683694 9519564
24 USA Fargo Sugar beet 4891076 8062310
25 USA Fargo Sugar beet 6481401 10809308
31 USA Fargo Sugar beet 6815836 11246961
32 USA Fargo Sugar beet 7319235 12968319
33 USA Fargo Sugar beet 7319235 11754546
34 USA Fargo Sugar beet 7693876 12496961
35 USA Fargo Sugar beet 7488383 12138580
36 USA Fargo Sugar beet 5999096 10059650
37 USA Fargo Sugar beet 6715024 11021060
38 USA Fargo Sugar beet 6275402 10354920
39 USA Fargo Sugar beet 6975840 11470635
40 USA Fargo Sugar beet 5905926 9557104
41 USA Fargo Sugar beet 5938836 9982141
42 USA Fargo Sugar beet 6636661 11025802
43 USA Fargo Sugar beet 7397503 11966667
44 USA Fargo Sugar beet 6919306 11453157
45 USA Fargo Sugar beet 5988285 9819585
46 USA Fargo Sugar beet 6912010 11223286
47 USA Fargo Sugar beet 6126557 10122940
48 USA Fargo Sugar beet 5462873 9101933
49 USA Fargo Sugar beet 6346673 10458330
50 USA Fargo Sugar beet 6713400 11035426
51 USA Fargo Sugar beet 6613118 10629453
52 USA Fargo Sugar beet 6041495 10063265
53 USA Fargo Sugar beet 6877194 11212381
54 USA Fargo Sugar beet 5588335 9362577
55 USA Fargo Sugar beet 5304349 8929493
56 USA Fargo Sugar beet 6999839 11518847
57 USA Fargo Sugar beet 7278717 11827091
58 USA Fargo Sugar beet 6126410 9643925
59 USA Fargo Sugar beet 6232712 10252265
60 USA Fargo Sugar beet 6234287 13586939
61 USA Fargo Sugar beet 8481186 13334858
62 USA Fargo Sugar beet 8492353 13577410
63 USA Fargo Sugar beet 8475883 13510462
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Supplementary Table 3 (continued): Sequencing information for C. beticola. Isolate name, 

location, host, number of reads per forward and reverse read file for each sequencing run, as well 

as number of reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of reads 
per forward and 
reverse 
sequencing file

Number of reads 
per forward and 
reverse re-
sequencing file 

Total of 
reads 
mapped to
reference 
genome

64 USA Fargo Sugar beet 8472671 13547048

65 USA Fargo Sugar beet 8345351 13404534

66 USA Fargo Sugar beet 8460341 12268454
67 USA Fargo Sugar beet 7275146 11463379
68 USA Fargo Sugar beet 6718936 9886557
69 USA Fargo Sugar beet 5697310 11292102
71 USA Fargo Sugar beet 6679554 11140309
72 USA Fargo Sugar beet 6524046 9794254
73 USA Fargo Sugar beet 5704809 9474866
74 USA Fargo Sugar beet 5510695 11243195
75 USA Fargo Sugar beet 6611631 8630990
76 USA Fargo Sugar beet 4981586 10171249
77 USA Fargo Sugar beet 6008471 9310905
78 USA Fargo Sugar beet 5388088 12216508
79 USA Fargo Sugar beet 8538094 12135603
80 USA Fargo Sugar beet 8531567 12513638
81 USA Fargo Sugar beet 8537917 12275674
82 USA Fargo Sugar beet 8535697 12249630
83 USA Fargo Sugar beet 8541520 12122710
84 USA Fargo Sugar beet 8537971 12305828
85 USA Fargo Sugar beet 8537538 12205604
86 USA Fargo Sugar beet 8529988 12182138
87 USA Fargo Sugar beet 8521064 12254511
88 USA Fargo Sugar beet 8527623 13734776
89 USA Fargo Sugar beet 8530046 13440317
90 USA Fargo Sugar beet 8524568 13552890
91 USA Fargo Sugar beet 8537708 13588897
92 USA Fargo Sugar beet 8537876 13552545
93 USA Fargo Sugar beet 8540768 13494762
94 USA Fargo Sugar beet 8538937 13503145
95 USA Fargo Sugar beet 8538270 13568916
96 USA Foxhome Sugar beet 8540232 7209183

502 USA Foxhome Sugar beet 3991089 7215076
503 USA Foxhome Sugar beet 4002496 8388291
504 USA Foxhome Sugar beet 4713648 7186371
510 USA Foxhome Sugar beet 4001223 7189454
511 USA Foxhome Sugar beet 4001852 7221083
512 USA Foxhome Sugar beet 4006327 8408918
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Supplementary Table 3 (continued): Sequencing information for C. beticola. Isolate name, 

location, host, number of reads per forward and reverse read file for each sequencing run, as well 

as number of reads mapped to the reference genome after filtering, mapping and merging of reads

Isolate Country Location Host

Number of reads 
per forward and 
reverse 
sequencing file

Number of reads 
per forward and 
reverse re-
sequencing file 

Total of 
reads 
mapped to
reference 
genome

513 USA Foxhome Sugar beet 4728954 8559124
523 USA Foxhome Sugar beet 4795755 7289071
524 USA Foxhome Sugar beet 4033241 7245515
525 USA Foxhome Sugar beet 4021195 7209400
526 USA Foxhome Sugar beet 4005147 7230913
527 USA Foxhome Sugar beet 3997325 8394806
528 USA Foxhome Sugar beet 4762503 8418389
537 USA Foxhome Sugar beet 4762536 8505502
538 USA Foxhome Sugar beet 4780326 7172045
539 USA Foxhome Sugar beet 3995857 7219820
540 USA New.York Table beet 4014987 8331799
545 USA New.York Table beet 4688259 8258893
546 USA New.York Table beet 4647481 8423808
547 USA New.York Table beet 4717119 8278308
557 USA New.York Table beet 4632251 8200951
558 USA New.York Table beet 4626762 8262612
559 USA New.York Table beet 4661893 8258239
560 USA New.York Table beet 4630565 8269435
561 USA New.York Table beet 4627205 8260854
562 USA New.York Table beet 4657623 8091231
563 USA New.York Table beet 4539038 8143703
564 USA New.York Table beet 4587926 8218599
574 USA New.York Table beet 4627676 8159283
575 USA New.York Table beet 4630593 8390744
576 USA New.York Table beet 4690727 8280288
581 USA New.York Table beet 4650454 8188128
584 USA New.York Table beet 4639312 8351039
585 USA New.York Table beet 4687807 8161312
587 USA New.York Table beet 4634159 8216585
588 USA New.York Table beet 4647238 8290226
589 USA New.York Table beet 4690955 7983816
590 USA New.York Table beet 4532942 8335352
591 USA New.York Table beet 4684869 8223941
592 USA New.York Table beet 4646925 8357345
593 USA New.York Table beet 4670723 7576533
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Supplementary Table 4: Isolate names, country and region of origin, and host, along with percent 

of genome mapped, mean depth per site, number of variant positions, and number of missing sites

Isolate 
Name

Country Location Host

Percent 
of 
Genome 
Mapped

Mean 
Depth 
per Site

Variant 
Positions

Missing
Sites

Percent of 
Sites 
Missing

1A5.2B UK Southwold Sea beet 72.81 30.1 190429 36545 4.82

2B10.1A UK Southwold Sea beet 77.35 17.3 179928 46215 6.18

2B10.1B UK Southwold Sea beet 83.13 24.7 181185 45736 6.11

3.5.1 UK Southwold Sea beet 77.97 25.5 170840 43263 5.76

4A2.1B UK Southwold Sea beet 76.71 30 183791 40131 5.32

4A3.1B UK Southwold Sea beet 54.05 20.3 183728 41522 5.52

4A3.2A UK Southwold Sea beet 45.3 18.1 191398 35318 4.66

4A8.1B UK Southwold Sea beet 80.77 32.7 183508 39312 5.21

4A8.2B UK Southwold Sea beet 75.02 25.5 182937 41752 5.55

4A9.1A UK Southwold Sea beet 71.69 20.7 175994 46699 6.25

4B5.1B UK Southwold Sea beet 70.36 24 183588 41027 5.45

4B9.2A UK Southwold Sea beet 74.45 22.2 183271 41559 5.52

5.7.2A UK Southwold Sea beet 76.73 31.2 183017 41785 5.55

8A11.1 UK Southwold Sea beet 82.13 25.3 185425 35395 4.67

8A11.2B UK Southwold Sea beet 77.92 25.4 166020 44586 5.95

8B.3.2B UK Southwold Sea beet 84.66 40.5 184509 38197 5.05

9.10.1A UK Southwold Sea beet 80.64 26.7 166035 45025 6.01

10.2.2B UK Southwold Sea beet 86.44 36.2 169542 36300 4.79

21.5.1A UK Orford Sea beet 75.21 28.1 190424 36305 4.79

21.5.1B UK Orford Sea beet 69.79 22.9 191963 35237 4.64

21.8.1A UK Orford Sea beet 74.52 30.3 194704 44983 6

23.2.1B UK Orford Sea beet 79.03 23 172336 38764 5.13

23.6.2A UK Orford Sea beet 78.58 24.1 172573 38248 5.06

24.2.1A UK Orford Sea beet 86.19 32.5 189213 45433 6.07

24.4.1B UK Orford Sea beet 84.9 26.4 191184 36667 4.84

25.1.1A UK Orford Sea beet 37.99 16.5 192554 37908 5.01

25.1.2A UK Orford Sea beet 84.42 16.9 191965 39264 5.2

26.8.1 UK Orford Sea beet 81.01 27.5 191316 35263 4.65

27.7.2B UK Orford Sea beet 84.48 27.3 189636 44127 5.88

29.5.1B UK Orford Sea beet 71.11 28.2 189998 42723 5.69

30.5.2B UK Orford Sea beet 71.58 26 188901 39386 5.22

30.7.2B UK Orford Sea beet 72.84 26.1 189965 37899 5.01

51.7.1 UK
Bawdsey 
Quay

Sea beet 84.84 24.2 185610 48676 6.53

53A7.2 UK
Bawdsey 
Quay

Sea beet 69.42 25.4 178614 38911 5.15

54.6.1B UK
Bawdsey 
Quay

Sea beet 75.69 22.4 184133 42474 5.65
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Supplementary Table 4 (continued):  Isolate names, country and region of origin, and host, along

with percent of genome mapped, mean depth per site, number of variant positions, and number of 

missing sites

Isolate 
Name

Country Location Host
Percent of
Genome 
Mapped

Mean 
Depth 
per 
Site

Variant 
Positions

Missing 
Sites

Percent 
of Sites 
Missing

55A11.1 UK Bawdsey Quay Sea beet 34.71 11.7 168664 39090 5.18
55A3A UK Bawdsey Quay Sea beet 77.93 28.6 167433 42812 5.7
55A9A UK Bawdsey Quay Sea beet 79.38 25 166651 43005 5.73
56.12.1
B

UK Bawdsey Quay Sea beet 48.51 11.8 168477 38893 5.15

56.2.2 UK Bawdsey Quay Sea beet 73.48 29.4 184288 41114 5.46
57.1.2A UK Bawdsey Quay Sea beet 77.7 28.1 168956 35320 4.66
57.1.2B UK Bawdsey Quay Sea beet 85.55 26.1 168468 37868 5.01
MB1.10 Croatia Antenal Sea beet 84.17 30.6 167094 46741 6.25
MB1.11 Croatia Antenal Sea beet 87.64 27.7 167110 46032 6.15
MB1.14 Croatia Antenal Sea beet 87.16 32.7 167574 46440 6.21
MB1.18 Croatia Antenal Sea beet 82.16 31.5 170341 39882 5.29
MB1.23 Croatia Antenal Sea beet 82.47 29.3 170621 34661 4.57
MB1.4 Croatia Antenal Sea beet 87.95 34 170082 40314 5.35
MB1.6 Croatia Antenal Sea beet 84.92 33 169176 41556 5.52
MB1.8 Croatia Antenal Sea beet 83.15 25.2 169244 41557 5.52
MB1.9 Croatia Antenal Sea beet 84.64 25.2 167055 47304 6.33
MB2.25 Croatia Jadransko Sea beet 88.12 29.5 108051 26160 3.41
MB2.27 Croatia Jadransko Sea beet 87.65 26.8 110059 35549 4.69
MB2.28 Croatia Jadransko Sea beet 90.73 24.6 132638 31295 4.1
MB2.30 Croatia Jadransko Sea beet 85.81 28.5 130875 37672 4.98
MB2.34 Croatia Jadransko Sea beet 83.88 33 188508 49844 6.7
MB2.36 Croatia Jadransko Sea beet 87.29 27.4 170902 43385 5.78
MB2.37 Croatia Jadransko Sea beet 85.75 32.4 170189 43319 5.77
MB2.39 Croatia Jadransko Sea beet 86.48 29.1 138641 41364 5.5
MB2.40 Croatia Jadransko Sea beet 87.68 24 128606 39581 5.25
MB2.42 Croatia Jadransko Sea beet 87.44 36 118488 25193 3.28
MB2.44 Croatia Jadransko Sea beet 85.97 19.9 192668 38890 5.15
MB2.47 Croatia Jadransko Sea beet 87.19 29.8 131799 31102 4.08
MB2.55 Croatia Jadransko Sea beet 81.86 23.4 122301 33741 4.44
MB2.57 Croatia Jadransko Sea beet 84.89 27.5 122408 33551 4.41
MB2.62 Croatia Jadransko Sea beet 68.38 25.5 141682 27501 3.59

22E Germany Germany
Sugar 
beet

74.19 26.7 132596 39145 5.19

71E Germany Germany
Sugar 
beet

71.73 16 125718 34211 4.5

138C Germany Germany
Sugar 
beet

74.5 19.9 140107 36636 4.84
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Supplementary Table 4 (continued):  Isolate names, country and region of origin, and host, along

with percent of genome mapped, mean depth per site, number of variant positions, and number of 

missing sites

Isolate 
Name

Country Location Host

Percent 
of 
Genome 
Mapped

Mean 
Depth 
per 
Site

Variant 
Position
s

Missing 
Sites

Percent of 
Sites 
Missing

71D Germany Germany Sugar beet 81.01 23.4 112305 33215 4.37
135E Germany Germany Sugar beet 84.49 12.3 94193 37195 4.91

5.8 Italy Venezia Sugar beet 82.39 27.1 142975 35979 4.75
5.36 Italy Venezia Sugar beet 83.22 26.1 138222 36612 4.83
5.44 Italy Rovigo Sugar beet 81.2 27.1 137684 37141 4.91
5.46 Italy Rovigo Sugar beet 80.56 28.4 149827 40310 5.35
5.52 Italy Rovigo Sugar beet 80.37 27 135565 40117 5.32
5.60 Italy Rovigo Sugar beet 79.64 27.4 149461 39778 5.27
5.69 Italy Rovigo Sugar beet 77.74 25.7 142735 41636 5.53
5.75 Italy Bologna Sugar beet 83.64 27.9 133224 40494 5.37
5.81 Italy Bologna Sugar beet 82.84 27 127151 36514 4.82
5.89 Italy Bologna Sugar beet 80.37 28.2 148579 39407 5.22
5.94 Italy Ferrara Sugar beet 80.08 27.4 133574 31842 4.18

6.4 Italy Venezia Sugar beet 79.03 26.9 146526 34925 4.6
6.14 Italy Venezia Sugar beet 81.82 27.9 141596 46745 6.25
6.28 Italy Venezia Sugar beet 82.92 23.5 106941 26928 3.51
6.51 Italy Ferrara Sugar beet 78.06 25 139206 32090 4.21
6.84 Italy Bologna Sugar beet 79.85 26.6 139115 34245 4.51
6.94 Italy Bologna Sugar beet 81.83 31.9 145004 38932 5.16

1 USA Fargo Sugar beet 87.02 18 133545 50791 6.83
2 USA Fargo Sugar beet 83.31 18.1 133890 50269 6.76
3 USA Fargo Sugar beet 87.48 15.9 140060 40486 5.37
4 USA Fargo Sugar beet 90.69 18.3 133233 51555 6.94
5 USA Fargo Sugar beet 90.31 13.3 142704 52214 7.04
6 USA Fargo Sugar beet 91.37 15.2 98814 32979 4.33
7 USA Fargo Sugar beet 89.29 17.4 133718 51454 6.93
9 USA Fargo Sugar beet 86.95 18.2 133463 50602 6.81

10 USA Fargo Sugar beet 86.47 16.3 146246 43942 5.86
11 USA Fargo Sugar beet 85.91 14.9 123037 48303 6.48
12 USA Fargo Sugar beet 88.82 16.2 133550 51830 6.98
13 USA Fargo Sugar beet 91.8 11.4 132006 56174 7.61
14 USA Fargo Sugar beet 90.86 16 132497 53256 7.19
15 USA Fargo Sugar beet 91.2 14 133301 54248 7.33
16 USA Fargo Sugar beet 91.69 20.3 133712 49748 6.68
17 USA Fargo Sugar beet 89.06 15.5 125610 44245 5.9
18 USA Fargo Sugar beet 90.51 13.4 118381 49896 6.7
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Supplementary Table 4 (continued):  Isolate names, country and region of origin, and host, along

with percent of genome mapped, mean depth per site, number of variant positions, and number of 

missing sites

Isolate
Name

Country Location Host

Percent 
of 
Genome 
Mapped

Mean 
Depth 
per 
Site

Variant 
Position
s

Missing 
Sites

Percent of 
Sites 
Missing

19 USA Fargo Sugar beet 84.42 16.2 133195 52287 7.05
20 USA Fargo Sugar beet 90.33 16.2 133138 52653 7.1
21 USA Fargo Sugar beet 88.63 16.9 133717 48766 6.54
22 USA Fargo Sugar beet 87.84 17.3 119112 41359 5.49
23 USA Fargo Sugar beet 92.83 11.9 70321 17374 2.24
24 USA Fargo Sugar beet 91.93 11.6 120712 52882 7.13
25 USA Fargo Sugar beet 91.01 15 109802 30300 3.97
31 USA Fargo Sugar beet 88.11 18.7 141959 48309 6.48
32 USA Fargo Sugar beet 88.02 20.7 118979 41612 5.53
33 USA Fargo Sugar beet 84.71 19.1 142419 46450 6.21
34 USA Fargo Sugar beet 90.97 20.8 133552 50743 6.83
35 USA Fargo Sugar beet 89.51 18.2 117996 42236 5.62
36 USA Fargo Sugar beet 90.96 14.4 111306 40611 5.39
37 USA Fargo Sugar beet 91.17 15.9 111403 40730 5.41
38 USA Fargo Sugar beet 90.11 14.7 97913 34531 4.55
39 USA Fargo Sugar beet 89.97 15.6 95924 31781 4.17
40 USA Fargo Sugar beet 91.8 9 41155 17922 2.31
41 USA Fargo Sugar beet 92.58 9.4 40996 17486 2.25
42 USA Fargo Sugar beet 91.16 17.5 132615 44854 5.99
43 USA Fargo Sugar beet 87.59 14.4 66786 28785 3.76
44 USA Fargo Sugar beet 91.7 14.4 87768 35275 4.65
45 USA Fargo Sugar beet 89.4 12.3 82510 35548 4.69
46 USA Fargo Sugar beet 91.04 15.5 101057 42510 5.66
47 USA Fargo Sugar beet 88.88 14.1 112079 41755 5.55
48 USA Fargo Sugar beet 87.48 12.6 108942 39228 5.2
49 USA Fargo Sugar beet 91.26 14.1 97923 35507 4.68
50 USA Fargo Sugar beet 92.1 13.3 73358 25534 3.32
51 USA Fargo Sugar beet 89.49 16.9 132613 45429 6.07
52 USA Fargo Sugar beet 92.11 9.6 40990 17216 2.22
53 USA Fargo Sugar beet 88.3 16.6 107047 34310 4.52
54 USA Fargo Sugar beet 90.57 12.4 102731 39312 5.21
55 USA Fargo Sugar beet 90.81 9.9 63606 15827 2.04
56 USA Fargo Sugar beet 91.13 13.1 64373 17435 2.25
57 USA Fargo Sugar beet 91.81 17 51099 13997 1.8
58 USA Fargo Sugar beet 84.92 13.2 116903 43728 5.83
59 USA Fargo Sugar beet 88.81 15.9 122681 49370 6.63
61 USA Fargo Sugar beet 86.99 18.2 94778 40230 5.34
62 USA Fargo Sugar beet 83.88 19.2 121665 48742 6.54
63 USA Fargo Sugar beet 85.39 20.6 128746 48328 6.48
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Supplementary Table 4 (continued):  Isolate names, country and region of origin, and host, along

with percent of genome mapped, mean depth per site, number of variant positions, and number of 

missing sites

Isolate
Name

Country Location Host

Percent 
of 
Genome 
Mapped

Mean 
Depth 
per 
Site

Variant 
Position
s

Missing 
Sites

Percent of 
Sites 
Missing

64 USA Fargo Sugar beet 85.63 21 134997 54761 7.41

65 USA Fargo Sugar beet 80.73 16.5 93228 27584 3.6
66 USA Fargo Sugar beet 84.24 18.9 115274 33407 4.39
67 USA Fargo Sugar beet 87.43 19.7 131947 40826 5.42
68 USA Fargo Sugar beet 87.02 18.2 139416 51963 7
69 USA Fargo Sugar beet 87.67 14.8 133974 57049 7.74
71 USA Fargo Sugar beet 87.5 17.4 134397 56141 7.61
72 USA Fargo Sugar beet 87.07 17.1 134186 55556 7.52
73 USA Fargo Sugar beet 85.66 14.4 133855 56212 7.62
74 USA Fargo Sugar beet 87.7 14.2 134078 56819 7.7
75 USA Fargo Sugar beet 87.86 17.5 134543 55106 7.46
76 USA Fargo Sugar beet 85.36 12.3 133584 57427 7.79
77 USA Fargo Sugar beet 88.2 15.3 131961 50152 6.74
78 USA Fargo Sugar beet 88.84 14.1 132982 45926 6.14
79 USA Fargo Sugar beet 84.01 14.4 78579 34893 4.6
80 USA Fargo Sugar beet 86.34 14.9 82620 29021 3.8
81 USA Fargo Sugar beet 84.99 19.2 141162 45550 6.08
82 USA Fargo Sugar beet 82.22 17.9 128479 47125 6.31
83 USA Fargo Sugar beet 86.05 15.9 94048 41803 5.56
84 USA Fargo Sugar beet 84.69 17 117594 40437 5.37
85 USA Fargo Sugar beet 85.59 17.2 113271 40267 5.34
86 USA Fargo Sugar beet 85.61 18.5 128500 48616 6.52
87 USA Fargo Sugar beet 85.35 18.2 129969 52170 7.03
88 USA Fargo Sugar beet 86.06 18.7 141167 51589 6.95
89 USA Fargo Sugar beet 82.86 20.8 135082 54132 7.31
90 USA Fargo Sugar beet 84.81 20.7 135224 53778 7.26
91 USA Fargo Sugar beet 86.64 21.4 134955 54194 7.32
92 USA Fargo Sugar beet 88.42 21.4 125680 47616 6.38
93 USA Fargo Sugar beet 87.59 18 90004 38456 5.09
94 USA Fargo Sugar beet 87.48 21.4 134388 48463 6.5
95 USA Fargo Sugar beet 87.42 20.5 114097 29771 3.9
96 USA Fargo Sugar beet 86.42 19.1 115818 44994 6.01

502 USA Foxhome Sugar beet 90.37 16.3 132250 43357 5.78
503 USA Foxhome Sugar beet 90.83 16.6 139490 38959 5.16
504 USA Foxhome Sugar beet 90.5 17.4 103960 23132 3
510 USA Foxhome Sugar beet 89.85 16.9 145947 35508 4.68
511 USA Foxhome Sugar beet 90.37 16.8 141538 42033 5.59
512 USA Foxhome Sugar beet 90.48 16.2 132598 38559 5.1
513 USA Foxhome Sugar beet 90.77 19.2 133598 41215 5.47
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Supplementary Table 4 (continued):  Isolate names, country and region of origin, and host, along

with percent of genome mapped, mean depth per site, number of variant positions, and number of 

missing sites

Isolate
Name

Country Location Host

Percent 
of 
Genome 
Mapped

Mean 
Depth 
per 
Site

Variant 
Position
s

Missing 
Sites

Percent of 
Sites 
Missing

523 USA Foxhome Sugar beet 90.1 19.7 132567 42793 5.7

525 USA Foxhome Sugar beet 91.14 16.7 139196 40559 5.38
526 USA Foxhome Sugar beet 90.58 13.8 99052 27250 3.56
527 USA Foxhome Sugar beet 91.02 16.5 136944 42795 5.7
528 USA Foxhome Sugar beet 88.63 18.7 132945 42832 5.7
537 USA Foxhome Sugar beet 89.54 20.4 146492 34814 4.59
538 USA Foxhome Sugar beet 89.51 20.1 141720 42446 5.65
539 USA Foxhome Sugar beet 90.14 16.7 144769 45184 6.03
540 USA Foxhome Sugar beet 90.03 16.8 144947 45038 6.01
545 USA New.York Table beet 91.19 20.1 135584 44800 5.98
546 USA New.York Table beet 92.05 19.9 135088 44032 5.87
547 USA New.York Table beet 89.4 21.4 175091 43618 5.81
557 USA New.York Table beet 89.56 21 174423 36709 4.85
558 USA New.York Table beet 89.47 20.2 165627 43598 5.81
559 USA New.York Table beet 90.29 21.6 172590 38148 5.05
560 USA New.York Table beet 90.22 19.6 134894 36531 4.82
561 USA New.York Table beet 90.68 21 166557 39995 5.3
562 USA New.York Table beet 88.77 20.5 153175 34873 4.59
563 USA New.York Table beet 90.81 20.3 164301 38234 5.06
564 USA New.York Table beet 90.11 20.9 177170 43052 5.73
574 USA New.York Table beet 89.58 20.2 153452 42610 5.67
575 USA New.York Table beet 89.55 20.3 155888 34132 4.49
576 USA New.York Table beet 89.39 21.4 167350 39994 5.3
581 USA New.York Table beet 90.47 20.8 168412 44560 5.94
584 USA New.York Table beet 88.97 19.6 153874 41848 5.56
585 USA New.York Table beet 88.77 19.2 133132 42282 5.62
587 USA New.York Table beet 88.9 19.7 151954 34776 4.58
588 USA New.York Table beet 89.38 20.7 174658 45885 6.13
589 USA New.York Table beet 88.57 20.3 165371 46066 6.16
590 USA New.York Table beet 89.86 19.6 169111 45605 6.09
591 USA New.York Table beet 90.97 21.8 172487 38570 5.11
592 USA New.York Table beet 89.74 21 171760 45496 6.08
593 USA New.York Table beet 90.5 21.6 167805 39125 5.18
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Supplementary Table 5: Chromosome names, size, and number of SNPs per chromosome for 

each sampling location of C. beticola
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Supplementary Table 6: Minimum and maximum R2 values for C. beticola each population for 

each chromosome

Southwold Orford Bawdsey 
Quay

Antenal Jadransko Italy Fargo Foxhome New York

CM00499.1

Maximum 
R2

0.43 0.8 0.50 0.88 0.34 0.44 0.35 0.6 0.37

Minimum R2 0.1 0.11 0.13 0.28 0.03 0.04 0.002 0.03 0.04

CM00500.1

Maximum 
R2

0.47 0.67 0.49 0.8 0.29 0.38 0.31 0.55 0.36

Minimum R2 0.003 0.1 0.14 0.16 0.05 0.05 0.02 0.03 0.03

CM00501.1

Maximum 
R2

0.4 0.99 0.51 0.7 0.36 0.44 0.27 0.66 0.44

Minimum R2 0.07 0.25 0.12 0.21 0.03 0.03 0.001 0.02 0.03

CM00502.1

Maximum 
R2

0.45 1.00 0.54 0.76 0.35 0.46 0.36 0.63 0.47

Minimum R2 0.06 0.09 0.18 0.14 0.04 0.03 0.003 0.1 0.06

CM00503.1

Maximum 
R2

0.46 0.99 0.61 0.77 0.39 0.73 0.35 0.74 0.42

Minimum R2 0.02 0.02 0.11 0.13 0.02 0.01 0.003 0.04 0.005

CM00504.1

Maximum 
R2

0.41 0.78 0.52 0.82 0.34 0.46 0.28 0.53 0.42

Minimum R2 0.09 0.06 0.18 0.29 0.07 0.02 0.02 0.02 0.02

CM00505.1

Maximum 
R2

0.39 1.00 0.7 0.92 0.33 0.42 0.27 0.56 0.38

Minimum R2 0.07 0.22 0.24 0.16 0.04 0.02 0.001 0.08 0.05

CM00506.1

Maximum 
R2

0.41 0.67 0.59 0.73 0.32 0.41 0.29 0.46 0.41

Minimum R2 0.1 0.19 0.15 0.32 0.05 0.03 0.007 0.04 0.02

CM00507.1

Maximum 
R2

0.46 1.00 0.59 0.8 0.36 0.53 0.36 0.74 0.49

Minimum R2 0.02 0.52 0.16 0.33 0.07 0.04 0.03 0.04 0.05

CM00508.1

Maximum 
R2

0.44 0.66 0.65 0.87 0.29 0.34 0.31 0.52 0.41

Minimum R2 0.06 0.05 0.11 0.08 0.04 0.02 0.02 0.04 0.02

133



Supplementary Table 7: ID of genes 50 kb up- and down-stream of the 650 kb FST outlier region 

on CM008499.1, as well length and GO terms

ID Best Match Length E-value GO term
XM_023592888
.1

Amycolatopsis mediterranei 
S699, complete genome

975 0 F:hydrolase activity

XM_023592889
.1

Cercospora beticola Beta-1,2-
xylosyltransferase 1 
(CB0940_00257), mRNA

1833 0 no GO terms

XM_023592890
.1

Cercospora beticola MAP 
kinase kinase MKK1/SSP32 
(CB0940_00258), mRNA

1512 0
P:protein phosphorylation; 
F:protein kinase activity; 
F:ATP binding

XM_023592891
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1539 0 no GO terms

XM_023592892
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1104 0 no GO terms

XM_023592893
.1

Cercospora beticola DNA 
polymerase lambda 
(CB0940_00261) mRNA

2214 0

P:DNA repair; F:DNA 
binding; F:DNA-directed 
DNA polymerase activity; 
F:DNA polymerase activity

XM_023592894
.1

Cercospora beticola Pumilio 
domain-containing protein 
(CB0940_00262), mRNA

2064 0 F:RNA binding

XM_023592895
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

597 0 no GO terms

XM_023592896
.1

Cercospora beticola putative 
HC-toxin efflux carrier TOXA 
(CB0940_00264) mRNA

1884 0

P:transmembrane 
transport; 
F:transmembrane 
transporter activity

XM_023592897
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1665 0 no GO terms

XM_023592898
.1

---NA--- 1794 no GO terms

XM_023592899
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

969 0 no GO terms

XM_023592900
.1

---NA--- 2706

P:carbohydrate metabolic 
process; F:hydrolase 
activity, hydrolyzing O-
glycosyl compounds

XM_023592901
.1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1338 0 F:oxidoreductase activity
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Supplementary Table 7 (continued): ID of genes 50 kb up- and down-stream of the 650 kb FST 

outlier region on CM008499.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023592902.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1158 0 no GO terms

XM_023592903.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1626 0 no GO terms

XM_023592904.
1

Cercospora beticola Aflatoxin 
B1 aldehyde reductase 
member 2 (CB0940_00271), 
mRNA

1137 0

P:obsolete oxidation-
reduction process; 
F:oxidoreductase activity; 
F:D-threo-aldose 1-
dehydrogenase activity

XM_023592905.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

441
1.29E-

115
no GO terms

XM_023592906.
1

Cercospora beticola Tubulin 
gamma chain 
(CB0940_00273), mRNA

1422 0

P:microtubule-based 
process; P:microtubule 
nucleation; P:cytoplasmic 
microtubule organization; 
F:GTPase activity; 
C:gamma-tubulin complex;
C:microtubule

XM_023592907.
1

---NA--- 447 no GO terms

XM_023592908.
1

Cercospora beticola 60S 
ribosomal protein L3 
(CB0940_00275), mRNA

1179 0
P:translation; F:structural 
constituent of ribosome; 
C:ribosome

XM_023592909.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

585 0 no GO terms

XM_023592910.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

576 0
P:regulation of translational
fidelity

XM_023592911.
1

Cercospora beticola ATP 
synthase subunit d, 
mitochondrial 
(CB0940_00278), mRNA

525 0

P:ATP synthesis coupled 
proton transport; F:proton 
transmembrane transporter
activity; C:mitochondrial 
proton-transporting ATP 
synthase complex, 
coupling factor F(o)

XM_023592912.
1

Cercospora beticola Zinc 
finger protein 
(CB0940_00279), mRNA

1182 0 no GO terms

XM_023592913.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

540 0 no GO terms
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Supplementary Table 7 (continued): ID of genes 50 kb up- and down-stream of the 650 kb FST 

outlier region on CM008499.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023592914.
1

Cercospora beticola MAP 
kinase kinase kinase wis4 
(CB0940_00281), mRNA

4251 0

P:protein phosphorylation; 
P:stress-activated MAPK 
cascade; F:protein kinase 
activity; F:MAP kinase 
kinase kinase activity; 
F:ATP binding; 
C:cytoplasm

XM_023592915.
1

Cercospora beticola putative 
WD repeat-containing protein 
(CB0940_00282), mRNA

1155 0
P:mRNA export from 
nucleus; F:protein binding

XM_023592916.
1

Cercospora beticola 
Vegetative incompatibility 
protein HET-E-1 
(CB0940_00283) mRNA

2427 0 F:protein binding

XM_023592917.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1623 0 no GO terms

XM_023592918.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

552 0 no GO terms

XM_023592919.
1

Cercospora beticola alcohol 
dehydrogenase 
(CB0940_00286), mRNA

1083 0
P:obsolete oxidation-
reduction process

XM_023592920.
1

Cercospora beticola WHI2-like
protein (CB0940_00287), 
mRNA

909 0 no GO terms

XM_023592921.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

534 0 no GO terms

XM_023592922.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

1170 0 no GO terms

XM_023592923.
1

Cercospora sojina strain 
RACE15 chromosome III, 
complete sequence

987 0 no GO terms

XM_023592924.
1

Cercospora beticola 60S 
ribosomal protein L14-B 
(CB0940_00291), mRNA

438 0

P:translation; F:RNA 
binding; F:structural 
constituent of ribosome; 
C:ribosome

XM_023592925.
1

Cercospora beticola Nascent 
polypeptide-associated 
complex subunit alpha 
(CB0940_00292), mRNA

606 0
C:nascent polypeptide-
associated complex

XM_023592926.
1

Cercospora beticola 
Phosphatidylserine 
decarboxylase proenzyme 3 
(CB0940_00293), mRNA

3450 0

P:phospholipid biosynthetic
process; 
F:phosphatidylserine 
decarboxylase activity; 
F:calcium ion binding
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Supplementary Table 8: ID of genes 50 kb up- and down-stream of the 2.95 Mb FST outlier region 

on CM008502.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023597582.1
Cercospora beticola putative 
glycosidase 
(CB0940_04868), mRNA

2424 0
P:carbohydrate metabolic 
process; F:carbohydrate 
binding

XM_023597583.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

387 0 no GO terms

XM_023597584.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1695 0 no IPS match

XM_023597585.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

318
9.57E-

160
no GO terms

XM_023597586.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

2928 0 no GO terms

XM_023597587.1
Cercospora beticola Protein 
get1 (CB0940_04873), 
mRNA

633 0
P:tail-anchored membrane 
protein insertion into ER 
membrane

XM_023597588.1

Cercospora beticola 
Ethanolamine-phosphate 
cytidylyltransferase 
(CB0940_04874), mRNA

1362 0
P:biosynthetic process; 
F:catalytic activity

XM_023597589.1

Cercospora beticola Delta-
aminolevulinic acid 
dehydratase 
(CB0940_04875), mRNA

1146 0

P:tetrapyrrole biosynthetic 
process; F:catalytic 
activity; F:porphobilinogen 
synthase activity; F:metal 
ion binding

XM_023597590.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

879 0
F:zinc ion binding; 
F:ubiquitin protein ligase 
activity

XM_023597591.1
Cercospora beticola Acyl-
coenzyme A oxidase 
(CB0940_04877), mRNA

2133 0

P:fatty acid metabolic 
process; P:fatty acid beta-
oxidation; P:obsolete 
oxidation-reduction 
process; F:acyl-CoA 
oxidase activity; 
F:oxidoreductase activity, 
acting on the CH-CH group
of donors; F:flavin adenine 
dinucleotide binding; 
F:FAD binding; 
C:peroxisome

XM_023597592.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1380 0 no GO terms

XM_023597593.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

678 0
P:glutathione metabolic 
process; F:protein binding
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Supplementary Table 8 (continued): ID of genes 50 kb up- and down-stream of the 2.95 Mb FST 

outlier region on CM008502.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023597594.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

915 0 no IPS match

XM_023597595.1
Cercospora beticola putative 
transporter (CB0940_04881) 
mRNA

1584 0

P:transmembrane 
transport; 
F:transmembrane 
transporter activity

XM_023597596.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1101 0 no GO terms

XM_023597597.1

Cercospora beticola putative 
SWI/SNF-related regulator of
chromatin (CB0940_04883) 
mRNA

1326 0
F:ATP binding; 
F:nucleosome-dependent 
ATPase activity

XM_023597598.1 ---NA--- 558
F:ATP binding; 
F:nucleosome-dependent 
ATPase activity

XM_023597599.1
Cercospora beticola 
hypothetical protein 
(CB0940_04885), mRNA

1443 0 no GO terms

XM_023597600.1
Cercospora beticola 
hypothetical protein 
(CB0940_04886), mRNA

2544 0 no GO terms

XM_023597601.1

Cercospora beticola ATP-
dependent RNA helicase 
mtr4 (CB0940_04887), 
mRNA

3246 0

P:RNA catabolic process; 
F:nucleic acid binding; 
F:RNA binding; F:RNA 
helicase activity; F:ATP 
binding

XM_023597602.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

939 0 no GO terms

XM_023597603.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1071 0 no GO terms

XM_023597604.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

2031 0
C:Ada2/Gcn5/Ada3 
transcription activator 
complex

XM_023597605.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

531 0 no GO terms

XM_023597606.1

Cercospora beticola 
Branched-chain-amino-acid 
aminotransferase, 
mitochondrial 
(CB0940_04892), mRNA

1314 0

P:branched-chain amino 
acid metabolic process; 
F:catalytic activity; 
F:branched-chain-amino-
acid transaminase activity
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Supplementary Table 8 (continued): ID of genes 50 kb up- and down-stream of the 2.95 Mb FST 

outlier region on CM008502.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023597607.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1617 0 no GO terms

XM_023597608.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

3021 0 no GO terms

XM_023597609.1
Cercospora beticola Alpha-L-
fucosidase (CB0940_04895) 
mRNA

1839 0

P:carbohydrate metabolic 
process; P:fucose 
metabolic process; 
F:alpha-L-fucosidase 
activity

XM_023597610.1

Cercospora beticola O-
methylsterigmatocystin 
oxidoreductase 
(CB0940_04896) mRNA

1575 0

P:obsolete oxidation-
reduction process; F:iron 
ion binding; 
F:oxidoreductase activity, 
acting on paired donors, 
with incorporation or 
reduction of molecular 
oxygen; F:heme binding

XM_023597611.1

Cercospora beticola Mediator
of RNA polymerase II 
transcription subunit 5 
(CB0940_04897), mRNA

3111 0

P:regulation of transcription
by RNA polymerase II; 
F:transcription coregulator 
activity; C:mediator 
complex

XM_023597612.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

558 0 no GO terms

XM_023597613.1
Cercospora beticola putative 
oxidoreductase 
(CB0940_04899) mRNA

777 0
P:obsolete oxidation-
reduction process

XM_023597614.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1056 0 no GO terms

XM_023597615.1

Cercospora beticola 
Ribonucleoside-diphosphate 
reductase large chain 
(CB0940_04901), mRNA

2742 0

P:DNA replication; 
P:obsolete oxidation-
reduction process; 
F:ribonucleoside-
diphosphate reductase 
activity, thioredoxin 
disulfide as acceptor; 
F:ATP binding

XM_023597616.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

2730 0 no GO terms
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Supplementary Table 8 (continued): ID of genes 50 kb up- and down-stream of the 2.95 Mb FST 

outlier region on CM008502.1, as well length and GO terms

ID Best Match Length E-value GO term

XM_023597617.1

Cercospora beticola Ornithine
carbamoyltransferase, 
mitochondrial 
(CB0940_04903), mRNA

1092 0

P:cellular amino acid 
metabolic process; 
F:amino acid binding; 
F:carboxyl- or 
carbamoyltransferase 
activity

XM_023597618.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1041 0 F:nucleic acid binding

XM_023597619.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

1056 0

P:lipid biosynthetic 
process; P:obsolete 
oxidation-reduction 
process; F:iron ion binding;
F:oxidoreductase activity

XM_023597620.1

Cercospora beticola 
Acetolactate synthase small 
subunit, mitochondrial 
(CB0940_04906), mRNA

1020 0

P:branched-chain amino 
acid biosynthetic process; 
F:acetolactate synthase 
regulator activity

XM_023597621.1
Cercospora beticola 
hypotheticalsprotein 
(CB0940_04907), mRNA

1587 0 F:RNA binding; C:nucleus

XM_023597622.1
Cercospora beticola 
hypotheticalsprotein 
(CB0940_04907), mRNA

1074 0 F:RNA binding; C:nucleus

XM_023597623.1
Cercospora sojina strain 
RACE15 chromosome XII, 
complete sequence

960 0 no GO terms
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Supplementary Table 9: Further characterisation of the outlier regions on CM008499.1, including 

whether proteins are effectors, whether these contain signal peptide regions, Tajima’s D, and 

pairwise FST between the UK and the  other four sampling sites

Mean pairwise FST of each gene

Gene ID
Effector 
Status

Signal 
Peptide

Number 
of SNPS 
per gene

Tajima’s 
D

UK vs 
Croatia

UK vs 
Italy

UK vs 
ND

UK vs 
NY

XM_023592888.1 Non-Effector No 7 -0.61 0.15 0.133 0.21 0.19
XM_023592889.1 Non-Effector No 0 NA NA NA NA NA
XM_023592890.1 Non-Effector No 5 3.25 0.1 0.65 0.11 0.53
XM_023592891.1 Non-Effector No 0 NA NA NA NA NA
XM_023592892.1 Non-Effector No 0 NA NA NA NA NA
XM_023592893.1 Non-Effector No 0 NA NA NA NA NA
XM_023592894.1 Non-Effector No 0 NA NA NA NA NA
XM_023592895.1 Non-Effector Yes 0 NA NA NA NA NA
XM_023592896.1 Non-Effector No 18 1.83 0.24 0.47 0.29 0.48
XM_023592897.1 Non-Effector No 0 NA NA NA NA NA
XM_023592898.1 Non-Effector No 2 0.55 0.1 0.65 0.13 0.5
XM_023592899.1 Non-Effector Yes 22 0.25 0.2 0.01 0.31 0.16
XM_023592900.1 Non-Effector Yes 48 2.42 0.04 0.008 0.28 0.04
XM_023592901.1 Non-Effector No 9 0.74 0.09 0.37 0.24 0.39
XM_023592902.1 Non-Effector No 5 0.94 0.19 0.15 0.32 0.17
XM_023592903.1 Non-Effector No 0 NA NA NA NA NA
XM_023592904.1 Non-Effector No 19 3.23 0.08 0.07 0.44 0.07
XM_023592905.1 Non-Effector No 0 NA NA NA NA NA
XM_023592906.1 Non-Effector No 73 -1.05 0.39 0.43 0.66 0.46
XM_023592907.1 Effector No 6 -1.9 0.02 NA NA 0.08
XM_023592908.1 Non-Effector No 9 -2.1 0.02 NA NA NA
XM_023592909.1 Non-Effector No 0 NA NA NA NA NA
XM_023592910.1 Non-Effector No 0 NA NA NA NA NA
XM_023592911.1 Non-Effector No 1 -0.95 0.02 NA NA NA
XM_023592912.1 Non-Effector No 4 0.03 0.57 0.15 0.35 0.57
XM_023592913.1 Non-Effector No 11 2.8 0.38 0.5 0.51 0.21
XM_023592914.1 Non-Effector No 0 NA NA NA NA NA
XM_023592915.1 Non-Effector No 0 NA NA NA NA NA
XM_023592916.1 Non-Effector No 23 0.2 0.56 0.53 0.76 0.56
XM_023592917.1 Non-Effector No 0 NA NA NA NA NA
XM_023592918.1 Non-Effector No 3 -0.13 0 0.4 0.07 0.14
XM_023592919.1 Non-Effector No 3 -0.01 0.11 0.13 0.28 0.13
XM_023592920.1 Non-Effector No 2 0.25 0 0.02 0 0
XM_023592921.1 Non-Effector No 16 -0.82 0.24 0.13 0.33 0.22
XM_023592922.1 Non-Effector No 40 3.24 0.2 0.06 0.19 0.14
XM_023592923.1 Non-Effector No 0 NA NA NA NA NA
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Supplementary Table 9 (continued): Further characterisation of the outlier regions on 

CM008499.1, including whether proteins are effectors, whether these contain signal peptide 

regions, Tajima’s D, and pairwise FST between the UK and the  other four sampling sites

Mean pairwise FST of each gene

Gene ID
Effector 
Status

Signal 
Peptid
e

Numbe
r of 
SNPS 
per 
gene

Tajima’s
D

UK vs 
Croatia

UK vs 
Italy

UK vs 
ND

UK vs 
NY

XM_023592924.1 Effector No 3 0.16 0.206 0.45 0.26 0.28
XM_023592925.1 Non-Effector No 5 -1.09 0.19 0.17 0.38 0.19
XM_023592926.1 Non-Effector No 18 4.52 0.11 0.61 0.13 0.2
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Supplementary Table 10: Further characterisation of the outlier regions on CM008502.1, including

whether proteins are effectors, whether these contain signal peptide regions, Tajima’s D, and 

pairwise FST between the UK and the  other four sampling sites

Mean pairwise FST of each gene

Gene ID
Effector 
Status

Signal 
Peptide

Number 
of SNPS 
per gene

Tajima’s 
D

UK vs 
Croatia

UK vs 
Italy

UK vs 
ND

UK vs 
NY

XM_023597582.1 Non-Effector Yes 9 -0.56 0.29 0.31 0 0.02
XM_023597583.1 Non-Effector No 1 -0.94 NA NA 0 NA
XM_023597584.1 Non-Effector No 0 NA NA NA NA NA
XM_023597585.1 Non-Effector Yes 8 -1.73 0.14 0.06 0.01 0.02
XM_023597586.1 Non-Effector No 0 NA NA NA NA NA
XM_023597587.1 Effector Yes 2 -1.28 0.005 0.03 0.02 0
XM_023597588.1 Non-Effector No 3 0.22 0.29 0.37 0.02 0.41
XM_023597589.1 Non-Effector No 0 NA NA NA NA NA
XM_023597590.1 Non-Effector No 0 NA NA NA NA NA
XM_023597591.1 Non-Effector No 0 NA NA NA NA NA
XM_023597592.1 Non-Effector No 0 NA NA NA NA NA
XM_023597593.1 Non-Effector No 0 NA NA NA NA NA
XM_023597594.1 Non-Effector Yes 29 -2.17 0.02 0.23 0.15 0.06
XM_023597595.1 Non-Effector No 0 NA NA NA NA NA
XM_023597596.1 Non-Effector No 0 NA NA NA NA NA
XM_023597597.1 Non-Effector No 23 -0.48 0.22 0.27 0.16 0.12
XM_023597598.1 Effector No 3 -1.47 0.07 0.03 0 0
XM_023597599.1 Non-Effector No 0 NA NA NA NA NA
XM_023597600.1 Non-Effector No 20 -1.38 0.06 0.36 0.15 NA
XM_023597601.1 Non-Effector No 12 -1.5 0.14 0.36 0 0
XM_023597602.1 Non-Effector No 0 NA NA NA NA NA
XM_023597603.1 Non-Effector No 66 2.15 0.29 0.21 0.25 0.07
XM_023597604.1 Non-Effector No 0 NA NA NA NA NA
XM_023597605.1 Effector No 0 NA NA NA NA NA
XM_023597606.1 Non-Effector No 0 NA NA NA NA NA
XM_023597607.1 Non-Effector No 0 NA NA NA NA NA
XM_023597608.1 Non-Effector No 0 NA NA NA NA NA
XM_023597609.1 Non-Effector Yes 70 4.36 0.69 0.003 0.4 0.17
XM_023597610.1 Non-Effector No 3 2.9 0.75 0.04 0.35 0.14
XM_023597611.1 Non-Effector No 0 NA NA NA NA NA
XM_023597612.1 Non-Effector Yes 4 0.19 0.25 0.28 0.1 0
XM_023597613.1 Effector No 48 2.52 0.75 0.14 0.17 0.14
XM_023597614.1 Non-Effector No 0 NA NA NA NA NA
XM_023597615.1 Non-Effector No 6 -1.75 0.01 0.01 0.05 0.15
XM_023597616.1 Non-Effector No 9 -1.21 0.27 0.04 0.37 0.14
XM_023597617.1 Non-Effector No 0 NA NA NA NA NA
XM_023597618.1 Non-Effector No 0 NA NA NA NA NA
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Supplementary Table 10 (continued): Further characterisation of the outlier regions on 

CM008502.1, including whether proteins are effectors, whether these contain signal peptide 

regions, Tajima’s D, and pairwise FST between the UK and the  other four sampling sites

Mean pairwise FST of each gene

Gene ID
Effector 
Status

Signal 
Peptid
e

Number 
of SNPS 
per gene

Tajima
’s D

UK vs 
Croatia

UK vs 
Italy

UK vs 
ND

UK vs 
NY

XM_023597619.1 Non-Effector No 0 NA NA NA NA NA
XM_023597620.1 Non-Effector No 0 NA NA NA NA NA
XM_023597622.1 Non-Effector No 4 -0.414 0.04 0.02 0.41 0.21
XM_023597621.1 Non-Effector No 4 -0.414 0.04 0.02 0.41 0.21
XM_023597623.1 Non-Effector No 3 -0.06 0.04 0.006 0.42 0.14
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Supplementary Table 11: Functional Role of Mutations in the Differentiated Region on 

CM008502.1

ID Type of Mutation Croatia Italy
North 
Dakota

New York UK

XM_023597609.1
Missense 13 7 16 10 9

Synonymous 51 27 51 51 51

XM_023597610.1

Missense 2 2 2 2 2

Synonymous 0 0 0 0 0

Stop codon gained 1 1 1 1 1

Frequency of stop 
codon

0.79 0.06 0.51 0.25 0.05

XM_023597612.1
Missense 2 2 2 1 1

Synonymous 1 1 1 0 1

XM_023597613.1 Synonymous 48 46 47 2 2
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Supplementary Figures

Supplementary Figure 1: Map of where C. betcola isolates were collected, as well as the 

host, and the number of isolates from each sampling location.
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Supplementary Figure 2: The proportion of missing sites per individual of the C. beticola

isolates.  Isolates  had  different  proportions  of  missingness,  and  no  individual  contained

more than 8% missing sites. C. beticola isolates from sea beet were represented by blue,

sugar beet by green, and from table beet by grey bars.
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Supplementary Figure 3: The average sequencing depth per individual C. beticola isolate.

There is some variation between individuals, and all individuals were sequenced to a depth

of at least 10x. C. beticola isolates from sea beet were represented by blue, sugar beet by

green, and from table beet by grey bars.
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Supplementary Figure 4: Number of SNPs per individual in each  C. beticola individual.

Individuals from different sampling locations showed different numbers of variant positions.

Isolates from sea beet were more diverse than those from domesticated beets. C. beticola

isolates from sea beet were represented by blue, sugar beet by green, and from table beet

by grey bars.
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Supplementary Figure 5: Violin plots of the Tajima’s D distribution across the genome for

C.  beticola from the  various  sampling  sites  in  5  kb  windows.  Hosts  are  indicated  by

colours.
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Supplementary Figure 6: R2 decay over the entire chromosome for individuals from each

sampling site. The different colours indicate different sampling sites. There was variation

that   R2 decay  occurred along each  chromosome,  with  some chromosomes from the

Orford  individuals  showing  virtually  no   R2 decay.  This  indicated  that  there  may  be

differences in recombination rates between chromosomes in C. beticola.
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Supplementary Figure 6:  Population structure of  the  C. beticola isolates.  SNPs were

thinned to 5 kb distance of one another for K = 6-9. The isolates from the UK showed

higher levels of admixture than isolates from mainland Europe and the USA.
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Supplementary Figure  7:  Network  showing  which  individuals  contain  the premature  stop

codon in the  XM_023597610.1 gene. Only individuals in the UK and Croatian accessions that

contained the stop codon are indicated on this network by circles. The isolates within the

North American accessions were interspersed randomly among isolates that did not contain

the stop codon.
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Supplementary Materials for Protocols in the Laboratory

Media used to culture C. beticola 

Water agar plates

• 7.5 g Agar

• 500 ml H2O

Tomato agar plates

• 250 ml Tomato juice

• 250 ml H2O

• 7.5 g Agar

• 0.1 g Streptomycin-sulfate in 500 μl of water containing ampicillinl sterile H2O added to media after sterilisation

Tomato liquid media

• 250 ml Tomato juice

• 250 ml H2O

Supplementary Figure 8: Tomato juice from the local supermarket used to produce the media

to culture C.beticola
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Chemicals for CTAB Extraction

Extraction Buffer for 100ml

• 10 ml 1M Tris-Hcl pH8

• 28 ml 5M NaCl

• 4 ml 0.5M EDTA

• 2 g CTAB

• 58 ml H2O

• 500 μl of water containing ampicillinl B-mercaptoethanol

Phenol/chloroform 1:1

Isopropanol

TE buffer, pH8

Rnase (10mg/ml)

3 M Sodium acetate (NaOAc)

100% Ethanol

75% Ethanol
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Scripts

count.reads.sh

parallel “echo {} && gunzip -c {} | wc -l | awk ‘{d=\$1; print d/4;}” ::: *.gz

Reference based mapping pipeline in various bash scripts

#read trimming
for f1 in your_directory/*fastq
do

fastq_quality_trimmer -t 20 -l 30 -i ${f1} -o ${f1}.trimmed
done

#repairing trimmed reads
for f1 in your_directory/*_R1_001.fastq.trimmed.gz
do 

f2=${f1%%_R1_001.fastq.trimmed.gz}"_R2_001.fastq.trimmed.gz"
cd your_programs/bbmap/
./repair.sh in1=${f1} in2=${f2} out1=${f1}fixed.fq out2=${f2}fixed.fq outsingle=${f1}.single.fq

done

#mapping with bwa-mem
for f1 in your_directory/*_1.fq.gz
do 

f2=${f1%%_1.fq.gz}"_2.fq.gz"
bwa mem -t 4 -I -P /media/lizel/82AEF34EAEF3396D/chapter2/ref/core.fna ${f1} ${f2} > $
{f1}.sam
samtools view -S -b ${f1}.sam > ${f1}.bam
rm *sam

done

#sort and index bam files
for f1 in your_directory/*bam
do

samtools sort -@ 20 ${f1} > ${f1}.sorted
done

#if there were resequencing runs, merge the two (or more) bam files
samtools merge ${run1} ${run2} > ${run1}.merged

#remove duplicates and index bam files
for f1 in your_directory/*bam.sorted.bam
do

samtools rmdup -S ${f1} ${f1}_rmdup.bam
samtools index ${f1}_rmdup.bam

done

#Reference genome must be formatted for GATK
samtools faidx ref.fasta
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#GATK HaplotypeCaller to produce GVCFs for each accession
for f1 in /media/lizel/82AEF34EAEF3396D/chapter2/italy.sugar/*rg
do

gatk HaplotypeCaller -R ref.fasta -I ${f1} -O ${f1}.g.vcf.gz -ERC GVCF -ploidy 1
done

#Combine all of the GVCF files
gatk CombineGVCFs –variant 1 –variant 2 -O combined.g.vcf.gz

#Genotype GVCFs
gatk GenotypeGVCFs -R ref.fasta -V combined.g.vcf.gz -O raw.vcf

#raw.vcf can be further processed with VCFtools, and any downstream analyses!

cercospora.plots.R

library(tidyverse)
library(ggplot2)
library(dplyr)
library(ggpubr)
library(rstatix)
library(nortest)
library(Hmisc)
library(readODS)

setwd("your_directory")
master = read_ods("you master file with all info in different columns")

#Depth per site
ggplot(depth, aes(x=POS, y= MEAN_DEPTH)) +
  geom_line() +
  facet_wrap(~CHROM)

#Depth per individual
ggplot(master, aes(x=reorder(Isolate.Name, Row.Number), y =Mean.Depth, fill=Host)) +
  geom_bar(stat = "identity") +
  facet_wrap(~Country, scales = "free_x") +
  theme(legend.position = "right",axis.text.x=element_text(angle=90,hjust=1)) +
  scale_color_manual(labels = c("Sea beet", "Sugar beet", "Table beet"),
                     values = c("skyblue2", "darkolivegreen3", "grey"), aesthetics = "fill") +
  labs(title="Mean Depth per Individual", x = "Isolate", y = "Mean Depth", color = "Host")

#plot number of snps per individual
ggplot(master, aes(x=reorder(Isolate.Name, Row.Number), y = Variant, fill = Host)) +
  geom_bar(stat = "identity") +
  facet_wrap(~Country, scales = "free_x") +
  theme(legend.position = "right",axis.text.x=element_text(angle=90,hjust=1)) +
  scale_color_manual(labels = c("Sea beet", "Sugar beet", "Table beet"),
                     values = c("skyblue2", "darkolivegreen3", "grey"), aesthetics = "fill") +
  labs(title="Number of Variant Positions Per Individual", x = "Isolate", y = "Variant Positions", color
= "Host")
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#plot number of missingness per individual
ggplot(master, aes(x=reorder(Isolate.Name, Row.Number), y = Percent.Missing, fill = Host)) +
  geom_bar(stat = "identity") +
  facet_wrap(~Country, scales = "free_x") +
  theme(legend.position = "right",axis.text.x=element_text(angle=90,hjust=1)) +
  scale_color_manual(labels = c("Sea beet", "Sugar beet", "Table beet"),
                     values = c("skyblue2", "darkolivegreen3", "grey"), aesthetics = "fill") +
  labs(title="Fraction of Missing Sites Per Individual", x = "Isolate", y = "Fraction of Missing Sites", 
color = "Host")

#Prepare environment for pi plot
uk = read.table("uk.recode.vcf.windowed.pi", header = T)
nd = read.table("nd.recode.vcf.windowed.pi", header = T)
ny = read.table("ny.recode.vcf.windowed.pi", header = T)
croatia = read.table("croatia.recode.vcf.windowed.pi", header = T)
italy = read.table("italy.recode.vcf.windowed.pi", header = T)

uk = mutate(uk, Location = "UK")
uk = mutate(uk, Host = "Sea beet")
nd = mutate(nd, Location = "ND")
nd = mutate(nd, Host = "Sugar beet")
ny = mutate(ny, Location = "NY")
ny = mutate(ny, Host = "Table beet")
croatia = mutate(croatia, Location = "Croatia")
croatia = mutate(croatia, Host = "Sea beet")
italy = mutate(italy, Location = "Italy")
italy = mutate(italy, Host = "Sugar beet")

combined = c('uk', 'nd', 'ny', 'croatia', "italy")
x.list <- lapply(combined, get)

combined.pi = do.call(rbind, x.list)

#Prepare environment for Tajima’s D plot
uk = read.table("uk.recode.vcf.Tajima.D", header = T)
nd = read.table("nd.recode.vcf.Tajima.D", header = T)
ny = read.table("ny.recode.vcf.Tajima.D", header = T)
croatia = read.table("croatia.recode.vcf.Tajima.D", header = T)
italy = read.table("italy.recode.vcf.Tajima.D", header = T)

uk = mutate(uk, Location = "UK")
uk = mutate(uk, Host = "Sea beet")
nd = mutate(nd, Location = "ND")
nd = mutate(nd, Host = "Sugar beet")
ny = mutate(ny, Location = "NY")
ny = mutate(ny, Host = "Table beet")
croatia = mutate(croatia, Location = "Croatia")
croatia = mutate(croatia, Host = "Sea beet")
italy = mutate(italy, Location = "Italy")
italy = mutate(italy, Host = "Sugar beet")

combined = c('uk', 'nd', 'ny', 'croatia', "italy")
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x.list <- lapply(combined, get)

combined.tajd = do.call(rbind, x.list)

level_order <- c('UK', 'Croatia', 'Italy', "ND", "NY")

#Plot Tajima’s D and pi
ggplot(combined.pi, aes(x= factor(Location, level = level_order), y = PI, fill = Host)) +
  geom_violin() +
  ggtitle("Pi Average in 5 kb Windows") +
  stat_summary(fun=median, geom="point", size=2, color="black") 
  stat_summary(fun.data="mean_sdl", mult=1, 
               geom="pointrange", width=0.2 )

 
ggplot(combined.tajd, aes(x= factor(Location, level = level_order), y = TajimaD, fill = Host)) +
    geom_violin() +
    ggtitle("Tajima's D Average in 5 kb Windows") +
  xlab("Location") + ylab("Tajima's D") +
    stat_summary(fun=median, geom="point", size=2, color="black") 
  stat_summary(fun.data="mean_sdl", mult=1, 
               geom="pointrange", width=0.2 )
 

anova.of.tajd.R 

library(tidyverse)
library(ggplot2)
library(dplyr)
library(ggpubr)
library(rstatix)
library(nortest)
library(Hmisc)

setwd("your_directory")

#Prepare environment for pi
uk = read.table("uk.recode.vcf.windowed.pi", header = T)
nd = read.table("nd.recode.vcf.windowed.pi", header = T)
ny = read.table("ny.recode.vcf.windowed.pi", header = T)
croatia = read.table("croatia.recode.vcf.windowed.pi", header = T)
italy = read.table("italy.recode.vcf.windowed.pi", header = T)

uk = mutate(uk, Location = "UK")
uk = mutate(uk, Host = "Sea beet")
nd = mutate(nd, Location = "ND")
nd = mutate(nd, Host = "Sugar beet")
ny = mutate(ny, Location = "NY")
ny = mutate(ny, Host = "Table beet")
croatia = mutate(croatia, Location = "Croatia")
croatia = mutate(croatia, Host = "Sea beet")
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italy = mutate(italy, Location = "Italy")
italy = mutate(italy, Host = "Sugar beet")

combined = c('uk', 'nd', 'ny', 'croatia', "italy")
x.list <- lapply(combined, get)

combined.pi = do.call(rbind, x.list)

#Prepare environment for Tajima’s D
uk = read.table("uk.recode.vcf.Tajima.D", header = T)
nd = read.table("nd.recode.vcf.Tajima.D", header = T)
ny = read.table("ny.recode.vcf.Tajima.D", header = T)
croatia = read.table("croatia.recode.vcf.Tajima.D", header = T)
italy = read.table("italy.recode.vcf.Tajima.D", header = T)

uk = mutate(uk, Location = "UK")
uk = mutate(uk, Host = "Sea beet")
nd = mutate(nd, Location = "ND")
nd = mutate(nd, Host = "Sugar beet")
ny = mutate(ny, Location = "NY")
ny = mutate(ny, Host = "Table beet")
croatia = mutate(croatia, Location = "Croatia")
croatia = mutate(croatia, Host = "Sea beet")
italy = mutate(italy, Location = "Italy")
italy = mutate(italy, Host = "Sugar beet")

combined = c('uk', 'nd', 'ny', 'croatia', "italy")
x.list <- lapply(combined, get)

combined.tajd = do.call(rbind, x.list)

level_order <- c('UK', 'Croatia', 'Italy', "ND", "NY")

group_by(combined.tajd, Location) %>%
  summarise(
    count = n(),
    mean = mean(TajimaD, na.rm = TRUE),
    sd = sd(TajimaD, na.rm = TRUE)
  )

#HOST
#check outliers
temp = combined.tajd %>% 
  group_by(Host) %>%
  identify_outliers(TajimaD)

#build linear model
model  <- lm(TajimaD ~ Host, data = combined.tajd)
ggqqplot(residuals(model))

# Compute Shapiro-Wilk test of normality
shapiro_test(residuals(model))
ad.test(combined.tajd$TajimaD)
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ggqqplot(combined.tajd, "TajimaD", facet.by = "Host")

plot(model, 1)

res.aov <- combined.tajd %>% anova_test(TajimaD ~ Host)
res.aov

pwc <- combined.tajd %>% tukey_hsd(TajimaD ~ Host)
pwc

pwc <- pwc %>% add_xy_position(x = "Host")
ggboxplot(combined.tajd, x = "Host", y = "TajimaD") +
  stat_pvalue_manual(pwc, hide.ns = TRUE) +
  labs(
    subtitle = get_test_label(res.aov, detailed = TRUE),
    caption = get_pwc_label(pwc)
  )

#LOCATION

#check outliers
temp = combined.tajd %>% 
  group_by(Location) %>%
  identify_outliers(TajimaD)

#build linear model
model  <- lm(TajimaD ~ Location, data = combined.tajd)
ggqqplot(residuals(model))

# Compute Shapiro-Wilk test of normality
shapiro_test(residuals(model))
ad.test(combined.tajd$TajimaD)

ggqqplot(combined.tajd, "TajimaD", facet.by = "Location")

plot(model, 1)

res.aov <- combined.tajd %>% anova_test(TajimaD ~ Location)
res.aov

pwc <- combined.tajd %>% tukey_hsd(TajimaD ~ Location)
pwc

pwc <- pwc %>% add_xy_position(x = "Location")
ggboxplot(combined.tajd, x = "Location", y = "TajimaD") +
  stat_pvalue_manual(pwc, hide.ns = TRUE) +
  labs(
    subtitle = get_test_label(res.aov, detailed = TRUE),
    caption = get_pwc_label(pwc)
  )
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res.aov2 <- aov(TajimaD ~ Location + Host, data = combined.tajd)
summary(res.aov2)

ld.R

#from https://www.biostars.org/p/300381/

library(dplyr)
library(stringr)
library(ggplot2)
dfr <-read.delim("/media/lizel/82AEF34EAEF3396D/chapter2/2_vcf/34_rehh/chr/
uk.recode.vcf.chr2.recode.vcf.biallelic.nomissing.recode.vcf.75k.recode.vcf.summary",sep="",hea
der=F,check.names=F,stringsAsFactors=F)
colnames(dfr) <- c("dist","rsq")
dfr$distc <- cut(dfr$dist,breaks=seq(from=min(dfr$dist)-1,to=max(dfr$dist)+1,by=10000))
dfr1 <- dfr %>% group_by(distc) %>% summarise(mean=mean(rsq),median=median(rsq))
dfr1 <- dfr1 %>% mutate(start=as.integer(str_extract(str_replace_all(distc,"[\\(\\)\\[\\]]",""),"^[0-9-
e+.]+")),
                        end=as.integer(str_extract(str_replace_all(distc,"[\\(\\)\\[\\]]",""),"[0-9-e+.]+$")),
                        mid=start+((end-start)/2))

ggplot(dfr1, aes(x=start,y=mean))+
  geom_line() 

vcf2geno.sh

for f1 in /media/lizel/82AEF34EAEF3396D/chapter2/2_vcf/45_pop/*GT.FORMAT
do
#vcftools --vcf $VCFNAME.vcf --extract-FORMAT-info GT
cat ${f1} | cut -f 3- > ${f1}.2
head -n 1 ${f1}.2 | sed "s/\t/\n/g" > ${f1}.ind
sed "s/\t//g" ${f1}.2 | tail -n +2 > ${f1}.geno
done

snmf.R

library(LEA)
library(tidyverse)

### Example of analysis using snmf ###
# Creation of the genotype file: genotypes.geno.
# The data contain 400 SNPs for 50 individuals.
#data("tutorial")
#write.geno(tutorial.R, "genotypes.geno")
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################
# running snmf #
################
project.snmf = snmf("yourfiles.GT.FORMAT.geno",
                    K = 1:20,
                    entropy = TRUE,
                    ploidy = 1,
                    repetitions = 10,
                    project = "new")
# plot cross-entropy criterion of all runs of the project
plot(project.snmf, cex = 1.2, col = "lightblue", pch = 19)
# get the cross-entropy of the 10 runs for K = 4
ce = cross.entropy(project.snmf, K = 4)
# select the run with the lowest cross-entropy for K = 4
best = which.min(ce)

#add names
metadata = read.table("your .d file", header =T)
indv_snmf = read_tsv("your isolate name filet", col_names = F)
names(indv_snmf) = "Sample"
datalist = list()
for (i in c(6, 7, 8, 9)){
  best = which.min(cross.entropy(project.snmf, K = i))
  temp = as.data.frame(Q(project.snmf, i, best))
  temp= cbind(indv_snmf, temp)
  temp = temp %>%
    gather("Cluster", "Admix_coef", -"Sample") %>%
    mutate(K=i)
  datalist[[i]] = as.tibble(temp)
}
snmf_results_per_K = bind_rows(datalist)%>%
  inner_join(., metadata, by = c("Sample" = "Isolate")) %>%
  unite(ID, Country, Location, Host, col = "for_display", remove = F)

ggplot(snmf_results_per_K, aes(x = reorder(Sample, ID), y = Admix_coef, fill = Cluster,
                                   text = for_display)) +
  geom_bar(position = "stack", stat = "identity", show.legend = F) + 
  facet_grid(K~.) +
  theme_bw() + 
  theme(axis.title = element_blank(),
                     axis.text.x = element_text(angle = 60, hjust = 1),
                     legend.title = element_blank())

# display the Q-matrix
#my.colors <- c("tomato", "lightblue",
               "olivedrab", "gold")
#barchart(project.snmf, K = 4, run = best,
         border = NA, space = 0, col = my.colors,
         xlab = "Individuals", ylab = "Ancestry proportions",
         main = "Ancestry matrix") -> bp
#axis(1, at = 1:length(bp$order),
     labels = bp$order, las = 3, cex.axis = .4)
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Abstract

Members of the genus Cercospora are ascomycete fungi that cause various leaf spot diseases on

plants. The number of fully sequenced and assembled genomes of these species has increased

over  the  past  years.  The  availability  of  these genome resources  allows for  the  application  of

comparative  analyses  to  investigate  the  underlying  basis  of  virulence,  for  example,  by  the

identification of gene gains and losses between species. In other fungal species, as well as among

species of Cercospora, gene gains and losses have been correlated with host range and virulence.

Many ascomycetes have been shown to have plastic genomes with regions undergoing structural

mutations whereby, for example, regions of chromosomes can translocate to other chromosomes.

We included five  Cercospora  species for  an in-depth comparison of  genome composition and

structure. We show that there are substantial gene gain and loss events in the genomes of the

Cercospora species, and propose that these may reflect distinct host ranges. Finally, we show that

the genomes of two closely related Cercospora species, C. beticola and C. cf. flagellaris, are highly

syntenic  while  the genome of  their  most  recent  common ancestor  may have undergone large

translocations.  We  conclude  that  Cercospora species  follow  evolutionary  trajectories  of  other

ascomycete plant pathogenic fungi with a high extent of genome plasticity.
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Introduction

Fungal plant pathogens are threats to global food safety and security (Strange and Scott, 2005).

Some of the most destructive pathogens threatening global food production are fungi, including

species belonging to the Cercospora genus (Fones et al., 2020; Groenewald et al., 2013). Plant

pathogenic Cercospora species as these fungi infect a wide variety of crops including sugar beet,

soybean, maize, and wheat (Holtschulte, 2000; Soares et al., 2015). Cercospora species are often

associated with leaf spot diseases, lesions in flowers, and post-harvest fruit rot (Silva and Pereira,

2008; To-Anun et al., 2011). Some species have a very narrow host range while others have a very

broad host range (Groenewald et al., 2013).

Phytopathogenic fungi make use of  a variety of  carbohydrate active enzymes (CAZymes) and

effectors during their infection of plants (e.g.  Barrett et al., 2020; Kameshwar and Qin, 2018; Lo

Presti et al., 2015). Effectors are small secreted proteins that interact with plants during infection

while  CAZymes  aid  in  the  degradation  of  the  cell  walls  (Cantarel  et  al.,  2009;  Rep,  2005).

CAZymes  fulfill  various  biochemical  functions,  and  are  grouped  according  to  their  predicted

function (Garron and Henrissat, 2019). The functions of these enzymes can be classified broadly

as glycosyl  transferases,  glycoside hydrolases,  polysaccharide lyases,  carbohydrate esterases,

and carbohydrate binding molecules  (Davies and Henrissat, 1995; The CAZypedia Consortium,

2018). The enzyme families included in  the CAZyme classification continues to grow as more

genomes become available and annotation tools are improved.

For many fungal pathogen species, the diversity in the CAZyme and effector repertoire has been

correlated with their host range and lifestyle (Barrett et al., 2020; Kameshwar and Qin, 2018). In

the  genus  Colletotrichum,  a  decrease  in  CAZyme  content  was  strongly  associated  with  a

decreased  host  range  (Baroncelli  et  al.,  2016).  Rhizoctonia  solani isolates  with  different  host

ranges also showed that differences in effector repertoire was strongly linked to host range of

isolates, with isolates lacking a particular effector gene having a significantly reduced host range

(Anderson et al., 2017). Studies like these have demonstrated the power of in silico prediction tools

to associate CAZyme and effector content with host range.
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Cercospora species infect  a variety  of  plants with some species being generalists  while  other

species are more host-specific (Groenewald et al., 2013). Morphologically, species with wide host

ranges have been distinguished from species  that  have narrow host  ranges by differences in

conidiophores (Groenewald et al., 2013). Species with wide host ranges have circumspersed loci

on thin-walled conidiophores, while the species with narrow host ranges had fewer apical or lateral

loci on moderately to thick walled, to thick-walled condiophores. We suggest that species with

narrow and broad host ranges can be more accurately distinguished using comparative genomics

approaches. In this study we included C. beticola, C. cf. flagellaris, C. cf. sigesbeckiae, C. sojina,

and C. zeina for whole genome comparisons. C. beticola, C. cf. flagellaris and C. cf. sigesbeckiae

are generalists,  while  C.  sojina and  C.  zeina  are more specific  to  their  agricultural  hosts.  C.

beticola is the causal agent of Cercospora Leaf Spot (CLS) on many wild and domesticated plants

including Beta species,  Acanthus, Amaranthus, Apium, Atriplex, Chenopodium, Chrysanthemum,

Cycloloma,  Goniolimon,  Limonium,  Malva,  and  Plantago  (Bobev  et  al.,  2009;  Chupp,  1953;

Groenewald et al., 2006; Jacobsen and Franc, 2009; Pool and McKay, 1916; Rooney-Latham et

al., 2010; Vestal, 1933). It has been proposed that C. beticola colonises many of these plants as a

saprobe or a secondary invader (Crous and Groenewald, 2005) . These wild plants may serve as a

reservoir of inoculum for infections of sugar beet. The ability of  C. beticola to colonise weeds is

likely indicative of the genomic variation of the fungus.  C. cf. flagellaris causes CLS on melons,

soybean,  Amaranthus,  Cosmos  sulphureus,  Hydrangea,  Phytolacca  americana,  Citrus sp.,

Populus  deltoides,  Bromus sp.,  Eichhornia  crassipes,  and  many  others   (Albu  et  al.,  2016;

Groenewald et al., 2013; Park et al., 2020).  C. cf. sigesbeckiae causes disease on Begonia sp.,

Sigesbeckia glabescens, Dioscorea tokoro, Persicaria orientalis, Pilea pumila, Paulownia coreana,

Malva verticillata,  soybean as well as several other plants  (Albu et al., 2016; Groenewald et al.,

2013). C. sojina is more of a specialist, and primarily grows on soybean and causes Frogeye Leaf

Spot (FLS) (Soares et al., 2015; Zeng et al., 2017a). C. zeina primarily grows on maize where it

causes grey leaf spot (GLS) (Tehon and Daniels, 1925). 
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Phylogenetic studies have provided insights into the diversity and phylogenetic relationships of

Cercospora species. The monophyletic  Cercospora genus contains 659 different species  (Crous

and Braun, 2003). However, the phylogenetic relationships of  Cercospora species is difficult  to

establish as housekeeping “marker” genes contain very few informative sites (Groenewald et al.,

2013).  The  use  of  whole  genome  data  provides  an  opportunity  to  construct  more  accurate

phylogenetic relationships  (Yu and Reva, 2018). There are two primary methodologies used to

construct  phylogenies  using  whole  genome data,  namely  alignment-based  and  alignment-free

methods (reviewed by  Zielezinski et al.,  2017). In this study, we made use of alignment-based

methods,  although  we  found  alignment-free  methods  to  be  as  accurate  (unpublished  data).

Alignment-based methods can either be performed on whole genome data, or by computing single

trees for all orthologous genes, and combining these into a single species tree  (de Queiroz and

Gatesy, 2007). A sound phylogeny is crucial for downstream comparative genomics approaches.

To date, there has not been a comparative genomics study on Cercospora species to establish the

diversity in effector and CAZyme content. It  would be informative to compare these repertoires

between species to draw an association with host range. A species tree computed from whole

genome  data  has  also  not  been  compiled  for  the  Cercospora genus,  and  the  possibility  of

strengthening  existing  phylogenies  is  important.  Additionally,  synteny  between  closely  related

Cercospora species has not been investigated. Therefore, this study aims to establish a species

tree  using  whole  genome  data,  and  to  track  CAZyme  and  effector  gains  and  losses  in  the

Cercospora  genus.  Genome  synteny  of  two  closely  related  Cercospora species  will  also  be

compared to investigate genome plasticity. This will allow us to correlate genome content with host

range of various Cercospora species. It will highlight the necessity of well-assembled genome for

comparative genomics studies.
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Methods and Materials

Description of Cercospora Genomes 

To reconstruct the phylogenetic relationship of species in the Cercospora genus, we established a

genome data set based on available genome data. We included already published genomes and

genomes available through collaborations (Table 1,  Supplementary Table 1).  We used a more

complete genome assembly of C. zeina based on PacBio sequencing, collaborating with D. Berger,

University of Pretoria, South Africa. To this end we first generated high quality DNA for sequencing.

The C. zeina isolate was grown on tomato juice agar plates, and DNA was extracted following the

CTAB protocol (Clarke, 2009). Sporulating conidia were washed off the plates, and ground with a

mortar and pestle with liquid nitrogen. The resulting powder was transferred to 2 ml Eppendorf

tubes and 1.2 ml of warm CTAB extraction buffer was added. Samples were incubated in a 65oC

water bath for an hour, and shaken gently every 15 minutes. Samples were spun in a centrifuge for

10 minutes at 13500 g, and the supernatant was transferred. The supernatant was washed twice

with a 1:1 phenol/chloroform mixture, and spun at 13500 g for 15 minutes between washes. The

aqueous  phase  was  transferred  to  800  μl of water containing ampicillinl  ice  cold  isopropanol  after  the  second  wash  and

incubated at -20oC for 20 minutes. Samples were spun at 13500 g for 10 minutes, and the pellet

was suspended in 250  μl of water containing ampicillinl TE buffer and 25  μl of water containing ampicillinl RNase and incubated at 37oC for 30 minutes. After

spinning samples in a centrifuge for 10 minutes, the pellet was suspended in 25 μl of water containing ampicillinl NaOAc and 600

μl of water containing ampicillinl ice cold 100% ethanol. Following an overnight incubation step, the pellet was washed with 70%

ethanol  twice,  and  suspended  in  100  μl of water containing ampicillinl  TE  buffer.  DNA concentration  was  determined  by

fluorometry, and quality was confirmed by gel electrophoresis. This was repeated until 7 ng of C.

zeina DNA was extracted. The DNA was sequenced at the Max Planck Genome Center in Cologne

using the Pacific Biosciences platform.

Raw reads were assembled with HGAP 4, a part of SMRTLink version 6, with default parameters

and an estimated genome size of 40 Mb (Chin et al., 2013). The draft assembly was polished using

arrow, another function of SMRTLink. Contigs that had sequencing coverage that deviated more

169



than  1.5  X  from  the  average  across  all  contigs  weighted  by  contig  length  were  discarded

(Filter_cover_PacBio_assemblies_SMRTLink6.R). To identify the CCCTAA telomeric repeat, bowtie

was  used  (Langmead  et  al.,  2009) (Identify_telomeres.sh).  All  scripts  are  available  in  the

supplementary materials online (https://github.com/lpotgieter/phd.scripts). 

Table 1: Genomes of  Cercospora species available on public databases as of September  

2019

Species Source and Accession Reference

C. beticola NCBI (LKMD00000000) (de Jonge et al., 2018)

C. cf. flagellaris NCBI (RJLU00000000) Unpublished

C. cf. sigesbeckiae NCBI (RQIF00000000) (Albu et al., 2017)

C. sojina NCBI (GCA_004299825) (Luo et al., 2018)

C. zeina Unpublished This study

Analysis of CAZymes and Effectors

For a detailed comparison of gene content, we focused our analyses on the five genomes with high

quality assemblies: C. beticola, C. cf. flagellaris, C. sojina, C. cf. sigesbeckiae, and C. zeina (Albu

et al., 2017; de Jonge et al., 2018; Luo et al., 2018). Contigs smaller than 1 Mb were filtered out

using a custom script (removesmalls.pl) .

To standardise the annotation of the genomes, an ab initio gene prediction approach was applied.

All  assemblies  were  annotated  with  WebAUGUSTUS v3.3.3  with  default  paramters  as  above

(Stanke and Morgenstern,  2005).  The predicted proteome of  Cercospora species was used to

predict the secretome, effectors, and CAZymes of the isolates. Proteins containing signal peptides

were determined with SignalP 5.0 (Almagro Armenteros et al., 2019). Proteins containing a signal

peptide region were further established to be effectors with EffectorP 2.0  (Sperschneider et al.,

2018). CAZymes were identified by the metaserver dbCAN v2.0.0 (Zhang et al., 2018). CAZymes

identified by HMMER v3.3, DIAMOND, and Hotpep (Buchfink et al., 2015; Busk, 2020; Finn et al.,

2011). CAZymes identified by at least two of the search tools were used for further analyses. The

heatmap of CAZyme family frequency was generated with a custom script (Heatmap.R).
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Gene Family Expansions and Contractions in Cercospora

To reconstruct the history of gene gains and losses, we constructed a phylogenetic tree. To this

end we first identified all single copy orthologous genes were determined using OrthoMCL v2.0.9-4

with default parameters (Li et al., 2003). The corresponding protein sequences were aligned with

MUSCLE v3.8.1551  (Edgar, 2004). A maximum likelihood phylogenetic tree was constructed for

each alignment with IQ-Tree with 1000 bootstrap replicates and automatic selection of the best fit

model (Nguyen et al., 2015). A species tree of all single trees that corresponded with the largest

number of quartet trees was constructed with ASTRAL v5.7.3 (Mirarab et al., 2014). The species

tree was rooted by mid-point  rooting  in  the  programme FigTree v1.4.4  (Rambaut,  2012).  The

topology was converted to an ultrametric tree with a custom script (Ultrametric_tree.R).

To determine whether any CAZyme or effector families had undergone expansions or contractions

within the genus, their history was plotted against the species tree. The predicted effectors and

CAZymes were extracted and compared to the species tree with CAFE v4.2.1 (De Bie et al., 2006).

Gene family contractions and expansions are tracked along the species tree using a stochastic

birth and death process. 

Whole Genome Synteny Between C. beticola and C. cf. flagellaris

Based on the species tree, it  was shown that  C. beticola and  C. flagellaris were most closely

related, and were used to investigate differences in overall genome organisation. The assemblies

were aligned with PROmer,  a part  MUMmer v4.0.0  (Delcher et  al.,  2002). The alignment was

visualised with Circos v0.69-9 (Krzywinski et al., 2009).
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Results

PacBio Sequencing of C. zeina

The long read assembly of C. zeina was more complete than the C. zeina assembly produced by

short read sequencing. The PacBio filtered assembly contained 22 contigs, 21 of which were larger

than 10 kb (Table 2).  The assembly was 41.7 Mbp long, and had an N50 of 3.97 Mbp. Three

contigs were assembled telomere-to-telomere, five contained telomeres at the start of the contig,

and seven contained telomeres only at the end of the contig. The remaining seven contigs did not

contain any telomeric regions.

Table 2:  Assembly statistics of  C. zeina after  filtering the long read data compared to the

previous short read assembly

C. zeina (PacBio) 
Polished Assembly

C. zeina (PacBio) 
Filtered Assembly

C. zeina (Illumina 
HiSeq) 

Total sequence length 41.8 Mbp 41.7 Mbp 40.8 Mbp

Number of scaffolds 22 17 10,027

N50 3.98 Mbp 3.98 Mbp 161 Kbp

L50 5 5 61

Analysis of CAZymes and Effectors

The five Cercospora species showed substantial variation in the number of protein-coding genes

as well as genome size (Table 3). Genome lengths ranged from 33 to 41 Mb. The  C. beticola

contained over 11000 protein-coding genes, while the genome of  C. cf. sigesbeckiae  contained

less than 6500. This may be due to assembly quality, or the species merely contains fewer genes.
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Table 3: Metrics of included Cercospora genome assemblies and annotations  

Species C. beticola C.  cf.

flagellaris

C.  cf.

sigesbecki

ae

C. sojina C. zeina

Assembly GCA_0027

42065.1

GCA_005

356885.1

GCA_0053

56805.1

GCA_002

534735.1

Czeina_filter

ed

Accession number PRJNA270

309

PRJNA50

3907

PRJNA503

907

PRJNA37

1568

Origin USA:  North

Dakota

USA:

Arkansas

USA:

Louisiana

China:

Heilongjia

ng

South Africa

Host isolated from Beta

vulgaris

Glycine

max

Glycine

max

Glycine

max

Zea maydis

Year (of isolation) 2009 2011 2012 2010

Contig number 252 57 335 62 17

Total length (bp) 37057033 33240740 33720866 40836407 41717156

Largest contig (bp) 6188355 4579182 2125636 6706376 5193669

N50 4173231 2848694 1308006 1594415 3977222

L50 4 5 10 6 5

Number of genes 11339 9983 6419 9967 9985

CAZyme families varied in  their  frequency among the different  Cercospora  species (Figure 1).

Overall,  C. cf. sigesbeckiae contained the lowest number of CAZymes, and C. beticola the highest

numbers  within  each  family.  CAZymes  with  auxillary  activities  were  present  with  the  highest

frequency relative to other CAZyme families within the genome. 

To reconstruct  the gain and loss events related to genes encoding CAZymes and effectors in

Cercospora, a phylogenetic tree was constructed (Figure 2A). The tree was constructed with 2781

single-copy  orthologous  genes  from  the  Cercospora  genus.  There  was  a  variable  number  of

CAZymes  represented  by  each  species  (Figure  2B,  Supplementary  Table  2).  The  C.  cf.

sigesbeckiae genome was the smallest, contained the lowest number of predicted genes, as well
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as CAZymes and effectors. The C. beticola genome contained the most genes, and genes of each

category. The total number of genes predicted for each of the remaining three species was similar,

but C. sojina and C. zeina had comparable secretome sizes, as well as numbers of effectors and

CAZymes. These two species also form their own clade.  C. cf. flagellaris had a few number of

predicted  genes than  C.  beticola,  as  well  as  smaller  secretome.  However,  these two species

contained similar numbers of effectors and CAZymes.
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Figure  1:  Heatmap  of  CAZyme  family  frequencies  in  the  five  Cercospora species.  The

intensity of the colour corresponds to the frequency of the family with lighter families having a

lower frequency than those indicated by darker colours. CAZyme functions are annotated as

polysaccharide  lyases  (PL),  glycosyl  transferases  (GL),  glycoside  hydrolases  (GL),

carbohydrate esterases (CE), and auxiliary activities (AA).
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Figure 2:  Genome characteristics the  Cercospora genus.  A:  The ML phylogeny based on

single-copy orthologous genes,  B:  The number  of  predicted protein-coding genes (green),

secretome (blue),  CAZymes  (red),  and  effectors  (yellow)  in  each  Cercospora species,  C:

Effector expansions in each Cercospora species, D:  Effector contractions in each Cercospora
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species, E: CAZyme expansions in each Cercospora species, F: CAZyme contractions  in

each Cercospora species. Figures in brackets in C-F indicate gains or losses, respectively.

Within the  Cercospora genus, several genes encoding effectors and CAZymes have undergone

expansions and contractions (Figure 2C-F). The gene content in  C. beticola has undergone the

most expansions and the fewest contractions compared to the other four species. Although  C.

beticola and C. cf. flagellaris contained similar numbers of CAZymes and effectors, C. cf. flagellaris

has undergone a net total loss of effectors and CAZymes whereas C. beticola has a net gain in

each classification. The genome of C. beticola gained 31 effectors and 38 CAZymes, while losing

29 effectors and only 9 CAZymes. While C. cf. flagellaris is also a generalist Cercospora species,

the gain of  CAZymes and effectors occurred at  lower frequencies,  and losses of  these genes

occurred more often. C. cf. flagellaria gained 23 effectors and 10 CAZymes, and lost 44 effectors

and 29 CAZymes. C. cf. sigesbeckiae showed large contractions in both effectors and CAZymes.

C. sojina and  C. zeina also showed nett  contractions in both CAZyme and effector  repertoire.

Interestingly, our analysis showed all gains and losses occurred after speciation.

Whole Genome Synteny Between C. beticola and C. cf. flagellaris

Genome synteny analyses can detect translocations that are common in ascomyctes. Substantial

synteny was observed between the C. beticola and C. cf. flagellaris genomes (Figure 3). For the

majority of the chromosomes, the whole chromosome was present in both species without large

translocations. Effectors and CAZymes were found evenly spaced across the genomes. Unique

effectors weren’t  strongly associated with the ends of chromosomes, but the unique CAZymes

were.  The  two  largest  chromosomes  in  each  species  showed  different  patterns  of  synteny

compared to the chromosomes of smaller size. Chromosome 1 in C. beticola was larger than the

corresponding chromosome in C. cf. flagellaris, with parts of the chromosome showing synteny to

C. cf. flagellaris chromosome 7, and a region unique to C. beticola. Within this unique region, there

were also CAZymes unique to  C. beticola as well  as a unique effector.  Chromosome 2 of  C.

beticola was syntenic with a large region of  C. cf. flagellaris chromosome 7, and the entirety of C.

cf.  flagellaris  chromosome  9.  C.  cf.  flagellaris  chromosome  2  was  syntenic  to  C.  beticola
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chromosomes 2 and 10, and in both cases, was the only major syntenic region. This is may show

that during the speciation of  C. beticola and C. cf. flagellaris, the ancestral chromosome 2 could

have undergone chromosome fission, forming the two differentiated chromosomes in C. beticola.

The same may have occurred in  the  ancestral  chromosomes 1  and 2  that  are present  in  C.

beticola to produce in the separate chromosomes 7 and 9 in C. cf. flagellaris.
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Figure 3:  Whole genome comparison of  C. beticola  and  C. cf. flagellaris.  A:  the 10  C. cf.

flagellaris  chromosomes in dark blue on the left,  and the 10  C. beticola chromosomes in

rainbow colours on the right,  B: Location of effectors,  C:  Effector singletons  D: Location of

CAZymes, E: CAZyme singletons, F: Regions blocks of synteny between C. beticola and C. cf.

flagellaris
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Discussion

Fungal genomes contain a lot of variation that results in phenotypic changes such as host range

shifts  or  expansions.  This  phenotypic  diversity  is  mediated  by  genomic  changes.  Here  we

considered structural variation in the form of gene gains and losses, and how these may affect host

range in Cercospora.

In this study we analysed the genomes of five  Cercospora species to compare and quantify the

extent of structural variants. We document that there have been substantial gains and losses of

effectors and CAZymes when comparing species the two species that are specialists to the two

species  that  are  generalists.  We have  shown  contractions  of  genes  encoding  CAZymes  and

effectors in specialist species. We have also shown that synteny has been maintained between

two of the generalist species we considered.

Comparative genomics relies on well assembled genomes. We included C. cf sigesbeckiae for the

species  tree  as  the  assembly  statistics  suggested  that  the  genome  was  assembled  to  a

satisfactory threshold. The reduced number of predicted genes in C. cf. sigesbeckiae may be due

to the assembly indeed not being as for good as the other four species. Currently, the smallest

fungal genome is Peltaster fructicola (Wang et al., 2020). The genome of P. fructicola is only 18.99

Mb long, and is predicted to contain around 8000 genes. As such, the remaining discussion will

consider only the two generalists,  C. beticola and C. cf. flagellaris, and the two more specialised

species, C. sojina and C. zeina due to the lack of confidence in the C. cf sigesbeckiae predictions.

Comparative genomics studies between  C. sojina isolates,  and other  Ascomycetes have been

performed and our results will be incorporated with these studies (Gu et al., 2020; Luo et al., 2018).

Gene gains and losses are often attributed to the lifestyle of the fungus. Blumeria graminis is an

obligate  biotrophic  plant  pathogen  that  shows  much  retrotransposon  accumulation,  genome

expansion, and gene loss (Spanu et al., 2010). Specific gene losses are strongly correlated with a

biotrophic lifestyle. This is likely due to the redundancy of metabolic pathways, transporters, and

CAZymes as the growth on plants is not always required, with the exception of obligate biotrophs
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(Spanu,  2012).  Additionally,  co-evolution  with  the  host  species  and  host  jumps  further  drive

genome evolution  (Menardo  et  al.,  2017).  In  Colletotrichum  spp.  a  reduction  in  CAZyme and

protease repertoire was linked to a reduced host range (Baroncelli et al., 2016).

In  studies  where  different  Cercospora species  with  differences  in  virulence  on  soybean,

comparative genomics showed that gene gains and losses likely influenced the phenotype (Gu et

al.,  2020).  The  comparison  of  the  C.  sojina genomes  of  two  strains  with  different  virulence

phenotypes  showed  a  difference  of  245  specific  genes,  with  five  candidates  related  to  the

regulation of host resistance and self-toxicity. Additionally, different C. sojina races with differences

in virulence also have different CAZyme profiles (Luo et al., 2018). Less virulent isolates had fewer

carbohydrate binding molecule (CBM) genes,  a class of  CAZymes. CBM enzymes anchor  the

enzymes to cellulose of the plant cell wall, allowing the fungus to potentially improve the efficacy

degradation of the plant cell wall (BORASTON et al., 2004). It has been proposed that a reduced

set of CBMs may slow the infection process, resulting in a less virulent pathogen  (Wang et al.,

2011).  In this study we also showed that  there is variation in  the CBM profiles of  Cercospora

species, with differences in abundance in the generalist and the specialist species. The specialist

species have a reduced number of CBMs compared to the generalist species, which may indicate

that a slower infection strategy may not be detrimental to the infection and reproduction of the

fungus. 

There was substantial variation in the frequency of CAZyme families between the generalist and

the  specialist  species.  Plant  cell  walls  of  monocotyledonous  and  dicotyledonous  plants  have

different components, and differ in their carbohydrate composition (King et al., 2011; Lagaert et al.,

2009; Vogel, 2008). Most importantly, monocotyledonous plant cell walls contain less pectin than

the  cell  walls  of  dicotyledonous  plants  (Vogel,  2008).  Therefore,  pathogens  of  strictly

dicotyledonous plants, often contain, among others, more pectinases  (Zhao et al., 2013). Within

the dicotyledonous and monocotyledonous plants, there is also substantial variation between the

composition of carbohydrates that make up plant cell walls, and these different components may

drive the diversification of CAZymes (Blanco-Ulate et al., 2014).
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The comparison between the generalist  and specialist  species showed differences in CAZyme

family  composition.  We  found  that  an  “auxiliary  action”  CAZyme  family,  AA3,  was  the  most

common in the two generalist species, and occurred at a lower frequency in the two specialist

species. The AA3 family catalyses the oxidation of alcohols or carbohydrates  (Levasseur et al.,

2013). These enzymes fulfill  a variety of functions.  For instance, in insects, AA3 enzymes are

associated  with  immunity  and  development,  while  in  yeast  they  are  responsible  for  alcohol

oxidation that releases hydrogen peroxide  (Goswami et al.,  2013; Iida et al.,  2007; Sun et al.,

2012). AA3 and AA9, a lytic monooxygenase, are co-regulated and co-secreted (Miyauchi et al.,

2017). Interestingly,  the AA9 family did not show the same copy number variation as the AA3

family. The AA3 family can be further subdivided into four separate groups, however, we did not

investigate which family contributed to the copy number variation  (The CAZypedia Consortium,

2018).

In  addition  to  CAZymes,  we also  considered the diversity  of  effectors among the  Cercospora

species.  Effectors  are  small  secreted  proteins,  with  a  signal  peptide  at  the  N-terminal  of  the

enzyme that  is  cleaved upon secretion  (Lo Presti  et  al.,  2015).  Highly  dynamic  repertoires  of

effectors  has  been  proposed  to  be  strongly  associated  with  dynamic  host  ranges  of

phytopathogens (e.g.  Guyon et  al.,  2014;  Schulze-Lefert  and Panstruga,  2011).  Durable  plant

resistance  to  phytopathogens  can  be  mediated  through  effector  recognition,  indicating  the

necessity of these proteins during infection  (Depotter and Doehlemann, 2020). We have shown

that  in  the  specialist  species,  there  have  been  effectors  lost  than  in  the  more  generalist

Cercospora species.  The  total  number  of  effectors  in  the  generalist  species  is  also  higher

compared to  the the specialist  species  of  Cercospora.  A dynamic  content  of  genes  encoding

effectors and CAZymes may drive the differences in host range. Future studies should investigate

whether the effectors that have been lost are orthologous, or whether the different species lost

unique effectors. The pangenome of each species can be considered to this end. Pangenomic

studies have shown incredible variation of genes represented by a species, with some pangenome
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of  some  species  containing  up  to  6600  genes  that  were  specific  to  a  subset  of  isolates

(Plissonneau et al., 2018).

Transciption assays of  C. sojina showed an enrichment of GH109 in comparison to other fungi

(Luo et al., 2018). While not the cause of the difference in virulence between C. sojina  isolates,

these enzymes are important in lectin-mediated resistance in soybean  (Gu et al.,  2020). In our

strict filtering approach, we have not detected a representative of the GH109 family in any of the

Cercospora species. While in silico studies have great potential to explore the genomic potential of

a species or a genus, caution should be exercised. We have applied very strict filters to ensure that

predictions made are reliable, and this may have resulted in some genes being filtered out of the

analyses. Additionally, it is also possible that the single individuals considered in this comparative

study have lost these genes during random processes as  Cercospora species readily undergo

gene gains and losses. Genome analyses should be accompanied with experimental studies to

validate the predictions of functional relevance.

Within the Ascomycota, mesosynteny is observed between distantly related as there are many

inversions  within  the  genomes,  while  translocations  are  more  rare  (Hane  et  al.,  2011).  The

Verticillium  genus has signatures many of genomic rearrangements between various  V. dahliae

strains (Faino et al., 2015, 2016; Jonge et al., 2012). Further, large-scale genomic rearrangements

are common among different Verticillium species based on ancestral genomic reconstruction with

varying frequencies in pathogenic and non-pathogenic species (Shi Kunne et al., 2018)‐Guerrero et al., 2016; Soyer et al., 2014) .  Synteny

within  the  Mycosphaerella genus  showed  a  high  level  of  synteny  between  C.  sojina and

Zymoseptoria  tritici,  but  less  between  C.  sojina and  the  remaining  Mycosphaella species

considered (Zeng et al., 2017b). The comparison of the C. beticola and C. cf. flagerllaris showed

that within the Cercospora genus these events may have occurred as well. The synteny between

the smaller  chromosomes of  one species  and the larger  chromosomes of  the  others may be

indicative of this. It is known that the C. beticola genome is plastic and that there are chromosomal

rearrangements between isolates  (Weiland and Koch, 2004). Ancestral reconstructions of these

genomes  like  those  done  in  Verticillium would  be  necessary  to  confirm  the  chromosomal
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composition of the most recent common ancestor of C. beticola and C. cf. flagellaris and may also

give more documentation to gene gain and loss processes.

Conclusion

This comparative genomics study has shown that the genomes of the genus hold the potential to

answer many different questions relating to host range and genome evolution. Here we showed

that species of Cercospora have a conserved CTB cluster. We showed the function of using whole

genome data to construct species trees. We also showed that there was a difference in the effector

and  CAZyme  repertoire  of  different  Cercospora species.  We  showed  that  the  generalist

Cercospora species lost fewer CAZymes and effectors than the specialist species. We showed that

several CAZyme families that may be important during infection are more frequent in the generalist

Cercospora species.  Finally,  we showed that  two very closely  related  Cercospora  species,  C.

beticola and C. cf. flagellaris shared substantial synteny, and that the genome of their most recent

common ancestor  likely  had  a  plastic  genome where  two  chromosomes  split  to  form the  10

chromosomes seen in the species at present.
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Supplementary Materials

Supplementary Tables

Supplementary Table 1: Assembly statistics for the Cercospora species included from NCBI

C. beticola C. cf. 
flagellaris

C. cf. 
sigesbeckiae

C. sojina

Total 
sequence 
length (Mb)

36.55 33.24 34.33 31.11

Scaffolds 252 57 335 12

N50 173 kb 2.9 Mb 1.3 Mb Full assembly

L50 62 5 10 Full assembly
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Supplementary Table 2: Number of predicted genes, secretome effectors, CAZymes, and 

CAZyme families of Cercospora species

C. beticola C. cf. 
flagellaris

C. cf. 
sigesbeckiae

C. sojina C. zeina

Predicted 
genes

11339 9983 6419 9967 9985

Secretome 1016 891 550 680 735

Effectors 204 169 99 117 118

CAZymes 371 319 206 281 310

Number of 
CAZyme 
families

120 115 84 104 104
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Scripts

Filter_cover_PacBio_assemblies_SMRTLink6.R

library(ggplot2)
library(tidyverse)
library(seqinr)

dir_name = "your_directory"
file_names=c("your_polished_assembly")
polishing_algo="arrow"

suffix_cov="-alignment_summary.gff" 
#Note: in the new format, the gff gives several information about the coverage (based on the 
python code found at https://github.com/PacificBiosciences/pbreports/blob/master/pbreports/
report/summarize_coverage/summarize_coverage.py):
#cov=(min_cov, median_cov, max_cov)))
#cov2=(mean_cov, sd_cov)))
#Because for the old version of SMRT assembly, we had only the average, I will use the average 
with the new version too.
suffix_fasta=".fasta"

for ( i in file_names) {
  #File names
  fasta_input_name = paste(dir_name, i, suffix_fasta, sep = "")
  fasta_output_name = paste(dir_name, i, ".filtered_on_cov", suffix_fasta, sep = "")
  cov_file_name = paste(dir_name, i, suffix_cov, sep = "")
  print(fasta_input_name)
  
  #Get the average coverage data from the gff file
  names_T = c("Unitig", "Source", "Feature", "Start",
               "End", "Score", "Strand", "Phase", "Attributes")
  T = read_tsv(cov_file_name, col_names = names_T, comment = "#")
  T_sep = separate(data = T, col = Attributes, into = c("Cov", "Cov2", "Gaps"), sep=";")
  T_sep$Cov2 = str_remove(T_sep$Cov2, "cov2=")
  T = separate(data = T_sep, col = Cov2, into = c("Mean_coverage", "Sd_cov"), sep=",", convert = 
TRUE)
  
  #Extracting the length of the unitig and the average coverage
  long = aggregate(T$End, by = list(T$Unitig), FUN = max)
  mean = aggregate(T$Mean_coverage, by = list(T$Unitig), FUN = mean)
  E = merge(long, mean, by= "Group.1")
  names(E) = c("Unitig", "Length", "Mean")
  med_value = mean(rep(E$Mean, times=E$Length))
  med_max = med_value * 1.5
  med_min = med_value / 1.5
  kept = E[E$Mean > med_min & E$Mean < med_max,]
  E$Pass = ifelse(E$Unitig %in% kept$Unitig, "pass", "fail")
  T$Pass = ifelse(T$Unitig %in% kept$Unitig, "pass", "fail")
  print(dim(kept))
  print(dim(E))
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  len_kept=sum(kept$Length)
  len_all = sum(E$Length)
  prop_kept = round(len_kept*100/len_all, 2)
  
  #Now, that we have the thresholds and results, we will print the results in graphs and tables
  update_geom_defaults("point", list(colour = NULL))
  value_plot = ggplot(data = T, aes(x=Unitig, y = Mean_coverage, col = Pass, fill = Pass))
  value_plot + geom_boxplot(outlier.alpha = 0.5, outlier.size = 0.6) + 
    geom_hline(aes(yintercept=med_min)) + 
    geom_hline(aes(yintercept=med_max)) +
    theme_bw() + 
    theme(axis.text.x = element_text(angle = 90, vjust = 0, hjust= 1))  +
    labs(title = paste("Coverage filter on PacBio assembly for", i),
         subtitle = paste("The total assembly goes from", len_all,
                          "to", len_kept, "bp (", prop_kept," kept) and from", 
                          nrow(E), "contigs to", nrow(kept),"."))
  ggsave(paste(dir_name, i, "_filter.png", sep=""), width = 11, height = 8)
  write.table(E, file = paste(dir_name, i, "_filter.tab", sep=""), 
              quote = FALSE, sep = "\t", row.names = FALSE)
  write.table(kept, file = paste(dir_name, i, "_pass_filter.tab", sep=""), 
              quote = FALSE, sep = "\t", row.names = FALSE)
  
  #Let's filter the data, if the fasta files are there
  if (file.exists(fasta_input_name)) {
  fastafile = read.fasta(file = fasta_input_name, seqtype = "DNA", 
                         forceDNAtolower = FALSE, as.string = TRUE, set.attributes = FALSE)
  
  f<-fastafile[names(fastafile) %in% paste(kept$Unitig, "|", polishing_algo, sep = "")]
  
  write.fasta(f, names(f), file.out=fasta_output_name)
  }else{
    print(paste("WARNING. I can't find the fasta file ", fasta_input_name,
                " so I will ignore the filtereing part", sep =""))
  } 
  
  
}

Identify_telomeres.sh

#   <<>><<>><<>><<>>
# |  Needed inputs  |
#   <<>><<>><<>><<>>

bowtie_dir=”bowtie_directory”
work_dir=”your_directory”
polished_fasta="assembly_Czeina_default.fasta"
sample_name="Czeina"
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telom_fn=${polished_fasta%.fasta}_telomeric_repeats
filtered_fn=${polished_fasta%.fasta}.filtered_on_cov.fasta
mt_ref_seq="Pseudocercospora_mori_mitochondrion.fasta" #From NCBI accession MG543071.1

#  -----------------------------
#   Detecting telomeric repeats
#  -----------------------------

${bowtie_dir}bowtie-build ${work_dir}${polished_fasta} ${work_dir}${sample_name}

${bowtie_dir}bowtie \
  ${work_dir}${sample_name} \
  -c CCCTAA \
  --all -v 0  \
  --threads 4 \
  | sort  -k 3 -nk 4  \
 > ${work_dir}${telom_fn}.txt

#Conversion from bowtie output format to bed format
awk 'BEGIN {FS= "\t"; OFS="\t"} {print $3, $4, $4+length($5), $1, 111, $2}' ${work_dir}$
{telom_fn}.txt \
 > ${work_dir}${telom_fn}.bed

#Merge repeats closer than the length of 1 (in case one repeat is mutated or has a sequencing 
error, likely at the contig end since the coverage depth drops)
bedtools merge -i ${work_dir}${telom_fn}.bed -d 7 \
 > ${work_dir}${telom_fn}_merged.bed

#Keep only blocks of more than 10 repeats (so longer than 60)
awk 'BEGIN {FS= "\t"; OFS="\t"} {diff=($3 - $2); if (diff > 60) print $1,$2,$3,diff} ' \
   ${work_dir}${telom_fn}_merged.bed \
   > ${work_dir}${telom_fn}_merged_long.bed

removesmalls.pl

##removesmalls.pl
##from https://www.biostars.org/p/79202/
#!/usr/bin/perl
use strict;
use warnings;

my $minlen = shift or die "Error: `minlen` parameter not provided\n";
{
    local $/=">";
    while(<>) {
        chomp;
        next unless /\w/;
        s/>$//gs;
        my @chunk = split /\n/;
        my $header = shift @chunk;
        my $seqlen = length join "", @chunk;
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        print ">$_" if($seqlen >= $minlen);
    }
    local $/="\n";
}

Heatmap.R

#heatmap in R:
#plot_cazymes.R
library(ggplot2)
mine.heatmap <- ggplot(data_h, mapping = aes(x = species, y = cazyme_family, fill = frequency)) 
+
   geom_tile() +
   theme(axis.text.y = element_text(size=6)) +
   xlab(label = "Cercospora species") + 
   ylab(label = "CAZyme family") + 
   scale_fill_gradient(low = "grey87",
                         high = "grey20") 
mine.heatmap
data_h <- read.table("cazy_all_species_heatmap.txt", header = T)

Ultrametric_tree.R

library(phytools)
library(phangorn) 
setwd('/home/laura/Desktop/Laura_Ruppert/1_data_Laura/Cercospora/11_CAFE/
Cercospora_effectors/')
species_tree = read.newick(file = "Cercospora_maxlike_tree_root_midpoint.nwk",text)
force.ultrametric<-function(tree,method=c("nnls","extend")){
  method<-method[1]
  if(method=="nnls") tree<-nnls.tree(cophenetic(tree),tree,
                                     rooted=TRUE,trace=0)
  else if(method=="extend"){
    h<-diag(vcv(tree))
    d<-max(h)-h
    ii<-sapply(1:Ntip(tree),function(x,y) which(y==x),
               y=tree$edge[,2])
    tree$edge.length[ii]<-tree$edge.length[ii]+d
  } else 
    cat("method not recognized: returning input tree\n\n")
  tree
}
species_tree_ultra = force.ultrametric(species_tree)
write.tree(species_tree_ultra, file = "tree_ultrametric.txt", append = FALSE, digits = 10, 
tree.names = FALSE)
is.ultrametric(species_tree_ultra)
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Conclusions and Perspectives
The aim of this thesis was to investigate the population genomic variation in the fungal pathogen

Cercospora beticola on wild and domesticated beet. We aimed to determine whether recent host

domestication has led to different evolutionary trajectories between populations isolated from wild

and domesticated beet. 

We show that  the commonly used reference-based mapping approach has high accuracy and

recall  at  the  read  depth  available  for  C.  beticola isolates.  Moreover,  we  show  that  genome

composition has an effect on the reliability of variant calling using multiple genome alignment-

based methods at 25X, currently an average depth for whole genome sequencing of fungi. We also

show that repeat content has a significantly smaller effect on the reliability of multiple genome

alignment-based methods when read coverage is 100X. We also showed that the use of  multiple

genome alignment-based methodologies can recover large structural variants with accuracy, and

at the correct location without the use of additional software. Based on our study, we conclude that

the multiple genome alignment-based approach can be applied in research op population data as

sequencing  costs  decrease  and  higher  depths  can  be  achieved,  and  as  third  generation

sequencing techniques develop.

Host domestication often results in the pathogens of these plants following different evolutionary

trajectories  than  those  on  the  wild  relatives  of  domesticated  crops  (Stukenbrock,  2013;

Stukenbrock and McDonald, 2008). Many agricultural crops have been domesticated thousands of

years ago, making the 300 year domestication history of sugar beet a peculiar case. Previous

studies indicated that global genotype flow in C. beticola is common, and that non-random mating

occurs (Vaghefi et al., 2017). Our results concur with the high level of gene flow with isolates from

North America and mainland Europe. Gene flow between the isolates from sea beet in the UK

occurs  to  a  lesser  extent.  As  such,  the  isolates  from the  UK cluster  by  separately  from the

remaining isolates. Surprisingly, the isolates from the UK show substantial genetic variation among

themselves. 
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Genetic differentiation between isolates from sea beet in the UK and Croatia showed a region that

was highly differentiated between the two sampling locations. Within this region there was a gene

that encoded an enzyme that plays a role in the production of aflatoxin B1 (Gengan et al., 2006).

This gene had a high frequency of premature stop codons in the isolates from Croatian sea beet,

but very low in those from UK sea beet. The premature stop codon was present at an equally low

frequency in isolates from Italian sugar beet, and intermediate frequencies in those isolates from

North American sugar and table beet. The Croatian isolates that harboured the premature stop

codon also clustered away from the remaining isolates in a reticulation network. Therefore, this

region may be indicative of other regions that undergo similar evolution as the region that we have

identified. There may be a biochemical interplay between sea beet and C. beticola in Croatia that is

not seen elsewhere.

Our  survey  of  the  Cercospora genus  showed  that  host  range  is  correlated  with  effector  and

carbohydrate active enzyme (CAZyme) repertoires. In many fungal plant pathogens, the number of

effectors and CAZymes a species harbours is strongly correlated with host range (Baroncelli et al.,

2016; Guyon et al., 2014; Schmidt and Panstruga, 2011). We showed that all Cercospora species

we considered contained the biosynthetic gene cluster for a universal toxin, cercosporin, produced

by  Cerospora species.  It  has  been  debated  whether  cercosporin  is  indeed  produced  by  all

Cercospora  species  due to the slow colonisation  rate  of  some species  (Assante  et  al.,  1977;

Groenewald  et  al.,  2013;  Luo  et  al.,  2018).  This  gene  cluster  has  also  been  duplicated  and

experienced multiple horizontal  transfers among other plant  pathogenic fungi  (de Jonge et  al.,

2018). While cercosporin is a universal toxin, it  is not required for the successful infection and

colonisation of plants by all  Cercospora species  (Choquer et al.,  2005). Therefore,  Cercospora

species  must  also  rely  on  other  mechanisms  to  infect  the  host.  To  illustrate  the  diversity  in

CAZymes and effector repertoire, we considered two specialist Cercospora species, C. zeina and

C. sojina, as well as two generalist species, C. beticola and C. cf. flagellaris. We showed that two

more  specialised  Cercospora species  contained  fewer  CAZymes  and  effectors  than  the  two

generalist species. Furthermore, we investigated the genomic synteny between the two generalist
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species. Large translocation events within the genomes of Ascomycete fungi are not uncommon

(Hane et al., 2011). Therefore, we propose that the most recent common ancestor of these two

species underwent chromosomal translocation events in its larger chromosomes.

This  thesis  provides a starting point  for  various  experimental  and further  population  genomics

based questions. Experimental questions could aim to answer whether the Croatian isolates that

possess the premature stop codon show host preference when infecting sea or sugar beet,  or

whether  they  are  specific  to  sea  beet.  Further  sampling  of  sugar  beet  in  the  UK should  be

considered to determine whether the substantial genetic diversity of  C. beticola on sea beet is

matched by these isolates. Furthermore, the genetic diversity of sea beet on the East Coast of the

UK should be quantified in order to correlate fungal diversity with host diversity. Additionally, the

direction of gene flow among  C. beticola isolates should be identify to confirm whether there is

gene  flow  from  isolates  found  on  wild  beet  to  isolates  from  sugar  beet,  or  vice  versa.  The

identification of  this  is important  to determine whether  C. beticola on sea beet  is reservoir  for

genetic diversity that can be introduced into isolates on sugar beet. This is an important aspect of

anticipating emerging pandemics of sugar beet, and potentially breeding for resistance prior to an

outbreak. Quantifying the level of gene flow between isolates from mainland Europe and North

America may be insightful with regards to more careful control of international sugar beet seed

imports and exports, as this may be a vector by which  C. beticola is spread across the globe

(Knight and Pethybridge, 2020). 

In summary, with work presented in this thesis, we have shown that the evolution of C. beticola has

not yet been strongly influenced by the domestication of its host. We found that  C. beticola from

both wild and domesticated hosts on mainland Europe and North America undergo admixture with

one another. Additionally, we show that the  C. beticola isolates from sea beet in the UK cluster

separately from the remaining isolates. This may be due to geographic isolation of these isolates.

Therefore, we postulate that geography is currently the primary contributing factor to the different

evolutionary trajectories of C. beticola.
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