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 Abstract –Dual-Active-Bridge (DAB) converters are able to 
step up/down DC voltage in a wide range by adopting medium 
frequency transformer (MFT) for isolating and converting 
voltage level. Increase in switching frequency of Si IGBTs 
reduces the MFT size instead it intensifies the semiconductor 
switching losses which leads to increase in the heatsink size. In 
this paper variation of heatsink volume versus frequency is 
compared versus MFT. MFT and heatsink volume of a 5 kW 600 
to 400 V DAB converter are optimized. Obtained results show 
that variation of switching frequency in range 1-10 kHz increases 

the size of optimal heatsink by 3 times, i.e [ ],HS opt sV f kHz∝ .   

 
 

 Index Terms – DAB converter, Heatsink, Medium Frequency 
Transformer, Volume Optimization, Efficiency. 
 

I.  INTRODUCTION 

Dual-Active-Bridge (DAB) are one of the key topologies 
for DC voltage level transformation and galvanic isolation 
utilizing medium frequency transformers (MFTs) [1]. DAB 
converters are referred to DC transformers with excellent 
bidirectional power control [2] and [3]. There are many 
applications that are benefited from these properties such as 
airborne wind turbines [4], offshore wind turbines [5], electric 
aircraft distribution systems [6], renewable generation control 
[7], and solid-state smart transformers [8].  

Some DC-DC converter topologies can be used to convert 
the DC voltage level and provide electric isolation for primary 
and secondary. For instance, series-resonant converter (SRC) 
[9] and dual H bridge (DHB) converter [10] are used as 
isolated DC-DC converters in the literature. SRC resonant 
circuit needs high voltage capacitors and a large inductor. 
Also, variable resonant frequency makes control system 
complicated. DHB topology has large reactive circulation 
power which results in high current inside MFT windings. 
While, DAB converter is able to achieve soft-switching in both 
primary and secondary sides, resonant inductance can be 
included in the MFT design and low circulating reactive power 
are making DAB an interesting solution. 

For designing a compact DAB converter, two parts play 
significant role: heatsink and MFT. In the case of MFT, core 
cross sectional area is proportional to the inverse of frequency, 

1/ sA f∝ , implying on weight and volume reduction by 

increasing the frequency [11]. Cooling surface is a function of 
MFT volume and therefore cooling system creates a constraint 

on reducing the volume of the MFT. Thermal constraint for 
natural convection design are more observable. It means that 
in Si IGBT based designs where switching frequency is limited 
to 10fs < kHz huge volume reduction is not reachable. In the 

other hand, in Si IGBT based converters operating in hard-
switching mode, switching losses increase exponentially with 
frequency. High Si IGBT losses need sufficient heatsink 
volume to convey heat out of the semiconductor chip which 
needs an optimal design to save volume.  

Comprehensive efficiency-volume-weight optimization of 
3-level and 5-level DAB converters based on Si IGBT and SiC 
MOSFET is done for a 5 kW DAB converter [12]. The paper, 
uses the analytical heatsink thermal model presented in [13] 
where heatsink fin and plate in an extruded heatsink are 
considered for thermal resistance network calculations. This 
method is relatively exact. However, it is not applicable for 
any fin geometry available in the market. In addition, 3D 
analytical models [14] and finite element method are more 
complex but having maximum exactness. Total thermal 
resistance of air forced cooling systems is lower than natural 
convection one and higher volume reduction is possible. When 
adding an air forced heatsink, an extra fan is required which 
enhances the overall losses and degrades the efficiency. So, 
only natural convection heatsink is considered in this paper. 

In this paper, an analytical design procedure is used to 
optimize the volume of heatsink and MFT in a Si IGBT based 
DAB converter. Natural convection is considered in the design 
and therefore only the semiconductor losses including 
conduction, switching and reverse recovery losses are 
influencing the design of heatsink. Other magnetic components 
such as MFT and inductor, and also PCB mounted control 
circuits such as drivers, sensors and the DSP based controller 
loss contributions are not considered the design of heatsink. 
The method is evaluated by designing a 5 kW DAB converter 
which convert 600 V DC to 400 V DC. In the design example 
IGBT module CM100DY-24T, U-shaped N87 ferrite cores, 1-
10 kHz litz wires and also Aavid Permalloy heatsink 
extrusions are used in the design. Design results show that 
minimum achievable volume based on the used materials for 
MFT is 1.4305 dm3 and for heatsink the minimum volume 
varies from 0.165 to 0.475 dm3 versus frequency of 1-10 kHz. 
Efficiency at optimal designs, neglecting the inductor, 
capacitor and control system losses, varies from 99% at 1 kHz 
to 97.2470% at 10 kHz.  



 

II. DAB CONVERTER ANALYSIS 

DAB converter circuit is shown in Fig. 1 and its current 
and voltage waveforms for switches S1 and S5 are shown in 
Fig. 2. Primary side ac current of the MFT can be stated as: 
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Where 1 2/t dc dca V V=  and  is the phase shift between 

primary and secondary H-Bridges of the DAB converter. 
Also, Vdc1 and Vdc2 are the primary and secondary DC voltages, 
respectively. Switching frequency is denoted by fs. Power of 
the converter is 
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In (4), Leq is the equivalent series inductance of the MFT 
and inductor which guarantees power flow for a given . The 
ac current is used for computing the MFT winding losses. 

Other important parameters are root-mean-square (rms) 
and average value of the currents flowing inside 
semiconductors.   
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Where Ts is the inverse of switching frequency. These 
values are required for calculating the semiconductor losses. 
Semiconductor major losses are conduction, turn on, turn off 
and reverse recovery losses. These losses can be analytically 
calculated from the provided data in the manufactures’ 
datasheets as in [15]. 
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Fig. 1 DAB converter basic topology. 
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Fig. 2 DAB converter basic voltage and current waveforms required for 
calculating MFT and semiconductor losses. First subplot is voltage applied to 
the S1 and S5, second subplot is ac current iac1, third and fourth subplots are 
currents through the IGBT and diode of S1, and fifth and sixth subplots are 
currents through the IGBT and diode of S2. Note that currents of S1 and S2 are 
shown in solid and dashed lines, respectively. 



 

III. HEATSINK DESIGN PROCEDURE 

Heatsink extrusions that are commercially available are 
cost effective and can be adopted for the design. First step in 
the heatsink design is to select the Si IGBT switches. It can be 
done based on the voltage and current rating of the converter. 
Heatsink surface temperature can be obtained by computing 
the IGBT power losses and using the thermal resistance of the 
junction to case, Rth,jc, as follows: 

 ,HS j th jc lossR Pθ θ= −   (9) 

Maximum required thermal resistance for a heatsink to 
transfer the heat from heatsink surface is: 
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Where PL,SW and NSW are power losses per switch and 
number of switches, respectively. Manufacturers usually 
provide Rth,n for nominal length, Ln, and temperature rise of 
heatsink to the ambient Δθn [16]. Correction factor curves are 
used to compensate Rth,n for arbitrary LHS and Δθ as shown in 
Fig. 3. 
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Fig. 3 Heatsink extrusion’s correction factors of Aavid Permalloy LLC. 

 

These curves can be approximated using the following 
equations: 
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Therefore, the required length correction factor and the 
minimum length of the extrusion can be found from the 
following:  
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Based on the LSH,min total weight and volume of the 
extrusion are computed.  

Flowchart of the heatsink design is shown in Fig. 4. Based 
on the figure, IGBT rating is the start point of the design. After 
selection of the IGBT switch ratings, its data can be used to 
drive the conduction, turn on and turn of losses as well reverse 
recovery losses. The semiconductor loss calculation method is 
based on the Drofenik paper given in [15]. So, after 
calculation of power loss per IGBT (Ploss) and also by using 
the junction to case thermal resistance (Rth,jc) the heatsink 
surface temperature (θHS) can be obtained. In this paper, 
maximum allowable junction (θj) and ambient temperature (θj) 
are 125 ◦C and 40 ◦C, respectively. 

An optimal heatsink extrusion must be able to convey the 
semiconductor heat with minimum size and weight. 
Extrusion’s cross section is usually constant and the only 
variable is the length for commercially available extrusion’s 
[16]. Based on the equation (14) minimum length of extrusions 
for any proper extrusion model can be calculated. Extrusion’s 
weight and volume can be directly computed from the length. 
In this paper, natural convection is considered. However, 
forced convection can be simply achieved by adopting related 
thermal resistance and correction factor. 
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Fig. 4 Heatsink design flowchart. 



 

IV. MFT DESIGN PROCEDURE 

In this paper, MFT optimization is done based on the [17]. 
Generally, core and winding losses are the main losses in 
MFTs and are considered in the most of the researches. 
However, some papers consider the insulation material 
capacitive losses such as [18] and [19]. In these paper, the 
insulation material capacitive losses are neglected in the 
optimization procedure. 

Fig. 5 (a) shows an half of a U-core based MFT and 
related dimensions that is adopted for constructing MFTs with 
N87 ferrite material.  
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Fig. 5 MTF constructed using N87 ferrite U-cores; (a) U-core main 
dimensions, and (b) concentric winding dimensions. 

 
A. Core Losses 

Non-sinusoidal voltage waveform supplying the MFT 
yields non-sinusoidal flux density waveform in the ferrite core. 
Improved generalized Steinmetz equation (IGSE) can be 
employed to approximate N87 ferrite core losses [20]. IGSE is 
an updated version of generalized Steinmetz equation (GSE) 
which is presented in [21]. IGSE improves the deficiency of 
GSE in calculation of the losses due to minor hysteresis loops. 
IGSE includes the minor hysteresis losses by using their peak-
to-peak amplitude of flux density in the same way that GSE 
uses peak-to-peak amplitude of flux density of major 
hysteresis loops to compute core losses. 

 
A. Copper Losses 

Copper losses, PCU, can be calculated using the following 
formula: 
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Where, MLT is the mean-length-turn of the winding, Np is 
the number of turns in the primary side of the MFT, σCU is the 
conduction of copper, ds and ns are strands diameter and 
number, respectively. Dowells resistance factor, F, is adopted 
for calculating high frequency effects on the round litz wire 
resistance [22]. Also, pf is the packing factor. Packing factor 
and other dimensional variables can be defined based on the 
winding geometry given in Fig. 5 (b) as follows: 

 

2

s
s

b

d
pf n

d

 
=  

 
  (16) 

 ( )2 2
2
W

cp cf

d
MLT a N t tπ  = + + + 

 
  (17) 

 
1 1 2 2 1 1 2 2( 1) ( 1)

2
W b b iL iL iW

Wmax df

d m d m d m t m t Mt

h c t

= + + − + − +
= −

 (18) 

 1 2
1 1 2 2( 1) , ( 1)b b

Wmax Wmax

d d
m N m N

h h

   
= + = +   
   

  (19) 

Where N1 can be calculated from Faraday’s law of 
induction as: 
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In these equations, M is the number of magnetic sections, 
hWmax is possible maximum winding height. Geometry and 
thermal constraints are: 
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Where Rth is the thermal resistance, PC is the core losses 
and ΔTm is the maximum allowable temperature rise. 

 
A. Design Procedure 

Fig. 6 shows the design and optimization method adopted 
in this paper. 
 

db

d s

ns=7

t

L

a
c

WMFF Core and Litz Wire Selection:
L, W, a, c, t, Ncp, ns, ds

Calculate MFF Parameters:
dW, lW, dW, hW, Vt, Vc, N, m

MFT Losses Calculation:
PC, PCU

Reject Invalid Soltions

Select the Best Compromise

Specifications:
PN, VDC1, VDC2, fS

Start

End
 

Fig. 6 MTF design algorithm. 

 



 

V. SIMULATION RESULTS 

An example 5 kW 600 to 400 V DAB converter is 
considered as a design example. Semiconductor losses are 
computed for sizing the heatsink. Capacitors and inductor 
losses are neglected. In the following subsections, MFT and 
heatsink optimization are given.  

 
A. MFT Optimal Design 

For constructing MFT, 20 round litz wires for fs=1-10 kHz 
from New-England Wire Technologies [23], six N87 ferrite U 
cores from Epocs AG [24] and potted EPOXY with dielectric 
strength of 16 kV/mm from Mouser Electronics and loss 
tangent of 0.02 at 100 kHz [18] are used. In addition, 
maximum number of parallel cores is set to Ncp=3 and peak of 
flux density is consider in range 0.2 to 0.3 Tesla in 0.01T 
steps. Therefore, total number of solutions is calculated from 
all possible solutions 10×6×20×20×3×10=720000. Acceptable 
solutions are depicted in Fig. 7. It is seen from the figure that 
efficiency of the MFT reduces by increasing the frequency. 
Minimum volume is 1.4305 dm3 where power density (ρ) is 
3.4954 kW/dm3. 

 
 
 

Fig. 7 Power losses versus Volume for MFT designs at 10 frequencies from 1 
up to 10 kHz. 

 
B. Heatsink Optimal Design 

The start point for designing heatsink is to estimate DAB 
converter power losses. MFT and semiconductor losses are 
shown in Fig. 8 as a function of frequency. 1200 V, 100 A 
IGBT module CM100DY-24T of Mitsubishi Electric is 
considered in this example design where its loss details can be 
found in [25]. For heastsik, 138 extrusions are selected with 
flat surface for mounting Si-IGBT modules from Aavid 
Permally LLC [16]. Four possible configurations are 
considered which are shown it table I. The table also include 
the best heatsink solutions at different frequencies. The results 
are also shown in in Fig. 9 where blue and red colors show 
configuration 1 and 4, respectively. Volumes larger than 1 dm3 

are removed from this figure. Every solid line shows the 
obtained volume of a heatsink extrusion.  
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Fig. 8 Detailed power losses at 10 frequencies from 1 up to 10 kHz. At high 
frequencies, switching losses dominate the other losses due to hard switching. 
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Fig. 9 Heatsink volume at 10 frequencies from 1 up to 10 kHz. At high 
frequencies, volume increases. 

 
C. Overview Results 

Obtained results show that heatsink volume increases 
from 0.165 to 0.475 when switching frequency varies from 1 
to 10 kHz. It shows the size increases 3 times. While, in this 
frequency range, the volume of MFT doesn’t change 
significantly. Based on the results given in table I, extrusion 
number BS338 is the best solution for frequencies 1 and 2 
kHz. Using BS338 for other frequencies such as 10 kHz 
results in a volume of 0.8 dm3 and using OSA72 gives 0.65 
dm3. The results imply on the effect of frequency on the 
selected heatsiks. Total volume of the IGBT modules is 0.373 
dm3. This value can be further reduced by selecting more 
compact IGBTs such as IXYS-FII50-12E which has current 
rating of 100 A at 25 ◦C. Semiconductor technology directly 
affect the heatsink design due to the amount of the generated 
losses. I the next work, effect of Si IGBT, SiC MOSFET and 
GaN will be evaluated on the heatsink volume. 



 

It can be concluded that for Si IGBT based DAB 
converters operating in hard switching mode, heatsink volume 
increases rapidly and can be a limiting constraint for 
application where volume is a priority. 

 
TABLE I 

HEATSINK PARAMETERS FOR DESIGN AND OPTIMAL RESULTS 

Configurations 

1 WHS>1.1×LSW LHS>1.1×4×WSW 
2 WHS>1.1×4×WSW LHS>1.1×LSW 
3 WHS>1.1×2×LSW LHS>1.1×2×WSW 
4 WHS>1.1×2×WSW LHS>1.1×2×LSW 

Optimal 
Extrusions 

1-2 kHz BS338  Config. No. = 1 
3 Hz 0k267 Config. No. = 2 
4 Hz 0SA72 Config. No. = 2 

5-10 Hz 0SX98 Config. No. = 2 
Si-IGBT Module: CM100DY-24F, Vol.=0.373 dm3 
MFT Vol.= 1.4305 dm3 
Total Vol. of 
MFT, IGBTs 
and Heatsink 

1 kHz Vol.= 1.9785 dm3 
5 kHz Vol.= 2.1235 dm3 

10 kHz Vol.= 2.2535 dm3 

 

VI. CONCLUSION 

An analytical method is employed in the paper to evaluate 
the optimal volume of the heatsink as well medium frequency 
transformer (MFT). Basic data provided by manufacturers of 
heatsink extrusions in the data sheets are used to compute the 
minimum length of the extrusions. Mounting and dimensional 
constraints are also considered in the design procedure. 
Optimization is done for an example 5 kW 600 to 400 V dual-
active-bridge with two H-Bridges and an isolating MFT. 
Simulation results show that the volume of the optimally 
designed heatsinsk is proportional to the square root of 
frequency in kHz. So, when frequency varies from 1 to 10 
kHz, heatsink optimal volume increases close to three times. 
While, in this case, MFT volume variation is not considerable. 
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