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Abstract. Spherical objects, such as bubbles and spheres, embedded in mediums and at
viscoelastic interfaces are encountered in many applications, including the determination of
material properties. This paper assesses the models for predicting the responses of spherical
objects in viscoelastic mediums and at viscoelastic interfaces used in various applications. The
models are presented very compactly, and evaluations are performed based on the analyses of
the models for the spherical objects in viscoelastic mediums and at viscoelastic interfaces. First,
the models for predicting the static displacements of spherical objects are presented and
assessed. After that, the models for predicting the dynamic responses of spherical objects are
presented and their dynamic behaviours are compared. Then, the models for the deformation of
the medium around spherical objects and stress distribution are presented and evaluated. The
models and evaluations presented in this study can be exploited in various applications,
including biomedical applications.

1. Introduction
Spherical objects, such as bubbles and spheres, embedded in mediums and at viscoelastic interfaces
are encountered in many applications [1-4]. For example, bubbles and spheres embedded in a medium
have been used to determine material properties, such as the Young’s modulus [1,5]. Microbubbles at
interfaces are used in therapeutic and diagnostic ultrasound applications [6,7]. Similarly, spheres at
interfaces are exploited in atomic force microscopy or indentation tests [8-10]. There have been many
studies in recent years to understand the responses of spherical objects in mediums and at viscoelastic
interfaces, and to reveal their applications [5,7,11-17]. However, the models for predicting the
responses of spherical objects in viscoelastic mediums and at viscoelastic interfaces have not been
compared and evaluated in the literature so far.

The models for predicting the responses of bubbles and spheres in viscoelastic mediums and at
viscoelastic interfaces are presented and evaluated in this paper. Here, the models are presented very
compactly, and evaluations are performed based on the analyses of the models for the spherical objects
in viscoelastic mediums and at viscoelastic interfaces. The spherical object with a radius R embedded
in a viscoelastic medium and at a viscoelastic interface with a shear modulus G, density  and
viscosity  is illustrated in Figure 1. Here, first, the models for predicting the static displacements of
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spherical objects are presented and assessed. After that, the models for predicting the dynamic
responses of spherical objects are presented and their dynamic behaviours are compared. Then, the
models for predicting the deformation of the medium around the spherical objects and stress
distribution are presented and evaluated.

Figure 1. The spherical object embedded in a viscoelastic medium (left) and
at a viscoelastic interface (right).

2. Static displacements of the spherical objects
(1) The displacement of the bubble embedded in a soft medium for a static force is given by [11]:

� =
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(1)

(2) The displacement of the bubble at a soft interface for a static force is defined by [14]:
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(3) The displacement of the sphere embedded in a soft medium for a static force is given by [11]:
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(4) The displacement of the sphere at an interface for a static force is given by [18]:

� = �
���
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�/�

(4)

Here, �� is the force amplitude, � is the shear modulus of the medium, �∗ is the reduced Young’s

modulus, computed as 1/�∗ = �1 − �������
� � �������� + (1 − ��) �⁄ and � is the radius of the

spherical object. � and � are the Young’s modulus and Poisson’s ratio of the medium, respectively.
For a rigid sphere, the reduced Young’s modulus becomes �∗ = � (1 − ��)⁄ . The elasticity modulus
is related to the shear modulus by � = 2�(1 + �) for homogeneous isotropic materials.

The stiffness for the four models presented above is plotted as a function of the displacement of the

spherical objects in Figure 2. Here, the stiffness is normalized by �� (i.e.,
��

���
) and the displacement

is normalized by � (i.e.,
�

�
). It is seen that the stiffness of the bubble and sphere embedded in the

medium are constant. On the other hand, the stiffness changes nonlinearly with the displacement for
the spherical objects at interfaces. The stiffness of the sphere in the medium, the bubble in the medium,
and the bubble at the interface is approximately 4.2, 2.8, and 1.4 times, respectively, greater than the
stiffness of the sphere at the interface for a displacement equal to the radius of the spherical objects
(i.e., u = R).
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The normalized force (i.e.,
��

��
) required for a specific normalized displacement for the four systems

presented above is plotted in Figure 3. It is seen that the force required for a specific displacement is
highest for the sphere embedded in the medium and lowest for the sphere at the interface. The force
required for a specific displacement for the bubble embedded in the medium is higher than the one for
the bubble at the interface.

Figure 2. The normalized stiffness as a
function of normalized displacement.

Figure 3. The normalized force as a function of
normalized displacement.

3. Dynamic responses of the spherical objects
(i) The frequency-domain equation that couples the displacement of the bubble embedded in a soft
viscoelastic medium for a dynamic force is [11]:

4�(� − ���)���1 − ��� −
�

�
���� +

�

��
������ = � (5)

where � =
�

�(�����) �⁄
is the complex wave number of the shear wave with the frequency �, � and �

are the density and viscosity of the medium, � = √−1, � is the Fourier transform of the external force
�(�), and � is a spectral component of the bubble displacement. Let’s now consider the external force
as a rectangular pulse with an amplitude of �� and a duration of � (i.e., the constant force �� is applied
for a short time � and then removed). It should be remembered that the response to the rectangular
pulse simulates the impulse response for small � values and the step response for large � values with

0 ≤ � ≤ �. It can be calculated that the Fourier transform of the rectangular pulse is � = −
���

�
����� −

1�. Hence, the dynamic displacement of the bubble in the viscoelastic medium can be determined
using:
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(ii) The frequency-domain equation that couples the displacement of the bubble at a soft viscoelastic
medium interface for a dynamic force is given by [14,15]:
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where �� is the angle corresponding to the displacement �(�) . The dynamic displacement of the
bubble at the viscoelastic medium interface can be determined using:

�(�) = −
���

�����������
�(�)

�
�
�
�
∫

��������(�����)�����

�(�����)�������
�

�
�����

�

��
������

d�
�

��
(8)



ICMSET 2021
IOP Conf. Series: Materials Science and Engineering 1150  (2021) 012016

IOP Publishing
doi:10.1088/1757-899X/1150/1/012016

4

(iii) The frequency-domain equation that couples the displacement of the sphere embedded in a soft
viscoelastic medium for a dynamic force is given as [12]:

−���
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Here �� =
�

�
����� is the mass of the sphere where �� is the density of the sphere. The dynamic

displacement of the sphere in the viscoelastic medium can be determined using:
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(iv) The frequency-domain equation that couples the displacement of the sphere at a viscoelastic
medium interface for a dynamic force can be expressed as follows [17]:
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The dynamic displacement of the sphere at the viscoelastic medium interface can be determined using:
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The dynamic responses of spherical objects with a radius of R = 2 m in a viscoelastic medium and at
a viscoelastic interface (G = 2000 Pa,  = 1000 kg/m3,  = 0.2 Pa s, v = 0.45) for a force of �� = 0.015
N and two different durations are plotted in Figure 4. Here, the time duration is divided into N points
(e.g., 500), and the calculations are repeated over the entire period of interest using Matlab
(MathWorks, Natick, MA, USA) to find the dynamic responses of spherical objects. It is seen that the
rate of relaxation is lowest for the bubble at the interface. A force of �� = 0.015 N (or 15 nN)
produces a steady-state displacement of approximately 0.20, 0.28, 0.78, and 1.13 m for the sphere in
the medium, the bubble in the medium, the bubble at the interface, and the sphere at the interface,
respectively, for a radius of R = 2 m.

Figure 4. Displacements of spherical objects (G = 2000 Pa,  = 1000
kg/m3,  = 0.2 Pa s, v = 0.45, R = 2 m, �� = 3000 kg/m3, �� = 0.015 N).

The dynamic responses of spherical objects with a radius of R = 100 m in a viscoelastic medium and
at a viscoelastic interface (G = 2000 Pa,  = 1000 kg/m3, v = 0.45) with two different viscosity values
and a force of �� = 30 N are plotted in Figure 5. It is seen that, for all the four cases, only the sphere
at the interface oscillates (when  = 0.2 Pa s). However, the sphere does not have any oscillations
when the viscosity is increased ( = 0.5 Pa s). It is seen that the viscosity does not change the steady-
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state displacements of the spherical objects. The results show that the force producing a displacement
of u = R is tens of nano-Newton for spherical objects with a diameter of a few micro meters. The
corresponding force is tens of micro-Newton for spherical objects with a diameter of hundred micro
meters.

Figure 5. Displacements of spherical objects (G = 2000 Pa,  = 1000 kg/m3, v
= 0.45, R = 100 m, �� = 3000 kg/m3, �� = 30 N).

4. Deformation of the medium around spherical objects and stress distribution
(a) Using the formulations by Ilinskii et al. [11], the deformation of the medium and the nonzero stress
component for the bubble embedded in a soft medium can be written as:
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where �(�) is given by equations (1) and (6) for static and dynamic loading, respectively. (b) Using
the formulations by Koruk and Choi [14], the deformation of the medium and the nonzero stress
component for the bubble at a soft interface can be written as:
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where �(�) is given by equations (2) and (8) for static and dynamic loading, respectively. (c) Using
the formulations by Ilinskii et al. [11], the deformation of the medium and the nonzero stress
component for the sphere embedded in a soft medium can be written as:
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where �(�) is given by equations (3) and (10) for static and dynamic loading, respectively. (d) The
radius of the contact area caused by the sphere at an interface and the maximum pressure within the
contact area can be written as:

� = ���(�) (19)

���� =
���

����(�)
(20)

where �(�) is given by equations (4) and (12) for static and dynamic loading, respectively. The
stresses underneath the contact area are:
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The stress developed in the viscoelastic medium (G = 2000 Pa,  = 1000 kg/m3, v = 0.45) underneath
the spherical object with a radius of R = 2 m as a function of position for a force of �� = 0.015 N is
plotted in Figure 6. Here, the position is measured from the tip contact point and normalized by the

radius (i.e.,
�

�
). It is seen that the stress is maximum at the tip contact point (p = 0) for the bubble while

it is maximum at p/R = 0.4 for the sphere. For the same force level, the magnitude of the maximum
stress is approximately 150, 600, 1550, and 1850 Pa for the sphere in the medium, the bubble in the
medium, the bubble at the interface, and the sphere in the interface, respectively. As expected, the
stress approaches zero far from the contact point for all cases (being negligible for p/R > 8).

Figure 6. Stress distribution underneath the tip contact point (G =
2000 Pa,  = 1000 kg/m3, v = 0.45, R = 2 m, �� = 0.015 N).

5. Concluding remarks
In this paper, the models for predicting the responses of spherical objects in viscoelastic mediums and
at viscoelastic interfaces are assessed. First, the models for predicting the static displacements of
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spherical objects are presented and assessed. After that, the models for predicting the dynamic
responses of spherical objects are presented and their dynamic behaviors are compared. Then, the
models for predicting the deformation of the medium around the spherical objects and stress
distribution are presented and evaluated.
 The force increases linearly with the displacement of the bubble and sphere embedded in a

medium, though it changes nonlinearly with the displacement of the bubble and sphere at an
interface. The force needed for a displacement equal to the radius of the spherical object for the
sphere in the medium, the bubble in the medium, and the bubble at the interface is approximately
4.2, 2.8, and 1.4 times, respectively, greater than that of the sphere at the interface. The force
producing a steady-state displacement equal to the radius of the spherical object is tens of nano-
Newton for spherical objects with a diameter of a few micro meters (for a medium shear modulus
of a few thousand Pascal). The corresponding force is tens of micro-Newton for spherical objects
with a diameter of hundred micro meters.

 The rate of relaxation is low for the bubble at the interface, compared to the sphere at the interface
and the bubble and sphere in the medium. For the same radius and material properties, although
there are no oscillations for all other three systems, the sphere at the interface can oscillate.
However, the sphere does not have any oscillations when its radius is small and the medium
viscosity is high. The viscosity does not change the steady-state displacements of the spherical
objects.

 The stress is maximum at the tip contact point for the bubble, while it is maximum at the point
where the ratio of position to radius is 0.4 for the sphere. For the same level of force, the
magnitude of the maximum stress for the bubble in the medium, the bubble at the interface, and
the sphere in the interface is approximately 4, 10, and 12 times, respectively, greater than that for
the sphere in the medium. For all four cases, stress is negligible when the ratio of position to
radius is greater than 8.

The models and evaluations presented in this study can be used in many practical applications. For
example, they can be used to design experiments and to identify the elastic and damping properties of
materials at the nano- and micro-scale in biomedical applications. They can be exploited to determine
the responses of spherical objects in viscoelastic mediums and at viscoelastic interfaces, and to
identify the stresses developed in mediums around the spherical objects in practical applications. The
experimental evaluation of the four cases presented in this paper is considered as the topic of a future
work.
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