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ABSTRACT

Genome engineering using single-stranded oligo-
nucleotides is an efficient method for generating
small chromosomal and episomal modifications in
a variety of host organisms. The efficiency of this
allelic replacement strategy is highly dependent on
avoidance of the endogenous mismatch repair
(MMR) machinery. However, global MMR inactiva-
tion generally results in significant accumulation
of undesired background mutations. Here, we
present a novel strategy using oligos containing
chemically modified bases (20-Fluoro-Uridine,
5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-
deoxyGuanosine) in place of the standard T, C,
A or G to avoid mismatch detection and repair,
which we tested in Escherichia coli. This strategy
increases transient allelic-replacement efficiencies
by up to 20-fold, while maintaining a 100-fold lower
background mutation level. We further show
that the mismatched bases between the full
length oligo and the chromosome are often not
incorporated at the target site, probably due to
nuclease activity at the 50 and 30 termini of the
oligo. These results further elucidate the mechan-
ism of oligo-mediated allelic replacement (OMAR)
and enable improved methodologies for efficient,
large-scale engineering of genomes.

INTRODUCTION

Oligo-mediated genomic modification proceeds via trans-
formation of short single-stranded (ss) DNA into cells
expressing ssDNA-annealing recombinase proteins,

which mediate an Okazaki-like allelic-replacement event
at the replication fork (1). These synthetic ssDNA oligos
can be used to insert novel sequences, to produce
mismatches of >30 bp, or to delete gene segments (2).
This oligo-mediated allelic-replacement (OMAR) process
is distinctly different from double-stranded (ds) DNA-
based recombination engineering [more commonly
referred to as recombineering (3–5)] in that: (i) only an
easily synthesized short ss-oligonucleotide (50–90 bp) is
needed, as opposed to a larger (>700 bp) selectable
dsDNA cassette and (ii) the efficiency of oligo-based
allelic replacement is up to 30% versus 0.01% for
dsDNA recombineering (6). Furthermore, only a ssDNA
binding protein is needed for OMAR (7,8). In contrast,
dsDNA recombineering needs additional homologous
recombination machinery such as exonucleases. This
high allelic-replacement efficiency facilitates Multiplex
Automated Genome Engineering (MAGE), which has
been used to iterate cyclical rounds of allelic replacement
to simultaneously modify many chromosomal targets in a
high-throughput fashion (9,10).

Here, we define the process of oligo-mediated site-
specific genomic modification as ‘allelic replacement’
based on its putative mechanism of action in Escherichia
coli. It has been observed that oligos designed to target the
lagging strand provide for up to 30-fold greater replace-
ment efficiency than compared with leading strand-
targeting oligos (2,11). In the Gram-negative E. coli
bacteria, a single-stranded DNA binding protein derived
from the �-phage, Red-Beta, facilitates the annealing of
the oligo to the homologous chromosomal sequence
by stabilizing the ssDNA secondary structure, and
may also protect against nuclease degradation (12).
The processing and annealing of oligos to an exposed
single-stranded region of the chromosome at the replica-
tion fork may show mechanistic similarities with those of
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Okazaki fragments. Recent studies have suggested that
a full-length single-stranded intermediate may be also
mediate dsDNA recombineering (13,14). However,
detailed mechanisms of oligo-mediated allelic replacement
still remain to be elucidated.

In addition to prokaryotic systems, the use of short
oligonucleotides to generate site-specific mutations in the
chromosome has been well-established for eukaryotic
systems including yeast (15,16), mammalian cells (17,18)
and plants (19,20). Strategies using RNA–DNA chimeric
oligonucleotides (RDO) and triplex-forming oligonucleo-
tides (TFO) have been developed (21,22) based on earlier
observation that single-stranded oligodeoxynucleotides
(ODN) could generate site-specific changes to the yeast
chromosome (23). Chemical modifications to the ODNs
such as phosphorothioate linkages (24) or base variations
such as locked nucleic acid (LNA) have also been shown
to improve the conversion efficiency (25). While reports of
efficiencies of up to 9% have been documented (26), the
conversion efficiency has generally remained 0.01–0.1%
(21). These limited efficiencies are likely linked to DNA
repair and homologous recombination proteins (e.g.
MSH2, RAD51 and RAD54), which have been implicated
in this oligo-mediated conversion process (27,28).

Previous studies showed that the endogenous mismatch
repair (MMR) system in E. coli can significantly reduce
the efficiency of OMAR by correcting mismatched bases
introduced as a part of the synthetic oligonucleotide (29).
Of the several mismatch repair pathways employed by
E. coli, the methyl-directed MutHLS system specifically
acts on mismatches, insertions, deletions of 1–6 nt
(30,31). Mispaired bases are first detected by the MutS
protein dimer at the mismatch site, which triggers MutL
recruitment. Together, MutS and MutL activate the endo-
nuclease MutH, which preferentially nicks the
unmethylated strand of the hemi-methylated dGATC
site of newly synthesized DNA. The excision and repair
synthesis is subsequently carried out by one of several
single-stranded nucleases, DNA polymerase III, ssDNA
binding protein and DNA ligase. Various in vitro and
in vivo studies have suggested that the correction efficiency
of this MMR system varies based on the type of
mismatches present (30,32,33). Costantino and Court
(29) showed that the efficiency of OMAR could be
increased by more than 100-fold by knocking out mutS.
This approach enabled the detection of recombinants via
low-throughput PCR screening (�50–100 clones) instead
of traditional antibiotic marker selections (>106 colonies).
However, a DmutS strain suffers from a 100-fold higher
background mutation rate, which causes undesired muta-
tions to accumulate (34). Furthermore, mutator strains
tend to have decreased fitness under laboratory conditions
in comparison to wild-type strains, because most random
mutations are deleterious (35,36).

Here, we present a strategy using oligonucleotides con-
taining commercially available chemically modified base
analogs to avoid recognition and correction by the
native mismatch repair system. We also describe results
suggesting that oligos are processed by nucleases at the
replication fork, causing incomplete incorporation of the
full-length oligo. These results will facilitate the design of

improved oligos for allelic replacement in high-throughput
genomic engineering applications.

MATERIALS AND METHODS

Abbreviations

Table 1 lists the abbreviations used in this article.

Media, chemicals and reagents

Liquid cultures of all strains were grown in LB-min-rich
media containing tryptone (10 g/l), yeast extract (5 g/l)
and NaCl (5 g/l), and buffered to pH 7.45 with NaOH.
Chloramphenicol (cm) and kanamycin (kan) were added
to LB-agar plates (LB-min with 15 g/l agar) at con-
centrations of 20 mg/ml and 30 mg/ml, respectively. X-Gal
(40mg/ml) and IPTG (0.1mM) were used on LB-min
plates for functional assay of b-galactosidase activity.
MacConkey–Maltose (Mac–Mal) or MacConkey–
Galactose (Mac–Gal) agar plates were made by adding
D-(+)-maltose monohydrate (10 g/l) or D-(+)-galactose
(10 g/l), respectively, to Difco MacConkey Agar Base
(40 g/l) which contains peptone (17.0 g/l), proteose
peptone (3.0 g/l), bile salts no. 3 (1.5 g/l), NaCl (5.0 g/l),
agar (13.5 g/l), neutral red (30mg/l) and crystal violet
(1mg/l). Multiplex PCR kits were purchased from
Qiagen (Cat #206143). PCR primers and oligonucleotides
were synthesized by Integrated DNA Technologies (IDT)
with standard purification for 90-bp oligonucleotides and
vendor recommended purification for modified bases.
Sanger DNA sequencing was performed by Agencourt
Bioscience Corporation.

Oligonucleotides

The Oligonucleotides (oligos) used in this study (listed in
full in Table 2) are targeting the lagging strand of
replicating DNA, meaning that they have the complemen-
tary sequence to the lagging strand.

Strains used

Escherichia coli strains EcNR1 and EcNR2 have been pre-
viously described (9). In brief, a defective Phage �-Red
construct was introduced by P1 transduction into E. coli
MG1655 at the bioA location to produce EcNR1
(DbioA::l-Red-bla). The relevant � genes Reda, Redb

Table 1. List of abbreviations used in this article

AR Allelic replacement

PT bases Phosphorothioated bases
F-U 20 Fluoro dU
F-A 20 Fluoro dA
F-G 20 Fluoro dG
F-C 20 Fluoro dC
5-Me-C 5-Methyl dC
DiPr 2,6-Diaminopurine
2-AP 2-Aminopurine
Iso-G Iso-dG
Iso-C Iso-dC
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and Redg are under regulation of the pL promoter and the
temperature sensitive cI857 repressor. EcNR2 was made
by using �-Red homologous recombination to replace
mutS with a chloramphenicol acetyltransferase (cat)
cassette in EcNR1, thereby generating the DmutS::cat
genotype. EcZS2 was made by introducing a kanamycin
resistance (kan) cassette to replace the recA gene in
EcNR1, generating a DrecA::kan genotype.

Oligo-mediated allelic replacement

Electrocompetent EcNR1 and EcNR2 cells induced for
allele replacement were generated as previously described
(9). In brief, individual colonies from a freshly streaked
overnight plate were inoculated into 3ml LB-min aliquots
and grown in a rotator drum at 300 r.p.m. at 32�C.
Upon reaching OD600 of 0.7, the glass tubes were moved
to a 42�C shaking water bath for 15min to induce the
expression of �-Red proteins. Cells were then immediately
chilled on ice for at least 5min and subsequently made
electrocompetent by repeated (at least twice) pelleting
and resuspension in cold sterile dH2O. One microliter
of cells (�7� 108) were finally concentrated 20-fold into
50 ml reactions containing oligos (typically �1–5mM) in
dH2O and electroporated with a BioRad GenePulser
using a 1mm gap cuvette at 1.8 kV, 25 mF and 200�.
Electroporated reactions were immediately added to 3ml
of warm LB-min media and recovered for at least 3 h prior
to plating.

Colorimetric assays to determine allelic-replacement
efficiencies

Allelic-replacement efficiencies were determined by using
oligos (Table 2) designed to introduce an inactivating
nonsense mutation in the lacZ, malK or galK gene, and
then screening for the function of that gene. All oligos
used were designed to be complementary to the lagging
strand of the replicating chromosome. Inactivating the
lacZ gene abolishes b-galactosidase activity and results
in white colonies on LB-min X-Gal/IPTG agar plates,
rather than the blue colonies indicative of a functional
lacZ gene. Targeted inactivation of the malK gene
abolishes the ability of cells to catabolize maltose and
results in white colonies on the pH-indicated Mac–Mal
agar plates, compared with red colonies from a functional
malK gene. Similarly, inactivation of the galK gene can be
screened on Mac–Gal plates. Cells are generally plated at
a density of 300–500 colonies per plate, after which the
allelic-replacement efficiency is calculated from the ratio
of the number of mutants to total cells. In general, cells
were recovered for at least 3 h after electroporation to a
density of 109 cells/ml prior to plating. The 3 h recovery
ensured that all replicating chromosomes [up to 8 h in rich
medium (37)] have properly segregated to separate
daughter cells, thereby guaranteeing clonality of each
colony on the plate. Colonies produced from this proced-
ure are always mono-colored, whereas a shorter recovery
time often produced sector-colored colonies suggesting
non-clonality.

RESULTS

In vivo characterization of MutS binding and mismatch
repair efficiency

We first performed a detailed characterization of the
ability of the E. coli mismatch repair system to correct
different types of mismatches in vivo. We designed 90 bp
lagging strand targeting oligos to inactivate either the lacZ
or malK genes by incorporation of a premature nonsense
stop codon, which could be detected by colorimetric assay.
Eight oligos targeting several different locations in lacZ or
malK were designed (lacZm9v1 through 7, malKm1v1),
which generated each of eight possible single base pair
mismatches (C:C, T:T, G:G, A:A, C:T, C:A, G:T, G:A).
Allelic-replacement experiments were performed by
introducing each oligo into the mutS(+) EcNR1 strain
or the mutS(�) EcNR2 derivative. The efficiency of
allelic replacement is defined as the number of mutant
cells per total colony forming units (CFU) as determined
by the ratio of either white versus total colonies on LB-X-
Gal/IPTG plates for lacZ-inactivating oligos, or white
versus total colonies on Mac–Mal plates for malK-
inactivating oligos. Consistent with previous observations
(29,30,32), we found that the efficiency of mismatch repair
depended on the base pairing type (Figure 1a), with C:C
mismatches very poorly corrected and G:G mismatches
most efficiently corrected. Interestingly, we also observed
context dependency of MMR correction, and found an
oligo (lacZm7v1) that generated an A:G (chromo-
some:oligo) mismatch at +25 bp position of the lacZ
gene at �20% allelic-replacement efficiency for both
mutS(+) and mutS(�) strains. The lacZm7v1 oligo is dif-
ferent from the lacZm9v1 oligo only at the mismatched
base with a G instead of an A, but has a greatly increased
efficiency of 20% versus 5% in the mutS(+) strain.
In contrast, the lacZm9v4 oligo, which generated a G:A
mismatch, was only 3.3% efficient in the presence of mutS
and 20.9% efficient in its absence. In general, mismatches
containing the more common transition mutations were
better corrected by MutS than transversion mutations.
We further observed that oligos containing eight or
more mismatches have the same allelic-replacement effi-
ciency in both mutS(+) and mutS(�) strains (Figure 1b),
consistent with previous findings (6, 31). Thus the ability
of mutS to recognize the mismatch lesion is critical for
MMR activation, in terms of both mismatch type and size.

Mismatch repair evasion using modified bases

The E. coli MutS protein appears to be evolutionarily
optimized to bind at high affinity to G:T mismatches
and at low affinity to C:C mismatches, which correspond,
respectively, to the most and least frequent polymerization
errors during DNA replication (12). Since MutS binds
poorly to the infrequently occurring C:C mismatches, it
is likely that MutS will have reduced affinity to even more
unusual DNA base pairing. We thus hypothesized that
MutS cannot bind to some mismatches created by base
pairing with non-standard nucleotides due to distortions
of the DNA backbone not found in nature (33). Oligos
containing these modified mismatching bases should have
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reduced MMR correction and increased allelic-
replacement efficiency, especially for otherwise efficiently
corrected mismatches (e.g. G:T, G:G). To test this hypoth-
esis, we designed 90-mer oligos with the mismatching base
containing non-standard ribose or nucleobase chemical
modifications that were commercially available (Table 2)
against the screenable lacZ and malK genes. The internal
modified bases we explored include: (i) 20 Fluoro bases
(A, G, U, C), which have a fluorine modified ribose
known to increase base pair binding affinity and confer
some nuclease resistance compared with native RNA (38);
(ii) Phosphorothioated bases, which contain a sulfur atom
in place of a non-bridging oxygen in the phosphate
backbone, which is known to increase resistance to
nuclease degradation (39); (iii) 2-Aminopurine, which is
a naturally fluorescent deoxyAdenosine analog that leads
to reversible inactivation of the E. coli MMR when sup-
plemented in bulk (40); (iv) 2,6-Diaminopurine, which
forms three hydrogen bonds when base paired with
deoxyThymidine, thus increasing binding affinity; (v)
5-Methyl-deoxyCytidine, which has increased binding
affinity; (vi) Iso-deoxyGuanosine, which will base pair
with 5-Methyl Iso-deoxyCytidine but not with
deoxyCytidine (41), and Iso-deoxyCytidine, which will
base pair with Iso-deoxyGuanosine, but not with
deoxyGuanosine; and (vii) deoxyUridine, which can
substitute for deoxyThymidine. Oligos were synthesized
by Integrated DNA Technologies and HPLC- or
PAGE-purified based on vendor recommendations. For
side-by-side comparison, we also obtained oligos with
standard nucleotides for each of the modified oligos.
Modified or unmodified oligos were introduced into
EcNR1, and the efficiency of oligo incorporation was
assessed by colorimetric assay on LB-XGal/IPTG or
Mac-Mal color indicator plates.

We found that oligos with certain modified bases could
increase the allelic-replacement efficiency by more than
10–20-fold in a mutS(+) strain (Figure 2a). In particular,
oligos containing 20-Fluoro-deoxyUridine, 5-Methyl-
deoxyCytidine, 2,6-Diaminopurine or Iso-deoxy
Guanosine had the most improved allelic-replacement

efficiencies. Oligos with phosphorothioated bases A, C
and T at the mismatch site had an average of 5-fold im-
provement over non-phosphorothioated oligos. No sig-
nificant improvement in allelic-replacement efficiency
was observed for oligos with phosphorothioated-deoxy
Guanosine, 2-Aminopurine, 20-Fluoro-deoxyAdenosine,
20-Fluoro-deoxyGuanosine or deoxyUridine. Using strain
EcNR2, we also quantified the allelic-replacement effi-
ciency for these modified oligos in the absence of
mutS. Replacement efficiencies were further improved in
this DmutS background (Figure 2b), suggesting that while
certain modified bases could significantly evade mutS de-
tection, some level of mutS activity was still present.
Sequencing of the lacZ and malK genes from the mutant
white colonies confirmed that DNA polymerase correctly
replicated the modified bases. Oligos with Iso-deoxy
Cytidine and 20 Fluoro-deoxyCytidine did not result in
any allelic replacement, presumably due to significant
disruption of DNA polymerization by these bases.
Taken together, our results suggest that the intact MMR
system can be easily side-stepped by careful design of the
oligonucleotide sequence with the help of modified bases.
We calculated the MMR correction efficiency as the

difference in allelic-replacement efficiencies between the
mutS(�) and mutS(+) strains normalized to the absolute
mutS(�) allelic-replacement efficiency. The MMR correc-
tion efficiency was calculated for each mismatch type for
both standard bases and the best performing modified
bases (Figure 2c). For mismatches naturally well-
recognized by mutS and corrected at near 100% efficiency
by MMR (e.g. G:T or T:C), utilization of modified bases
20-Fluoro-deoxyUridine or 5-Methyl-deoxyCytidine sig-
nificantly decreased the MMR correction efficiency to
levels similar to wild-type C:C mismatch correction.
Furthermore, MMR-correction of C:A and G:G
mismatches were more efficiently avoided using
2,6-Diaminopurine and Iso-deoxyGuanosine modified
bases, respectively. Thus, 20-Fluoro-deoxyUridine can be
used as a substitute for deoxyThymidine, 5-Methyl-
deoxyCytidine for deoxyCytidine, 2,6-Diaminopurine
for deoxyAdenosine and Iso-deoxyGuanosine for
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deoxyGuanosine (Figure 2d) to induce high efficiency
allelic replacement by avoidance of the native MMR ma-
chinery. The use of oligos with modified bases is especially
attractive for performing allelic replacement in organisms
with less well-described MMR systems or when a general
mutator phenotype, such as that of DmutS, needs to be
avoided to reduce background mutations.
Previous studies have shown that six C–C mismatches

spaced every 3 bp in tandem were sufficient to decrease
mutS affinity and avoid MMR correction (6). Thus, we
sought to determine if modified bases could also create
local distortions in the DNA structure in a manner that
reduces mutS binding and MMR-correction efficiency
for nearby mismatches. Modified bases 20-Fluoro-
deoxyUridine (2fU) and 5-Methyl-deoxyCytidine (5mC)
were chosen because they showed the highest MMR
evasion phenotype. Oligos containing easily corrected
G:G, G:T, C:A and C:T mismatches within 1–5 bp from

a correctly paired modified base were used for allelic re-
placement in mutS(+) EcNR1 and mutS(�) EcNR2
(Figure 3a). We found that in EcNR1, mismatch C:T
could be much more efficiently incorporated when a 2fU
base was located in close proximity (Figure 3b). However,
this improved allelic-replacement efficiency was not seen
with other mismatch pairs, suggesting that such a strategy
might be dependent on sequence context. We have previ-
ously observed similar sequence context effects on the
allelic-replacement efficiency at the target site due to in-
hibitory hairpin secondary structures of the oligo (9). An
oligo folding energy of less than �12.5 kcal/mol signifi-
cantly decreased the AR efficiency and should be
avoided by redesigning the oligo homology arms with
less hairpin structure. The 5mC base did not improve
the efficiency of incorporation of any nearby mismatches,
suggesting that the modified base did not create sufficient
DNA structural distortion to affect MMR correction.
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The allelic-replacement efficiency was substantially higher
in EcNR2 indicating that the nearby modified bases did
not affect replication fidelity (Figure 3c).

Local processing of the oligonucleotide during
allelic replacement

While mismatches can be effectively introduced through
MMR evasion, the overall efficiency of allelic replacement
is determined by the oligo processing at the replication
fork. Previously, we and others have generally observed
that mismatches located at the 30 or 50 terminus of the
oligo could not be incorporated into the chromosome
through allelic replacement (11) or double-stranded
DNA recombineering (13). However, a more recent
study has suggested that a single base pair mismatch
located at the oligo termini could be incorporated, but
at very low efficiency (<0.01%) (42). To further elucidate
the basis of these observations, we performed a detailed
investigation of how oligonucleotides are processed at the
site of allelic replacement. To this end, we performed
allelic replacement using a 90 bp oligo (lacZm4v1) that
contained six single-nucleotide polymorphisms in the
coding region, resulting in six non-consecutive amber
stop codons. Incorporation of any of the six mutations
on the single oligo would inactivate the lacZ gene, the
function of which was assayed for in the DmutS EcNR2
strain. The oligos were introduced by allelic replacement
to produce white colonies at an efficiency of �10%. We
isolated 47 white lacZ mutants and sequenced the lacZ
region targeted by the oligo (Figure 4a). Surprisingly,
only 34% of the isolates contained all six amber stop

mutations. More than 53% of isolates had four or five
mutations while the rest had one to three mutations. In
general, the mutations were grouped consecutively, where
only the 50 or 30 terminal mutations were not incorporated.
In rare instances, we observed incorporation of the two 50

and 30 terminal mutations, but not mutations in the
middle of the oligo (e.g. isolates 5, 13 and 14). We specu-
late that these anomalies correspond to rare events in
which two independent allelic-replacement events
occurred sequentially, where the first led to incomplete
incorporation at one terminus and the second led to in-
complete incorporation at the other terminus. The middle
sequences were therefore left unchanged. These putative
multiple replacement events occur for �6% of isolates
that have undergone allelic replacement.
The pattern of incomplete incorporation of the full

length oligo was observed across different target sequences
and at different loci (i.e. lacZ, galK). For oligos that do
undergo allelic replacement, mutations nearest to the
termini are the least frequently incorporated (Figure 4b).
Only 7% of clones incorporated mismatches 6 bp from the
30 terminus, and 52% of oligos incorporated mismatches
9 bp from the 50 terminus. In contrast, mutations at
the center of the 90 bp oligo were incorporated 97%
of the time. Previously, we showed that oligos with
terminal phosphorothioated (PT) bases had increased
allelic-replacement efficiency, presumably due to the pre-
vention of ssDNA-nuclease activity (9). Thus, we sought
to use protective PT bases at the termini in order to de-
termine whether the observed incomplete oligo incorpor-
ation was due to oligo truncation from cytosolic nuclease
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degradation or by other mechanisms. However, we found
that oligos containing four PT bases at the 50 terminus had
the same incomplete incorporation pattern as oligos
without PT bases or oligos with four PT bases at the
center of the oligo, leading us to hypothesize that this
oligo processing mechanism may be acting more generally
at the replication fork by specific endonucleases. We
found that oligo truncation also occurred for leading
strand targeting oligos, despite these oligos having
>10-fold lower allelic-replacement efficiency (data not
shown). Oligo processing appears to be RecA-
independent, as oligo truncation was also found using
the DrecA strain EcZS2.
We then performed allelic-replacement experiments in

which three oligo variants (lacZm6_A, lacZm6_T and
lacZm6_G) that exclusively introduced non-consecutive
G:G, G:T or G:A mismatches were simultaneously
co-electroporated into cells for allelic replacement to
screen for mutants. In this multiplexed reaction, we antici-
pate that the three oligo variants would incorporate com-
petitively into the chromosome. In the DmutS EcNR2
strain, we found that of 93 white clones screened and
sequenced, all three variants (G:G, G:T and G:A) were
represented equally, with similar oligo truncation
patterns seen previously (Figure 5a). However, using
galK oligo variants (galKm1_A, galKm1_T and
galKm1_G) in the mutS(+) EcNR1 strain, we found that
94% of the isolated strains were the G:A variant, 5% were
G:T, and 1% were G:G (Figure 5b). The under-
representation of G:G and G:T variants demonstrated
that the MMR system in EcNR1 could very efficiently
correct multiple mismatches. We also observed a
stronger oligo truncation pattern at the 30 terminus in
the mutS(+) EcNR1 strain in comparison to the DmutS
EcNR2 strain (Figure 5c). Mismatches encoded on the

90 bp oligo at positions 66–70 were found in only 43%
of mutants of mutS(+) EcNR1 in comparison to 84% of
mutants of DmutS EcNR2. We speculate that the
oligo-derived mismatches here are being processed in the
30 to 50 direction to produce the 30 truncation pattern.

DISCUSSION

Oligo-mediated allele-replacement techniques can now
reach efficiencies of up to 20–30%, with iterable cycles
capable of being performed every 2–3 h (9). This high
allelic-replacement efficiency relied on the removal of the
native mismatch repair system through knockout of
components of the MutHLS complex. However, the
background mutation rate is 100 times higher in such
MMR-deficient strains, which presents an undesirable
limitation for high accuracy genome engineering.
Recently, Sawitzke et al. (11) showed that oligos with
multiple C:C mismatches making silent mutations can
effectively avoid MutS recognition. Here, we presented
an alternative strategy that uses oligonucleotides contain-
ing modified bases 20-Fluoro-deoxyUridine, 5-Methyl-
deoxyCytidine, 2,6-Diaminopurine or Iso-deoxy
Guanosine to effectively evade MMR to improve allelic-
replacement efficiency in a strain with native MMR
activity. This strategy may be generally useful to
improve and expand the capabilities of OMAR in other
organisms. Strategies that increase the efficiency of allelic
replacement while maintaining genomic stability will be
essential for high-precision genome engineering. We an-
ticipate that there are other modified nucleotide bases
that can both be well-processed by the DNA replication
machinery and destabilize the mismatch lesion to prevent
MMR activity at the targeted site. Practical considerations
for researchers using oligos with modified bases may
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include cost and availability of customized DNA synthe-
sis. While we have not observed any negative effects on
viability of E. coli cells transformed with the modified
bases tested here, a more detailed cell viability study
using these modified bases are needed, especially for eu-
karyotic organisms. Additional investigations are needed
to determine how modified bases perform among other
organisms with different MMR systems.
Previously, Costantino and Court (29) had shown that

using the �-Red system in E. coli, the efficiency of target-
ing is 30-fold higher with the oligo that corresponds to the
lagging strand in comparison to oligos that correspond to
the leading strand (1). Since oligos targeting the leading
strand is much less efficiently incorporated into the
chromosome even in mismatch repair deficient strains
(i.e. DmutS), the use of modified bases to avoid
mismatch repair in these leading strand targeted oligos is
not a practical route for making genomic changes.
Instead, we recommend using lagging strand targeting
ODNs with modified bases as a much more efficient
approach for genome engineering.
When examining the local processing of the oligo at the

target site, we found that the full-length 90 bp oligo was
often not incorporated in its entirety. The center of the
oligo was incorporated most frequently, with incorpor-
ation frequency decreasing toward the two termini.
The 30 and 50 terminal bases were never observed to
undergo any allelic replacement in our experiments.
Exonuclease activity in both directions may account for
these observations. Interestingly, we noted that tandem
terminal 50 phosphorothioated bases, which increase the
overall efficiency of oligo incorporation, did not affect the
frequency at which the incomplete 50 incorporation was
observed. Protection of the mismatching bases with
phosphorothioated bases also showed no effect in prevent-
ing incomplete incorporation. Furthermore, oligos that
targeted the leading strand also produced similar 50 and
30 truncations of the oligo. These observations suggest that
phosphorothioated bases are effective at reducing oligo
degradation by cytosolic exonucleases, but do not affect
processing of the oligo at the replication fork.
The results of this work provide a general guideline

for the efficient design of oligonucleotides for allelic-
replacement strategies such as MAGE. To design
mismatch mutations on the 90-mer oligo, we suggest
placement of mutations at the center of the oligonucleo-
tide to prevent terminal truncations from interfering with
the targeted allelic replacement. We speculate that
removal of endogenous nucleases may reduce oligo trun-
cation, but might simultaneously result in other pheno-
types such as decreased fitness. The oligo chew-back
phenomenon observed here may be beneficial in certain
applications. For example, in protein mutagenesis or
sequence diversity generation using allelic replacement, a
single oligo can be used to generate a heterogeneous popu-
lation of cells containing multiple truncated forms of the
full target oligo to produce combinatorial variants.
Oligo-mediated genetic exchange has been documented
in many other organisms including Gram-positive
bacteria, yeast and mammalian cells (15,21,43).
Improvements to the efficiency and predictability of

oligo incorporation by avoiding native repair systems
and overcoming nuclease degradation should be general-
izable to these other organisms. Such efforts will help
further develop OMAR as a general method for protein
engineering, pathway optimization and strain manufac-
turing relevant to academic and industrial research.
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