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Abstract

Functional MRI (fMRI) detects the signal associated with neuronal activation, and has

been widely used to map brain functions. Locations of neuronal activation are localized and

distributed throughout the brain, however, conventional encoding methods based on k-space

acquisition have limited spatial selectivity. To improve it, we propose an adaptive fMRI method

using non-Fourier, spatially selective RF encoding. This method follows a strategy of zooming

into the locations of activation by progressively eliminating the regions that do not show any

apparent activation. In this thesis, the conceptual design and implementation of adaptive fMRI

are pursued under the hypothesis that the method may provide a more efficient means to

localize functional activities with increased spatial or temporal resolution.

The difference between functional detection and mapping is defined, and the multi-

resolution approach for functional detection is examined using theoretical models simulating

variations in both in-plane and through-plane resolution. We justify the multi-resoltion

approach experimentally using BOLD CNR as a quantitative measure and compare results to

those obtained using theoretical models. We conclude that there is an optimal spatial resolution

to obtain maximum detection; when the resolution matches the size of the functional activation.

We demonstrated on a conventional 1.5-Tesla system that RF encoding provides a

simple means for monitoring irregularly distributed slices throughout the brain without

encoding the whole volume. We also show the potential for increased signal-to-noise ratio with

Hadamard encoding as well as reduction of the in-flow effect with unique design of excitation

pulses.



RF encoding was further applied in the implementation of real-time adaptive fMRI

method, where we can zoom into the user-defined regions interactively. In order to do so, real-

time pulse prescription and data processing capabilities were combined with RF encoding. Our

specific implementation consisted of five scan stages tailored to identify the volume of interest,

and to increase temporal resolution (from 7.2 to 3.2 seconds) and spatial resolution (from 10

mm to 2.5-mm slice thickness). We successfully demonstrated the principle of the multi-

resolution adaptive fMRI method in volunteers performing simple sensorimotor paradigms for

simultaneous activation of primary motor as well as cerebellar areas.

Thesis Supervisor: Lawrence P. Panych
Title: Assistant Professor of Radiology, Harvard Medical School
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Chapter 1
Introduction to Adaptive fMRI and
Magnetic Resonance Imaging

1.1 Introduction
Functional magnetic resonance imaging (fMRI) was developed in the early 1990s

capitalizing upon the ability to detect local changes in cerebral blood volume (CBV), cerebral

blood flow (CBF) and oxygenation level during neuronal activation ([1]-[7]). It has since

achieved a prominent place in methods for mapping brain function. Functional MRI enables

non-invasive visualization of brain function, without resorting on the use of radioactive or

exogenous contrast agents. With good temporal and spatial resolution, functional MRI has

been used in numerous neuro-scientific studies including somatotopic cortical mapping ([8]-

[10]) and the investigation of high-order cognitive processes such as working memory and

decision making ([11]-[15]). Functional MRI has also had a direct impact on clinical

applications. These include functional mapping of cortical areas for the planning of neuro-

surgery ([16]-[19]) as well as elucidating the neural difference of people with psychiatric

/cognitive disorders such as schizophrenia and learning disability [20,21].



The most common and widely used method for eliciting functional signal is based on

the detection of the blood oxygenation level dependent (BOLD) variation during neuronal

activation using imaging sequences that are sensitive to the local changes in magnetic

susceptibility. BOLD contrast in cortical tissue is small, typically on the order of between 1%

and 6% at 1.5 Tesla [22]. In a typical fMRI experiment, multiple sets of images are acquired

over the course of several control and stimulation periods and the small BOLD change due

to activation is detected using statistical methods ([23]-[25]). In general, acquiring the data

from the whole brain is important because the area of brain activation is not always known a

priori, nor is it necessarily confined to a single slice of the imaging volume. In particular,

high-order functional tasks involving multiple locations throughout the brain necessitate the

acquisition of functional information from the whole brain. Accordingly, fMRI demands rapid

acquisition of data often covering the whole brain volume and with a high signal-to-noise-

ratio (SNR) to overcome the inherently low contrast.

In various situations, high spatial (sub-millimeter in-plane resolution and slice

thickness of 5-7 mm) or temporal resolution (sub-second) has been used in data acquisition.

For example, high-resolution characterization of somatotopic functions ([8]-[10]) as well as

distinguishing adjacent, yet spatially-resolvable high-order cognitive areas [26] have been

studied with sub-millimeter spatial resolution. High spatial resolution is also desirable in

neurosurgical planning to distinguish the 'salvageable' eloquent areas of interest from a tumor

or other targets of surgical intervention [16, 18, 19]. Sub-second temporal resolution has

been necessary to study the event-related fMRI signal [6, 27, 28] and to model hemodynamic

response during event-related tasks ([29]-[34]).

Previous fMRI studies conducted with high temporal or spatial resolution have been

limited to a few selected locations. Such strategies involved repeated imaging of a single

section [2, 7, 29, 31, 33, 34, 35] or a slab of regularly spaced sections [28, 31, 32, 36]. In

choosing the volume of interest (VOI) for these studies, a priori decisions about the location

of activation were made based on anatomic data acquired prior to the functional imaging

session.



In order to achieve high spatial and/or temporal resolution in regions of functional

activation, an 'adaptive' MRI method based on spatially selective radio frequency (RF)

encoding is proposed. The goal of this thesis is to develop such an adaptiwfMRI method

using RF encoding. The basic idea of the adaptive approach in fMRI is that the regions of

activation, however they are distributed throughout the brain, can be selectively detected

dynamically in multiple stages at progressively higher resolution, ignoring quiescent regions

and "zooming" only into the regions of activation. This thesis draws mainly on previous work

in the development of non-Fourier based adaptive approaches by Panych et al. [40] and

applies these approaches for fMRI.

Adapting data acquisition protocols based on prior knowledge has been applied

previously to optimize k-space acquisition for functional and other experiments. These

include among other methods the key-hole and RIGR (Reduced-encoding Imaging with

Generalized-series Reconstruction) techniques [37,38]. In the key-hole method, a full set of k-

space data is first acquired, and then, only the lower frequency portion of the dynamic data is

updated [37]. In RIGR, dynamic images are obtained by combining a reduced set of dynamic

data with a priori high-resolution data via a novel constrained image reconstruction algorithm

[38]. Other adaptive approaches also have been investigated using the Karhunen-Loeve

decomposition [39]. These Fourier-based methods do not provide the spatial selectivity

necessary if one wants to dynamically encode localized brain locations in any encoding basis

other than the Fourier basis. Non-Fourier based wavelet-encoding [40] and encoding by

singular value decomposition (SVD) [41] were proposed to provide the flexibility necessary

for adaptive methods. These methods use RF encoding which features spatial selectivity and

one is not limited to acquiring data in k-space. An important feature of RF encoding is that

non-Fourier basis functions generated by RF encoding can be updated dynamically, adapting

to changes in the field-of-view.

A development of the concept and implementation of adaptix fMRI with RF

encoding suggests the following advantages. One advantage is that adaptive imaging may

provide a more efficient method of localization of brain activity in fMRI studies by

increasing the temporal or spatial resolution of fMRI data. For example, by encoding with

spatially selective excitation applied in the through-plane direction, areas of functional



activation can be selectively resolved by applying a multi-staged adaptive algorithm that

eliminates slices where no activation is evident. Therefore, in later imaging stages, in-plane

resolution or temporal resolution could be increased in the remaining slices. Another

advantage of the adaptive approach using spatially-selective encoding is that signal-to-noise

ratio may be improved over the conventional multi-slice method by appropriate choice of

encoding such as Hadamard encoding.

The main contribution of the thesis is that the non-Fourier adaptive approach was

implemented and applied for the first time in functional MRI. Hadamard encoding to increase

the SNR was also implemented for the first use in functional MR. This thesis also provides

the first systematic justification and optimization of the multi-resolution approach in

functional MRI. We believe that variations of the method can potentially be used for other

applications such as contrast detection and bolus tracking. In addition to the main

contributions of the thesis, an inflow-reducing method, incorporated with the RF encoding

scheme, was implemented and shown to be effective.

This thesis consists of eight chapters. Chapter 1 contains a brief introduction to

MRI, including an overview of common encoding techniques in MRI. In Chapter 2, the

fundamentals of functional MRI will be addressed in terms of its physiological basis,

functional contrast generation, and experimental methods. The basics of RF encoding are

presented in Chapter 3. The limitations and justification of the adaptive multi-resolution

zooming approach in terms of functional detection will be addressed theoretically in Chapter

4. An experimental examination of the multi-resolution approach is included in Chapter 5. RF

encoding applied to functional MRI is presented in Chapter 6. Chapter 7 describes an

implementation of real-time adaptive fMRI. The last chapter discusses important findings

from theoretical studies and experimental sessions, and summarizes some directions for future

work.



1.2 Magnetic Resonance Imaging
1.2.1 Physics of NMR: The Signal Source

When a material containing nuclei with a net magnetic moment is placed in a

magnetic field, interaction with the magnetic field results in splitting of nuclear spin states

and their associated energy states. This interaction is referred to as the Zeeman interaction.

For a nucleus with spin quantum number I, there are (21+1) different possible nuclear spin

states when exposed the magnetic field (B, in Fig. 1.1). As illustrated in Fig. 1.1, for a spin

1/2 nucleus (when I= 1/2) such as 1H, Iz takes the value of -1/2 (spin up) or + 1/2 (spin

down). In this case, the energy created by the Zeeman interaction (AE) is given by;

AE = fiB0, (1.1)

where *h is Plank's constant (h/2rr), and yis the gyro-magnetic ratio that relates the

magnetic moment of the nucleus to its angular momentum. (For example, 7 of H is equal

to 42.58 MHz/Tesla).

Magnetic Quantum Number

-1/2 (Spin Down)

_________AE ="h 0

'. _+1/2 (Spin Up)

B0

Figure 1.1 Schematic illustration of Zeeman interaction for a spin 1/2 nucleus (I= 1/2) with
an external magnetic field, B0 . The magnetic moment can have two states (i.e. 1/2 and -1/2),

and the energy difference between them is AE = "hB0 .



The resonance frequency, w0 , due to the Zeeman interaction is known as the

Larmor frequency, and is equal to the product of the magnetic field B, and the gyro-

magnetic ratio7;

= AE /h = fiB, /=B . (1.2)

From Eq. 1.2, and given the gyro-magnetic ratio, 7/2,r = 42.58MHz / Tesla, the resonance

frequency for 'H at 1.5T is in the radiofrequency range.

The ratio of populations of down and up-spin states is determined by thermal

interactions with surrounding lattice, and is derived from Boltzmann's equation as follows

[42].

down -AE/kT

nup

where k is Boltzmann's constant (1.38 x 10 -3 J/K) and T is temperature. From Eq. 1.3, at

normal room temperature, the ratio is close to 10.6.

1.2.2 MR Signal: Excitation, Precession, and Relaxation

Strictly speaking, the theoretical framework to explain the NMR phenomena involves

quantum statistical mechanics, however, for simple behavior, the quantum mechanical

description of nuclear resonance can be replaced by classical equations governing the

procession of a magnetization vector interacting with static and time-variant magnetic fields

[113]. The bulk magnetization in a volume of material, due to the Zeeman interaction, can be

modeled as a magnetization vector M. M represents a magnetic moment that experiences a

torque (l') from any external magnetic fieldB, as is described by Eq. 1.4, and illustrated in

Fig. 1.2.



B0
B

M M

F=BxM

Figure 1.2 A schematic representation showing the direction of torque when the

magnetization vector M is in an external magnetic field B (left). The torque experienced

will cause a clockwise movement of M, rotating at the Larmor frequency, coo.

F- = M x B (1.4)

Under torque, the magnetic moment M rotates at an angular rate defined by the

gyro-magnetic ratio as described by Eq. 1.5;

dM(t) (1.5)

dt F)

Combining Eq. 1.4 with Eq. 1.5, the time-varying behavior of the magnetic moment

M between external field B(t) and M(t) is represented as;

dM(t)
= 7 -M(t) x B(t) . (1.6)

dt

Equation 1.6 is solved, assuming the initial condition of M being tipped away from

the direction of B by the angle a. The solution is given by Eq. 1.7. The magnetization

vector M(t), where M =(M,,M,,M,), can be represented by both a longitudinal

component along the z axis, MZ(t), and a transverse component rotating in the xy

plane, M,, (t), where M,, (t) = M, (t) + iM (t). MO represents the equilibrium magnitude

of the magnetization vector.



M, (t) = M, sin a cos(cot + #),

M, (t) = M 0 sin asin(cot + #), (1.7)

M, (t) = M, cos a.

Let us define a frame of reference where the x and y axes rotate at the Larmor

frequency around the z axis. In this rotating frame of reference, when the magnetization

vector, M, placed in a radio-frequency (RF) magnetic field at the Larmor frequency

perpendicular to the z axis, M is rotated away from the z axis according to Eq. 1.6. This

process is called 'excitation' or 'nutation'. Figure 1.3 illustrates the process. If the magnetic

field, B1 , is oriented as shown, M rotates about B in the clockwise direction. The angle

of rotation a, is called the nutation flip angle, and is equal to a = -Y B Atr for a

constant magnitude of B, and time duration of the RF excitation, Atrf.

AZ
Mz

Y a=-yBlAtrf

MM

B 0

MM
X

Figure 1.3 A schematic drawing of the

reference by the RF pulse represented by
and duration of the RF pulse.

process of excitation in the rotating frame of

B . The flip angle, a, is a function of strength

In equilibrium, M is parallel to the direction of the static magnetic field B . When

perturbed from their equilibrium position, the magnetization vectors in a sample will

eventually relax to the initial unexcited states if there is no additional excitation. There are



two distinct types of relaxation. One is the rate at which nuclei exchange energy with the

surrounding lattice (Spin-Lattice Relaxation). The other type of relaxation is a loss of phase

coherence (Spin-Spin Relaxation). The constants describing the spin-lattice relaxation and

spin-spin relaxation processes are referred as T1 and T2 respectively.

The process of excitation and relaxation of the magnetization vector can be

summarized by the Bloch equation obtained by adding a relaxation factor to Eq. 1.6

d M (t)
d 7t -M (t) x B(t) - 91{M(t)-AMio}. (1.8)
dt

B(t) in (1.8) accounts for both the static and the RF fields (B(t)=Bo +B1 (t)) and 9iis a

relaxation matrix incorporating the T, and T 2 time constants;

1/T2 0 0
91 0 1/T2 0 . (1.9)

0 0 1 / T,

The rotating magnetization vector induces current in a coil tuned to the Larmor

frequency of the specific nuclei. The detected signal magnitude is proportional to the

magnitude of the transverse magnetization vector because the coil is oriented to detect the

changes in transverse magnetization. The aggregates of freely precessing magnetization

vectors induce a time-dependent signal referred to as the free-induction-decay (FID). The

amplitude of the FID decreases over time due to loss in signal coherence. The envelope of

the FID in a perfectly uniform magnetic field is represented by the decay constant T 2. The

inhomogeneous nature of the physical magnetic field due to imperfection in the main magnet

field or other variations resulting from susceptibility-effects due to the local field

inhomogeneity [42], causes additional loss in coherence. The relaxation constant including

these effects is T 2'*



1.2.3 Imaging and Encoding

In order to obtain a spatial mapping of the signal sources in the sample volume after

excitation, magnetic field gradients are applied to produce linear changes in the static

magnetic field across the sample. Typically these linear gradients (units of Gauss/cm) are

applied to the three orthogonal directions, and each coil can be energized individually or in

combination so that a magnetic field gradient can be created along any arbitrary direction.

With these gradients, the local Larmor frequency, co(r), is given a slight offset that is

proportional to the spatial location r;

w(r)= - 7 (B, + G -r), (1.10)

where r = (x,y, z) and G = (G, GY, GZ).

Equation 1.10 implies that when a gradient is applied, the spatial location along a

line of the signal sources can be determined from the frequency. The next sections describe

how these gradients are used in conjunction with RF excitation to encode images. We will use

the example of a simple gradient echo MR sequence.

Slice Selection

If a gradient is applied in a given direction to produce a linear variation in the

Larmor frequency (Fig. 1.4), and the sample is simultaneously irradiated with an RF pulse that

has a finite bandwidth (Aw in Fig. 1.4), the only excited spins will be within a single 'slab' or

'slice' of AZ = Aw that is perpendicular to that direction. Changing the carrier frequency

varies the location of the slice profile whereas changing the duration of the RF pulse or the

amplitude of the slice-select gradient changes the slice thickness. Time-varying gradient and

RF pulses can be used to produce specialized excitation profiles for slice or volume selection

[43].
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Figure 1.4 Illustration of the mapping of a finite bandwidth RF pulse (ACO)to the

corresponding spatial width (Az) of spins that are excited when applying a linear gradient

G,.

Frequency Encoding

After a slab of volume in the sample is excited, assuming a homogeneous field, all

magnetization vectors in the slice will initially resonate at the same frequency. We define a

signal density function within the excited sample as p(x,y) and assume a magnetic field

gradient in the x direction (G, = aB, / ax). Let us model the signal from a small volume at

location x = x0 and y = yo as o(xO, yO)e-'"'. The complex exponential term

e*^' accounts for the precession due to the magnetic gradient G at location xO. The

signal s(t) detected (in the rotating frame of reference) from the whole volume is,

s(t) Cc ffp(x, y)e -'xx"dxdy . (1.11)

Equation 1.11 implies that the detected signal is proportional to the sum of signal

from "columns" of material perpendicular to the x axis, and that each column resonates at a

frequency proportional to its position in x, i.e., Gxx. Defining k = Gxt, an inverse

Fourier-transform on s(k) produces a function that is proportional to the projection of

,o(x,y) along the x axis. Since the encoding utilizes the frequency for spatial indexing, it is

usually referred to as "frequency encoding".



Phase Encoding

The time domain signal s(t) in Eq. 1.11 can be used to obtain one-dimensional

spatial information (x direction only) about the sample. An additional encoding method is

necessary to provide a 2-dimensional representation of the sample. In order to achieve two-

dimensional encoding, a magnetic gradient in the y direction (G, = OB, / ay) is applied to

modulate the phase of the excited sample p(x, y) on multiple excitations while the

frequency-encoding gradient is turned on. In order to resolve M elements in the y-direction,

M "phase-encoding" steps are applied with increments of AG, made to the gradient

amplitude on each step.

On each excitation, a phase encoding gradient is applied with the duration of r to

create a phase offset across the volume (Fig. 1.5). Following application of the phase

encoding gradient, N sets of frequency-encoded signals are obtained. For each RF excitation,

a different phase encoding gradient amplitude in increments of AG, is applied, and on each

of these phase encoding steps, N samples are acquired during a "readout" time at

increments of AT (Fig. 1.6). The discrete set of sampled signal values S(n,m) is represented

as in Eq. 1.12.

S(n, m) c fjp(x, y)e- iy(nATGx+mAGy)dXdY , (1.12)

where (-N/2+1) n<N/2, and (-M/2+1) m M/2.

Substituting k x=nATGx in Eq. 1.12 and rearranging,
k, = im rAG,

S(k,,k,) Cc pfJo(x,y)e-- k dxdy . (1.13)

S(k,, k,) represents a sampling of the Fourier space of p(x,y). Therefore, from a two-

dimensional inverse Fourier-transform on S(kX, k,), we can obtain a discrete estimate or

'image' ofp(x,y). Here, k, and k, are the spatial frequencies (cm- 1), and S(kx, k,) is

referred to as the k-space representation of p(x,y). Figure 1.5 illustrates the process of slice

selection, frequency and phase encoding.
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Schematic representation of magnetization
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. application of a gradient of strength of G, .
The individual spin magnetization vectors in
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Figure 1.5 Illustration of the effect of slice selection and frequency/phase encoding to
individual magnetization vectors in a sample.
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Examples of MR Imaging Sequences

As described in the previous sections, typical MR encoding consists of slice selection

followed by phase encoding and frequency encoding. Figure 1.6 shows a schematic timing

diagram for a 2D gradient-echo pulse sequence. In this example, the slice selective RF pulse

irradiates the sample while a slice-selective gradient (G,) is applied (from tato tb)

Following this, a phase rewinder (negative z gradient) is applied to restore a uniform phase

distribution across the selected slice (from tbto t). During the same period, a phase-

encoding gradient is applied to give different phase values to the spins at different locations

along the y-direction. The phase encoding gradient is varied with increments of AG, after

each RF excitation. During the data acquisition period (DAQ from td to tf in Fig. 1.6), G,

is applied to produce a linear variation of frequency along the x-direction. The signal,

centered at te, is sampled in intervals of AT. The magnetization vectors are all in phase at

te assuming there is no inhomogeneity in the magnetic field. The time interval between the

center of the RF pulse and the center of the echo is called the echo time or TE, and the time

interval between applications of each RF pulse excitation is called the repetition time or TR.

*- TE -*!

rf
Figure 1.6 Schematic timing diagram of
a simple Fourier encoding sequence.
The method uses a RF pulse to select

the slice in the z direction with G. A
AG~ phase encoding gradient is applied

Gy after each RF excitation with the

increment of AG for the duration of

r. The MR signal is sampled while a
frequency encoding gradient is applied
with sampling everyAT.

AT

Signal --

ta tb tc td te f,



Echo planar imaging (EPI), first proposed by Mansfield [44] and used widely in

fMRI, allows for encoding 2 dimensional image data after a single RF excitation. Figure 1.7

shows a schematic timing diagram for a 2D gradient-echo EPI pulse sequence. First a slice is

selected with slice-select gradient and RF pulse (from ta to tb) followed by a phase-rewinder

(from tb to t). After the slice selection, an oscillating gradient G.,and a phase-encoding

gradient (G,) with constant magnitude are applied.

Figure 1.8 illustrates a representation of the filling of k-space by the EPI sequence

in Fig. 1.7. The area under the oscillating G, and a constant G, determine the location of

sampling -points k, andk, respectively (see Eq. 1.13). In the interval between t and td 5

kX is increased to its maximum. At time te, the area under the G, waveform is zero, and

therefore kX = 0. At k, =0, a gradient echo is formed since the spins have maximum phase

coherence with respect to action of Gx. With application of a negative value of G,,

k, reaches the minimum. G, is increased again and at k = 0, another echo is generated at

time t1 . Since a constant magnitude of G is applied, k, increases with equal proportion.

The effect of the oscillating G, is the generation of gradient echoes in alternating gradient

reversal periods, ,, (where r-is equal to the time interval between te and tf). EPI with

ultra-fast gradient switching, due mainly to its ability to encode a slice with a single RF

excitation, is widely used for functional MRI.
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Figure 1.7 Schematic timing diagram of gradient-echo planar imaging (EPI) sequence. The

method uses a RF pulse to select a slice in the z direction with G,. A gradient Gx is

oscillated after a single RF excitation and a constant phase encoding gradient G, is applied.

The MR signal sampled fills the entire 2D k-space of a slice.
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Figure 1.8 Representation of filling of k-space by the EPI sequence shown in Fig. 1.7.
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1.2.4 MR Signal and Contrast

MR Signal
The magnitude of the MR signal is dependent upon multiple factors such as the

choice of TE, TR, and flip angle as well as the relaxation constants, T 1, T2 and T 2* of the

sample. Let us represent the longitudinal magnetization at time n as M" (see Fig. 1.9). The
z

magnetization before and after the RF excitation are M"- and M" respectively.

flipZ=a flipZ=a

Mj"*l) Mj"-l* M"n- M"*+

Figure 1.9 The longitudinal magnetization vector times before and after each excitation

(arrow) of flip angle a.

M"~ can be derived from the Bloch equation such that [42];

-TR -TR -TR -TR

Mn =M,(1-e T )+M "-e Ti =M,(1-e Ti )+cosaM(n)~e T (1.14)

In the steady state, M "- =M(n--, and Eq. 1.14 can be written as;

-TR -TR M0(1-eT )

MZ =Mj(1-(e T1 )+cosaTi e T = (1.15)
1-cosa-e n

where MZ is the longitudinal magnetization vector before excitation in the steady state and

a is the flip angle by which the longitudinal magnetization vector is tilted away from the z

axis (Fig 1.3).

Considering the signal detection in the transverse plane and the effect of TE (time

of echo: defined in Fig. 1.6) and T 2 * in gradient echo sequences, the signal magnitude (S) is

given as,



-TR

S oc N(H)e-TEIT2* sina Mo(I-e T (1.16)

(1-cosa-e Ti)

where N(H) is density of H of the sample.

From Eq. 1.16, we identify three components of the signal in gradient echo sequences.

The first component is the density of 'H in the sample. The second component depends on

-TE

the ratio of TE time to T 2 * (e T2*). The third component is modulated by the effective TR
-TR

M 0 (1-e TI )*TeT ietognrt h
period, flip angle and the T1 of the tissue (M" = _,, ). To

Z _~~~~TR Th Etmtognrtte

1-cosa-e TI

maximum T 2* weighted contrast can be shown to be at TE ~ [45]. In order to maximize

d 1the contribution from the second factor for a fixed TR, the equation ( -TR 0
da 1-cosa-eT

is solved with respect to a. The resulting angle arE is referred to as the Ernst angle [42].

-TR

aE= Ernst angle = cos -(e ). (1.17)

Equations 1.16 and 1.17 are important for maximizing the BOLD functional signal

with respect to the temporal and spatial resolution and will be used in later chapters.

MR Contrast

The relaxation constants, T1 and T 2, as well as H density are different from one

tissue to another (as illustrated in Table 1.1)[42], and difference in these constants result in

different signal magnitude causing contrast between tissues. Based on Eq. 1.16, which

describes the MR signal magnitude for gradient echo sequences, the MR signal contrast

between two different spin-bearing samples depends on the choice of TE and TR.



Tissue Ti (msec) T2 (msec) Relative 1H density

White matter 510 67 0.61
Gray matter 760 77 0.69
CFS 2650 280 1.00

Table 1.1 Relaxation constants for selected tissues at 1.5T, and relative 'H density with respect

to 'H density of CFS.

For example, if a small TE is used (< < 10 msec), the contribution from the term

-TE

e T2 * in Eq. 1.16 is relatively small compared to the signal difference caused by the

differences in T1 of tissues if a relatively short TR is used (Ti-weighted). If a large TR is

used (TR >> 2000msec), the contribution from differences in Ti is small, and TE can be

chosen so that the signal contrast is weighted toward the difference in T2 * (T2*-weighted).

If TR is long and TE is short, the difference in signal magnitude is weighted primarily by the

difference in H density (proton weighted).



Chapter 2
Fundamentals of Functional MRI

2.1. Introduction
Functional MRI is an imaging technique that relates brain anatomy to the

corresponding neural function. The challenge is to determine which parts of the brain are

active during the performance of a certain function by measuring signals associated with

the neuronal activities in brain. In the past, cognitive neuroscientists have relied on studies

of laboratory animals and patients with localized brain injuries to gain insight into brain

function ([46]-[48]).

Functional imaging of the human brain has been performed by detecting radiation

decay of single photons emitted from radioisotope-labeled pharmaceutical agents in Single

Photon Emission Computer Tomography (SPECT) or the radiation due to pairs of photons

created by annihilation of positron-electron-pairs in Positron Emission Tomography (PET).

However, these techniques are invasive due to the need to inject radioactive isotopes [50,

51]. Non-invasive techniques such as EEG (ElectroEncelphaloGraphy) and MEG

(Magneto-Encelphalo-Graphy) have been used to map the source of electrical and magnetic

fields associated with neuronal activation in high temporal resolution. However, the inverse

solution for source localization is inherently inaccurate [52, 53], and spatial resolution of

the methods is low, on the order of a centimeter [52].



Functional MRI (fMRI) can be used to detect the intrinsic signal changes caused

by blood oxygenation level, local cerebral blood flow (CBF) and cerebral blood volume

(CBV) during neuronal activity in the brain. fMRI enables the examination of human

cortical function without the use of radioactive contrast agents and with reasonable

temporal and spatial resolution. In the following sections, we review the contrast

mechanisms and basic physiological foundations of functional MRI along with the current

MR sequences and methods used.

2.2. Contrast in fMRI
2.2.1 Physiological Basics in Neuronal Activation

From functional studies such as direct action potential measurement and optical

imaging using an infrared light source [54,56], neuronal activity is found to take place with

delays in the range of 100's of milliseconds between stimulus presentation and neuronal

response for most of the brain regions [52]. Functional MRI detects changes in the

perfusion-state modulated by the neuronal activity of the brain. Hemoglobin, the oxygen-

carrier in blood, acts as a shuttle to deliver oxygen after binding to the oxygen.

Hemoglobin bound to the oxygen is called oxygenated-hemoglobin (also known as

oxyhemoglobin) whereas the oxygen-depleted form of hemoglobin is called deoxygenated-

hemoglobin (deoxyhemoglobin). The concentration of local oxyhemoglobin and

deoxyhemoglobin is determined by cerebral blood flow (CBF), cerebral blood volume

(CBV), and local oxygen consumption [55,56].

During neuronal activation, neuronal cells require extra energy, and their oxygen

consumption increases. Oxygen supplies are provided to neuronal cells via perfusion and

diffusion, however, the exact physiological mechanism is still unclear [34, 55, 56]. Increase

in oxygen consumption leads to an increase in local CBF. As CBF increases, the local tissue

and vascular compliance in the brain determine the local CBV. The supply of oxygen

eventually overcompensates for the initial increase in oxygen consumption. As a result,

there is an increased concentration of oxygenated hemoglobin with respect to the

deoxygenated hemoglobin (hyperoxemia) [56].



2.2.2 Contrast Mechanisms in Functional MRI
Exogenous paramagnetic contrast agents such as gadolinium or dysprosium

compounds have been used to relate changes in CBF and CBV to signal contrast in MRI.

These contrast agents are paramagnetic and create a local magnetic inhomogeneity, which

results in a local phase variation. If there is significant phase variation within a voxel, there

will also be significant amount of phase-cancellation within a voxel [55,59]. This intravoxel-

dephasing results in loss of signal in T 2* weighted imaging sequences.

By injecting a bolus of these paramagnetic contrast agents into the bloodstream,

changes in CBV and CBF during neuronal activity can be measured. For example, according

to the work of Rosen et al. [4], an intravenous administration of a bolus contrast agent,

induces transient reduction in T2 or T 2* weighted signal and changes in intravascular

concentration of the contrast agents can be estimated by the signal reduction. By

integrating the concentration-time curve and normalizing to the integrated arterial input

data, CBV has been estimated. CBF is quantified from the change in CBV normalized to

the estimated mean-transit time of contrast agents in the region. However, injected

contrast agents have to be cleared from the blood stream before the new sets of data are

obtained, therefore, repeated data acquisition is limited. In addition, the injection of

exogenous contrast agents is an invasive procedure.

An approach that does not depend on the injection of exogenous contrast agents

is spin labeling, [57]. Water protons from in-flowing arterial blood can be labeled using

spin-saturating RF pulses. From Echo Planar imaging and signal targeting with alternating

RF (EPISTAR), maps of changes in CBF can be created by subtracting two sets of data

acquired alternatively with and without a 1800 inversion applied to the proximal region of

arteries. However, the technique is limited to the imaging of one slice per scan. This

mechanism, detecting activation via changes in cerebral blood flow, is referred to as flow-

related enhancement (FRE).



2.2.3 BOLD Contrast
Local changes in the state of oxygenation can also be detected by the Blood

Oxygenation Level Dependent (BOLD) contrast mechanism. The basis of the BOLD

technique is that deoxyhemoglobin acts as an endogenous paramagnetic contrast agent and

therefore, changes in its local concentration lead to the variation in T 2 or T 2* weighted MR

images ([55],[58]-[62]). As hemoglobin (Hb) becomes deoxygenated, it becomes more

paramagnetic than the oxygenated Hb and thus creates a magnetically inhomogeneous

environment. The signal increase in T2 or T 2* weighted images acquired during cortical

activation reflects a decrease in deoxyhemoglobin content, i.e., an increase in blood

oxygenation. The blood hemoglobin paramagnetism decreases with brain activation and the

local CBV increases. The resulting decrease in tissue blood magnetic susceptibility

differences leads to less intra-voxel dephasing within cortical tissue and hence increased

intensity level in appropriately weighted images [55]. Because BOLD contrast does not

require the injection of contrast agents and multi-slice acquisitions are possible, it is most

widely used for fMRI today [62].

Blood oxygenation level dependent (BOLD) contrast varies according to the type

of sequence used in the experiment. Gradient-echo sequences are most sensitive to the

changes in local T2 * whereas spin-echo sequences are most sensitive to the T2 variations

associated with BOLD effects.

Gradient Echo Sequences

Similar to the case where an exogenous paramagnetic contrast agent is present, the

susceptibility difference results in local inhomogeneity due to BOLD effect and creates a

phase variation of blood with respect to the surrounding tissue. If this phase variation is

distributed over the size of a voxel, there can be a significant amount of phase-cancellation

within the voxel (intravoxel-dephasing), resulting in the loss of intensity in T 2*-weighted

images. Based on the magnitude of MR signal described in Eq. 1.16, the signal contrast

(AS) between activated and baseline states becomes,



AS = Soe-TE.R2*BAs(e TE-AR*2 _1), (2.1)

where R* is the transverse relaxation rate (I/T2*BASE ) in baseline states and AR* is the

transverse relaxation rate (1/T2*) due to the activation. So represents the initial baseline

signal. When TE -AR* <<1, the above equation can be approximated as;

AR AS / S
AR T~- E (2.2)2 TE

Since the different dimensions and orientations in the vessel types (vein, venuoles,

and capillary), and physiology (such as recruitment and dilations) affect the intra-voxel

phase dispersion, it is difficult to exactly quantify the phase change due to BOLD

activation. However, mathematical models suggested that the degree of contribution from

the larger vessels (AR; = -3.4 s-') is greater than from the capillary-based tissue

(AR* <-1s-1 ) [61]. Gati et al. investigated the percentage change due to BOLD effect, and

estimated AR* for the both vessel and tissue [22], which agreed well with the theoretical

value by Boxerman et al [61]. According to their work, up to -18% of signal change is

expected in the vessel whereas only -2% is expected from the tissue at 1.5 T. Using high

magnetic field environment at 4.OT, Menon et al. [56] reported that a large portion of the

signal changes that accompany photic stimulation comes from capillary-containing tissues

that are not visible in lower field. In gradient-echo experiments at 1.5T, the dominant

source of signal is from the draining veins [62, 63].

Spin-Echo Sequences

The BOLD contrast obtained with spin-echo sequences is considerably smaller

than that obtained using gradient echo sequences [65,67]. The BOLD contrast elicited by

changes in the transverse relaxation rate, AR , in spin-echo sequences is smaller than

changes due to AR* with gradient-echo sequences by a factor of -0.3 at 1.5T[65].

However, in spite of the smaller changes in transverse relaxation rate, spin-echo sequences

are a serious alternative for fMRI experiments because, unlike gradient echo sequence



where the dominant source of signal is from the large draining veins, BOLD contrast

arising from the spin-echo sequences more likely reflects change of oxygenation in

microvessels such as capillaries [60,63],

It has been shown that spin-echo sequences are sensitive to the BOLD effect due

to the random motion of water molecules in the extravascular space [65,66]. The presence

of magnetic field gradients at the interface between blood vessels and surrounding tissue

will result in MR signal loss [55,61]. Several biophysical models accounting for these factors

predict that resulting transverse relaxation rate, AR , in spin-echo sequences are more

sensitive to regions around vessels of small radius (dimension similar to capillary diameter

in the order of 2-7 p.#n) than regions associated with large vessel radius [55,64,65].

Spatial and Temporal Characteristics

The neuronal activation is known to occur at the site of single or groups of

neurons that are responsible for certain functional sub-units and these sub-units overlap

each other to form functional units [56, 68]. For instance, the functional subunit for ocular

dominance is determined by an area (Ocular Dominant Columns), typically 5-10mm in

length and 0.8-1.2mm on a side, however, the functional unit as a whole may extend to

centimeter long columns [56]. Similar observations have been reported for the study of

somatotopy in hand motor-area with overlapping areas of sub-units responsible for the

movement of individual digits [10] and for study of bilingual generation with overlapping

areas for different languages [26]. The minimum detectable size of functional activity at

1.5T is well under a millimeter, based on the various studies where data was acquired at

high spatial resolution [26,60,63].

In terms of the temporal characteristics in BOLD activation, images can be

collected in a very short time using fast imaging sequences therefore, high temporal

resolution is possible in principle. The hemodynamic response, on the order of 2 to 3

seconds, lags behind the time of neuronal activity. However, in spite of the delay in

hemodynamic response, high temporal resolution is desirable to resolve the sequential

involvement from the multiple cortical areas and the associated hemodynamic responses [34,

69, 70].



Field Strength

The magnitude of BOLD contrast is dependent on the field strength. The

stronger the magnetic field, the greater is the BOLD signal contrast due to the greater

intra-voxel dephasing which scales with field strength [22,55]. However, chemical shift and

other susceptibility-related effects also result in more serious image distortion, demanding a

greater attention to field shimming and distortion correction [42].

Flow-related Effects

The functional MR signal may contain both flow-related and BOLD components

[71]. The signal coupled with the venous side of the capillary bed may remain deoxygenated

before being diluted by the larger pool of venous blood. Thus, in addition to the brain

parenchyma, image locations distant from the actual activated location may also show

intensity changes. Blood flow changes, which do not relate to neuronal activation may

appear, therefore, due to the continuous connectivity in vasculature. These so-called in-

flow effects complicate the precise anatomical localization of brain activation [71]. Due to

the long TR period usually associated with single-shot EPI, there is generally much less

sensitivity to the in-flow effect. However, for monitoring a single slice where a short TR is

required for high temporal resolution, the single-shot EPI method will also be susceptible

to in-flow effects. Volume encoding is an option for in-flow suppression but general

volume-encoding methods suitable for functional MRI entail long scan times [72, 73].

2.3 Overview of an fMRI Experiment
2.3.1 Experimental Design and Procedures

A functional MRI experiment is designed to detect signal contrast generated by

neuronal activities associated with task paradigms. Although there are variations in

experimental design, fMRI experiments generally consist of several common steps. The

first step is to identify the hypothesis to be tested (Sample hypothesis: There is a difference

between mean pixel intensity between motor activation and rest states). In the next step, a



BOLD or flow sensitive imaging sequence is employed to detect the activation-related

intensity changes and test the hypothesis. Due to low inherent CNR, many images are

acquired repeatedly, covering the same volume while the subject performs tasks. For

example, as illustrated in Fig.2.1, the alternating control and active epochs are presented

with blocks of successive repetitive events ('block-based' design).

The stimuli are presented in a matter such that the time of stimulus presentation

with respect to image acquisition is recorded for later analysis. The performance of the

subject may also be monitored using devices such as motor recording systems [21]. Once

the data is acquired, it is generally reconstructed off-line but analysis may also be done in

real-time depending on capabilities of the system [74].

Signal *.**.* .*Figure 2.1 Schematic of block-

0 .. .6 based functional MRI paradigm.
*oo. *The alternating control and active

Time epochs are presented with blocks
of successive repetitive events

(indicated by arrows). The signal
response from the activated region

Time is simulated in the plot.
Sequence

Another step in a functional MRI experiment may involve pre-processing of the

data for a realignment of all images in the time-series to correct for any bulk head-motion,

for normalization of the individual brain morphology to standardized Talairach-Tournoux

space [75] or for spatial smoothing [76]. After the preprocessing stage, in order to

differentiate the signal between activated and deactivated stages, any of a number of

statistical methods are applied to extract the spatial and temporal information of the

activation with respect to the cognitive tasks used in the experiment. Such methods include

simple subtraction [34], cross correlation [20], student's T test [21], Fourier analysis [77], or

the Kolmogorov-Smirnov method [78].



During the scan session, bulk motion of the head may result in the misregistration

of the anatomical locations and generates inaccurate information regarding functional

activation. To immobilize the head during the imaging session, a bite-bar or air cushion can

be used. If 3D image sets are acquired, motion correction algorithms can be applied by

calculating rotational and translational motion-related vectors, and transforming the data

accordingly [79, 80]. In spite of these corrective measures, motion may still introduce

misregistration of images. Therefore, the active participation of the subjects and patients

for immobility during the scan session is generally necessary.

In functional MRI, the signal fluctuations that are not associated with the task-

related signals affect the quality of functional mapping ([81]-[83]). The major contributors

to these signal fluctuations are cardiac, respiratory, and cardiac-induced CSF pulsation

[77,82]. Strictly speaking, these signal fluctuations, observed to be spatially covariant [78],

should not be identified as 'noise' because they derive from deterministic process. However,

throughout the thesis, we refer to these signal fluctuations as 'physiological noise', because

they are not task-related signals.

The exact quantification of the physiological noise component is difficult because

it originates from the complex interactions between tissue and cardiac/respiratory variables

as well as other unknown factors [24, 28, 76]. Several methods to reduce the physiological

noise have been proposed. Navigator echoes have been used to monitor cardiac and

respiratory cycles so that the cardiac and respiratory components can be . removed

retrospectively [81]. Other retrospective-filtering approaches combined with monitoring of

key vital signs during the functional session have been used [82, 83]. Spin-echo based

sequences [59,65] have been shown to be affected less by physiological noise. It is

hypothesized that rapidly flowing spins associated with cardiac pulsation may not be

refocused and, therefore, will not contribute to signal fluctuations.

2.3.2 Data Acquisition Methods
Functional MRI requires repeated imaging of a single volume of interest to

compensate for the inherently low BOLD contrast-to-noise. The area of activation in the



brain is not always known a priori, nor is it necessarily confined to a single slab of imaging

plane, making it necessary to observe multiple slices simultaneously. Whole volume

coverage of the brain also offers advantages over single slice acquisition when correcting

for head-motion during the session, or for avoiding 'inflow' artifact (See section 2.2.3).

The majority of functional MRI experiments utilize gradient-recalled echo-planar

sequences (EPI, Chapter 1), permitting excellent temporal resolution and full coverage of

the brain. Although EPI requires special hardware for the fast gradient switching, the speed,

excellent T2* contrast, and insensitivity to in-flow, make gradient-recalled echo-planar

sequences the primary tool for functional MRI.

Fast methods other than multi-slice gradient-recalled EPI have also been

developed for fMRI such as ES (echo-Shifted) FLASH, PRESTO (Principles of Echo

Shifting with a Train of Observation), and MUSIC (Multi-slice Interleaved Excitation

Cycles)[72,84,85]. In these methods, TR is made shorter than TE, by interleaving

excitations, thus volume coverage is achieved in a reasonable time period. Echo Volume

Imaging (EVI) has also been proposed to enhance the advantage of EPI sequence with

true volume encoding (the through-plane direction is also phase-encoded) [86]. Functional

MRI using key-hole k-space acquisition [37] or single-shot half k-space EPI [35] have been

used to reduce k-space acquisition requirements (see Section 1.1) and to increase the

temporal resolution.

Spin-echo sequences such as asymmetric spin echo [78] or the fast spin echo

sequence [65] have also been used in fMRI. As discussed in Section 2.2.3, spin echo

sequences are sensitive toward to the BOLD signal component in smaller vessels and

diffusion in brain parenchyma. In addition, they are less sensitive to pulsatile flow-artifact

and less sensitive to macroscopic field distortion due to poor shimming or tissue/air

interfaces. Although the intrinsic BOLD contrast is less than obtained using gradient echo

sequences, the sensitivity to micro-vasculature and a relative immunity from the

susceptibility-related signal loss make the spin-echo sequences a serious alternative for

functional MRI studies. Spin-echo techniques have not been widely used, however, due to

low BOLD contrast-to-noise [59,61].



2.3.3 Event-Related Design
The range of task designs used in fMRI include both event-related (ER-fMRI)

designs, which are used to detect changes due to a single impulse event (Fig 2.2) and the

block-based designs where the events are presented in blocks of time (Fig 2.1) [12, 28, 87,

88, 89]. ER-fMRI is useful where the traditional block-based design can not be easily used.

Such cases include, for example, the study of working-memory paradigms such as

recollection and familiarity [14, 90] where stimuli must necessarily be applied randomly as

single events. ER-fMRI avoids possible contamination of working-memory events which

may be introduced if repetitive memory cues are given in 'block'.

ER-fMRI began from the observation that a significant response can be elicited

even when a very brief duration of stimuli is presented [30, 91]. The analysis of ER data is

done assuming a linear system where a neural impulse input is convolved with the intrinsic

hemodynamic response function to generate a reference waveform for correlation analysis.

Several cases of departure from linearity have been reported, especially when the period of

each events is less than a second, however, the linearity assumption has been shown to be

valid in most cases ([90]-[92]). The detailed information and knowledge about the

hemodynamic response which constitutes the basis for event-related fMRI is not clear, and

is the subject of many investigations [11, 12, 92].

Signal **f. Figure 2.2 Schematic of an event-

.... *......... * related functional M paradigm.
Unlike the block-based design in
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Time
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impulse of single type of event (in
arrows) is presented. The signal
response from the activated region
is simulated in the plot.
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Chapter 3
Spatially-selective RF Encoding

3.1 Introduction
RF encoding based on spatially selective excitation is not limited to acquisition of

data in k-space and, therefore, offers greater flexibility for spatial encoding than that is

offered by conventional Fourier encoding. For example, the wavelet-encoding method was

proposed for adaptive updating of the encoding scheme during dynamic imaging [40].

Encoding by singular value decomposition (SVD) has also been implemented for dynamic

imaging where the SVD of the image matrix is used to update the encoding basis [41]. In

this chapter, the fundamentals of RF encoding and image decoding which are central to the

proposed adaptive fMRI method will be described in terms of a useful matrix representation.

Effects due to the imaging point-spread-function (PSF) in RF encoding are also investigated

and an analysis of SNR is presented.

3.1.1 RF Selective Excitation
As described in Section 1.2.2, the dynamic interaction between theB-field

generated by a RF pulse and the magnetization vectors in the sample is described by the

Bloch equation (Eq. 1.8). Assuming the laboratory frame of reference and relaxation matrix

91, from Eq. 1.8, and Eq. 1.9, we obtain the following set of differential equations;



dM1 =YMY(BO M
dt T2

dM =yM B MY (3.1)
dt IT2

dM (M~ --M0 )dML= -7MB -
dt T,

According to the small flip angle approximation [94], when the flip angle is small

dM
(i.e., 300), the longitudinal magnetization, M, is approximately constant (i.e. =0).

dt

If the duration of the RF pulse is considerably smaller than T, and T 2, the effect from

M M
relaxation can be ignored so that M =0 and ' = 0. Thus, for the transverse

T2 T2

component of the magnetization, Mx(t)=M(t)+iM,(t), assuming an initial condition

of MZ =MO and a constant magnetic gradient, G, applied in the x direction during the

RE excitation, the following is obtained [43],

dM* =-iG -x -MX+iyB (t)M . (3.2)
dt

Solving Eq. 3.2,

T

M, (x) = iMo fB (t)e-'x tdt . (3.3)
0

From Eq. 3.3 we see that the spatial profile of excitation, Mxy(x), is in the form of a

Fourier transform of Bl(t)with respect to time. Therefore, for a constant slice selective

gradient, a small flip angle and short RF pulse duration, the profile of the spatially-selective

pulse can be approximated by Fourier transformation of the RF pulse shape [43]. Using the

small flip angle approximation, it has been shown that RF pulses can be tailored to form

virtually any non-Fourier encoding basis by manipulating the phase and the magnitude

profile of the RF pulse [43].



3.1.2 Matrix Representation of RF encoding
Drawing on the work of Panych et al [93], we use a matrix representation to

describe the RF encoding-decoding processes based on a linear response model. The matrix

representation provides a simple and elegant means of generating RF pulse definitions and

analyzing the MR signal response. For simplicity, let us represent the multi-dimensional MR

encoding technique as separate 1-dimensional operations in each dimension. We define

s(x) as a one-dimensional MR signal density distributed in space. We also define F(x) as a

function that is centered at x=O and has a spread of Ax, which will serve as a sampling or

point-spread-function (PSF). We then define a spatially selective set of basis functions,

{D Q,(x)}

D,, (x) = (x - mAx), (3.4)

where m = 0,1,2....., M -1, and Ax = FOVIM, and M is the number of volume

elements along the FOV. Thus, s(x) can be represented by the expansion,

s(x)~_ 1 s,,D,,(x). (3.5)

The set of coefficients { sm } can be thought of as a discrete estimate of s(x).

During imaging, a spatially-dependent weighting function or 'encoding function',

t,, (x), is applied by manipulation of the phase and magnitude of the RF pulse. These

encoding functions can also be represented in terms of the basis in Eq. 3.4 so that,

M-1

t,(x) = ZT,,,.(x) (3.6)
,,=0

where T,,m is an element of an N x M encoding matrix T. For example, if a 8-level

Hadamard matrix is used to generate encoding functions, the set { t,, (x) } is the result of a

matrix-vector multiplication of the n throw elements of T with corresponding functions in

{ , (x) }. Thus, in this example, each eight-element row in T is a discrete representation



of a Hadamard encoding function. In Fourier encoding, each t, (x) is a complex exponential

function, and (D, (x) is a sinc-like function.

Given the above definitions, the acquired signal, y,, (x), obtained using an

encoding function, t, (x), is;

M-1 M-1 M

= (s(x),t.(x)) = (x),T D,, ,(x)) = T,,( s(x),I,,.(x)) = T,,s, (3.7)
m=0 m=O m=O

where { sm } are the coefficients of the expansion in Eq. 3.5.

Equation 3.7. can also be represented in matrix form,

y = Ts, (3.8)

where y =[y0 yIy 2 -. yN-1 ]T and s=[O1-.SN-1 T

According to Eq. 3.8, the estimate, s, of spin density of the sample, s(x) can be decoded

from a set of measurements by matrix inversion and matrix-vector multiplication;

- =-I-
s=T y. (3.9)

3.2 Point-Spread Function of RF Encoding

In the previous section, we have shown that imaging information and encoding

functions can be represented in terms of the point-spread function. The PSF of an

encoding basis contains information about the imaging resolution. The PSF, in general, also

describes spatial range of information in the image estimate. In Hadamard encoding using

RF excitation, the overlap between excitation profile, which can be described by PSF, may

cause uneven degree of excitation over time, introducing 'cross-talk' which influences the

time course of the MR signal.



Figure 3.1 shows the ideal PSF for Hadamard encoding, the box-shaped function

shown on the left of Fig. 3.1a. However, it is practically impossible to excite profiles built

from this PSF without the use of extremely long RF pulses (right side of Fig 3.1a). Thus, in

practice, the RF pulse duration is truncated, introducing a ringing of the profile of the

point-spread-function (Fig 3.1b). An example of a sinc RF pulse, truncated after the first

side lobe and windowed with cosine function to reduce the ringing, is shown in Fig 3.1c

along with the associated PSF. A box shaped RF pulse minimizes the pulse duration but

generates a sinc PSF which has many side lobes (Fig. 3.1d).

Since truncation of a sinc-shaped RF pulse causes ringing or broadening of the

PSF, this may result in overlap of adjacent excitations in RF encoding and an uneven

temporal pattern of excitation over the volume. This may introduce undesirable fluctuations

into the functional signal. The relationship between the excitation profiles and the

functional MR signal will be examined in detail in the next section.

RF pulse

Figure 3.1. Comparison of
different point-spread-functions
and their RF pulses. (a) Ideal
box-shaped PSF and sinc RF
pulse, (b) PSF of truncated sinc
function, (c) PSF of cosine-
windowed sinc at first side-lobe,
and (d) PSF of box-shaped RF
pulse.

PSF

(a)

(b)

(c)

(d)

-L-
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3.2.1 Cross-talk in RF encoding
The illustration in Fig. 3.2 shows an example of how the overlap in RF excitation

profile can modulate the effective TR period experienced at different locations. Assume that

the spatial profiles of excitation, S1 and S2 as shown in Fig 3.2 are applied alternatively

every TR period. At locations A, B, and C, the magnitude of the spatial profile of excitation

varies over time, therefore, the flip angle at each location changes as imaging progresses.

For example, in the case illustrated in Fig. 3.2, location B will have different steady-state

magnitude of M, due to the shorter TR time to recover the M, magnetization as

compared to the location A (2TR vs. TR). Location C experiences flip angle of a 2  in

every other TR period. The result is a variable Ti-weighting across the field of view.

S1

S2 C A B

FOV

Ia
Flip Angle

Flip Angle

Time 0 TR 2TR 3TR 4TR 5TR 6TR

PointA a a a a a a a ........

Point B a 0 a 0 a 0 a ... ... ..

Point C a a a a a a a ... .....

Figure 3.2 Illustration of the spatial cross-talk in RF excitation. The spatial profiles of
excitation, S1 and S2 are applied in sequence in time separated by a TR period. The table
below indicates the degree of flip angle excitation at each location in time sequence. This
will result in uneven level of saturation over the FOV in time.



The spatial overlap of excitation profiles can cause an uneven level of saturation

due to the application of different flip angles in time. The effect from the overlap between

spatial profiles may be reduced by 'interleaving' the order of excitation to allow for a longer

effective TR. However, increasing TR is not practical for volume encoding methods where

large portions of the volume are involved on each excitation.

We will illustrate the effect of crosstalk on the signal behavior with Hadamard

encoding. Assume 16 Hadamard encoding functions { t,, (x) } are built from the PSF shown

in Fig 3.1c. The encoding functions and their magnitude profiles of spatial excitation are

shown in Fig 3.3. For true Hadamard encoding, as with Fourier encoding, there should be

the same degree of excitation across the FOV for all encodes. However, because of the

need to use RF pulses of short duration, the PSF's are overlapped, and there will be

temporal variations in the magnitude profile as demonstrated by right column of Fig 3.3.

When the profiles are excited in a time sequence, the excitation varies over time for

different locations within the FOV, causing signal fluctuations.

As an example, we considered two Hadamard encoding cases. In the first case,

Hadamard functions are built from the PSF in Fig 3.1b, and in the second case, they are

built from the PSF with less ringing in Fig. 3.1c. We simulated the case where the encoding

functions are applied ten times each in sequence (TR of 100 msec, T1=760 msec). The

magnitude of longitudinal magnetization at one location in the FOV was calculated to

examine signal fluctuations over time for the two cases. The result is plotted in Fig 3.4 for a

location at the center of the FOV where there is maximum signal fluctuation. As expected,

there was a periodicity in signal fluctuations with a period of 16 TR due to repetitive

excitation with the 16 encoding functions. The signal variation was small, only between

0.12% and 0.4% of the mean signal level. Because it is not correlated with the task

paradigm, this merely adds to the base-line noise level, and should not significantly affect

the fMRI result. However, there should still be attention to the design of RF pulse profiles

to minimize introduction of "RF encoding noise" by reducing overlap between adjacent

profiles.



Figure 3.3 The left column shows 16 Hadamard encoding functions where the PSF is as
shown in Fig. 3.1c. Right column shows magnitude profiles of the encoding functions. The
dashed line indicates the location for which the longitudinal magnetization magnitude was
simulated (Fig 3.4).

5 10 15 20

Number of TR period
25 30

Figure 3.4. Illustration of effect of
crosstalk on the magnitude of
Mz using 16-Level Hadamard
encoding. Hadamard functions
were built with two different PSFs
(The thick line shows the result for
the PSF in Fig 3.1b and the thin
line shows result from the PSF in
Fig 3.1c). The dotted line is the
result assuming perfect Hadamard
profiles. The temporal fluctuation
of the longitudinal magnetization is
due to uneven T, weighting.
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3.3 RF Encoding for fMRI

3.3.1 Matrix Representation
RF encoding consists of forming combinations of basic volume elements by

manipulation of the RF pulse shape. Figure 3.5 indicates some of the basic volume elements

that can be selected via RF excitation for non-Fourier encoding. A standard RF slice-select

pulse in one direction followed by a selective refocusing in the second orthogonal direction

[95,96] can excite lines. Planes can be selected by standard slice-selective technique [97].

Strips are excited using 2D selective RF pulses [98]. After the RF excitation, voxels within

each unit volume can be encoded by conventional Fourier methods of phase and frequency

encoding.

y

x

Z

Ay I AI '

A - - --- - -- -

A.z Az

Line(y - nAy) Plane(z - mAz) Strip(y - nAy',z - mAz')

Figure 3.5 Basic volume elements that can be excited using spatially selective RF pulses.
Non-Fourier encoding consists of forming linear combinations of basic volume elements
distributed throughout the imaging field of view.

The RF encoding method and its matrix representation, as described previously in

Section 3.1.2 for one-dimensional encoding, can be generalized for volume encoding. First,

define a MxK matrix S{MxK} such that each row vector contains the frequency (and phase)

encoded signal values obtained after a basic volume element (i.e. plane, line or strip as



shown in Fig 3.5) is excited. K is the total number of k-space samples (e.g. 256x128)

obtained by frequency and phase encoding one basic volume element, and M is the total

number of basic volume elements within the imaging field. Low flip-angle excitations can be

used to excite linear combinations of basic volumes, such that:

Y{NxK} =T{NxN} {NxM} S{M xK} (3.10)

Note that Eq. 3.10 is a generalized form of Eq. 3.8. C is an NxM matrix whose N

rows define N sets of basic volume elements throughout the imaging field that are to be

excited. T is an NxN orthogonal matrix (e.g. Hadamard or Haar) whose N rows define

unique linear combinations for encoding the volumes defined by C. For example, T can be

8 level Hadamard encoding matrix (H) or a Haar wavelet basis (W) as shown in Fig. 3.6.

C is separated from T so that selected locations for encoding can be explicitly defined. Y

is the NxK matrix in whose rows we place the output signal values after each unique volume

combination is excited.

1 1 11 1 11
-1 1 -1 1 -1 1 -1

1 -1 -1 1 1 -1 -1

-1 -1 1 1 -1 -1 1

1 1 1 -1 -1 -1 -1

-1 1 -1 -1 1 -1 1

1 -1 -1 -1 -1 1 1

-1 -1 1 -1 1 1 -1

Figure 3.6 Example of eight-level Hadamard (H) and Haar

1 1 1

1 -1 -1

-1 0 0

0 1 1

0 0 0

-1 0 0

0 1 -1

0 0 0

wavelet (W) encoding matrices.

An advantage of RF encoding is that T and C can be manipulated dynamically

depending upon the transient requirements of the imaging experiment. C is designed to

select volume sections conveniently located throughout the imaging field. T is chosen in



order to further encode each volume section and enhance SNR. In our functional MRI

implementation (which will be presented in later chapters) we used planes as the basic

volume element. In decoding process to recover the image estimate, C -S can be recovered

from Y by matrix multiplication with the inverse of T. The fully-imaged volune,

represented by S, can be recovered only if C is the MxM identity matrix (I) and T is

invertible;

= ==-1=-1= ==-1= =-1=

S=C T Y=IT Y=T Y. (3.11)

3.3.2 General SNR analysis
Due to the inherently low BOLD contrast, the inherent signal-to-noise ratio (SNR)

is especially important in functional MRI studies, and the RF encoding strategy should be

designed to produce the highest SNR possible. We will use the matrix representation to

compare direct encoding (where T is identity matrix in Eq. 3.10) versus volume encoding

methods (where T is Hadamard or Fourier encoding matrix) drawing on the SNR analysis of

general encoding developed by Panych et al [99].

Let us define the noise and artifact-free signal estimate of s(x) as the vector s

defined in Section 3.1.2. Then, SNR can be expressed as,

-T _x1/2

SNR = - (3.12)E
where E = T[q '] represents the image noise level, 46 (x) is the expectation of x, and

q' represents the noise vector after the reconstruction from measurements contaminated by

the thermal noise vector, q, so that,

i'=T )7. (3.13)



For orthogonal encoding, it can be shown that the image noise is [99],

-- =-I1- =-I1- -=-IT =_1_
E = r']= [(T )(T r)] [ T )(T q)]

=( T = T 
2

= 7 D )-7)]= D k (3.14)
k=0 Dk~

where q7 is the kth element of q and D is a diagonal matrix such that;

D = T(T)T. (3.15)

If we define the noise variance, o.2 = [k], then the expression for the image noise in Eq.

3.14 can be rewritten such that,

E = ] 2 Tr[D (3.16)
k=o Dkk

If T is a Fourier or Hadamard transformation matrix,

D =I / N and Tr[D ]=Tr[I]/N =1, (3.17)

The resulting noise, E, is;

E = o 2Tr[D]=co2  . (3.18)

For direct encoding, D = I, and

E = or2 Tr [I] = N (3.19)

Comparing (3.18) and (3.19), we see that the noise energy is larger for the direct

encoding method by the factor N. If the signal levels are the same, therefore, the SNR of

Hadamard and Fourier encoding is greater than that of direct encoding by a factor N .

Hadamard or Fourier encoding, which excites the whole volume in each encoding step can

potentially increase SNR. However, because these volume-encoding methods rely on the

excitation of the volume in each TR period, the effective TR is reduced compared to the

multi-slice (i.e. direct encoding). The Ernst angle (Eq. 1.17), which is a function of effective

TR, becomes smaller than that for the multi-slice approach, resulting in a reduction of

signal level. The evaluation of SNR for Hadamard and multi-slice encoding should account

for the decreased signal level as well as the decreased noise level.



3.3.3 SNR of Hadamard and Multi-slice Encoding

From Eq. 1.16, the MR signal was shown to be;

(1- -TR eff I
Signal oc sin a e- _ ff /TI (3.20)

(1 - e-T - efI Cos a)

where TR _ eff is the effective TR, and a is the Ernst angle which maximizes the signal for

a given TR _ eff and T1,

-TR eff

a=cos-1(e TI) (3.21)

Figure 3.7 shows the relation between effective TR and the Ernst angle for gray matter

which is the major constituent in activated voxels.
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We computed SNR for two different cases; multi-slice (or direct) encoding

assuming single-shot EPI, and Hadamard slice encoding using spatially selective RF

excitation. Our computations assume a fixed TR of 100 milliseconds and TE and T2* of 50

milliseconds. A T1 of 760 milliseconds, which is typical value for gray matter, was used [100].

Sample results for encoding eight slices (n,, = 8) are tabulated in Table 3.1. For Hadamard

encoding, there is a decrease in noise by a factor of 1 / n 1 = 1 / V. Meanwhile, effective

TR for multi-slice approach is longer than that of Hadamard encoding by factor of 8.



Concomitant Ernst flip angle is therefore, greater than that of Hadamard approach (750

versus 300). The calculated SNR was normalized with respect to the SNR of the multi-slice

method for comparison, and we see in the table that Hadamard encoding provides only a

slightly higher SNR (7%) than that of multi-slice method.

Case Effective TR (msec) FA Signal Level fl5 SNR SNR w.r.t. Case I

Multi-slice 800 -75 0.26 1 0.26 -

Hadamard 100 -30 0.1 2.83 0.28 1.07

Table 3.1 Comparison of SNRs normalized with respect to the multi-slice encoding method

for encoding 8 slices. Effective TR, Ernst flip-angle, and number of excitations, ns, are

shown.

Figure 3.8 compares the percentage improvement of SNR for the Hadamard versus

multi-slice encoding for different numbers of slices. From the curve, it is seen that the SNR

improvement by Hadamard encoding is about 16% compared to the multi-slice approach if

16 slices are encoded and 48% if 32 slices are encoded. In general, then, SNR is improved

by Hadamard encoding and the gain increases with the number of slices. However the gain

would be much lower than theoretical maximum (= V4-) that does not take the lowering of

flip angle into account. Significant SNR gain over the multi-slice approach can be achieved

only when encoding a large number of slices (i.e. > 16).

... T1 =760 msec Figure 3.8. Percentage improvement

.... T2*= 50 msec of SNR of Hadamard encoding
TR = 100 msec normalized to the multislice

60...... TE = 50 msec -----. --- ------ -- - .--------
methods with respect to the number
of slices. Ernst flip angle was

V 0 .... ........ .......... .................... adjusted to the effective TR
according to the number of slices.
TR= 100 msec, T1=760 were used
in the simulation.

(2 0
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Number of Slices



Figure 3.9 shows the percentage improvement of SNR for Hadamard encoding

compared to the single-shot multi-slice method assuming fixed temporal resolution (3.2

seconds and 1.6 seconds). The minimum effective TR is set to 100 milliseconds. Therefore,

if a multi-slice approach is taken using a single-shot EPI sequence, 32 slices can be encoded

in 3.2 seconds and 16 slices can be encoded in 1.6 seconds. The effective TR for Hadamard

encoding is equal to the temporal resolution divided by the number of slices that are

encoded. As can be clearly seen in Fig. 3.9, there is a point beyond which little SNR

advantage is gained by increasing the number of slices that are Hadamard encoded. At

roughly 1/4 of the maximum number of slices, over 90% of the SNR advantage due to

Hadamard encoding is reached and there is little benefit in further increasing the number of

slices.

TI = 760 msec
T2* = 50 msec

.... ..... L.......... L.......... L..... TR = 3200 m see

... ...... .......... .......... .---- M ax n'1,= 32 - -

.. .... .......... ....... .... T 1 =. 76. m se ... ...

T2* = 50 msec
TR = 1600 msec

. ........ .......... .......... ..... M ax n4 = 16

1 6 11 16 21 26 31
Number of Slices Encoded

Figure 3.9. Improvement of
SNR of Hadamard encoding
normalized to the multi-slice
method with respect to the
number of slices when fixed
temporal resolution is used.
White and filled circles indicate
results for TR of 3200 and
1600 msec respectively.

3.4. Summary
In RF encoding, the shape of RF pulse is manipulated to produce spatial excitation

profiles that correspond to functions of non-Fourier encoding bases. A simple matrix

representation was used to describe the RF encoding and decoding processes. The

importance of the choice of PSF in RF encoding was examined with respect to crosstalk

results. The SNR in relation to direct encoding and other orthogonal methods such as

Hadamard encoding was analyzed. We found that Hadamard encoding can provide SNR gain

over direct multi-slice encoding although a large number of slices (i.e. > 16) must be

encoded to achieve any significant gain.



Chapter 4
Multi-resolution Detection of Functional
Activation: Theoretical Examination

4.1 Introduction
In fMRI, bimodal hypothesis tests are typically used to create maps of significance

levels of functional activation using the fMRI time series for each voxel. The significance of

the fMRI activation depends on the amount of BOLD-induced intensity enhancement as

well as the noise level, i.e., BOLD contrast-to-noise ratio (CNR). Our proposed multi-

resolution adaptive functional MRI method may be justified if the relationship between the

BOLD CNR and spatial resolution is favorable for signal detection and zooming. However,

it is not completely straight forward how to set the in-plane or through-plane resolution

level for initial and intermediate stages of scanning in a functional imaging session.

We were motivated to examine the multi-resolution approach from both theoretical

and experimental perspectives addressing BOLD CNR. This chapter presents a theoretical

examination of the relationship between BOLD CNR and variable spatial resolution. First,

we describe the importance of CNR for the detection of the functional signal. We then

present a simplified two-voxel model of the fMRI experiment followed by a more general

model. Finally, physiological noise and its effect on BOLD CNR are also analyzed.



4.2 BOLD Signal Detection
Let us start by modeling the data acquisition process in fMRI as a random sampling

of data from Gaussian distributions of similar variance but with different means for

activated and control states. Thermal noise and physiological fluctuations such as cardiac-

and respiratory-related signals cause temporal variations of the signal. Assuming bimodal

operation (ON and OFF neuronal states), the mean and standard deviation of the sampled

data from each state (SOfg and SO) are;

SOff :Mean = sOFF ,STD= JOFF (4.1)

SOn Mean = sON = SOFF + As, STD = 0ON (4.2)

where As is the contrast due to the BOLD effect (As =sON - SOFF

In order to reject the null hypothesis of soN = SOFF (i.e. hypothesizing that there

is no difference between the two states), the difference in mean (As) and the standard

deviation of the two states are compared. Assuming the noise level of ON and OFF states

is same (odOFF = oON = o) and n samples are chosen from each state, a standardized variable,

referred to as the Z-score, can be defined as [101];

ZS SON SOFF - As -As (4.3)

A large BOLD contrast, As, compared to the baseline noise level indicates that

the null hypothesis can be rejected with higher probability. For the same As, increasing

either the number of samples (n ) or decreasing the noise level (0) favors the rejection of

the null hypothesis.
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The p-value (i.e., false negative error) for the Z score is defined;

erfc(Z, /(.)
p2= - (4.4)2

2 x 2

where error function is erfc(x)= e-' dt.

Note that the expression in Eq. 4.3 is same as that for BOLD CNR (As/o-)

adjusted to account for the number of trial events (V).

CNR= As= = Z,. (4.5)

The BOLD CNR, therefore, is directly related to the significance level represented

by p-value. BOLD CNR depends on several factors; the magnitude of BOLD contrast, noise

level and the number of data points acquired in the experiment time. In subsequent sections,

the factors affecting CNR will be discussed in greater detail.

4.3 Temporal Resolution and BOLD CNR
The effective repetition period, TR , determines the temporal resolution of a fMRI

experiment because temporal resolution directly affects the signal level of the image and

thus, the concomitant BOLD CNR. As described in Section 1.2.4, the signal magnitude has

two components. The first component depends on the ratio of TE time to T2 * and the

second is modulated by the effective TR period, flip angle and T1 of tissue. It was noted

that setting TE - T and using the Ernst flip angle, cos - (e ) , will maximize the signal

(See 1.2.4). The condition TE - T2 is generally set when using an EPI sequence for fMRI,

thus, the component depending on the ratio of TE time to T 2* is not considered further.

By substituting the Ernst angle expression for a using Eq. 1.17, Equation 1.16 is rewritten

as a function of the ratio between the effective TR and TI;



TR
2TR _e T1

S oc 1 ( _ 1 2TR) (4.6)

(1-e Ti)

Clearly, from Eq. 4.6, the BOLD signal is related to the effective TR period which depends

on the encoding method, the volume coverage, and the temporal/spatial resolution of fMRI

study.

Volume encoding such as Hadamard or Fourier encoding shortens the effective TR

because the whole volume of interest is involved in each TR excitation (Fig. 4.1b) as

opposed to the multi-slice approach, where each slice is excited only after all other slices in

the volume are excited (Fig 4.1a). The extent of volume coverage and spatial resolution of

data acquisition may also influence the effective TR. Let us examine the case of single shot

EPI. With the same volume coverage, the slice thickness can be increased to achieve higher

temporal resolution (Fig. 4.1c), but a shorter effective TR results. If we reduce the volume

coverage while maintaining a fixed spatial resolution, higher temporal resolution is possible

but again reducing effective TR (Fig. 4.1d).

V

V V

FOVFOV _

2

(a) (b) (c) (d)

Figure 4.1 Schematic showing relationship between the choice in encoding method and
effective TR. (a) direct encoding covering the full FOV, (b) Hadamard encoding of the full
FOV, (c) Imaging with thick slices of the full FOV with increase in temporal resolution, and
(d) reduced FOV coverage with same slice thickness as (a). The effective TR period is
shown by dotted arrows.



4.4 In-Plane Resolution and BOLD CNR

4.4.1 Two-voxel Model
We analyzed the BOLD contrast-to-noise for a simple case where there are only

two encoded voxels. Let us assume that all noise is thermal in nature and is therefore

uncorrelated spatially and temporally. The encoding combinations of two voxels are shown

in Fig. 4.2. From the encoded signal, SA+B and SA , estimates for SA or SB can be

calculated. This simulates either Fourier or Hadamard encoding. If we use only S ** for

estimation, we simulate the lower resolution imaging case.

A B

PA PB

AA AB

SA+B

S A--B

Figure 4.2 Simplified 2-voxel imaging model (A and B). The spatial profiles of the

combinations of basic encoding elements are shown (S+B and SA-B) The mean baseline

signal and BOLD contrast are p and A respectively.

Examining Fig 4.2, we see that,

SA±B oAAA ±oB ±AB + (4.7)

where q* is the random thermal noise component associated with each measurement which

we assume is a zero mean process with a standard deviation of o-,. The mean baseline

signal and BOLD contrast are pand A respectively. Consideration of physiological

"noise" is ignored in this analysis and treated instead in Section 4.6.1.



If only one of the volume elements contains activation (for example, AB = 0 in

Eq. 4.7), the signal-estimate of voxel A, which is obtained from a combination of the

measurements, SA+B and SAB is as follows,

5A =(SA+B sA-B)/ 2 2 PA+ 2AA +)7* +'I (4.8)

where q/and q- are the thermal noise components from the measurements S"and

SA-B respectively.

The resultant CNR becomes;

CNR = AA/(o-, /) = A/O-,). (4.9)

When SA- is replaced by zero, simulating reduction of in-plane resolution by k-space

truncation and zero-filling, the signal-estimate from voxel A and the associated CNR

become;

5^=(SA+B A +AA B+T)/2,

CNR=(AA/2)/(o-,,/2)=AA/-,. (4.1

If both voxels A and B have an equivalent magnitude of BOLD activation

(AA = AB = A), the signal-estimate and CNR are,

2 2

CNR = (A / o-,). (4.11)

Note that CNR in Eq. 4.11 is the same as Eq. 4.9., the case where only one volume element

contains activation.

(4.10)



If there is truncation and zero-filling, the signal-estimate and CNR become,

5^ =(SA+B +0)/ 2 =(pA +AA +B +AB A /)/ 2 =(DA +PB 2A+)/2

CNR = (AA)/(-7 /2) = 2(AA / .-,) (4.12)

Analysis using this simple two-voxel model suggests that the BOLD CNR strongly

depends on both the spatial dimension of activation and the in-plane resolution. For

instance, when the activation is limited to one voxel, reducing in-plane resolution to

encompass both voxels actually reduces the CNR by a factor of V2 (compare Eq. 4.9 and

4.10). However, when the activation is distributed over both voxels, reducing in-plane

resolution has the opposite effect. BOLD CNR is increased by the factor of 5 (Compare

Eq. 4.11 and 4.12).

4.4.2 In-plane Resolution and BOLD CNR
Based on the simplified 2-voxel model of the previous section, an extended

mathematical model was devised to examine theoretically the optimal spatial resolution for

maximum BOLD CNR. In order to model the effect of variations of in-plane resolution,

truncation in the k-space representation of the BOLD profile was performed, and its effects

on noise and BOLD contrast were examined.

Let us define the activation profile as a Gaussian function, f(x), with full-width-at-

half-maximum (FWHM) of - ni2 (See Fig. 4.3) so that,
8ff

f(x) = e-("'"I. (4.13)

The k-space representation of f(x)is also a Gaussian function,F(k), with FW.HM of

28Vini (Fig. 4.3),

Fk) =.(4.14)F ek)



Truncation corresponds to bandwidth-reduction of the k-space representation of

the activation profile. Since the truncation in k-space means a filtering of the high spatial

frequency content, the spatial profile of the original activation pattern will be affected in

addition to the effective spatial resolution. The amplitude of the resulting activation profile

is proportional to the area under the k-space profile, therefore, filtering the high frequency

region of k-space will reduce the amplitude of the activation profile in image space as

illustrated in Fig 4.3.

f(x) =e-(=
1 -(k)

F(k)= e
ev;'

2 ,,
- n2

E/T 2 eVni2

Spatial profile of
activation

k-space
representation of

the activation

Reduction of
signal amplitude

erf (k / e) -2 _pdfPfe- df

k/

Spatial profile of
activation

Truncation in
k-space

Figure 4.3 Illustration of the signal reduction by simulating reduction in in-plane resolution
via k-space truncation.

f(Xx. oc erf(k /e)



The degree of amplitude reduction of the

be obtained analytically from the Error Function,

under the Gaussian shaped function in Eq.

- k/ e <*>+k/e6,

kle

erf(k /e)= 2 df/ ,
0N~J~~f

Gaussian-shaped activation profile can

erf(k/c) which is equal to the area

4.14 with a frequency bandwidth

(4.15)

where 0s erf(k/) 1.

Assuming o-,is the noise level at a k-space size of k/=1, k-space truncation

alters the image noise level by a factor /e , thus the CNR (assuming fixed TR) is;

CNR = erf(k e) (4.16)
ao-,,jT-

To find the k/ that maximizes BOLD CNR, the solution of

where k'= k / e.

d erf(k') erf'(k')-JK-erf(k')/(2J-) =0
d k-1 k'

which can be rearranged as;

erf(k')
erf'(k') = 2k

d erf(P) =0 is sought,
dkA

(4.17)

(4.18)

Eq. 4.18 was solved numerically (graphical solution is shown in Fig.

optimal k-space reduction to produce maximum BOLD CNR is derived,

k'= k/ 1 k~ .

From our numerical solution, the required k-space bandwidth to

corresponds in the breadth of the Gaussian profile in k-space, e.

4.4.). Thus, the

(4.19)

maximize CNR



0.8- - erf'(k')
06- ........ erf(kP)/2A
0.4-

0.2-

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

k' erf(k' )
Figure 4.4 Graphical representation for the solution of erf'(k') - k)2k'

Figure 4.5a shows a plot of normalized BOLD contrast versus k-space size based

on the Eq. 4.15. Note that BOLD contrast increases monotonically with increase in k-space

size. Fig. 4.5b shows a plot of BOLD CNR versus k-space based on the Eq. 4.16. From the

examination of curve of BOLD CNR in Fig 4.5b, we see that CNR reaches a maximum at

k / ~1 as predicted by Eq. 4.19. Thus if the resolution is set too low or too high, less

than a maximum CNR is expected.

The previous CNR analysis assumes a fixed number of data acquisitions regardless

of the k-space range encoded. If, however, the number of data acquisitions (n) can be

increased proportionally with the reduction in k-space, a further factor of Vkh7e is

introduced in Eq. 4.16 so that;

CNR =erf(k /e) 1 erf(k/e) (4.20)
k/ 1 kle k/e

As shown in Fig 4.5c, CNR is monotonically decreasing function of resolution. The k-

space encoding range that produces the maximum CNR in Eq. 4.20 occurs when k/F = 0.

This is somewhat surprising result in that a single encode is enough to generate the

maximum CNR, and increasing resolution does not increase CNR.
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Figure 4.5. The result of functional detection when k-space size is reduced. (a) Normalized
BOLD contrast versus k-space size, (b) BOLD CNR versus k-space size. (c) BOLD CNR
when the number of acquisitions is increased proportionally with reduction in k-space size.

In summary, increasing k-space size (i.e. resolution) is shown to increase BOLD

contrast monotonically (Fig. 4.5a). However, as resolution increases, BOLD CNR increases

to a maximum and then decreases. The maximum occurs at a k-space size proportional to

the breadth of the activation profile. When the number of acquisition is increased

proportionally to reduction in k-space size, the BOLD CNR decreases monotonically with

increase in k-space size (resolution).

4.5 Slice Thickness, Size of Activation
and BOLD CNR

4.5.1 Two-Slice Model
For the analysis of BOLD CNR in relation to the slice thickness, we used a two-

slice model similar to the two-voxel model for variation of in-plane resolution (See Section

4.4.1). Consider two different slices, A and B, as shown in Fig. 4.6. Examples of imaging

either slice A alone, or slices A and B together are shown. The mean baseline signal and

BOLD contrast are p and A respectively.



SA

SA+B

Figure 4.6 Simplified two-slice model of the site of possible activation (A and B). The
spatial profiles of the basic encoding elements are shown.

If there is activation in only one of the slices, for example, AB =0 in (Fig. 4.6), for the

first case in Fig. 4.6 where slice A alone is excited,

SA = pA+ AA+q, and CNR=AA /-,, (4.21)

where q is a thermal noise component with standard deviation of o-,. In the second case

shown in Fig. 4.6. where the slice A+B is excited,

s A+B A A + )B +)7 , and CNR = AA / -,. j (4.22)

If both A and B contain functional activation and the magnitude of BOLD contrast is the

same in both slices (i.e. AA = AB),

(4.23)sA = pA+ AA +q and CNRThermal =AA / 0 q

If A + B is excited,

SA+B =PA +A +PB +AB +Y=PA +PB + 2AA +i, and

CNR = (2AA)/(O-,) = 2(AA /o-,) (4.24)

Our two-slice model results imply that the relation between the spatial dimension

of activation is crucial in determining BOLD CNR. As shown by Eqs. 4.21 and 4.22, as long

as the slice includes the site of functional activation, CNR does not change with increasing

slice thickness. In case that the functional activation extends beyond the single slice width,

CNR increases by a factor of 2 if the slice thickness is increased to contain the activation

(compare Eqs. 4.23 and 4.24).



4.5.2 Slice Thickness and BOLD CNR
Based on the previous section using simple two-slice model, a more general model

assuming multi-slice single-shot echo-planar-sequence is constructed. First, let us assume

that each slice can be encoded within a fixed imaging time (TRmin). The effective TR, TReff

is a function of the number of slices (n,,);

TReff = TRmin -ns. (4.25)

If we maintain a constant volume of interest (VOI), the number of slices is inversely

proportional to slice thickness Othk I

n, =VO thk (4.26)

From (4.25) and (4.26),

TReff =TRmi, .n , =TRmin (VOY% ), (4.27)

where both TRmin and VOI are constant.

The BOLD signal contrast, ASacl , can be related to the slice thickness Othk by substituting

TReff in Eq. 4.27 into Eq. 4.6;

TR min -VOI
2TR-mn vi ~ -T 1

ASact oc 1 - e thkT (1 2 TR Oi (4.28)

(1-e *'hk 'TI

If the BOLD contrast, ASact is distributed uniformly throughout the volume, the

measured BOLD contrast, AS, is dependent on both the imaging slice thickness (0thk) and

activation thickness , 0act as shown in Fig 4.7.



Oact 0thk

Figure 4.7 Illustration of the extent of activation in through plan direction a,, in relation to

the slice thickness, Othk . BOLD contrast, ASac, is distributed over the same volume.

We now consider the two cases, act > Othk and 0 act Othk *

If Oact >Othk , AS increases proportionally with the slice thickness,

AS = ASac, x thk

cac

If Oact Otk , AS is constant;

AS = ASact

(4.29)

(4.30)

In addition to BOLD contrast, the number of averaged data acquisitions, n,

should also be considered in the CNR calculation (See Fig 4.1c). When a fixed total imaging

time, T,,,, is used, n is inversely proportional to TRff .

From (4.27) and (4.31)

TRff

n T"'
TReff

thus, n is directly proportional to

(4.31)

ot R Ohk

TRmin *VOl
(4.32)

0n,.,> 0,th



Eqs. 4.29 and 4.30 and 4.32 were used to calculate BOLD CNR (CNR= AS) for
0-

slice thickness vs. activation width. Thermal noise was assumed. TE/ T2 =50/50 msec and

T1 of 760 msec were used in the calculations. The activation width (0"j,) was assumed to be

evenly distributed over 5.5mm, and the slice thickness (0thk) was varied from 2.5mm to

15.5mm in increments of 1mm. It was assumed that there is minimal susceptibility-related

signal loss for a slice thickness of 15.5 mm. It was assumed that a minimum of 50 msec

(TRmin) is required to encode a single slice. The maximum BOLD percentage change (AS.,,)

was set to 5% of the baseline signal level and uniformly distributed over the width of

activation. A thermal noise level of o- ASact and a fixed VOI of 192-mm were assumed.

The results of the calculations are plotted in Fig. 4.8 assuming a 5.5 mm-thick

functional activation width was contained within 192-mm thick volume. Fig. 4.8a is the

BOLD contrast (same as the percentage signal change level with respect to the baseline

signal intensity). Up to a 5.5-mm slice thickness (0act > %thk ), the BOLD contrast level

increases to a maximum at a slice thickness of 5.5mm, However, as slice thickness increases

beyond the activation width (ac, Othk ), the BOLD contrast decreases due to the reduction

in signal level (Eq. 4.28). The BOLD CNR, plotted in Fig. 4.8b, has a similar shape with

BOLD contrast since the thermal noise condition was assumed. If the number of

acquisitions, n, is increased proportionally to the slice thickness (Eq. 4.32), i.e. there is a

fixed total imaging time, the large CNR is obtained when the thickest slices are used even

when Oact 5 Othk (Fig 4.8c).
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Figure 4.8. BOLD contrast and CNR versus variation in slice thickness assuming BOLD
signal change is evenly distributed in a 5.5 mm thick activation width. Total 192-mm
coverage was assumed and temporal resolution varies depending on the number of slices
excited. (a) Percent change in BOLD signal contrast with variation in slice thickness. (b)
CNR vs. slice thickness, (c) CNR vs. slice thickness when the number of acquisitions is
increased to maintain constant total imaging time independent of slice thickness.

4.6 Physiological Noise and CNR
The effect of physiological noise on CNR for different encoding bases was

analyzed for different activation profiles analogous to the previous section using a simple,

two volume-element model. The possible encoding combinations, A+ B and A-B are shown

in Fig. 4.9, in which we intend to simulate the effect of varying in-plane resolution. The

mean baseline signal and BOLD contrast are p and A respectively.

From Fig 4.2, the signal obtained for the two encodes, ignoring the effect of

thermal noise is;

SA±B pA+ A ±B B A B
(4.33)

where 6 is the physiological noise component with standard deviation of -phys with

respect to the baseline signal level.

4
Oart >0tlik

5 r



In practice, there is a time difference between encodes SA+B and

we assume that the time-variation of physiological noise is minimal during the short

encoding duration as in EPI.

The general expression for the signal estimate when two elements are Fourier or

Hadamard encoded is;

SA =(s A+B +s A-B )/ 2)LA+2AA A_ (4.34)

If truncation and zero padding is applied, with resultant reduction in spatial

resolution, the signal estimate becomes,

A =(SA+B )/2 PA+AA+p B+AB A +B (4.35)

Consider first the case where only one of the volume elements contains functional

activation, for example, AB =0 in (4.34),

5A = (S A+B +s A-B )/ 2 =PA A _ +AA +A

2

CNRpys = A A / phys .

With truncation and zero padding, the signal estimate becomes,

5A =(SA+B+ 0)/2 PA +A A +pB + A +B

(4.36)

(4.37)

If oY and dB are uncorrelated, the CNR is the same as that obtained assuming thermal

noise in Sec. 4.4.1. However, if 3 A and 3 B are correlated, the variance of 3 A + 3 B, is the

same as that of the single variable 2 A,, and is 4 The CNR is therefore dependent
0phys-TeC Rithrfrdee en

on the spatial characteristics of the physiological noise component;

CNRhy, =(A / 2)/(-Phy,) = -(AA /ah,,)
2

CNRphys = (AA / 2)(phys /2) = AA / phys

for dA - 3 B =

for dA = 3,and JB =

(4.38)

(4.39)

s A-B , however,



Consider another case where both A and B contain functional activation with the

same magnitude of BOLD contrast (AA = AB A),

5A =(S A+B +s A-B 
2 PA + 2 AA + MA PA +AA +

6
A) and

2

CNRphy, =AA / phys* (4.40)

In the case of truncation and zero-padding,

SA =(SA+Bo0)/2 = A+AApB B + A +B PA+PB+2 A+YA±B (4.41)
2 2

and for CNR,

CNRhys = AJPhys for 3
A=tB=t (4.42)

CNRPhYS = A (phys /2)=2(A phys) for A = 3 , and cB=0. (4.43)

A general trend of the relationship between the size of activation and the size of

area affected by physiological noise can be seen from the results above. When the size of

activation is greater in extent than the areas that are affected by physiological noise, there is

an increase in CNR if we reduce spatial resolution (Eqs 4.40 and 4.43). However, when the

size of activation is smaller than that the area affected by physiological noise, reducing

spatial resolution decreases CNR (Eqs. 4.36 and 4.38). If the size of activation is equal to

that due to physiological noise, the CNR is not affected by changing resolution (Eqs. 4.36,

4.39 and 4.42).

4.7 Summary
In this chapter, we first showed that the BOLD CNR is an important parameter,

which directly relates to the detection of functional signal assuming Gaussian distribution

with same variances for signals obtained from activated and control tasks. Temporal

resolution is also important because it directly affects the signal level of the image, and

concomitant CNR.



We used a simplified two-voxel model to examine the spatial resolution with

respect to CNR in both in-plane and through-plane resolution, and extended the analysis to

include the more general cases. Our analysis based on this simple two-voxel modelsuggests

that the dimensions of the activation and spatial resolution affect BOLD CNR in that CNR

is maximized when the spatial resolution is matched to the size of activation. Further

analysis, simulating functional activation with a 1-dimensional Gaussian shaped profile

showed that the maximum CNR is achieved for in-plane encoding when the k-space range in

imaging matches the breadth of the k-space profile of activation. In the through-plane

direction, the slice thickness should be adjusted to equal to the size of activation in order to

obtain maximum CNR. If it were possible to increase the number of acquisitions

proportionally to increased slice thickness, we showed that a single slice covering the whole

FOV would give the maximum CNR.

A two-voxel model was also used to examine BOLD CNR when noise is

predominantly physiological. We showed that when the size of activation is greater in extent

than the areas that are affected by physiological noise, there is an increase in CNR if we

reduce spatial resolution. However, when the size of activation is smaller than that the area

affected by physiological noise, reducing spatial resolution decreases CNR. CNR is not

influenced by changing resolution if the size of activation is equal to the size of areas

affected by physiological noise.



Chapter 5
p0

Multi-resolution Detection of Functional
Activation: Experimental Data

5.1 Introduction
From the previous chapter, our analysis showed that maximum detection of functional

activation as quantified by the BOLD CNR, depends on the relationship between the size of

the activation and spatial resolution of the imaging. We were motivated to investigate and

confirm this analysis in functional MRI sessions using simple sensorimotor paradigms. In this

chapter, BOLD contrast as well as BOLD CNR with respect to variation of in-plane and

through-plane resolution is investigated. We simulate the variation of in-plane resolution by

truncating k-space and zero-padding before reconstructing images. Multiple fMRI sessions

were performed and we varied the slice thickness for each session. Additionally, to further

examine the relationship between spatial resolution and the activation profile, a single

activation profile of known size and location was simulated. Finally, the physiological noise

component, which affects the BOLD CNR, was measured as a function of slice thickness, and

a simple model was constructed to relate physiological noise and spatial resolution.



5.2 Materials and Methods
Two male subjects (aged 28 and 48) gave written consent prior to the scan sessions

according to institutional IRB. All the experiments except the measurement of physiological

noise were performed on a 1.5T MR system (GE Medical, Milwaukee, WI) with a standard

gradient and quadrature bird-cage head coil for RF transmission and detection. For the

measurement of physiological noise, a single-shot EPI sequence was used in a MR system with

dedicated hardware for echo-planar imaging (Signa LX, GE Medical).

In order to restrict head motion, a vacuum-pillow (S&S X-ray Products, Brooklyn,

NY) was molded around the subject's head. This head immobilization was used for most

experiments presented in this thesis. Image encoding in the slice-select direction was

performed using combinations of 3 mm-thick planes as the basic volume elements with RF

pulses designed to provide uniform saturation over the volume in order to reduce the in-flow

effect (A detailed discussion of the in-flow reducing RF pulse can be found in Chapter 6). For

imaging on the system with standard gradients, an interleaved EPI (IEPI) sequence [102] was

adapted for RF encoding in the slice-select-direction (Chapter 6). Spin-Echo T-weighted

sagittal slices (7-12 contiguous slices, TE/TR 10/700 msec, 5mm thickness, 1 NEX, matrix

size of 128x256, 24x24 cm FOV) were acquired for anatomical localization and to provide

reference Ti-weighted anatomical images.

5.2.1 Data Processing
All data-processing and simulations were done using the Matlab programming

environment (Mathworks, Inc. Natick, MA). In order to find the relation between spatial

resolution (both in-plane and through-plane) and CNR, the distribution of CNR in selected

volumes-of-interest (VOIs) was computed. BOLD contrast (AS) was calculated by taking the

difference in means of signal in stimulus and non-stimulus phases for each pixel, and

representing it as a percentage value with respect to the baseline signal. The standard deviation

of the noise was estimated by computing the mean of the standard deviation of the signal

computed separately for the two phases. The signal magnitude was not normalized in order

that we could compare the relative CNR at different resolutions.



Histograms for CNR and percentage BOLD contrast for selected ROI's were

generated. The quantification of the BOLD CNR among voxels at different slice-thickness

required more than a simple count of pixels because each pixel represented a different volume

depending on slice thickness. Therefore, histograms were generated from the ratio of number

of pixels to the total number of pixels within the volume of interest for both percentage

BOLD contrast and CNR.

5.2.2 Variation of In-plane Resolution
A preliminary low-resolution functional study with a left hand-clenching task was

performed for each volunteer (FOV 192 x 192mm, 8 contiguous slices, 3mm slice thickness,

TE/TR=45/100msec, 64 x 64 matrix, and flip angle 60). Seven sets of 11 images were acquired

during alternating epochs of control and task performance. After identifying a slice showing

significant activation (p < 0.001), high-resolution functional mapping was performed for a

single slice. Data was acquired in twelve shots, each with ten individually phase-encoded

echoes, interleaved to fill a 128 x 120 k-space matrix for each image. Nominal in-plane

resolution was 1.5mm. Flip angle and slice thickness were set at 40* and 3mm respectively.

One image was acquired every 2.4 seconds. Fifteen sets of 12 images each were acquired during

alternating epochs of control and task performance (left hand clenching) periods. To

reconstruct images at different resolution, the k-space data was truncated to 8 different

resolution levels (truncated square k-space size: 112, 96, 80, 64, 48, 32, and 16) and zero-filled

to 128 x 128. The data was then inverse Fourier transformed and magnitude images were

obtained.

5.2.3 Variation of Slice Thickness
In order to evaluate the multi-resolution approach in the through-plane direction,

three separate functional MRI sessions were performed using the same motor task (right hand

clenching), but changing the slice thickness for each session. A 64 x 64 k-space matrix was

filled with echo data from four shots each with sixteen individual phase encoding steps. Each

image was acquired in 3.6 seconds (effective TR = 900 msec, TE=45 msec, flip angle = 600).

FOV was set to 192mm x 192mm, giving an in-plane resolution of 3mm. Fifty image sets were



obtained for each study with 3 control periods interleaved with 2 periods of task activation.

Axial slices were prescribed to image most of the primary motor areas that are inferior to the

superior apex of precentral gyrus in sagittal anatomical images. Slice thickness was set at 3mm,

6mm, and 12mm for these functional studies while the subject stayed motionless in the scanner.

In each session, 8 slices were encoded to maintain the same temporal resolution. Images were

prescribed in order to resolve the top two 12mm-thick superior slices into four 6mm-thick and

subsequently into eight 3mm-thick slices (Fig 5.1).

:12mm 6 mA

Figure 5.1 Experimental design in varying slice thickness (12mm, 6mm and 3mm) for the same
volume

5.2.4 Simulation of Multi-resolution Detection

To further examine the relationship between in-plane resolution and activation, a

single activation profile was simulated in a high-resolution image. A 128 x 128 anatomical

image (128 mm FOV) was used to simulate the baseline states. A single, 2 dimensional

activation profile (Gaussian shape with FWHVM corresponding to 6.6 mm, maxinum magnitude

adjusted to 5% of the baseline image intensity) was overlaid on the approximate location of

supplementary motor area. A time series of images was then constructed simulating five

epochs each of 10 images with alternating control and task period. Each image in the simulated

time series of data was transformed to k-space, and random noise with a standard variation

approximately equal to the BOLD contrast level was added to the simulated k-space data. To

reconstruct images at different resolution, the k-space data was truncated to ten different

resolution levels (truncated square k-space size: 128, 112, 96, 80, 64, 48, 32, 16, 8 and4) and

zero-filled back to 128 x 128. The data was then inverse Fourier transformed to make

magnitude images.



5.3. Results
5.3.1 Variation of In-plane Resolution

Figure 5.2a shows a functional map obtained at the highest in-plane resolution levels

(1.5mm). The activated pixels with high significance (p < 0.001) were overlaid on anatomical

images. For further analysis, we selected an ROI of 24 by 24 pixels containing activation. The

percentage of BOLD contrast (AS) is represented by the gray-level image in Fig. 5.2b. Note

that the BOLD contrast intensity decreases as the in-plane resolution is lowered. The

histogram of BOLD contrast in Fig. 5.2d for different resolutions indicates that, at higher

resolution, the distribution of activated pixels broadens to include a greater BOLD contrast.

Figure 5.2c shows gray-level images of the CNR at different levels of spatial

resolution. As evidenced from these images, CNR levels do not uniformly decrease as the

resolution lowered in contrast to the behavior for percentage BOLD contrast. For example, for

k-space truncation at k= 48 or 32, there is a more definite spatial pattern and higher intensity

in the CNR map compared to the high resolution map. Further, the histogram in Fig. 5.2e

shows an opposite trend to that seen in Fig 5.2d. There are more pixels with high CNR

(increased histogram breadth) for the low resolution case compared to the results obtained

from the high-resolution data. We should also observe that the shape of the original activation

significantly changes due to the filtering effect. At the lowest resolution (k= 16), the activation

morphology, apparent at higher levels of resolution, is lost.
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Figure 5.2. (a) Activation map for p <0.001 (overlaid on anatomical images) with box showing
ROI for analysis, (b) Percentage BOLD contrast in an ROI for each of the multiple levels of
resolution at 8 levels of resolution from 1.5 mm down to 12mm (truncated square k-space size:
112, 96, 80, 64, 48, 32, and 16 from top left to bottom right). (c) Set of CNR maps from fMRI
data reconstructed at 8 levels of resolution from 1.5 mm down to 12mm. (d) Histogram
showing distribution of percentage BOLD contrast in the ROI using the results at high
resolution of 1.5mm (solid line), intermediate resolution of 6mm (dotted line), and low
resolution of 12mm (dashed line). (e) Histograms showing distribution of CNR for activated
pixels in the ROI using the results at high resolution of 1.5mm (solid line), intermediate
resolution of 6mm (dotted line), and low resolution of 12mm(dashed line).



Although the activation in the above experiment clearly does not have the simple

Gaussian shape as modeled in Section 4.4.2, we wished to see if the experimental results could

be compared at least qualitatively with the theoretical prediction shown in Fig 4.5. The mean

CNR and percentage BOLD contrast from pixels in the ROI are plotted versus different k-

space sizes (Fig 5.3). Note that the result is qualitatively similar to that obtained using the

model in Section 4.4.2. As in Fig. 4.5, the percentage BOLD contrast in the experimental

results also increases as k-space size increases (Compare to Fig 5.3). The CNR reaches a

maximum around a k-space size of 32 (Fig 5.3). This is also evident in the gray-level intensity

maps of CNR (Fig 5.2c). For this specific sensorimotor task, the activated sensorimotor area is

distributed over a significantly larger area than a single pixel. Higher in-plane resolution is

clearly not necessary in this case if the primary goal of the fMRI session is to detect the

existence of activation within the slice.
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5.3.2 Variation in Slice Thickness
ROI (Sensorimotor area, all 2 by 2 pixels) analysis for different slice thickness (12mm,

6mm, and 3mm) was conducted and the results are summarized in Fig 5.4. ROI 1 and 2 are

from a 48 year-old male, and ROI 3 is from a 28 year-old male. ROI's were chosen based on

. . .



the regions with significant activation (p < 0.001) at 12mm-thick slices. As shown in Fig. 5.4,

the mean signal change, noise level and CNR raio are presented for ROI's at each of three

slice-thicknesses. The results from the ROI analysis are presented as three vertically arranged

rows of boxes where each row represents the results of ROI-analysis at a different slice

thickness. The mean BOLD signal change and standard deviation of noise is written within

each box. The CNR is the number written under each box.
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Figure 5.4 ROI (Sensorimotor area, all 2 by 2 pixels) analysis of fMRI results at different slice
thickness (12mm, 6mm, and 3mm). ROI 1 and 2 were from a 48 year-old male, and ROI 3 was
from a 28 year-old male. ROIs were identified from the data acquired with a 12mm thick slice
(p < 0.001). Slice positions in the experiment were arranged so that one 12mm slice includes
two 6mm slices and the two 6mm slices includes four 3mm thick slices. The slice thickness that
corresponds to the ROI analysis is shown in the right column horizontally (Yoo et al., "Real-
time Adaptive Functional MRI", Neuroimage, 10:596-606, Copyright @ Academic Press. Inc.
Reprinted by permission of Academic Press. Inc.)

There are three major findings from the ROI analysis. They are: (1) BOLD signal

change is additive with increasing slice thickness, (2) noise increases with increasing slice

thickness, and (3) CNR increases as slice-thickness increases.

12 mm

6 mm

3 mm



Our first major observation was that the BOLD signal appeared to be additive in the

sense that the sum of the BOLD signal changes in two thin slices was approximately equal to

the BOLD signal change in a thick slice covering the thinner slices. For example In ROI 1 of

Fig. 5.4, the mean signal change of 233 in the 12mm-thick slice is approximately the sum of

BOLD signal in ROI 1 for the two 6mm slices (115+108=223), and subsequent slices shows

the additive trend from 3mm to 6mm slices (46+60=106, and 48+54=102). Other ROI's

showed a similar trend.

Our second major observation from the ROI analysis is a tendency toward increased

noise level as slices get thicker. This trend is especially evident when we look at the mean noise

level for all ROI's in a sensory area as detailed in Table 5.1. We measured the noise of ROI's in

the background outside of the head, and note that, in contrast to areas within the brain, the

noise level was constant regardless of the variation in slice thickness.

The third major observation was that CNR increased or remained constant with

increasing slice thickness. This trend is further evaluated in Section 7.3.2. Problems with loss

of CNR due to partial volume effects or susceptibility dephasing were not evident at the slice

thicknesses and location we used.

Location Thickness Mean noise

Sensorimotor ROT 12 mm 53.6
6mm 40.7
3 mm 30.0

Table 5.1 Averaged noise measured from all sensorimotor ROI's. There is a trend of increasing
noise level with increasing slice thickness.



5.3.3 Simulation of Multi-resolution Detection

A set of activation maps for p <0.0)1 (overlaid on anatomical images) on simulated

data at 10 levels of resolution from 1 mm down to 48 mm are shown in Fig. 5.5a. Figures 5.5b

and 5c show the histograms of percentage BOLD contrast and CNR for a ROI (circle). As

evident in Fig. 5.5, the activation was not visible at the highest spatial resolution. The

activation starts to be visible only around k=48 and is most prominent around k= 16. When k is

only 4, the activation was still visible, however, the gray-scaled intensity map of p-values is

visibly lower compared to k= 16. When we look at the histograms for the percentage BOLD

contrast (Fig 5.5b) and CNR (Fig 5.5c), at higher resolution, the distribution of activated pixels

in the ROI broadens to include a higher proportion of pixels with a large percentage change.

As seen in the experimental data, however, the opposite trend occurs for the CNR histogram.

For CNR, the histogram broadens to include higher CNR at lower resolution.

In Fig. 5.6, The mean CNR and percentage BOLD contrast from pixels in the ROI are

plotted against different k-space sizes. The result is similar to the theoretical results shown in

Fig. 4.5, that is, the percentage BOLD contrast increases as the k-space size increases. CNR,

however, reaches a maximum, and then declines. The maximum CNR in this case occurs when

the spatial resolution associated with this k-space cut-off is approximately equal to the size of

the modeled activation (-7 mm).
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Figure 5.5. (a) Set of CNR maps for p <0.001 (overlaid on anatomical images) of simulated
fMRI data reconstructed at 10 levels of resolution from 1 mm down to 32 mm. ROI is
identified as white circle. (b) Percentage BOLD change in an ROI for each of the multiple
levels of resolution with spatial resolution of 1.0mm (solid line) and 8 mm (dashed line). (c)
Histograms showing distribution of CNR in the ROI with different resolution, 1.0mm (solid
line) and 8 mm (dashed line).
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5.3.4 Measurement of Noise Level

As discussed in Section 5.3.2, we observed a tendency toward increased noise level as

slices get thicker. We hypothesized that this is due to the presence of cardiac, respiratory and

other physiological variations that scale with increasing slice thickness compared to the thermal

noise, which does not. We were, therefore, motivated to further measure image noise while

varying slice thickness.

Noise level was calculated from a sequence of 270 images at different slice thickness,

from 3.0mm to 7.0mm in increments of 0.4mm using scan parameters of TR/TE/flip angle

=200/50/400. The volunteer was at rest during the scan session. The k-space matrix was 64 x

64 and FOV was 190mm (in-plane resolution ~3mm). A pairwise subtraction of each image set

in the time series with respect to the first image set was performed to test for significant global

head-motion. The data with significant motion was excluded from further analysis. Background

noise as well as the mean signal level from gray and white matter ROIs were measured. Gray

and white matter ROIs were selected randomly in the various anatomical compartments based

on the Tl-weighted image of 7.0mm-thick slice.

In general, we noted that the image noise measured from the white matter ROI's was

constant over the slice thickness. In gray matter ROI's, we found that, in general, the

physiological noise increased with increasing slice thickness as noted also in Section 5.3.2. The



trend was roughly linear in a number of the gray matter ROI's and extrapolated physiological

noise in these ROI's was close to zero for zero slice thickness. This is expected because no

physiological noise should be evident for zero volume. In other gray matter ROI's, however,

the linear trend of increasing physiological noise with increasing slice thickness was not

observed over the whole range of slice thickness measured. In some ROI's, for example, we

observed a roughly linear trend over only half the range of slice thickness and no variation

over the other half. We believe that such variability of noise level behavior among different

gray matter ROI's is due to the inhomogenous nature of brain anatomy where very different

types of tissues with respect to physiological noise components may be present within a single

voxel.

5.4 Summary
In this chapter, we reported experimental data on the variation of BOLD contrast and

CNR with variable in-plane resolution and slice thickness to validate earlier analytical results

from Chapter 4. In addition, to further validate the results with respect to the relationship

between spatial resolution and the activation profile, a single activation profile was artificially

created and we simulated fMRI processing at different in-plane resolutions.

For the given sensorimotor task and from the artificially created Gaussian-shaped

activation profile, we found that high in-plane spatial resolution is not necessary or even

desirable to detect the presence of the activation within a slice. The histogram of BOLD

contrast for different in-plane resolutions, from both experimental data and simulation,

indicates that, at higher resolution, the distribution of activated pixels broadens to include a

higher BOLD contrast. However, the BOLD CNR, which is the parameter directly relevant for

the functional signal detection, showed the opposite trend in that there are more pixels with

high CNR at reduced k-space size. The ROI analysis showed that the percentage BOLD

contrast increases as k-space size increases, however, BOLD CNR reached certain maximum at

reduced k-space size. From the simulation of the artificially created Gaussian-shaped activation

profile, we found the maximum CNR occurs for resolution matching the breadth of the k-

space profile of activation.



When we varied slice thickness, we found that up to about 12 mm slice thickness

could be used in practice without introducing significant susceptibility-related signal loss. The

ROI analysis on the activated regions showed that CNR level was increased or remained

constant while the BOLD contrast was additive across the slice thicknesses. We found that our

experimental results were consistent with those we modeled in Chapter 4. We were therefore

able to validate our previous analytical model on BOLD contrast and CNR in relation to the

variation of the spatial resolution.



Chapter 6
Functional MRI Using RF Encoding

6.1 Introduction
Spatially selective RF encoding was introduced in Chapter 3, and theoretical and

experimental investigations regarding multi-resolution approach in fMRI were described in

the two previous chapters. Based on the results of the previous chapters, we have shown

that RF encoding provides the flexibility necessary for adaptive multi-resolution zooming

and based on maximization of CNR, this approach is reasonable for application in

functional MRI. The feasibility of using RF encoding for functional MRI still needs to be

shown.

In this chapter, RF encoding in the slice-select direction was implemented on a

conventional MR system to demonstrate the flexibility to selectively encode non-contiguous

slices distributed throughout the brain. The implementation details and fMRI results on

simple sensorimotor and visual paradigms are reported in this Chapter. We also aimed to

explore the possibility of Hadamard encoding in slice-select direction. The spatial

selectivity of RF encoding was also exploited for in-flow reduction by applying uniform

degree of excitation over the imaging volume. Results were compared with those from a

separate functional session without in-flow reducing RF pulses.



6.2 Materials and Methods
A study consisting of two sets of functional MRI experiments using different RF

excitation schemes was conducted. In the first set of experiments, the excited volumes

were slices, comprised of combinations of thin planes as the basic volume elements. No

further encoding of these slices was done (i.e. T in Eq. 3.10 was the identity matrix). We

refer to this as 'multi-slice imaging'. In second set of experiments, these slices were

Hadamard encoded (i.e. T in Eq. 3.10 was a Hadamard matrix). In the formalism

described in the Section 3.1.1, Eq. 3.10, K=96x96, M=96, N=4 or 5, Twas either a 4x4

Hadamard matrix for Hadamard encoding or the 5 x 5 identity matrix for multi-slice

imaging.

Six subjects ranging in age between 24-47 were studied using the RF encoding

method. All six subjects, 3 subjects (1 female and 2 males) for the first sets of experiments

and 3 subjects (1 female and 2 males) for the second set, gave written informed consent

prior to the fMRI study. Spin-Echo T-weighted sagittal slices (7-12 contiguous slices,

TE/TR 10/700 msec, 5mm thickness, 1 NEX, matrix size of 128x256, 24x24 cm FOV)

were acquired for anatomical localization. Contiguous coronal slices with 7.5mm thickness

covering from precentral gyrus to occipital cortex were imaged with same image parameters

to provide T-weighted anatomical images. In order to visualize large blood vessels, flow-

sensitive gradient echo imaging (TE/TR, 20/50 msec, Flip angle 30, 96x96 matrix size on

24x24cm FOV, 1NEX) was performed.

An Interleaved EPI (IEPI) sequence [102] was adapted for non-Fourier encoding

in the slice-select-direction for functional study. Each profile was a combination of thin

planes of 2.5 mm thickness which were the basic volume elements for these experiments

(as introduced in Section 3.3.1 and Fig. 3.6). The maximum flip angle was set at 30 to

insure validity of the linear systems assumption (Flip angles larger than 30 0 can be used if

a special method of RF pulse design is employed [104].) The echo data from each

successive shot were interleaved to fill a 96x96 k-space matrix. Twelve echoes per shot were

phase-encoded requiring 8 shots per matrix acquisition. The FOV was 24cm, giving an in-



plane resolution of 2.5mm. With TR of 100 msec, 5 slices could be encoded in 4 seconds.

The effective TE of the sequence was 50 msec.

6.2.1 Multi-Slice Imaging

RE pulses for encoding were prepared by Fourier transforming the desired spatial

profiles (from C1 to C5) defined by C in Eq. 3.10. Figure 6.1 shows a schematic

representation of the rows of C which define 5 slices chosen for excitation in the first set

of functional MRI experiments. Two contiguous coronal slices of 7.5mm each (C1, C2) to

cover motor cortex in the precentral gyrus and 2 contiguous coronal slices of 7.5mm each

(C3,C4) to cover visual cortex in the calcarine sulci were chosen.

The profile C5 was chosen so that spins close to the volume of interest, that may

contribute to in-flow effect, would experience the same level of saturation as spins inside

the slices chosen for imaging. We will refer to the volume encoded by the profile C5 as the

"saturation region". C5 was designed to alternate between negative and positive values to

keep the signal from the excited volume within the dynamic range of detection. To

examine the effectiveness of the method to reduce in-flow effect, the fMRI session was

repeated both with and without the fifth slice (C5 in Fig. 6.1).

After RF pulse shapes were computed, magnitude and phase files were transferred

to the MR imager for use with the pulse sequence. RF pulses exciting the desired slices

were used in succession for each shot until k-space matrices were filled for each of the 5

slices.
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Figure 6.1. Encoding scheme including
saturation regions (C5). Non-Fourier
encoding in the slice-select direction with two
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C2) to cover motor cortex in precentral gyrus
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this particular subject. (Yoo et al., Magn Reson.
Med., 41:759-766, Copyright @ Wiey-Liss,
Inc. Reprinted by permission of Wley-Liss, Inc.,
a subsidiaryof John ley& Sons, Inc.)

6.2.2 Hadamard Encoding

A Hadamard version of the encoding was performed in our second set of

experiments. Three contiguous slices (Cl, C2, C3 using notation

thickness each covering 3cm, and a slice of 2cm width (C4)

of Eq. 3.10) of 1 cm

on either side of the

contiguous slices (as shown in Fig. 6.2) were chosen for Hadamard encoding. To examine

the effectiveness of the method to reduce in-flow effects, the fMRI session was repeated

both with and without the slice covering the saturation regions (C4 in Fig. 6.2).
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Figure 6.2. Volume encoding scheme including saturation regions are shown on the left-
hand side of the schematic equation. Hadamard combinations of these profiles obtained by

matrix multiplication with Hadamard matrix T are shown on the right. (Yoo et al., Magn.
Reson. Med., 41:759-766, Copyright @ Wiley-Liss, Inc. Reprinted by permission of Wiley-
Liss, Inc., a subsidiary of John Wiley & Sons, Inc.)

The four RF pulse shapes (ie, one for each profile) were computed on a

workstation by Fourier transformation of the Hadamard combinations. For reconstruction,

each of the 4 data matrices was Fourier transformed in both directions and then Hadamard

combinations of the matrices were formed to decode information in the third dimension.

For the fMRI study, the same image parameters were used as in the first set of experiments.

Since the fourth excitation pulse was used to excite the saturation region, only three slices

were available for fMRI. Three contiguous slices were imaged, and the experiment was

repeated with both motor and visual stimulation separately.

6.2.3 Task Paradigms and Data Analysis
Motor (finger tapping in right hand) and visual (viewing of 8 Hz stroboscopic

light) tasks were performed by each volunteer in two separate sessions. A series of 50

acquisitions was obtained in a session with 5 control periods interleaved with 5 periods of

activation. Approximately 5 seconds of delay were introduced between control and task

period to allow for hemodynamic response to reach steady state [25,54]. For fMRI with

Hadamard encoding, a series of 20 image acquisitions was obtained in each session with 2

control periods (rest-periods) interleaved with 2 periods of activation over each session,

resulting in 5 image sets from each period.



Pairwise subtraction of each image set in the time series with respect to the first

image set in the time series was performed to test for significant bulk motion of the head.

No significant motion was detected in any of the trials. Slow signal drift over the time

series was removed by linear de-trending. Pixel-by-pixel paired t-test scores were calculated

and converted to p-values. Clusters of 3 or more pixels with significant activation (p <

0.005) were chosen for display and for further temporal analysis.

Activated areas were analyzed by the number of voxels of p < 0.005 and the

average signal change with respect to the averaged base-line signal intensity upon activation.

ROIs were defined in the precentral gyrus and around the calcarine fissure. In each

individual, the same ROI was chosen for the cases of encoding with and without the

saturation regions. The temporal response of the activated pixels was examined to see how

the signal varied with the inclusion of the saturation regions. Signal changes due to

activation were normalized with respect to the baseline intensity.

6.3 Results

6.3.1 Activation Map
Figure 6.3 shows the results obtained from subject #1 with pixels of p <0.005

overlaid on the anatomical images. Figures 6.3a and 6.3b show results of the visual task

with and without encoding of a saturation region and Fig. 6.3c and 6.3d show results from

the motor task. Similarly, Figure 6.4 shows the results from subject #4 using Hadamard

encoding analogous to the multi-slice imaging experiment. The 4th RF profile was used for

the saturation band (C4 in Fig. 6.2), therefore, only three contiguous slices were obtained.

Functional maps showed the activation in sites consistent with those expected for the tasks.

Results obtained with encoding of saturation regions were significantly different from

those obtained without the encoding of a saturation region in that they showed less

'activation' in regions where no functional activation was expected such as in a venous

sinus (Arrows in Fig. 6.3 and 6.4). We hypothesize this is due to the suppression of in-flow

effects.



6.3.2 ROI Analysis for Inflow-Reduction

Table 6.1 summarizes the results from the 6 volunteers tested using the multi-

slice imaging and Hadamard encoding. Without saturation, the average signal changes were

quite large compared to expected BOLD change which is reported to be in the range of 1-

6% in cortical tissue at 1.5T (6% maximal signal change was adapted from the lower

boundary of experimental data of Gati et. al. [22]). A relatively large standard deviation in

signal changes among the activated pixels was observed suggesting that pixels affected by

activation-related in-flow were included in the ROI. When a saturation region was encoded,

the results showed an overall decrease in number of activated pixels and also in the amount

of signal change. However, in several cases (subject #1 motor, subject #2 visual, subject

#4 visual and motor) the signal changes were still somewhat large to be due to BOLD

contrast alone. The relatively large standard deviation in these activated regions suggests

remaining in-flow related signal.

In order to further evaluate the effect from the inclusion of the inflow reducing

saturation regions, an analysis in terms of percentage signal change associated with the

activation paradigm was performed on several activated pixels from subject #1 (see Fig.

6.5). Figure 6.6a shows a comparison of the mean signal difference between control and

activation periods in pixels when encoding with and without the saturation regions. The

temporal response of one of the activated pixels (Pixel #3 in visual cortex) is shown in Fig.

6.6b. We found that most of the cortical pixels showed significant decrease in the

activation-related signal change (from 14.5-5.6% down to 7.3-3.4%) when saturation

regions were encoded. However, pixel #1 located in the region of the superior sagittal

sinus showed a decrease in signal change from 19.7% down to only 12.8%, suggesting a

remaining in-flow component. We hypothesize that fast-moving spins in the sinus pass

directly through the saturation regions into imaging slices. A study of the effects of

varying the width of saturation region outside of image plane could help to determine the

validity of this hypothesis.
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Figure 6.3. Comparison of fMRI results (p < 0.005 in white dots) with and without
saturation regions using multi-slice method. Results obtained with encoding of the
saturation region were significantly different from those obtained without the encoding of
a saturation region in that they showed less 'activation' in regions where no functional
activation was expected (in white arrows) such as in venous sinus. (a) Visual task without
saturation regions, (b) Visual task with saturation regions. (c) Motor task without saturation
regions, (d) Motor task with saturation regions. (Yoo et al., Magn. Reson. Med.,41:759-766,
Copyright @ Wiley-Liss, Inc. Reprinted by permission of Wiley-Liss, Inc., a subsidiary of
John Wiley & Sons, Inc.)
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Figure 6.4. Comparison of fMRI results (p < 0.005 in white dots) with and without
saturation regions using Hadamard encoding analogous to Figure 6.3. (a) Visual task
without saturation regions, (b) Visual task with saturation regions. (c) Motor task without
saturation regions, (d) Motor task with saturation regions. (Yoo et al., Magn. Reson. Med.,
41:759-766, Copyright @ Wiley-Liss, Inc. Reprinted by permission of Wiley-Liss, Inc., a
subsidiary of John Wiley & Sons, Inc.)

Number of Activated Voxels Average Signal Change in Activated Voxels

F.nending Methnd Subject Task w/n Saturatinn w/ Saturatinn w/n Saturatinn w/ Saturatinn

1 visual 91 27 5.09%.+ 3.14 3.85/o2.00

Multi-Section motor 29 19 8.38/o* 3.60 7.02oE 5.60

Imaging 2 visual 27 29 8.75/o 9.90 5.99ok 6.60

motor 33 22 3.35% 2.24 3.82/o* 2.39

3 visual 26 17 9.14%+ 3.25 5.32/oh 2.15

motor 35 24 10.45%e 5.10 567%* 1-75

4 visual 14 13 9.81% 8.70 7.14%* 5.20

Hadamard motor 35 22 8.25% 6.07 6.36%* 4.80

Encoding 5 visual 21 14 3.34% 1.29 2.67%+ 0.99

motor 31 9 6.9 1%± 5.73 4.6SO 1.93

6 visual 27 18 8.14% 3.52 3.14% 1.15

motor 14 6 1.86%* 061 1 85%*0 n51

Table 6.1. Comparison of the number of activated voxels (p < 0.005) and regional average
signal changes (Mean % ± SD) in activated voxels when encoding with and without
saturation regions. For each voxel, signal change during the activation-period was calculated
with respect to the baseline (control period) intensity.



Figure 6.5. Location of pixels used in data analysis from subject 1. Pixels 1-4 were used for
visual task, and pixels 5-8 were used for the motor task. (Yoo et al., Magn. Reson. Med.,
41:759-766, Copyright @ Wiley-Liss, Inc. Reprinted by permission of Wiley-Liss, Inc., a
subsidiary of John Wiley & Sons, Inc.)
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6.4 Summary
In this chapter, RF encoding using spatiality-selective excitation was adapted in

the slice-select (or through-plane) direction for functional MRI. It was demonstrated that it

is possible to selectively monitor planes irregularly distributed throughout the brain without

the need to encode the whole volume. This flexibility was exploited in order to reduce in-

flow effects, which are a difficult problem for most multi-shot, multi-slice methods by

applying uniform saturation over both imaging slices and slices adjacent to the imaging

slice. The method also offers the potential for SNR improvement with appropriate choice

of encoding basis for the through-plane direction such as Hadamard basis. Because this

approach turns the through-plane direction into an 'encoded' direction, it is a true volume

encoding technique analogous to 3D Fourier encoding. In the next chapter, the

implementation of adaptive fMRI algorithm with real-time data transfer and processing for

functional brain mapping is presented.



Chapter 7
Real-time Adaptive Functional MRI

7.1 Introduction
As previously proposed by Panych et al, RF encoding can be used for adaptive

multi-resolution imaging [40]. By applying this multi-resolution approach to fMRI, we

believe that areas of activation can be selectively explored in real-time at increasingly

higher spatial and temporal resolution, or a combination of both, depending on the specific

goals.

The basic idea of the adaptive approach in fMRI is that the regions of activation,

however they are distributed throughout the brain, can be selectively detected in multiple

stages at progressively higher resolution, while ignoring quiescent regions and "zooming"

only into the regions of activation. An example of such adaptive fMRI-encoding scheme

using non-Fourier encoding in the slice-select direction could be designed as shown

schematically in Fig. 7.1. First, the whole brain volume is imaged in thick sections (for

example, 12 mm) and fMRI data is processed to detect the slices with activation. The

second imaging stage encodes with smaller slice thickness (6mm in this example) and RF

pulses designed to encode only those slices that show the activation with fewer numbers of

slices (8 slices in the example). Therefore, both temporal and spatial resolution of the

second stage is increased compared to the first stage. The process can be repeated in an

iterative manner, from third to fourth stages, until some minimum section thickness is

reached (1.5mm thick at the fourth stage).
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Figure 7.1 A schematic illustration of an adaptive fMRI algorithm. Slice-selective profiles
in axial slices are shown in multiple stages of a scan session. Circles represent the areas of
the brain that are activated during cognitive tests. Dots in the profiles indicate sections
where activation is detected during each fMRI scan.

In this chapter, the flexibility and versatility of an adaptive multi-resolution method

is demonstrated using a sensorimotor activation paradigm implemented with an interleaved

EPI sequence on a conventional MR system. The hardware configuration and real-time

adaptive algorithm are described. In addition, data from the real-time fMRI experiments is

analyzed quantitatively to assess the adaptive multi-resolution approach in fMRI in terms of

BOLD CNR.

7.2 Materials and Methods
In this adaptive multi-resolution approach, the scan session was divided into

several stages where we dynamically changed which volume elements to excite, based on

the results from the real-time functional processing. We used planes with variable thickness

as the basic volume elements to encode the volume (Fig. 3.5, Section 3.3.1). At the end of

each stage of imaging, new RF pulse waveforms were computed according to the operator's

prescriptions regarding new target locations, and the waveforms were transferred to the

imager for the next stage of scanning.
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The adaptive scheme adopted in the study included five stages, calling for operator

interaction between each stage (Fig. 7.2). The operator was able to observe the evolution of

the functional correlation maps over the course of the experiment and switch from one

imaging stage to the next, by selecting slices-of-interest for further study. Imaging and real-

time analysis proceeded to the next stage.

To demonstrate the flexibility of real-time adaptive fMRI, the subjects executed an

easy and well-characterized finger tapping task, which was expected to simultaneously

activate both cerebral and cerebellar areas [32, 46]. For the purposes of this demonstration,

we concentrated on the detection of primary sensorimotor cortex, and deliberately

neglected other telencephalic areas involved in motor control, such as the supplementary

motor and premotor cortices. The primary sensorimotor cortex and the cerebellar motor

area of activation are at a relatively large distance from each other and serve to

demonstrate the flexibility of the adaptive, multi-resolution approach.

Periods of self-paced sequential finger opposition of the right hand were

alternated with resting periods. In order to limit possible adaptation during the task

performance and ensure consistent cerebellar activation, the sequence of finger opposition

was reversed upon completion of every other set of finger-opposition tasks [32, 46]. Ten

sets of images for each epoch (on/off cycle) were acquired. Epochs were acquired at each

level of slice thickness until the expected activation areas in the contralateral (left) motor

cortex as well as in the ipsilateral (right) cerebellar motor area [32] were detected by real-

time correlation analysis [74].

Initial functional maps of eight contiguous slices covering both anatomical areas

of interest, pre- and post central gyri and cerebellum, were generated. The operator then

selected four slices demonstrating task-related activation for further mapping in the second

stage. In the third stage, two of the slices from the second stage were explored at increased

spatial resolution in the slice direction, that is, each original slice was imaged as two

contiguous slices, with half the thickness. For the fourth stage, two slices from the third

stage were chosen for further exploration at the highest resolution (2.5mm-thick). Finally,

in the fifth stage, three slices were selected at multiple resolutions (5mm and 10mm slice

thicknesses).
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7.2.1 Subjects and Image Acquisition

The real-time functional mapping of a motor activation paradigm was performed

on two male subjects (aged 29 and 32) in the multi-staged, multi-resolution adaptive scan

sessions. In all functional imaging experiments, an Interleaved Echo-Planar Imaging (IEPI)

sequence [102] was adapted for RF encoding in the slice-select-direction (Section 3.3.1). To

reduce the contribution of inflowing spins, a uniform degree of magnetization was

established by applying saturation RE excitation to thick regions on either side of imaging

planes which were not adjacent to other selected imaging sections (see Section 6.2). Image

encoding in the slice-select direction was performed as previously described using

combinations of thin planes as the basic volume elements. For example, in our real-time

implementation, 10mm thick slice profiles were constructed as the sum of four 2.5mm-

thick planes, whereas we only used two of our basic plane elements in the case of a 5 mm-

thick slice. Any volume of interest could be probed as long as it can be represented as

linear combinations of the 2.5 mm-thick planes.

Eight shots, each with twelve individually phase-encoded echoes, were acquired for

each image. Echo data from each successive shot were interleaved to fill a 96x96 k-space

matrix. The FOV was 24 x 24cm, giving a nominal in-plane resolution of 2.5mm. TE was

50 msec. TR and flip angle were variable depending on imaging stage. Although we could

have changed in-plane resolution for each image stage, we maintained it constant

throughout the experiment. For ROI analysis, real-time data were processed retrospectively.

For consistency with the previous experiments using varying slice thickness shown in

Chapter 5, only the first 50 sets of images from the real-time session were chosen for ROI

analysis. The region-of-interest was defined as voxels with significant activation (p<0.001)

at the lowest resolution.
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Figure 7.2 A schematic illustration of an adaptive fMRI algorithm. Left column indicates
the slice-selective profiles for coronal slices. The black circles in the brain region refer to
the ROI's that are in the primary motor cortex and cerebellum. The right column indicates
the number of encoded slices, slice thickness, temporal resolution, and time taken to
complete each stage. All scanning was done using a multi-shot EPI sequence on a 1.5T
imaging system with standard gradient hardware. (Yoo et al., "Real-time Adaptive
Functional MRI", Neuroimage, 10:596-606, Copyright @ Academic Press. Inc. Reprinted by
permission of Academic Press. Inc.)
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7.2.2. Hardware and Software Configuration for
Real-time Adaptive System

In order to achieve a real-time environment for fMRI, we linked three external

workstations to the MRI scanner. Dr. Pairash Savironpoorn and Dr. Lei Zhao designed and

implemented the communication protocols and processing platform. All implementation

work specific to fMRI was performed within the framework of this thesis. A schematic

description of the system is shown in Fig. 7.3. A communication control workstation (SUN

SPARC 2, Sun Microsystems, Mountain View, CA) functioned as a relay for the transfer of

data and pulse sequence parameters between a high-performance Sun Microsystems' Ultra

Enterprise 6000 and the MRI scanner. Acquired MRI data and pulse sequence parameters

were first passed between the scanner and the communication control workstation through

direct memory access (DMA). The communication control workstation, in turn,

communicated with the Ultra Enterprise via a local Ethernet. A third, general-purpose

workstation (SUN SPARC 10) located adjacent to the scanner and connected via Ethernet

to the high-performance computer, was used as a front-end for data display and interactive

control interface. Communication programs were coded in C. Data processing and display,

and control interfaces were programmed using Matlab (The Mathworks, Inc. Natick, MA).

During real-time dynamic adaptive imaging, raw data was transferred to the Ultra

Enterprise via the communication control workstation immediately after each acquisition.

As soon as a complete set of image data was available, an image was reconstructed by the

Ultra Enterprise and displayed on the general-purpose workstation. Real-time functional

processing using correlation analysis was performed immediately after the image-

reconstruction using a recursive algorithm that includes linear trend removal [74]. The

operator was able to view real-time computed correlation-coefficient maps and to adjust

the threshold p-value for display on the front-end workstation next to the scanner.



Figure 7.3 A schematic of the real-time adaptive functional MRI system. The set of three
workstations (communication control, general-purpose workstation, and high-performance
computer) was used for data processing, visualization and control. The tasks of each
component are also shown. The arrows indicate the flow of the control parameters and
data. (Yoo et al., "Real-time Adaptive Functional MRI", Neuroimage, 10:596-606, Copyright
@ Academic Press. Inc. Reprinted by permission of Academic Press. Inc.)
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7.3 Results
7.3.1 Real-time Adaptive Functional MRI

Real-time adaptive functional MRI were conducted to demonstrate the flexibility

and versatility of the adaptive fMRI method. Each of the two subject studies consisted of

five scan-stages (See Fig. 7.2). The results from one subject (29 year-old) are presented in

Fig. 7.4.

The First Stage: Identification of Volumes-of-interest

In the first stage, eight 1-cm-thick coronal sections, covering a contiguous slab

including pre- and post-central gyri as well as the cerebellum, were acquired every 7.2

seconds. Functional maps were processed and displayed in real-time, and at any time during

the scan, the operator was able to specify one or more locations for zooming. Processing

of data from the first stage demonstrated task-related activation in the contralateral (left)

primary motor cortex and ipsilateral cerebellum (Fig. 7.4A) leading to a choice of a

volume-of-interest for the second imaging stage.

The Second Stage: Increasing Temporal Resolution

Four sections demonstrating activation were chosen for further characterization

and imaged at higher temporal resolution in the second imaging stage. New RF pulses were

computed and transferred to the scanner, and scanning continued at the 4 new locations

without any interruption until activation was confirmed to operator satisfaction. The

purpose of continuing the data acquisition with higher temporal resolution in the second

imaging stage was to increase statistical confidence that there was activation within selected

regions. As expected, p-values declined in selected ROI's with the inclusion of additional

data. The average p-value in a 3 by 3 pixel-ROI in one subject went from 0.2 down to 0.6 x

10' in sensorimotor area, and in a cerebellar ROI from 0.25 down to 0.01. In the second

subject's sensorimotor area, the average p-value went from 0.1 x 10' to 0.3 x 10' and the

cerebellar ROI from 0.4 x 10' down to 0.6 x 10'. The operator then elected to zoom into

one slice in the motor cortex and one slice in the cerebellum for the third stage of imaging.



The Third and Fourth Stage: Spatial Zooming
In the third and fourth stage, two slices were chosen and resolved at higher

resolution by halving the slice thickness (each selected slice was divided into two new

sections). Thus, in the third stage, four 5mm-thick sections were imaged every 4 seconds

(Fig. 7.4C). The scan continued until significant activation was observed consistent with the

previous scanning. Two distinct areas of activation within the 10 mm-thick slice covering

the left motor cortex, were resolved in separate 5 mm slices in the third imaging stage of

the adaptive procedure. Two of the 5mm-thick sections were chosen for further

characterization, and split into 2.5mm-thick slices with isotropic voxels (2.5 mm x 2.5 mm

x 2.5 mm). At this point, activation was still detectable in the motor cortex, but no

longer detectable in the cerebellum (Fig. 7.4D).

The Fifth Stage: Spatially Variable Resolution

The flexibility of multi-resolution imaging was demonstrated in the fifth stage (Fig.

7.4E), in which the operator chose two different resolutions for the detection of primary

sensorimotor and cerebellar motor activation (Fig. 7.2). The primary sensorimotor cortex

was imaged with two 5mm-thick slices while the cerebellum was imaged with a single

10mm thick slice to confirm that activation was still present. As expected, the prominent

activation in both motor and cerebellum was detected again. At this point, the locations of

interest were being imaged every 3.2 sec, over double the rate of imaging in the first stage

of the adaptive procedure (Fig. 7.2).
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Figure 7.4 Results from an adaptive fMRI session. Box in lower left corner indicates the
locations of the slices selected by RF encoding during five stages of the adaptive session.
fMRI results are thresholded at p < 0.001, and shown as white dots overlaid on anatomical
images. (A) Results of the first stage from eight 10mm-thick contiguous slices. Four
sections from the first stage (white arrows) were chosen for continued scanning in the
second stage using same slice thickness. (B) Results of the second stage. Two sections from
the second stage (white arrows) were chosen and further split as two 5mm thick slices. (C)
Results of the third stage. Two sections were chosen from the third stage and further split
into two 2.5mm-thick slices. (D) Results of the fourth stage. (E) Results of the fifth stage.
Two sections with 5-mm thickness to cover motor cortex and one 10mm section to cover
cerebellum are shown. (Yoo et al., "Real-time Adaptive Functional MRI", Neuromage,
10:596-606, Copyright @ Academic Press. Inc. Reprinted by permission of Academic Press.
Inc.)
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7.3.2 Quantitative Evaluation at Multiple Resolutions

From the real-time data (two ROI's in the motor cortex and one ROI from the

cerebellar in one subject), several ROI's were chosen for further analysis. In Figure 7.5, the

mean signal change, noise level and contrast-to-noise ratio are presented for ROI's at each

of three slice-thicknesses. The results from the ROI analysis are presented as three

vertically arranged rows of boxes where each row represents the results of ROI-analysis at

a different slice thickness. The mean BOLD signal change and standard deviation of noise

is written within each box. The Contrast-to-noise ratio (CNR), is the number written under

each box.

These results are consistent with those obtained in our previous multi-resolution

study (Section 5.3.2). As previously, we found that (1) BOLD signal change was additive

with increasing slice thickness, (2) noise increased with increasing slice thickness, and (3)

CNR increased as slice-thickness increased. The few exceptions where the BOLD signal

was not additive (ROI 1 in Fig. 7.5, zooming from 10mm to 5mm thickness) are possibly

due to either inconsistency in task performance between each imaging stage by the subject

or the difference in susceptibility-related signal losses at different slice thickness. The

BOLD signal for the ROI's with CNR smaller than unity was, as expected, not additive

because there was no statistically significant activation (noise is not expected to be

additive). The second observation of a tendency toward increased noise level as slices get

thicker, is especially evident when we look at the mean noise level for all ROI's in a

sensory area as detailed in Table 7.1.

It should be noted that, during the real-time adaptive imaging, the cerebellar ROI

(ROI 3 in Fig. 7.5) chosen in the process of zooming from the 5 mm-thick slice to two 2.5

mm-thick slices, had a CNR of only 0.5. Subsequently, there was no functional detection at

2.5mm slice thickness due to the choice of the slice with low CNR. In retrospective

analysis, we noted that the slice with higher CNR, from which we may actually have

detected cerebellar activation at 2.5mm, was not chosen for zooming by the operator.
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Figure 7.5 Retrospective ROI analysis of real-time fMRI results at different slice
thickness (10mm, 5mm, and 2.5mm) on the data from a 29-year old male. The location of
the ROI (Sensorimotor or Cerebellar) is indicated at the top of each anatomical image.
Two sites of activation (ROI 1 and 2) seen in the 10mm-thick slice were resolved further in
caudal and frontal direction in 5mm-thick slices. The number of pixels in each ROI is
indicated (p < 0.001). Unit-less mean signal change and noise are shown with CNR. A
schematic is shown for each ROI analysis on the right with the three vertically arranged
boxes representing the three levels of slice thickness (as indicated in the right column
horizontally). The top number in each box indicates the mean change (AS) in signal
between stimulus and non-stimulus phases, and the bottom number represents the
combined standard deviation of the signal a-. The ratio of the two numbers, equal to the
CNR, is written below each box. (Yoo et al., "Real-time Adaptive Functional MRI",
Neuroimage, 10:596-606, Copyright @ Academic Press. Inc. Reprinted by permission of
Academic Press. Inc.)
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In one case, two distinct foci of activation (ROI 1 and 2 in Fig. 7.5) at higher

resolution (i.e. 5mm-thick slice) appeared as one focus at lower resolution (i.e. 10mm slice-

thickness). This finding supports the notion that even at 1.5T, high-resolution fMRI may be

useful in improving delineation of areas of neuronal activation [60]. For example, the

activated sites in primary sensorimotor cortex 10mm slice thickness, segregated into two

different sections (caudal and frontal) at the higher resolution of 5mm slice thickness

(dotted box in Fig. 7.5).

Location Thickness Mean noise

Sensorimotor ROI 10 mm 329.1
5mm 301.3
2.5 mm 248.6

Cerebellar ROI 10 mm 257.9
5mm 216.8
2.5 mm 126.8

Table 7.1 The mean of noise level (unitless) in all ROI's in each sensory area for different
slice thickness. The noise level increases for increasing slice thickness.

7.4 Summary
In this chapter, we reported on the design and implementation of an adaptive

image acquisition scheme that uses a multi-resolution-based strategy to zoom into the

regions of cortical activity. The specific implementation presented in this Chapter consists

of five stages of scan sessions that are tailored to identify the volume of interest and to

increase temporal (from 7.2 sec to 3.2 sec) and/or spatial resolution (from 10mm to 2.5

mm slice thickness) of the fMRI data acquisition by zooming into selected slices-of-interest.

During finger tapping, adaptive imaging with real-time data display and processing

capability allowed simultaneous mapping of eloquent primary sensorimotor cortex as well

as cerebellar regions using very few slice-acquisitions. The detected activation sites were

consistent with those previously described for similar tasks [32,46]. Contrast-to-noise

analysis in selected ROI's was performed to quantitatively assess the multi-resolution

adaptive approach. Results were similar to the observations from the previous analysis in

Chapter 5 using different slice thicknesses.
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Chapter 8
Discussions and Conclusions

8.1 Introduction
In this thesis, we have demonstrated how adaptive multi-resolution approach using

spatially selective RF encoding can add significant flexibility to functional brain mapping

protocols. We believe that real-time adaptation of spatial and temporal sampling to task-

related changes will increase the efficiency and flexibility of functional mapping

experiments. In this work, the multi-resolution adaptive method, proposed initially by

Panych et. al. [40], was applied in fMRI to enhance functional signal detection and

characterization. The multi-resolution approach was validated using simulations and

experiment for both in-plane and through-plane directions and it was shown that BOLD

CNR increases to a maximum where the spatial resolution matches the size of the

activation.

Non-Fourier RF encoding using manipulation of spatially selective RF pulses was

implemented in order to encode spins in the slice-select direction. Several advantages of

the method over standard multi-slice approaches were demonstrated. We showed how it is

possible to monitor irregularly distributed sections throughout a volume without the need

to encode the whole volume. We further showed that it offered the potential for increased

signal-to-noise ratio if an appropriate basis is used for encoding. We also showed that a



unique design of excitation pulses, it also appeared possible to significantly reduce in-flow

effects.

Using spatially selective RF encoding combined with real-time pulse prescription

and data processing capabilities, we designed and implemented an adaptive image

acquisition scheme that uses a multi-resolution-based strategy to zoom into the regions of

cortical activity in the slice-select direction. The method was successfully demonstrated in

volunteers performing simple sensorimotor paradigms for simultaneous activation of

primary motor, as well as cerebellar areas. Temporal and spatial resolution of the fMRI

session were increased demonstrating the effectiveness of our particular implementation of

adaptive fMRI. RF encoding is compatible with and can potentially enhance any fMRI

experiment, irrespective of the pulse sequence, main field-strength, or the gradient system

performance. It is thereby conceivable that real-time adaptive session could yield high-

resolution delineation of ROI's in clinically reasonably times.

8.2 Multi-resolution Detection of
Activation

In order to theoretically and quantitatively assess the multi-resolution approach for

use in functional MRI, we chose BOLD CNR as the measure for functional detection. We

investigated the effect of varying both in-plane and through-plane spatial resolution on

BOLD CNR and on the BOLD contrast both theoretically (Chapter 4) and experimentally

(Chapter 5).

BOLD CNR and Variation of In-plane Resolution
Analysis based on our theoretical models suggests that BOLD CNR is maximized

when the spatial resolution matches the dimension of the activation even though BOLD

contrast alone is enhanced by imaging at higher spatial resolution. In examination of

experimental results, we note that the width of the histogram showing the distribution of

BOLD contrast in activated areas broadens to include higher BOLD contrast at higher

spatial resolution (Fig. 5.2d). This finding is consistent with the previous observations of

others that the histogram breadth of BOLD contrast increases with increase in resolution
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[35]. Other researchers have measured BOLD contrast at different resolutions and also

suggested that higher spatial resolution tends to increase the magnitude of BOLD contrast

[34, 60, 63, 65]. It was hypothesized that this is due to less partial volume averaging of

inactive tissue or the increased contribution from the vessels in high-resolution data. These

results may falsely imply that high resolution tends to result in better detection compared

to low spatial resolution. However, we have further demonstrated that when BOLD CNR is

considered, the histogram broadens to include high CNR at lower, not at the highest in-

plane resolution (Fig 5.2e). In general, we find that the maximum CNR is obtained when

the resolution matches the size of the functional activation itself (Fig 5.3).

Based on the gray-level CNR maps over the region-of-interest (Fig 5.2), we

observed a significant distortion in the original shape and size of the activation as we

reduced the in-plane resolution. However, this is not a concern because in the multi-

resolution zooming approach, low resolution is used only in the initial detection of

activation. In later stages of the scan session, higher spatial resolution is used and the

highest resolution is used in the final mapping stage. However, it is important to note that,

with low-resolution data acquisition, false negative errors are possible. For example, the

reduction of BOLD CNR at very low spatial resolution, as illustrated by model and

simulation (See Fig. 4.5 and Fig. 5.6) may cause failure in detection due to reduction in

BOLD CNR.

The point to be made from the experimental and theoretical results on the

variation of the in-plane resolution is that the spatial resolution needs to be optimized to

generate the maximum detection of the site of activation. The maximum detection would

be obtained by matching resolution to the size of the activation, neither using too high nor

by too low resolution.

BOLD CNR and Variation of Slice Thickness
From our analytical model results at different slice thicknesses, we predicted

BOLD CNR would be maintained as long as the imaging slice contains the site of

activation and the effect of susceptibility-related signal loss is small. Similar to results for

the variation of in-plane resolution, we showed that maximum CNR will be obtained if the



slice thickness matches the thickness of activation. For the range of slices used in our

sensorimotor task, the BOLD contrast was shown to be additive and BOLD CNR was

relatively constant regardless of the slice thickness and even increased as long as the slice

contained the site of activation (Fig 5.5). The analysis of CNR in our data showed higher

or constant functional CNR was observed as slice-thickness increases up to 12 mm. The

initial thickness of 12mm was acceptable in primary motor area, justifying the approach of

lowering through-plane resolution for initial detection of the activation.

We observed that the noise level in cortical areas increased when thicker slices

were used (Table 5.1) and expect that physiological noise may significantly reduce BOLD

CNR for very thick slices. For example, If the initial slice is significantly thicker than the

dimension of activation, the increase in physiological noise may surpass the BOLD contrast

resulting in an increase in false negative error. Susceptibility-related signal losses would

also reduce the BOLD CNR. On the other hand, increasing slice thickness might, as we

found, increase the BOLD signal due to larger pixel volume and thereby increase CNR if

the noise level is relatively constant with slice thickness.

Functional Detection versus Mapping

It is important to distinguish the process of 'detection' from 'mapping' of the

brain activation. The purpose of detection is to examine the existence of activation, and

may not necessarily to map or characterize the activation. The rationale behind the multi-

resolution approach in functional MRI could be compared to the acquisition and analysis of

images by a spy satellite for the purpose of identifying the type of aircraft located at an

airfield as illustrated in Fig. 8.1a. It would not be efficient to acquire and analyze image

data at the spatial resolution necessary to identify aircraft type (6 in Fig. 8.1a) before an

airfield had been detected. Instead, the imaging system and detection algorithm should

initially be set to detect airfields at lower resolution (A in Fig. 8.1a). After the

determination of the location of airfields, higher spatial resolution can be used to resolve

the type of aircraft.

The situation described above is similar to the brain mapping problem. For the

sensorimotor area, which was previously shown in Fig 5.2a, the dimension of whole extent



of motor area is approximately A which is much larger than the spatial dimension of 3

which is necessary to map the detailed profile of activation (Fig 8.1b). Our results show

that the detection of the functional activation is maximized when the resolution matches

the size of activation (A, Fig. 8.1b) from both analytical model and the simulated

sensorimotor area (Chapter 4 and 5).

b

Figure 8.1. Comparison of the detection and the mapping of functional activation to the
acquisition and analysis of images by a spy satellite for the purpose of identifying the type
of aircraft located at an airfield. (a) An airfield has the size of A whereas the resolution
of 3 is necessary to identify the type. (b) Example from the functional map shown in Fig.
5.2a.

Mapping functional areas can be done much more efficiently if we have some

minimum knowledge about what to expect in terms of size of activation. For example, we

can expect that many functional areas are more than a voxel size and distributed across the

brain. Therefore, in the initial and intermediate scan stages we want to maximize detection

of these areas prior to conducting a detailed mapping of the activation. The last stage of

the adaptive zooming process is used to identify the detailed activation profile at high-

resolution. In order to maximize the detection in the initial stages of imaging, the spatial

resolution should match the overall size of the total area of activation and this is usually

much lower than the higher levels of resolution desired for mapping.



8.3 RF encoding for Functional MRI
Flexibility of Spatially Selective RF encoding

The proposed RF encoding method has the ability to encode sections that are not

only irregularly distributed throughout the volume but that are also of differing thickness.

In the implementation reported in Chapter 6, the fundamental volume element was a plane

of 2.5mm thickness. Individual sections could be any combination of these volume

elements so that, for example, one could use 5mm sections to monitor one part of the

brain while using 7.5mm sections to monitor another. Other fundamental volume elements

such as lines or strips can also be used to encode the volume. Line encoding may not offer

enough SNR for functional MR at 1.5T. However, by using an adaptation of the spliced-

pencil sequence [98], we could encode combinations of thin strips providing adequate SNR

for fMRI while offering improved temporal resolution and flexibility over the multi-plane

encoding approach.

Reduction of in-flow effect

A very attractive feature of the RF encoding method from a practical point of

view is the significant reduction of the in-flow effect. The reduction from the contribution

of in-flow was achieved by additionally encoding thick sections on either side of the

volume of interest. We maintain that this suppresses in-flow by producing a level of

saturation for in-flowing spins that is the same as spins within the volume-of-interest.

Other approaches such as spatial presaturation [71], dual-echo gradient echo [45], or the

long TR in single-shot EPI have been used to decrease the in-flow effect. A major

advantage of the proposed method, however, is that the flexibility in spatial encoding can

be exploited to reduce in-flow for regions that are not necessarily contiguous, which is not

easily implemented with other methods using existing hardware and software.
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Hadamard Encoding and fMRI

Hadamard encoding slices in the through-plane direction can achieve potential

SNR gains. Quantification is complicated, however, because the SNR depends on multiple

factors such as the flip angle, the TR, the number of encoded slices, and the T1 of the

tissue. For example, a SNR advantage of j~ 2.83 is expected when 8 slices are Hadamard

encoded. However, the Hadamard encoding also results in a decrease by a factor of 8 of

the effective TR because the whole volume is excited during each TR period. This requires

a concomitant lowering of the flip angle (assuming operation at the Ernst angle). As shown

(see Fig 3.9), significant SNR gain by Hadamard encoding over the multi-slice approach can

be obtained only when a relatively large number of slices (> 16) are encoded.

One possible problem with encoding large portions of the volume with Hadanmrd

encoding lies in peak power limitations which may otherwise demand lowering the flip

angle and thereby lowering SNR [107]. This is because wider spatial profiles are excited by

more narrowly peaked RF pulses. It is best, therefore, to limit the number of slices that are

Hadamard encoded if a large portion of the volume is being covered. Based on the results

plotted in Fig. 3.10 of the improvement of SNR for Hadamard encoding compared to the

multi-slice method, there was a point beyond which little SNR advantage is gained by

increasing the number of slices that are Hadamard encoded. At roughly 1/4 of the

maximum number of slices, over 90% of the SNR advantage due to Hadamard encoding

are reached and there is little benefit in further increasing the number of slices. This is a

useful finding because the possible peak power problem associated with Hadannrd

encoding large FOV may be reduced by subdividing FOV into sub sections and Hadamard

encoding those sections without risking too much of SNR loss.
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As an example, assume that column A of Fig. 8.2 shows the Hadamard profiles for

encoding 16 slices covering the entire volume. The RF pulses to excite these profiles are

likely to lead to peak RF power problems so that it is better to use the hybrid scheme

shown in column B of Fig. 8.2 where sets of 4 slices are Hadamard encoded. According to

the curve in Fig. 3.9, both schemes are roughly equivalent in terms of SNR advantage, but

the scheme that is shown in column B of Fig. 8.2 is preferable because it minimizes the

possibility of peak power problems. Issues such as signal fluctuation from imperfection in

RE profiles for Hadamard encoding are expected to be negligible since these fluctuations

were shown to be small and not correlated with the task-related signal level (Section 3.2.1).
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Figure 8.2 An example of the use of
hybrid splitting of Hadamard
encoding to avoid possible peak RF
power in encoding 16 slices with fixed
temporal resolution of 1600 msec.
The minimum effective TR in this
example is therefore 100 msec.
Column A shows the Hadamard
encoding of the full FOV. If the
original FOV is subdivided into four
regions and each region of four slices
is Hadamard encoded (Column B),
the effective TR is increased by a
factor of four to 400 msec so that
approximately the same SNR is
obtained while peak RF power
problems are reduced.



8.4 Real-time Adaptive fMRI
We have designed and implemented an adaptive MR image acquisition scheme

based on RF (radio-frequency) encoding in the slice-selection direction with real-time data-

processing and transfer capability. It is worth noting that this real-time adaptive setup was

implemented on a standard 1.5T scanner with conventional gradient systems (1Gauss/cm).

We were therefore limited to using an interleaved EPI sequence. Adaptive encoding is

intended, however, to improve scanning efficiency with a variety of pulse sequences,

including those used for standard fMRI. It is straightforward to modify a multi-slice, single

shot EPI sequence to enable adaptive fMRI at higher speed on imaging systems with more

powerful magnetic gradients, and this approach can be applied to any field strength.

Although not demonstrated, we believe that the combination of altering resolution in in-

plane and through-plane direction would benefit the adaptive approach.

Real-time adaptive imaging has three components: (1) image acquisition, (2) real-

time processing of images and the detection of ROI's, and (3) real-time adaptation of

imaging parameters based on ROI-detection. In the particular implementation of real-time

adaptive imaging demonstrated in this work, the detection of ROI's was enabled by a

simple statistical measurement in combination with the somewhat arbitrary choice by a

human operator. From our real-time results, it was noted that one 5 mm slice with high

CNR in a cerebellar ROI (ROI 3 in Fig. 7.5) was unintentionally ignored in the process of

zooming in to 2.5-mm thick slices in favor of a 5 mm thick slice with much lower CNR.

This demonstrates the necessity of careful attention by the operator for successful zooming.

Premature zooming before the confirmation of activation in a ROI can lead to the missing

of regions with significant activation. Some "intelligent" guidance on the part of the

adaptive algorithm, for example, more sophisticated statistical analysis leading to automated

ROI-selection, is necessary and constitutes area for further investigation.

It also should be noted that the adaptive multi-resolution approach is based on the

assumption that there is no substantial change in the location or the size of the original

site of activation during the adaptive procedure. Therefore, it assumes that there is no

physiological adaptation of cortical areas between each scan stage. For the block-based
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design, this assumption is accepted. However, the degree of activation in different regions

of brain can change during motor learning and other complicated sensorimotor task [50,51].

The adaptive algorithm and the task paradigm under these conditions undergo a

complicated interplay that requires further investigation.

8.5 Application of Adaptive Approach

Adaptive selection of activated areas-of-interest could enable sampling of selected

locations of interest at ultrahigh temporal resolution to further the understanding of

complex temporal relationships of the activation of multiple relays in distributed neural

networks. As briefly introduced in Chapter 2, the event-related fMRI method has immerged

as a new powerful tool in functional mapping experiments. We have conducted an initial

feasibility study of real-time detection of event-related fMRI signals of simple audio-cued,

sensorimotor trials [108]. This study suggests that adaptive fMRI data acquisition and

analysis can be combined with event-related experimental paradigms.

A potential application of such a design approach might be to selectively study the

event-related temporal response of multiple functional regions. Certain cognitive tasks such

as the motor response to a particular visual cue are believed to involve multiple brain

regions including visual cortex (visual perception), frontal lobe (higher cognitive processing

and memory), cerebellum (motor control/planning and attention), supplementary motor

cortex, and motor cortex (motor execution) [46,50,54]. The event-related hemodynamic

responses in these areas, and the temporal relationship between them are not yet

understood in detail.

It would be very useful if the signal changes of those areas could be monitored

simultaneously with as high temporal resolution as possible. With combination of fast scan

techniques and real-time adaptive MRI, it may be possible to follow the response of such

distributed regions with sufficiently high temporal resolution because imaging can be

limited to the regions-of-interest regardless of how they are distributed throughout the

brain. If the stimulation is carefully synchronized with the pulse sequence, the temporal

behavior including rise-time of MR signal change in relation to the gated paradigm might
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be resolved more finely, shedding new light on the temporal dynamics of the hemodynamic

response.

Similar adaptive schemes can be used to characterize regions of interest with

different MR contrast mechanisms, including MR spectroscopic imaging [107,109]. An

operator could, for instance, elect to pinpoint a functional location using an adaptive multi-

resolution approach, and subsequently switch in real-time to the spectroscopic

characterization of functional ROIs.

Another potential application of adaptive fMRI approach is the functional

mapping for neurosurgical planing. Functional MRI has been used to delineate functionally-

eloquent areas adjacent to the target of surgical intervention ([16]-[18]). With the

advancement in technologies such as microscope-assisted surgery, the spatial precision of

the surgical procedures has greatly increased [19], therefore, high-resolution

characterization of activation will be necessary to provide more accurate mapping of

functions within the surgical field.

8.6 Future Studies
Studying event-related BOLD signals from multiple regions of brain with high-

temporal resolution is one of the main targets of future studies. In order to achieve

efficient volume coverage and excellent temporal resolution necessary in study, our research

is currently focused on the implementation of the real-time adaptive fMRI method adapted

to an EPI system. With dedicated data processing and communicating platform, necessary

data transfer and processing will be provided.

Several technical aspects regarding the implementation of adaptive fMRI that are

not presented in this thesis, have been recently addressed. They are real-time processing of

event-related fMRI [108] as well as a real-time detrending of physiological noise [110].

Real-time processing of ER-fMRI data was achieved by using the reference function

estimated to for the hemodynamic response of a given stimuli [108]. Real-time detrending

of physiological noise was proposed using predetermined 'tracer' pixels representing
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respiratory and cardiac component signal prior to the functional data acquisition [110]. By

applying the detrending function formed by these tracer pixels to the real-time fMRI

algorithm, physiological noise may be reduced in real-time.

The capability to switch in-plane resolution and usage of the different volume

element such as lines or strips as a basic volume element will be implemented in the near

future. We expect line encoding may not offer enough SNR for functional MRI at 1.5T,

however, by using an adaptation of the spliced-pencil sequence [98], we could encode

combinations of thin strip with adequate SNR. To study functional areas close to large

static susceptibility gradients, it may be necessary to incorporate a variable slice-thickness

approach such as the Multiple Variable Slab Thickness (MVST) method in order to reduce

the susceptibility loss [111,112]. As we have previously shown in Chapter 6, the RF

encoding technique gives the necessary flexibility for implementing approaches with

variable size of volume elements.

In the current implementation of the adaptive method, an operator bases the

detection of a ROI on somewhat arbitrary selection, thus, premature zooming during

adaptive selection or missing the ROI are possible. We expect that some 'intelligent'

guidance to aid an operator is necessary to improve detection. Development of such an

automated detection algorithm with interactive MR environment constitutes another area

for further studies.

As a first step towards an 'intelligent' adaptive method, the following procedure is

proposed. First, the brain regions are masked out from the adjacent non-brain anatomical

structures based on the image intensity and morphology of brain anatomy. Probability of

activation is calculated in real-time based on the methods outlined in the thesis (See

Section 7.2.2). A user might then input conditional parameters for ROI selection and

zooming at each stage. Since activation may be limited to very few pixels depending on

brain anatomy and the functional unit under study, different conditions in terms of size of

activation and statistical significance may be used for ROI selection. For example, clusters

of more than 7 adjacent pixels in volume with p <0.01 for one ROI and single pixel

location of p< 0.0001 for another ROI may be used criteria for ROI selection.
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The information gathered from the initial scan session would then be used to

determine the locations for further zooming and setting the optimal resolution for

detection in later scan stages. RF encoding prescription would be updated interactively with

user input between scan stages until the final goal of temporal or spatial resolution of the

functional study is obtained. The process may be fully automated once the whole process is

optimized for the given experimental setting.

We believe the adaptive approach can provide an efficient method of targeting

VOI's and characterizing the selected VOI's with high spatial resolution. A goal we hope to

achieve with our method is isotropic 1.5-mm spatial resolution in a functional study in well

under 10 minutes.

8.7. Conclusions
In this thesis, an adaptive multi-resolution approach using spatially selective RF

encoding was developed for fMRI. The basic idea of the method is to zoom into selected

slice locations of interest with high temporal and/or spatial resolution. We aimed to show

the adaptive multi-resolution method combined with real-time data processing and imaging

prescription would add significant flexibility of functional mapping experiment. Our

conclusions from this work are as follows;

- Based on numerical study described in Chapter 3, we conclude that Hadamard

encoding can improve image SNR (and therefore, BOLD CNR) although a relatively

large number of slices (>16) is necessary to provide significant gain over the multi-

slice method. We also concluded that the possible introduction of the signal

fluctuation by imperfection in spatial profile of Hadamard basis is not highly

significant in terms of seriously compromising the functional detection.

- Based on the theoretical analysis described in Chapter 4, we conclude that there is an

optimal spatial resolution to insure maximum detection of the functional activation.



Generally, we found that the maximum CNR is obtained when the resolution matches

the size of the functional activation itself. Our analysis is based on using BOLD CNR

as qualitative determinant for functional detection.

- Based on the experimental results described in Chapter 5, we confirmed the

conclusions of the theoretical analysis. Again, BOLD CNR was used as the

quantitative measure of functional detection, and conclude high spatial resolution is

not generally desirable for the initial detection of activation, at least for the

sensorimotor paradigm that we used in our studies. The optimal resolution to obtain

maximum CNR is the resolution that matches the size of the functional activation

itself.

- Based on the experimental results described in Chapter 5, we conclude that

physiological noise increases with slice thickness. Physiological noise, as described by

the analytical model in Chapter 4, can reduce the CNR significantly when lowering

spatial resolution. This is true if the area affected by physiological noise is larger than

the areas of functional activation.

- Based on the results described in Chapter 6 where the utility of RF encoding in fMRI

was demonstrated in a conventional MR system, we conclude that the method provides

a simple means of monitoring planes with variable thickness irregularly spaced

throughout the brain without the need to encode whole brain.

- We further conclude from our studies described in Chapter 6 that the flexibility of RF

encoding can exploited to reduce the in-flow effect by applying uniform level of

saturation over the imaging volume.

- Based on the results of our implementation of a real-time interactive fMRI method as

described in Chapter 7, we conclude that a multi-resolution adaptive approach can be

used for detecting functional activation and result in increased temporal or/and spatial

resolution.



In general, multi-resolution adaptive zooming approach based on RF encoding

offers greater flexibility in designing functional MRI protocols. In addition, there is

potential for increase in SNR and reduction of in-flow effect using RF encoding. More

work must be directed toward the implementation of the method with EPI and toward the

exploration of applications in neuroscientific studies and neurosurgical planning.
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