
Personal Communications

by

Chi Chong Wong

B.Sc., Systems Design Engineering

University of Waterloo

Waterloo, Canada

1989

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION, SCHOOL OF ARCHITECTURE AND

PLANNING, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 1991

@Massachusetts Institute of Technology 1991

All Rights Reserved

Signature of the Author

Media Aifs anfscieices Section

May 10, 1991

Certified by

Chris Schmandt

Principal Research Scientist

Thesis Supervisor

Accepted By

Stephen A. Benton

Chairman

Departmental Committee of Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 3 1991
LIBRARIES

Personal Communications

by

Chi Chong Wong

Submitted to the Media Arts and Sciences Section, School of Architecture and Planning, on May 10,

1991 in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts

Institute of Technology

Abstract

There is an emerging trend in the telecomniunications industry for providing customizable

connunications services. Telephony features such as call forwarding, call transfer. call waiting, hold.

conference, voice mail and ring again have)ecome ubiquitous* in the office environment. However,

these telephony features have greatly increased the complexity of the central office (CO) switch and the

telephone set.

One approach to managing complexity in the CO and providing a better user interface to

advanced telecommunications services is to define a basic set of functions within the CO and to allow

external peer entities such as workstations to interface to it through an open architecture. The

integration of telecommunications systems into computer networks allows designers to shift complexity

away from the switch by distributing the burden of call processing to a customer premise workstation.

Conducting call management at the customer premise will allow the workstation to actively participate

in call processing through intelligent agents.

A phoneserver that, provides an architecture to controlling telecommunications services provided

by an AT&T ISDN 5ESS switch is presented in this thesis. An automated call management entity

(ACME) that interfaces to the phoneserver on a client's behalf is presented, along with other

network-based voice services that, utilize the phoneserver. ACME is a rule-based system that is

configured using a graphical user interface called Phoneditor. It was found that it is a non-trivial task

to define a. set of rules that could adequately specify the personalization needs of users. These findings

are discuissed along with conjectures about, the utility of a phoneserver and an ACME in advanced

telecomnunications networks of tomorrow.

Thesis Supervisor: Chris Schmandt

Title: Principal Research Scientist

Contents

1 Introduction 8

2 Background 9

2.1 Etherphone 10

2.2 The Modular Integrated Comununications Environment (MICE) 11

2.3 Personal Exchange.(PX) 13

2.4 IC-Card Telephone System . 14

3 Integrating the Workstation and the Network 16

3.1 Intelligent A gents . 16

3.2 User Interface...... 17

3.3 Internetworking . 18

3.4 Distributed Call Processing . 19

3.5 How is this work different, from previous work? ..20

4 Implementation 22

4.1 Design Philosophy... 22

4.2 Hardware Architecture.. 23

4.3 Software Architecture . 25

5 The Phoneserver 27

5.1 Phoneserver Client, Software Library . 30

5.2 Network Interface - - - - - - 31

5.3 Client Applications of the Plioneserver . 33

5.3.1 Pagei 33

5.3.2 QDVM....-.-.-.- .-. -.-33

3.3.3 X phone - - - - - - - -. 34

5.3.4 Forward 4.

Logger - - -.

Activity Server

. 35

. 36

6 Automated Call Management Entity

6.1 Call Management

6.2 Software Architecture of the ACME

6.2.1 Data Structures

6.2.2 Socket Manager

6.2.3 Call Management Example

6.3 Sorting Rules

7 The Telephony Language

7.1 Challenges of the Telephony Language

8 The Phoneditor

S.1 Graphical User Interface

9 Discussion

9.1 Privacy and Security

9.2 Difficulties with ISDN

9.3 Personal C'ommunications Networks.....

10 Future Work

10.1 User Study

10.2 Simulations for ACME

10.3 Robustness of the ISDN Network Interface . .

10.4 Miscellaneous . - - - - - - - - - - -. .

46

. 46

49

. . . . 49

57

. 5 8

. 5 8

. - . . . - - - - 5 8

1] Summary

12 Acknowledgements

A Configuring the Phoneserver

A.1 Enunierating the Event and Conniand Structures ...

A.2 Call Appearanc States

A.3 Interest Structure

5.3.5

5.3.6

. 34

B Configuring the ACME 67

B.1 Sample Rule Set File ...----... 67

B.2 Configuration File .. 68

B.3 Alias Files ... 68

BA Protocol between ACME and the Phoneditor .69

C Lex and Yacc Description of Telephony Language 70

C.1 Lex File - tokeu................ 70

C.2 Yacc File - parser.y 72

List of Figures

1-1 Examples of Call Management

2-1 Etherphone Architecture . . .

2-2 MICE Hardware Architecture

2-3 MICE Software Architecture

2-4 PX Hardware Architecture

2-5 PX Software Architecture

2-6 IC-Card Telephone Set

4-1

4-2

5-1

5-2

5-3

5-4

.5-5

5-6

5-8

5-8

6-1

6-3

63-4

6-5

SG 6

System Architecture.....

Software Architecture

Command Structure...

Event Structure...

IPC Connections.....

Communicating with the Phoneserver .

Call Processing Functions

Pager Program

Forward: Popup Window

Logger Program

Rule Structure

Condition and Action Structures .

Socket Manager

Filled Conditions and Action Structures

Unsorted Rule Set

Sorted Rule Set

. 3 9

. 4 0

. 4 1

. 4 2

. 4 3

. 4 5

. 8

. .

.

7-1 Intra-Rule Conflicts . 47

7-2 Inter-Rule Conflicts: Second Rule Never Reached . 48

7-3 Inter-Rule Set Conflicts: Cyclic Transfers . 48

8-1 Phoneditor . 50

A-1 Call Appearance to Interest Structure . 65

A-2 Interest Structures . 66

Chapter 1

Introduction

This thesis is an experiment in intelligent call management agents. distributed call processing. user

interfaces and internetworking in a heterogeneous computing and teleconununications environment.

The call processing services are presented through a graphical user interface and allow the users to

customize their connunication services to an extent that is not possible in today's telecommunication

systems. For example, users can specify to the system statements such as those shown in Figure 1-1.

-No calls between 12 noon to 1pm, except if it's from Peter."
-Transfer my calls to wherever I am except if Fim in the cafeteria.
-Transfer my calls to voice mail immediately if I'm not in my office.

Figure 1-1: Examples of Call Management

The thesis first examines previous related research that has been done at other laboratories inl

the U.S., Canada and Japan. Chapter 3 discusses the motivation for this work and how it is different

from the previous woirk. Chapter 4 discusses implementation issues of the thesis such as the hardware

and software requiremiieits to reproduce this experiment at another lab. Chapter 5 describes the

plioneserver in detail the architecture of the software and the protocol of conniunications. The

automatic call mann u ent entity (ACME) used by clients to manage their communications service is

discussed in chapter 6. The rule-based scripting language used to instruct ACME is describe in chapter

I and the graphicl interface used for generating these rules is discussed chapter 8. The remaining

chapters discuss aid iuinarize the work as well as conjecture as to how this architecture may be used

in future teleconnumnication networks.

Chapter 2

Background

In 1984. the Modified Final Judgment required the Regional Bell Operating Companies (RBOCs) to

provide equal access to their inter-lat exchanges to all long distance comlpetitors. To meet this

mandate, the RBOCs rapidly upgraded their old electro-mechanical switches to digital stored program

control central office (CO) switches. These new digital switches paved the way for large-scale increases

in Centrex services. programmable private branch exchanges (PBX) and feature-rich telephone sets.

Such services are now commonplace in the office environment and are beginning to reach the home as

well.

Undoubtedlv. these new services have added value to the existing telephone systems. However.

the added functionality has brought along with it, an increase in the complexity of its user interface.

Several human factors studies have been conducted in the hopes of providing a user interface that can

effectively manage these new services [8, 10, 20, 19]. One approach to this ease-of-use problem is to use

the office computer to help manage this complexity. In the past decade, several attempts have been

iade to integrate the world of telecommunications into the computing environment and to personalize

telephony services. Some of the published work outside of the MIT Media Laboratory has come from

Xerox PARC. Bellcore. Bell-Northern Research (BNR) and Nippon Telephone and Telegraph (NTT).

The Etherphone project, developed at PARC, analyzed the use of Ethernet for providing telephony

services [27]. Bellcore developed an intelligent network testbed, called MICE, that was designed to

provide an environment for ralpid prototyping of customizable telephony features [10]. Unfortunately,

both Etherphone and MICE are no longer active projects. At BNR, researchers are working on

developing a Pe.Sonal eXchange syst em to merge voice communications with computer applications

[14]. A recent project at NTT has focused on developing a smari telephone that would enable the

persnalhzation of telephony services [17].

2.1 Etherphone

Etherphone was an experimental telephone system at Xerox PARC that was intimately tied to a

computer network. Specialized hardware was used to connect a digital telephone set to an Ethernet

local area network (LAN). This hardware enabled the Etherphone to transmit digitized voice, signaling

and supervisory information over the network. The system architecture is shown in Figure 2-1.1 A

telephone control server handled routing information and other such responsibilities typical of a PBX.

A general purpose computer and a file server were included in the system to provide voice in

computing applications. The main engineering challenge was to meet the real-time transport

requirements of voice data over Ethernet.

0M 0ee
W fe * a 000 604en@sr

ExiogPac"e Teoone work.
NoGateway Cantrvas aoSeno srvrEtherphone Esiepone

.5 Mbps Ethrnet

3 MPG Ethemet
... n sub n r line

Figure 2-1: Etherphone Architecture

Transporting voice and other multimedia data types along a common bus architecture provides

the opportunity for voice call processing and integrating multimedia data into a common computing

environment. The ability to perform progranmable switching control opens up a whole host of possible

applications including directory-based call placement. call logging. call filtering, automatic call forward.

voice mail, voice annotation and voice editing.

The cost of this architecture is less reliable telephone service. Telephone service would be

severely degraded if the traffic on the Ethernet reached saturation and would fail completely if the

Telephone Control Server or the LAN failed. These implications would likely be unacceptable for most

companies because telephone service is such an integral part of any organization's operations. Until

Figure taken from [27).

computing systems evolve to the stage when their fault tolerance is comparable to today's switches, the

integration of telephony and computer system likely will remain impractical. Etherphone was able to

overcome this reliability issue by installing a regular subscriber line to each Etherphone. This line was

used for telephone access outside the Etherphone system and could be used as a backup whenever the

network failed.

2.2 The Modular Integrated Communications Environment

(MICE)

The MICE project at Bellcore was an attempt to reduce the complexity of introducing new service

specifications in a CO switch by developing a rapid prototyping system for network services.

The authors emphasized three services within MICE - personalization, customization and

integration. The idea of personalization meant, that services were associated with users and not their

telephones. Users could customize their own personal telephone profile through the use of a finite-state

table language developed for MICE users. This construct allowed users to use arguments such as the

identitv of the caller, the time of day and the line status, when making call processing decisions. Thus

new services such as cond'ion al call forwarding. variable forwarding. routing lists . and so forth, were

made possible. Finally, integration referred to the multimedia integration of data into a common

notification. addressing and controlling mechanism. One example of this is the integrated voice and

text mailing system. imail . that was built for MICE[18]. Imail allowed users to access both electronic

mail and voice mail froim a computer workstation.

The authors assumed that the computing and telecommunications world of the future would be

composed of a heterogeneous network. The components that they used to develop MICE, shown in

Figure 2-2, reflected this decision.

The authors wrote the software to interconnect all the components. This task was divided into

three modules. as shown in Figure 2-3 2. The foundational software wa-s largely composed of the

Central Control Process that acted as a server and communicated with other processes via

inter-process comnunication (IPC) over Ethernet, and managed peripherals via a serial link. Resource

software provided device drivers and service software was the level presented to users.

The authors later attempted to introduce an ISDN switch to-the architecture. However, they

ran into more problems than they anticipated. Their hardships were documented in an internal paper

[3] and are sumnmarized here. They claim that definitions and extensions of protocols are needed.

T1igures 2-2 and 2-3 I akeil from [9].

Figure 2-2: MICE Hardware Architecture

URCES FOUNDATION SERVI

REDCOM
(SWITCH)
CONTROL_

RVEFRER
CONTO

MESSAGE
PAGER

INTERFACE

TERMINALINTERFACE

USER
INTERFACES

Figure 2-3: MICE Software Architecture

RESO

(UTEGRATEDI
*MESSAGNG)

DIRECTORY
ASSISTANCE

CONDITIONAL

C ES

Signaling mismatches exist between the telephony world and the computer communication world. Data

compatibility problems exist among different machines. Protocol conformity problems exist between

different implementations.

2.3 Personal Exchange (PX)

The PX project is exploring architectures that will enable workstations to conveniently communicate,

store, retrieve and process voice as a data type. Researchers at BNR are developing architectures that

will enable the workstation to establish voice connections and perform voice switching. By enabling the

workstation in this way. they are able to distribute much of the call processing capabilities to the

desktop rather than concentrating it at the switch.

The system design of the hardware in PX includes a LAN of workstations where each

workstation is associated with a telephone. The workstation is connected to the telephone through an

adaptor that also terminates a Northern Telecom ISDN-compatible key system (see Figure 2-4). The

key system acts as a circuit server for voice connections and has a 2B+D architecture. The D channel

is a message channel that is implemented as a logical messaging bus. By allowing the workstations to

read and write messages to this bus through the adaptor. the workstation can instruct the key system

to establish voice connections through the B channels. Thus. the key system serves as a circuit switch

withii ai open external control interface.

Packet LAN (date)

Voice

Circuit

Server

Figure 2-4: PX Hardware Architecture

There are three layers in the software architecture of PX: device drivers. services and

applications (see Figure 2-5 3). The telephony management toolkit in the middle layer is of most

Fgrs2-1 and~ 2-5 takenl from {2]

interest to this thesis. This layer provides high-level abstractions for telephony management services to

the application programmer. The abstractions provided allow the programmer to initiate, receive and

manipulate calls.

Applications: appointment voice telephone etc
agent editor attendant

Base:

PX
services telephony voice speech etcmangemnt management processing

device

drivers workstation telephone workstation
adapter set devices e tc

Figure 2-5: PX Software Architecture

The PX project is looking at applications to use the workstation to assist voice communications.

to integrate voice and data and to enable delivery and retrieval of data from a workstation through the

voice channel. The applications to assist in voice communications are using the workstation to provide

a better user interface to advanced teleconununications services. This is done through a screen-based

telephony interface and using the workstation as an interactive answer machine. Applications that

integrate voice and data include voice annotation of text documents and voice entry to an on-line text

calendar. Finally. the workstation is being used to deliver voice messages for applications such as

-telemarketing and to remotely retrieve electronic mail by reading the text out using a text-to-speech

svnthesizer.

2.4 IC-Card Telephone System

The IC-Card Telephone System developed at NTT is an attempt to provide personal telephone

services. The services that the researchers at NTT wish to provide include: directory dialing, voice

calling, automatic transfer. automatic answering and call charge accumulation. They have placed much

more hardware in the telephone to enable these services and provide a better interface (see Figure 2-6).

In order to provide personalized services. a removable IC-card is used to store information about the

user. User information stored on he IC-c'rd ;ch as 'telphem . dates. times. answe'ring

machine messages, schedules, and so on, are transferred to RAM when the IC-card is inserted into the

telephone.

CommunientiOn control CPU

a.ceie.phono cun.| TO.esu

Network Termination
sounder Ringing Circuit (Layer 1, 2)

Speech Circuit Memnory
and CODEC

ns on (- Wn Control CPU
Loudspeaker
Circuit

Pushbuneon otal

Voice voice synheize
Synthesizer COntoMMnMr

Function 'ay ADPCM
n.D PW Code-/Decoder

I-ar interface$ "Kano Chrmer

Processor

Figure 2-G: IC-Card Telephone Set

Chapter 3

Integrating the Workstation and

the Network

This chapter will examine the issues involved in integrating the workstation into the network. In this

thesis. the personal engineering workstation will be simply referred to as the uworkstaiion and the

AT&T 5ESS ISDN switch that connects MIT with the rest of the international telecommunications

network will be referred to as the network. First, the benefits of integrating the workstation into th(

network will be examined in sections 3.1 and 3.2 and then the architecture needed to provide these

benefits will be discussed in sections 3.3 and 3.4. Finally, section 3.5 will examine how the architecture

of the system buiJt in this thesis differs from previous related work.

3.1 Intelligent Agents

One way of abstractly viewing the telecommunications industry is that it is a poinler industry. The

entire network represents a huge storage bank of pointers represented by telephone numbers that

people can use to access iifiormnation or to gain access to other people. Viewed in this way, the

telecommunications network f'acilitates human to human communications by providing links that may

spali great distances. Unfortunately this communications system sometimes may fail because people

are mobile and pointers are static.

Placing a workstati at the periphery of the network as an end icr'inal, gives the network

access to the information ;iid capabilities available in the computer world. Fron a, user's perspecctive.

the workstation acts as an agent on behalf of the user to manage the network for him. This may mean

processing, transactions. selwdawiling events. making it easier to use this huge network of pointers or

participating in call management by providing the network with the correct pointer.

Consider the list of factors that commonly go into making a call management decision. Clearly,

these factors will vary from person to person; in general, however, these factors may be broken down

into static and dynamic parameters. Static parameters are those parameters that rarely change with

time. For example, a user may always want his telephone to be forwarded to his voice mail when he

does not answer his call. Dynamic parameters change with time. An example would be if a user

schedules a meeting in her office and wants all her calls to be handled by voice mail for the duration of

the meeting. If the workstation can model the activity of the user, it can provide useful and dynamic

information to the network about call routing. The dynamic information that can be used at the

workstation may include the following: entries from an on-line calendar, the time of day, the location

of the user. the status of the user's telephone line. the calling party. a list of people the user has

recently called, what activity is currently happening on the user's machine. and so on. The agent built

and proposed in this thesis, called ACME. is an attempt at create a dynamic call processing agent.

3.2 User Interface

As mentioned in the previous section. the workstation can be used to make it easier to manage the

network. One approach. such as the one described in section 2.4 is to make the telephone more

sophisticated. Another approach would be to enhance the switch. The approach proposed in this thesis

is to migrate some of the telephony finctionality away from the telephone to the computer. It is

difficult to see how the telephone can offer user interface comparable to what a workstation can

provide. without becoming prohibitively expensive. Also there is motivation to simplify the CO switch

as discussed in section 3.4.

While the amount of functionality that is to be moved is unclear, two guidelines can be followed.

First. at the very minimum. the telephone set should provide Plain Old Telephone Services (POTS)

since POTS is too iniportant to lose when the workstation fails. Thus, the workstation should focus on

nalue added network services. Secondly. researchers at Bellcore have found in [10] that the telephone is

attractive for non-control functions such as listening to a message or placing a call. However, display

devices were found to be more attractive than touchtone keypads for service control of any complexity,

such as f)rwa.rdiig or deleting messages.

It is argued in [22] that using display devices. such as workstations, improves the user interface

and enhaoices finctionalitv for several reasons. Workstations have better input devices, such a-s a

miouiSe a(1 fill keyboard. and have superior displays that are larger and easier to read than telephoie

displays. Also. giving the workstation access to telephony functionality provid(es an opportunift for

integrating the communications services provided by the network with the communication services

available in the computer network, such as electronic mail. Finally, there is more opportunity for

personalization of services because the workstation has access to databases.

Recent studies at Bellcore indicate that enhanced network services are hard to remember and

often not used [20]. Researchers at Bellcore proposed a mnemonic command syntax for controlling

advanced telecommunications services. What they discovered was that the mnemonic command syntax

did help users to remember the commands but did not change their pattern of usage. This finding

indicates that. there exists a, significant amount of inertia for introducing any value-added network

service. Any new service ought to be useful enough to noticeably add value while being easy enough to

use so that the benefits outweigh the cost to the user of having to adapt to the new service. What is

needed is a siniple set of abstractions that will increase the functionality of the system while reducing

the complexity of its usage. The abstractions are mechanisms by which users can conveniently think of

and express to the computer how they would like their comnmnication services to be managed. The

approach taken in ACME is to use the IF-THEN paradigm to establish service control (see section 6.1)

and provide a graphical user interface called Phoneditor, described in chapter 8.

3.3 Internetworking

The intelligent integration of computing technology and the telecomnunications world is a subject of

iiternational research. Perhaps nowhere is this topic more intensely studied than in the area of ISDN.

This shoull come as no surprise, since integrating a. telecoini ications network with the digital

computer would seem to be a natural evolutionary path for a digital network such as ISDN. In fact,

the name ISDN itself. Integrated Services Digital Network, implies the integration of service to a,

digital network.

Internetworking the teleconmunications network with the computer network was performed at

the network layer as defiied by the seven-layered OSI reference model for software. In ISDN. the

network layer uses the Q.931 protocol defined by the CCITT. A protocol engine to drive the Q.931

protocol from the workstation end was used (as discussed in section 5.2). The phoneserver resides on

top of this protocol engine alid comnunicates with it. Significant time and effort was spent in refining

this protocol engine because of the differences between Basic Voice Services defined by the CCITT and

Supplementary Voice Services offered by the 5ESS switch running the 5E4 generic program.

Building ACME required both hardware and software in tegratiri. The hardware integration.

involvedl networking a host of periplierals - ISDN-PC boards. text-to-speech synthesizers, active

badges1 and workstations. The software integration involved internetworking the telecommunications

network with the workstation network and integrating server processes with client and other server

processes within the same network. The implementation details are discussed in chapter 4.

3.4 Distributed Call Processing

Distributed call processing is the decentralization of call management decisions from the central office

to the end terminal or user. The ACME is distributed in the sense that the intelligence and knowledge

needed for call management is handled locally at each workstation, either automatically by computer

or manually by human intervention, while all the physical routing remains in the CO.

Distributed call processing is well motivated both from a network and a user concentric view.

From a network concentric view, the decentralization of call management decisions from the CO switch

can decrease the complexity of the switch. Manufacturers of CO switches are now having to develop

and maintain switches that are increasing in size and complexity at a staggering rate. Given this

scenario, one approach to managing the complexity is to define a basic set of functions within an open

architecture switch and empower customers to easily design and customize their own set of enhanced

services. This idea is not revolutionary and is the basic tenet behind the intelligent 'network proposed

by Bellcore [7].

In the Intelligent Network/2 (IN/2) proposal for the Public Switched Network in the United

States. the network architecture is characterized by distributed call processing and modular -building

blocks" of services called Functional Components (FCs). The intent is to ieet the teleconununication

and inforination needs of customers by allowing them to arrange their network services on demand.

The current service introduction cycle is two to five years for a new service to go froi colcept to

production [6]. Using IN/2. customers can create their own services by interfacing to the switching

systein. The FCs. which previously resided in the switch, reside in an intelligent peripheral outside the

switch. Signaling information is passed between the customer premise equipment. the switch and the

intelligent peripheral using the Signaling System 7 (SS7) protocol. Customers build services by

combining FCs which can be thought of as reusable modular capabilities.

This concept of decentralizing functionality is seen in the computing world as well. Consider the

evolution of computer operating systems. The growing size and complexity of the operating system led

to the notion of placing only what is essential to a computer system in the kernel of the operating

systemi and providing access to the kernel through an applications interface or system calls.

Decentraization of call management decisions also makes intuitive sense from a user services

1Ii is 1 i (Cc 1 i (cliiog Y tor Itrackinig IocatlOn of bad gc wearcrs.

perspective. Consider the list of static and dynamic factors that commonly go into making a call

management decision. A feature-rich CO switch can be programmed (through a 12-button telephone

keypad plus a few function keys) to hold most of the static parameters people commonly use in call

management decisions. The AT&T 5ESS switch has access to the configuration table which, for a

given telephone line. provides static information on what to do if a call is not answered or if the line of

the called party is busy, and so on. However, it would be difficult if not impossible for a CO switch to

access and maintain dynamic information on all the users that it serves except for the time of day and

the telephone number of the calling and called party. It is much more likely and feasible that a

personal workstation would have access to dynamic information about the user. Hence, distributed call

processing allows the system to decentralize the decision making to the more knowledgeable

workstation.

3.5 How is this work different from previous work?

ACME differs from the Etherphone project because in ACME the voice is circuit. switched in the

central office ilistead of carried over Ethernet. Also. in Etherphone, all the call processing is performed

at the centralized telephone control server which keeps track of state and sets up all connections. The

IC-Card telephone system is also different in the philosophy of its architecture. This approach is

building more functionality into the telephone set. The emphasis in this thesis is in building network

based telephony services with distributed call processing capabiliities. Value is added to

teleconnnunications services by migrating some of the functionality from the telephone set to the

workstation. This chapter has argued that this approach will be more beneficial than enhancing the

telephone set.

The MICE and PX projects have the most similarity to ACME. The main difference in

architecture between the MICE project and ACME is that in MICE, all call management is performed

from a centralized process called Central Control Process (CCP); whereas in ACME each user has

an ACME process managing calls on their behalf. In MICE, the CCP is passed a static database in the

form of a finite state table and respolids to phone events based on this static table. By providing an

ACME process for each user, the system can respond to dynamic information about a user and account

for those factors in call processing (see section 3.4). The PX project also has an architecture of

distributed call proc(ssiig and more call processing is actually performed at the personal workstation

in PX than in ACME. The Conf iguration window {2) used in PX is similar to ACME: however. PX

does not use it for dlnailic call routing. There is more emphasis placed on managing voice iii a

persoial workstation than in using the workstation for call routing.

None of the projects discussed in this chapter attempt to model the user dynamically in order to

make call management decisions. The use of BRI is another difference. PX is using an

ISDN-compatible key system and MICE tried to integrate ISDN into the system. Of the difficulties

encountered in MICE, some similar difficulties were encountered in the ACME project. In particular,
different implementations of ISDN made it hard to port ISDN network handlers from one site to

another. The differences in the protocols caused difficulties that are documented in section 5.2.

Chapter 4

Implementation

4.1 Design Philosophy

The emphasis in the ACME project is to build a. distributed system. All the hardware is distributed

over a LAN. The workstations can be of different architectures although currently only Sun

workstations are being used. Indeed, the plhoneserver which was originally developed on a Sun 2

workstation using a Motorola 68020 processor, has been ported to a Sun 386i workstation using an

Intel 80386 processor. and then was ported to a Sun Sparcstation 1 using a Sparc processor. The

software that is used in ACME is distributed over several processes and processors.

There is one centralized process for conholling the call processing functionality. This process is

the phoneserver. The ACME processes that implement the decision making are distributed. Each user

runs an ACME process to act as an agent on their behalf at their local workstation. The motivation

for distributing the decision making processes is to allow the ACME processes to collect and use

ifornation about a user dynamically in call management. This is much more effectively done in a

decentralized architecture than in a centralized one. Another advantage of distributing the system is

that it provides more fault tolerance. By having different servers run on different machines, the whole

system does not stop if one machine fails. Only the resources provided by the server on the machine

that failed are no longer available. In fact, separate processes residing on the same machine are

sufficiently isolated so that even if one process malfunctions it. will not dlegrade the services of other

processes.

Since the ACME system is distributed across several hardware platforms and many software

processes, the integration of these subsystems becomes very important. These systemas are integrated

through a protocol that is desiglied to be architecture independent. The processes conmmunicate via

inter-process communication. Indeed, this whole integration process is part of a bigger picture within

the Speech Group of integrating many desktop audio tools in the workstation [21].

Another requirement of the design is that all the servers should run asynchronously. The

software is designed to act as an interrupt handler to external stimuli. This is implemented in various

forms using callback facilities provided in the X Athena Widget set and the Socket Manager (see

chapter 6.2.2) and the select system call in Unix. It is important that the server processes be

asynchronously driven because the servers must be able to receive events while handling events and

cannot guarantee a real-time response. Fortunately. when dealing with interfacing to human response

times, no stringent response times are placed on the phoneserver. Perhaps the only situation where a

response is absolutely required within a finite time is when the 5ESS polls a stimulus set to see

whether it is *alive'. Responding to this message is appropriately handled at a layer below the

phoneserver - either in the network handler process in the Sparcstation 1 or in the Teleos board on the

PC. This real-time requirement is shielded from the phoneserver.

4.2 Hardware Architecture

The MIT campus installed an AT&T 5ESS switch in August 1988. the switch, running the 5E4

generic. provides ISDN Basic Rate Interface (BRI) to the entire campus.' The D-channel (or the data

channel) provides end-to-end digital comniiication via a 2B+D time division multiplexed

architecture. The D-channel is a 16 Kbps out-of-band signaling channel. The concept of common

channel signaling (CCS) is likely to become a foundation for telecommunication services in the future.

CC'S is a great improvement over previous in-band signaling switches because it provides greater

flexibility in receiving an1d processing information. The two B-channels (or bearer channels) are 64

Kbps bit streanis. Voice is carried by standard pulse code modulation while data information is

typically transported by a protocol imlposed by the subscriber. The BR I lines are terminated at the

customer premise by an S interface which typically plugs into an AT&T ISDN 7506 telephone set. 7506
sets are uniquely identified by one primary directory number (PDN) call appearance and physically

have room for nine more, not necessarily unique. secondary directory number (SDN) call appearances.

However, the actual limitation of the 5ESS switch on a BRI line is 1 PDN and up to 63 SDNs.

Running a BRI line with 64 call appearances to the phonescrver can monitor up to 64 telephones by

having access to their D-channels.

Figure 4-1 shows a BRI terminating in a workstation: Lowever, when the ACME project first

'ISDN is a prohibitively large topic to address ade(pudly in this thesis. The interested reader is referred to
reference [231.

7506 Cr-0 7506 0

Active
BadgeI Bi Lines

Figure 4-1: System Architecture

begall. a Teleos B100PC card that resided on an IBM PC bus was used as an interface to the 5ESS

because no similar ISDN board was commercially available on a Unix platform. The PC was used as a

slave to the phoneserver process residing in the Sun workstation. Logically. the PC and the server on

the workstation were a single entity. The PC delivered asynchronous messages to the phoneserver

whenever an event occurred. The information transmitted was identical to the information contained

in the event structure described in chapter 5 except that the last three fields in that, structure were not

translitted. The calling-7unne and du fields were filled by the phoneserver which had access to calling

table information. The time-of-day was filled using Unix time.

As the project evolved. an attempt was made to eliminate the PC interface to the 5ESS

completely. A Sparcstation 1 with a. custolized motherboard and BRI plug-in line was obtained, along

with proprietary ISDN device driver code from a Speech Group sponsor. These two ISDN interfaces

are further discussed in section 5.2.

Active badges are a new technology from Cambridge-Olivetti Computer Research Laboratories.

The badges are roughly 2.25 inches by 2.25 inches by 0.25 inches and weigh a. few ounces. They can be

c(omfortably worn like any company identification badge. Each badge emits a unique infrared signal

every 15 seconds. The siginals are received by sensors that in turn send a message via RJ11 phone

cables to a concentrator that sends a message to the location server process through a serial line. This

server process constantly monitors the location of each person wearing a badge and can be queried for

information by client processes [26].

The DECtalk text-to-speech synthesizer is used to provide paging. Incoming calls are announced

through the internal speaker system of the Media Lab (see section 5.3.1).

4.3 Software Architecture

The Teleos B100PC board comes with a device driver. The device driver handles all the messaging

with the 5ESS up to and including layer 3 - Q.931. This is a convenient level of abstraction for the

application programmer. The PC is essentially acting as a parser and a gateway to the 5ESS. The

software extracts relevant signaling information from the switch such as calling line identification. time

stamps and ISDN calling, to pass onto the phoneserver residing in the Sun workstation.

All services operate on a client-server based paradigm. The phoneserver communicates with the

clients via unit sockets. A client side software library provides applications with an interface to the

phoneserver. The phoneserver provides the basic telephony services to a client at a programming level.

The programming interface is described in section 5.1.

It is assumed that the client processes with a graphical interface will be running within the X

Window sste and have access to graphical tools such as icons and pop-up inotification windows. The

client processes have an automated call management entity (described in chapter 6) interfacing with

the phonesierver and location server on its behalf. The interface to the phoneserver is done through the

client sof'tware library.

The interaction between processes is illustrated in Figure 4-2. The circles denote processes while

the squar" denotes a database. The figure shows only one ACME process; however, each client has at

least one ACME process to interface with the phoneserver. The protocol between the ACME and the

phoneserver is architecture-independent, allowing clients to run on different machines with different

processors.

Figure 4-2: Software Architecture

Chapter 5

The Phoneserver

The phlioneserver is an async hronous process that provides telephony-based network services to clients.

It receives its input from three sources: new clients registering for services. existing clients sending it

messages and signaling information from a BRI line.

When the phoneserver is first started, it loads a calling table and a translation table into

memory and initializes some states for each call appearance (CA). The calling table maps a directory

nun-belr (DN) ' into a name in order to personalize the services that are offered. Another table is used

to translate a set of CAs into DNs where each DN may have one or more call appearances that. appear

on one or more telephone sets. The phoneserver uses a BRI line that has 64 call appearances of 35

different DNs that. are of interest to this project. The owners of most of these DNs work in the

Terminal Garden of the Media Lab and may be interested in using the network phone services the

Speech Group is building. Finally, the phoneserver initializes the state of each CA to be IDLE in an

internal array at startup time. Clearly, this may be a false assumption to make about all 64 call

appearances, especially if the phloneserver is started during office hours. However, there is no known

way of easily obtaining the status of a call appearance from the switch and little damage is done if a

wrong assumption is made since it will correct itself after the first, event occurs on that call appearance.

The phoneserver communicates with clients through socket-based interprocess communications.

The Internet domain format is used to establish sockets between the phlloneserver and its clients. The

Internet, domain is the Unix implementation of the IP/TCP/UDP suite of protocols from the DARPA

Internet standard. Addresses iii the Internet, domain format are composed of a machine network

address plus a unique iumber referred to as a port . The protocol allows for communications between

processes in the same machine and between processes residing on separate machines that are of the

I;oxm ns '-. _ _''
as". ,3;'

same or different architecture. The messages are exchanged through a stream socket. The actual socket

is created using the Unix socket system call. Stream communications is a connection-oriented circuit

that provides reliable and error-free data communications. No message boundaries are imposed and

the network will manage all the problems of fragmentation, ordering and error correction to ensure the

integrity of the message that is passed. After the socket name has been bound to the socket using the

bind command, reading and writing from the stream is accomplished by using the system calls read

and write, respectively. This newly created socket will be referred to as the phoneserver socket .

After the phoneserver socket has been created, the phoneserver listens to it to see if any clients

are trying to connect to it. On the client side, a similar sequence is followed to create a stream-based

socket. This socket is then connected to the publicly known port number and host machine by the

client using the system call connect. This action signals the phoneserver to accept the first connection

on the queue of pending connections and creates a new socket with the same properties of the

phoneserver socket. The Unix operating system then assigns a new file descriptor for the newly created

socket. A phoneserver client software library is provided to hide this level of detail from the application

developer and present the appropriate level of abstraction. Functions to connect to the ploneserver,

along with other functions. will be discussed later in this chapter.

Information from a BRI line is obtained from either the Teleos B100PC card or direct-ly from

the Sparcstation ISDN device driver (see section 5.2). The phoneserver supports both sources in the

same way. If the B100PC card is being used. a serial port is opened and its file descriptor is stored. If

the Sparcstation ISDN device driver is used. a socket is opened with a network handler process called

'nhati (see section 5.2) and the socket number is stored.

At this point. the phoneserver has three sets of peers to comnunicate with - new clients

connecting through the phoneserver socket. a list of sockets from existing clients and either a file

descriptor for the serial port or a socket number for nhatt. The phoneserver must listen to all of these

sources and serve them as the nee(d arises. The system call select elegantly fills this need. Before

calling select. the socket numbers and file descriptors of every peer is masked into one naster file

descriptor called masterfds. A copy of inasterfds called readfds is passed to the select call along with

the timeout parameters, which are set to block indefinitely until a. message arrives. When a message

does arrive, the select statement sets the readfds mask to the file descriptor or socket number that

received the input. The application may then fetch the message by issuing a read command on readfds

an(appropriate action may then be taken on the message.

If the input was from a new client, then the connection request is accepted, the client is added

to a linked list of existing clients and the inasterfds is updated to include the new client. If the input is

from an existing client than there are two possibilities. Either the client is closing the connection (or

has died) or is sending a command. If the client is closing the connection, the phoneserver receives a

zero length message and proceeds to close the socket, free the information block about the client, from

the linked list of existing clients and update the masterfds by unmasking the closed socket. If the

message is a command, a the structure shown in Figure 5-1 is received and is passed to a parser that

determines the command type, extracts information from the relevant fields and executes the

appropriate command. The command messages are sent as large byte-oriented character strings to

provide architecture independence.

struct command {
char comniand[CMDSIZE]; /* type of command */
char ca[MAXCALEN]; /* call appearance */
char src[MAX_SRCLEN]; /* originating source
char dest [MAXDEST-LEN]; /* destination */

ilt interest: /* clients interest */

}

Figure 5-1: Command Structure

Depending on the type of commalnd, a message may be returned to the client. In general.

acknowledgements between the source and the receiver are not used because reliable data

coimunications is assunied to be provided by the strealn-based socket IPC as described above. If the

nessa;Igfe was from nhatt or the B100PC card. an event structure shown in Figure 5-2 is filled.

struct event {
char state[STATE-LEN];
char ca [MAX_CA_LEN]:
char ISDNcallinfo[ISDNCALLINFOLEN]:
char callingdn[[MAX_-DNLEN]:
cliar f6rwardedlfron_dn[nMAXDN_LEN);
char callingiiame1[MAXNAME_LEN];
long time_of-day;
char dn[LOCAL-DNLEN];

Figure 5-2: Event Structure

Upon receiving an em packet. the phoneserver looks up the information block corresponding

to the call appearance. which Is identified by the field ca . If the owner is interested in the event that

occurred as ini(cated hY tin rid slac. then the entire data structure is sent to this client. T1,he

internal organization of representing the interest of the clients is described in Appendix A.3.

5.1 Phoneserver Client Software Library

The phoneserver client software library provides a C progranming interface to the phoneserver.

The functions init-phoneserverjipc and reconnect-pserver (shown in Figure 5-3) open

connections to the phoneserver and return a socket. init-phoneserver-ipc initializes the connection

to the phoneserver. reconnect-pserver is used when the phoneserver fails and a reconnection is

required. It first closes the existing socket, then calls init-phoneserver-ipc every sleep-coun seconds

until a connection is finally made. It is important to "sleep" between attempts to reconnect to the

phoneserver: otherwise. the port used by the phoneserver socket will be constantly busy and the

phoneserver never will be given the chance to bind to the port. Sleeping for 60 seconds between

reconnection attempts has been found empirically to be sufficient amount of time for the phoneserver

to bind to the port and for most phoneserver client applications to sleep. This technique for

reconnecting to the phoneserver is inadequate for other asynchronous servers connecting to the

phoneserver that cannot afford to go to sleep. One solution to this problem is to use a timeoud callback

construct provided by the Socket Manager (see section 6.2.2). This construct allows the program to

execute init.phoneserver ipc periodically without blocking at that point in the program.

int init-phoneserver-ipc()

int reconnect-pserver(socket, sleep-counit)

int socket;
int sleep-couit;

Figure 5-3: IPC Connections

After opening a socket, with the phoneserver. a client is known to the phoneserver. However. the

plhoneserver still dues not know what type of services the client wants. The function

register-interest. shown in Figure 5-4, allows the client to tell the phoneserver what its interests

are. The dn parameter specifies what DN the client is interested in. The interest parameter can be one

of 13 defined states plus a WILDSTATE (see Appendix A.2). The WILD-STATE registers an interest

in every event that occurs on the specified DN. The most common states of interest are idle. active.

iningOiiiilJ ald d1ialiug. To register an interest in moire than one statv but not all states, the defined

State' en a 1a ked into one integer and passed as the inderesY paraneter. Registerinterest will

return a SUCCESS or FAIL to the client. Failures usually occur when the client registers an interest in

a DN not known to the phoneserver.

After the client registers an interest in particular events, the phoneserver will send the event

structures described in Figure 5-2 to the client. The function check4input checks if any messages have

arrived in the socket specified by the parameter device . The blocking-time parameter specifies the

length of time in seconds to block on the device. A value of -1 will block indefinitely. When an arrival

occurs, a non-negative value is returned and and the client can retrieve the message by calling

get event and passing it a. pointer to an empty event structure.

int register interest(dn, interest, sock)
int dn;
it interest:

int sock:

int check4input(device, blockingtime)

int device;

int blocking-time;

int get -eveit (inbuff, sock)

event inbuff:
int sock;

Figure 5-4: Coninunicating with the Phoneserver

The remiainnig functions shown in Figure 5-5 are self-explanatory except for two cases. The

phonestatus function queries the plhoneserver as to the state of a particular DN of interest and

irturis the state. The relativctca parameter in the call function allows the progranmer to select

which call appearance to use oin a particular telephone set. It is relative because this number is to be

translated to an absolute call appearance on the BRI line used by the phoneserver.

5.2 Network Interface

As discussed in section 4.2 the ACME project evolved from terminating a BRI line at all IBM PC to a

Sparcstation 1. The Teleos B100PC comes with a device driver and application software library called

ASK100. A *VOICE library within ASK100 provides aim interface to Supplementary Voice Service

nessages. It is interrupt driven and applicationis can send aid receive ISDN signaling information

through NetBIOS [23]. Uponl receiving an event tie application will load tie tirst tive tields ot tile data

ijt call(src. dest. relative-ca, sock)
char *src:
char *dest:
char *relative-a:
int sock:

int callpickup(ca. sock)
char *ca:
int sock:

int coiference(ca, dest, sock)
char *ca:

char *(est:
ijt sock:

int drop(ca. sock)
char *ca:
int sock:

int hold(ca, sock)
char *ca;
ijt sock;

int phone-status(dn, sock)
char *dn;
ijt sock;

int trainsfer(ca, src, dest, sock)
char *ca.
char *src;
char *dest:
int sock:

int unhold(ca, src, sock)
char *ca:
char *src:
int sock;

ilt forward(src. dest. sock)

char *src:
char *dest:
int sock:

Figure 5-5: Call Processing Functions

structure shown in figure 5-2 and send it to the phoneserver through a serial connection.

A proprietary ISDN network handler, nhati, for the Sparcstation 1 provided by a Speech Group

sponsor is being used. Nhatt is a Unix process that receives D-channel information from the memory

resident ISDN device driver. A finite state table describing the Q.931 protocol is used as a protocol

engine to communicate with the 5ESS through the D-channel. The nhatt process connects to client

applications via inter-process communications. The phoneserver is a client and receives asynchronous

packets of ISDN signaling information from the nhatt process. Again, like in the case of the Teleos

card, this packet is received and used to fill the data structure shown in figure 5-2.

5.3 Client Applications of the Phoneserver

A host of client applications were written to utilize the phoneserver. This section will discuss two

system applications - pager and qdvm - and three individual client applications - xphone, forward and

logger. The section will also examine the relationship between the phoneserver and another server

called the activity server.

5.3.1 Pager

A paging program was written to serve the phoneserver clients working in the Terminal Garden. A

public called file contains a table of strings to be announced when an incoming call arrives for a given

DN and a calling file contains a table of names associated with particular DNs. For the sake of privacy.

ulsers can choose to not have the identity of the calling party announced or not have the call announced

at all.

Pager is very popular with the students that work in the Garden. The presence of music in the

(arden often drowns out the sound of ringing phone in nearby offices. Pager helps to alleviate this

problem for those people who have offices close enough to the Garden to respond to the announcement.

The program itself is very straightforward. Pager first loads the calling tables into memory.

Then it opens a socket and registers an interest in the incoming calls of all DNs known to the

phoneserver. Finally, it sits in a loop, waiting for events and announcing the appropriate string

through the Garden speaker system using a Dectalk text-to-speech synthesizer.

5.3.2 QDVM

QDVI is a voice mail system running on the Speech Group Sun workstations and provides voice mail

servikcs for the entire Speech Group [13]. Electronic mail is sent. to the voice mail recipient to inforim

him of the voice mail. There is a graphicai user interface and a Ielephole interface to the voice iman.

get tables(calling-table, called-table);

sock = init-phoneserver-ipco;
register -interest(WILD .DN, REG-incoming ,sock);

while(1) {
get-event (allocated-event _structure, sock);

outputto-dectalk (allocated-event-structure, calling-table, called-table);

}

Figure 5-6: Pager Program

All calls to the Speech Group telephones are forwarded to a central number used by QDVM. QDVM

uses the phoieserver to find information about the calling party and the called party.

5.3.3 Xphone

Xphone provides a variety of automated telephone dialing service from a workstation. It was originally

reported by the paper [22] as "Phonetool*. Xphone uses a combination of mouse and keyboard entry to

place and receive calls. A *Rolotool" application was written to provide an on-line rolodex that works

in concert with Xphone. The full functionality and advantages of such an interface are reported in [22].

Xphone was recently ported to use the ISDN phoneserver. Xphone uses the calling processing

functions call and drop from the phoneserver client software library shown in Figure 5-5 to place calls

and drop calls. One current limitation inherent in the 5ESS switching system is that there is no way to

place an AT&T 7506 telephone set on speaker phone mode through software control. Thus the user is

force(l to either pick up the handset or hit the speaker phone button on the 7506 set to receive calls.

5.3.4 Forward

One phenomenon that was observed with the introduction of the pager was that people began to run

to their offices to catch an announced call. A mechanism to transfer the call to the Garden phones

wdould be very useful. One way to implement this idea is for a client application to register an interest

in the incoming calls of a particular DN. When an incoming call occurs, the student may be notified at

her workstation and given tie o)tioi to transfer the call to a phone through her workstation.

The forward application was written for this task in the X Window Svstems[11]. When an

incoming call occurs. the workstation "beep" is sounded and a popup window appears on the screen

(,e Figure 5-7). The user is told that lie has an incoming call from a given person (or number, if one

is known) and given four pushbutton connnanlds to select from. He may choose to transfer the call to

the phone nearest his work1station. transfer the call to a secretary. transfer the call to voice mail or

dismiss the call completely.

Figure 5-7: Forward: Popup Window

This program was functional for a. short time, but was not reliable enough to offer to people

outside the speech group. The transferring function was not robust enough to withstand sustained

usage.

However, a successful application that evolved from the forward application is caller-id . caller-id

is the forward application with no selection buttons. Displaying the call on the screen is much more

readable than on the 48 character LCD display on the AT&T ISDN 7506 set. This feature a much

more effective way of alerting the user to the identity of the calling party before picking up the receiver.

5.3.5 Logger

The loger program was written originally to debug the phoneserver and was later enhanced to retrieve

data for the study proposed in section 10.1 Though the study was not conducted in this project, logger

proved to be one of the most useful utilities from the user concentric view. The most interesting event

in everyday use is the incoming call. Thus, the logger opens a socket with the phoneserver. registers an

ijnterest in R EG.inconing on the telephone number of the user and then sits in a loop waiting for

events from the phoneserver and recording the events (see Figure 5-8).

sock = init-phoneserver-ipc();
register.interest(mv..dn, R EG.incoming ,sock);
wlile(1) {

get-event (allocated-event-structure, sock);
record (allocated-event-structure, output -filenaame);
}

Figure 5-8: Logger Program

An iniere-sliusg sidte effeci. of Iii, utiityV is. ils social iiiij)icat-ions. It is conisideire i o 'et- cwort1ou

to return a telephone call. The people who are aware of the fact that I am logging calls may expect me

to return a call even if they did not leave me a voice mail message. However, unlike voice mail, when

the logger or phoneserver processes fail, there is no way for the calling party to discern that the call is

not being logged. This lack of feedback may cause users of the logger program to unknowingly violate

social expectations when the logging process fails.

5.3.6 Activity Server

The activity server provides high-level information about the current activity of a set of users [16]. It

receives information from three sources: the finger server, the location server and the phoneserver.

Based on this information, the activity server makes inferences about the activity of a user at a given

time by establishing interdependencies and resolving conflicts in the information retrieved. It may be

used as a tool within a trusting user commulity to coordinate office activities.

The activity server requests state information from the phoneserver. The critical state

information required by the activity server are: onhook, offliook and incoming call states.

Chapter 6

Automated Call Management

Entity

The Automated Call Management Entity (ACME) is a process that is associated with a single DN. Its

function is to manage the telephony services as specified by a user for a particular DN. To accomplish

this task. the ACME interprets a rule-base created by the user and interfaces with the phloneserver to

manage the events that the plioneserver reports.

6.1 Call Management

Consider how one manages a teleplhone call. Decisions as to what to do with an incoming call are made

based on many factors, including: the calling party, the time of day and the activity that one is

currently iivolved in.

The first two items. calling party and time, are straightforward to obtain from the network. The

Q.931 protocol delivers to the called party information fields that contain the calling party's number

and time of day. A much more difficult problem for a workstation is to determine the current activity

of a person.1 The information that is available to workstations in the Media Lab comes from various

sources. The location of active badge bearers on the third floor of the Media Lab is available to the

ACME from the location server. The current phone status for clients of the phoneserver is available to

the ACME from the phoneserver. Finally. information about users is available on-line from the user's

calendar and from the operating system.

Making infereces about a user's activity baseNd on calendar information is a very complex

-Tils prob1em I., addreed in Saijay NMaanidhar s Master thesis [.15].

problem, unless the calendar entries are extremely structured and simplifying assumptions are made

about each entry. One solution may be to format the calendar so that each line begins with a block of

time, where a filled block implies that the user is busy. However, the granularity of the information

provided in this solution is not detailed enough to be useful to an ACME. Also, Speech Group

members use the Unix calendar file format with an X Window interface, Xcal, that enables the

inclusion of sounds within the calendar. The presence of sound files and the fact that the Unix

calendar file format permits unconstrained text entry into each date makes the problem of deducing

the activity of a user at a given time to be difficult.

Information provided by the Unix operating system and its associated software tools does

provide a tractable solution to obtaining information about the activity of the user. The f inger

command in the Unix operating system can provide information as to where a user is logged in and

how long the user has been idle. This information is available to the ACME from the finger server [15].

In this era of highly networked workstations that, permit remote logins to various host machines, the

combination of both login information and idle time is necessary to reliably determine at which

workstation a user is physically working. The finger server finds the hosts with the least idle time and

traces back hosts until a host console is found. The workstation with the host console is assumed to be

where the user is physically working [15].

6.2 Software Architecture of the ACME

6.2.1 Data Structures

The ACME is an asvn chronously driven event manager. It is a standalone process that sets Iul) its

initial conditions by reading ASCII database files containing aliases and rules for call management. It

receives external input events from two sources - the phoneserver and the phoneditor. External inputs

are managed by a Sockel Manager [12] that provides socket-based inter-process communication. After

the external inputs are received. they are tested against the database of conditions and appropriate

actions are taken.

The user can set up a personal alias file to supplement the system-wide alias files. These aliases

are used for convenience and also manifest, themselves in the options button within the dialog box of

the Phoneditor (see Figure 8-1). All personal alias files found in the root directory of a user supersede

system-wide aliases. The most common alias files used are . cmerooms and . cme-group-names, which

spccify aliases for a group of locations and a group of people respectively (see Appendix B.1 for

examples). The ACME reads these alias files and maintains a linked list for each alias. The ACME

This list is used in the situation where the calling party argument is specified to be someone I recently

called.

. A user's rule set is also placed in the user's root directory, in the file . cmerules. <DN>, where

<DN> is an extension representing the DN for that rule set. At execution time the ACME reads this

file, parses it, sorts (see section 6.3) and loads the rules into three data structures - a linked list of

rules, a linked list for the conditions in each rule and a structure for the action to be taken. The rule

structure is shown in Figure 6-1. The num-conditions field contains the number of conditions for a

given rule while the rule field contains the actual rule string. The condition-ptr and action-pir are

pointer to the condition and action structures (as shown in Figure 6-2), respectively. Finally, the next

field is a pointer used to link the rules together.

struct rules {
int nunnconditions;
char rule[MAXRULELEN);
condition *conditionptr;
action *action-ptr;
struct rules *next;

Figure 6-1: Rule Structure

Each rule has one or more instances of conditional structures and exactly one instance of an

action structure. The condition structure contains four fields and a pointer to allow for a linked list.

All conditions in the linked list are combined by the boolean operator and. The type field contains

information on the type of condition: calling party. time, location, workstation or telephone status.

The operator field contains a logical operator such as not. before. after or around. that is to be al)l)lie(l

to an operand field. The two operand fields, op1 and op2. contain information entered by the user at

the time the rule was created such as names. telephone numbers. room numbers. time, machine names.

and so forth.

The action structure contains three fields and is considered only when all the conditions for that

action have been fulfilled. The type field contains information on the function to trigger while the opi

field is a parameter passed to the function. The operand may contain information such as names or

telephone nuibers. The delay field specifies the iumber of second. to wait before triggering the action

routine.

struct condition { struct action {
int type; int type;
int operator; int delay;
char opl[64]; char opl[64];
char op2[64]; }
struct condition *next;

}

Figure 6-2: Condition and Action Structures

6.2.2 Socket Manager

At this point ACME has initialized all its internal data structures and is ready to communicate with

other processes. It is a client to the location server 2 and phoneserver and a server to the phoneditor.

Thus. it. establishes connections with the location server and the phoneserver and then adds a new

network service called acmeport for the Phoneditor to connect to. This is all done through the Socket

Manager. The Socket Manager provides management of sockets between clients and their

(orrespon(ding server and is typified by its use of asynchronous callback routines. It is loosely modeled

on parts of the design of the X Window System.

The mechanism by which sockets are managed in ACME is described in Figure 6-3. First,

SmInit is called to initialize the Socket, Manager. SmOpen connects the process to the server identified

hv the first argument and returns the socket number. SmAddService adds a new service to the server

and the service name is translated into a port number for clients to bind to. When clients bind to this

port or conlunicate with it,. the SmNewSocketCallBack routine will invoke the newclientcb routine

to execute. The first SmSetReadCallBack routine watches for data in socLphonc and calls

phonehandler when some input arrives and also passes the pointer phonedaia . Similarly, this is

done for the location server. Finally. SmMainLoop is called after all the callbacks are set up. It

dispatches events to the callbacks when events occur and never returns.

One call missing from Figure 6-3 is ACME registering an interest with the phoneserver in

incoming and outgoing call events for a specified DN before SmSetReadCallBack is issued. The ACME

could be coded to register an interest in more types of events; however, incoming and outgoing call

events are the events that have been found to be useful thus far. Since the ACME registers an interest

in only one DN, it can manage calls for only one DN. If a user has more than one DN to manage,

ACM E ideally s oNu l connect to the actiNv server for more reliable data. flowever, at the time of writing
i he ACM E code, the activit v server was not reliable enough for use since it was also uider (levelopment. See

ioll 10. for hirther (iscuss1on.

SmInit(;
sockphone = SmOpen("phoneserver", "");

sock location = SmOpen("location-server", "");

S mAddService("acme.port");
SmNewSocketCallBack(cme-port, newclientcb, NULL);

SmSetReadCallBack(sock-phone, phone-liandler, phone-data);

SmSet ReadCallBack(sock.location, location-handler, location-data);

SmMainLoop();

Figure 6-3: Socket Manager

separate ACME processes have to be started for each DN. There is a line-level option to specify the

DN to monitor. Associated with each DN is a rule base and a port number. The rule file for each DN

has a specified filename ending with the extension of the DN and the port number is found by table

lookup in a configuration file. Currently, three service ports within a Speech Group LAN have been

dedicated for IPC between the phoneditor and the ACME. This number can be increased simply by

dedicating more ports.

External inputs from the phoneditor are in the form of commands. The commands are update,

sleep and wake. The inputs will cause newclientcb callback routine to execute and parse the

(onunmand. The update will cause the ACME to purge an old rule set and read in a new way. The

phoieditor can request the ACME to go to sleep (stop managing events from the phoneserver), wake

up or update its rule base after the phoneditor has modified it. For all commands, the ACME will

either acknowledge the successful completion of a command with an ACK message or send back a NAK or

negative acknowledgement to inform the user that the comm;nd f-iled. These commands are further

discussed in section 8.1 and Appendix B.4.

External inputs from the phoieserver are in the form of events. The inputs will cause

phonehandler to execute. Phonehandler retrieves the event, packet and matches it to the condition

s ructure. If all the conditions are fulfilled, then an action is fired after the delay speeified in the delay

tield of the action structure. The delay mechanism is implemented by the timeout routine,

SmSetTimeoutCallBack, provided by the Socket Manager. The simple sleep command available in

Unix is inadequate for implementing the delay because as in any asynchronous event manager, the

ACME must monitor incoming events even during the delay. In addition to monitoring, the ACME

must also keep the state of all call appea-rances because some action functions are contingent on the

status of the DN.

6.2.3 Call Management Example

The Terminal Garden is a large computing facility where many students in the Media Lab work and

socialize. The paging facility announces incoming calls over the Garden speaker system. It is a

common occurrence that students have to run back to their offices to grab the incoming telephone call

before it is transferred to voice mail. Thus a useful rule for the ACME would be to increase the

alerting time before a call is transferred to voice mail if a student is near the phone but not in her

office. For example:

"IF I am in the Garden and the calling party is important-person THEN transfer the call to

voice mail after 15 seconds."

For this example, ACME's parser will fill the condition and action data structures as shown in

Figure 6-4.

Condition1 Condition2 Action

type: LOCATION CALLING-PARTY type: TRANSFER

operator: Nil Nil delay: 15
op1: me importa nt-person opi: vmail

op2: Garden Nil

Figure 6-4: Filled Conditions and Action Structures

When an inconing call fron an inportant-person arrives for the user and he is in the Garden,

the status of his phone is recorded to be INCOMING and then the SmSetTimeoutCallBack routine is

set to call the transf er routine after 15 seconds. The argument im(itportant-person is an alias set by the

user in the .cmegroup-names file and is represented internally as a linked list that is passed to the

phonehandler for matching. The ACME continues to monitor incoming phoneserver events as

normal. After 15 seconds have elapsed, the transfer function is called and the status of the phone is

checked. If the status is still INCOMING, then the transfer to voice mail proceeds. If the status has

changed. (i.e.. the user ha.s picked up the phone and the status has become ACTIVE) then the action

is killed. Upon exiting from transfer, the SmSetTimeoutCallBack is reset so as to not execute

anymore. A current limitation of the Socket Manager is that only one SmSetTimeoutCallBack can be

outstanding. Thus, if an event occurs between setting the timeout and the callback routine being

executed. then that event iust wait until the previous callback is finished.

If an action is successfully fired. the phonehandler returns control to SmMainLoop: otherwise., it

will try to fire another rule. The action may fail for various reasons. One reason may be the case

stated above where the action is no longer valid after a change of state. Another reason may be that.

the ACME rejects an invalid action such as transferring a call to where I am where the where I am

parameter is either an unknown location or the same phone (see Figure 7-1).

6.3 Sorting Rules

If only one rule could be true in a rule set at a given time, no sorting would be necessary. But, for any

given event it is possible that none or all of the rules can be true. In the example shown in Figure 6-5,

if my friend Bill calls after 6 p.m. and I am working in the Garden on the machine shasta, then all the

rules are true except for the last one. Which action should the ACME fire? A trivial solution is for the

ACME to follow exactly what the user specifies and fire the first rule that tests to be true. The

intuitive answer seems to be that the most importani rule should be fired. However, using this

approach, the ACME must assume that its metrics for measuring importance reflect the way the user

thinks: otherwise, the ACME appears unpredictable. A fundamental tradeoff is made here between the

desire for predictability of the ACME and the autonomy given to the ACME to make inferences.

begin
IF the calling party is friends THEN transfer the call to where I am after 0 seconds.

IF the calling party is Bill and the location of me is not my office THEN transfer the call to
my secretary after 3 seconds.
IF the location of me is Garden THEN transfer the call to voice mail after 15 seconds.
IF the status of the machine shasta is logged in THEN notify me by a pop-up window.

IF the call party is anyone and the time is after 18:00 THEN transfer my call to voice mail
after 0 seconds.
IF the status of my phone is active THEN do nothing.

Figure G-5: Unsorted Rule Set

It can be argued that the ACME should be given more autonomy to make inferences rather thaii

be constrained to behave predictably for the following reasons. First, the ACME is a distinct agent

from the previous efforts in call management because it. is trying to use dynamic information in its call

processing. The use of dynamic information argues for ACME being intelligent and flexible and not

constrained to a static script. On the other hand. it is important that ACME behaves predictably to

the user: otlierwise, the user will lose confidence in it. This reasoning argues that the ACME should

carry out the rule-base in precisely the way that the user has written it. However, having the ACME

obey rule-base exactly does not guarantee predictability. Humnans are not as logical as computers and

tend to forget iundane facts. such as rules, much faster than computers. Thus. even if ACME is

behaving iin a manner that is logical and consistent with its instructions, the user may not see it this

way because she misunderstands the logic of her rule set or has forgotten some rules.

The basic assumption that is made is that the precision of a rule is equated to its importance.

The more important rules are tested first; therefore, after the rule-base is loaded the rules are sorted

from the most important to the least important.

First, the rules are sorted by the number of conditions within a rule. Rules with more conditions

are assumed to be more specific than rules with fewer conditions. Before the sorting algorithm is

performed, all rules are scanned for the word "anyone". Rules containing this word in the condition are

assumed to have one fewer condition then there actually is, since the "anyone" condition is always

true. A rule containing one condition and the keyword "anyone" will be sorted to be the last rule and

will act as the default condition since it will always fire. Thus generating a. rule like, "If the calling

party is anyone then transfer the call to voice mail after 3 seconds," means that the call will go to voice

mail if nothing else happens.

Next, rules with the same number of conditions are sorted according to the highest priority

condition type within a rule. The order of priority from most important to least important is as follows:

phone status, calling party, location, time and workstation status. The phone status condition is most

importait because if a user is already in a phone conversation then he is physically at his telephone set

and his decision about how to manage the call should override anv ACME action. Furthermore., when

a user is active, it restricts the plholeserver ACME from routing calls anyway because there are not

enough CAs (see 7.1). Thus. a useful rule for all users to have is the last rule in Figure 6-5. The second

most important condition is the calling party because that gives specific arguments and in general the

identity of the calling party is very important to call management. The location condition can also be

precise: however. as a factor in call managenient it is intuitively less important than the identity of the

calling party. Perhaps this is because there are only two comon sceiarios with respect to location -

either a person is near her office phoie or she is not. If the person is away from her office. then the

desired call management behavior generally will not change as a function of location. However, for the

calling party condition. there may exist several people or several sets of people for which the desired

call management behavior differs. The time condition specifies a range in which the condition is true

and thus it is not as precise as the previous conditions. Finally, the workstation condition is thought to

be the least important because there is the weakest association between that and telephone service. Its

utility is probably limited to aiding in locating a person anod alerting him.

After sorting between conditions, like conditions are sorted by argument. Tokens are judged to

be more specific than aliases which are composed of a list of tokens.

The unsorted rule set in Figure 6-5 is sorted in Figure 6-6. In this rule set friends is an alias

which contains Bill as a token. Clearly. the sorted rule set that is represented internally to the ACME

differs from the unsorted rule set which is saved to the rules file .cme-rules. <DN>. This may lead to

some uncertainty. To aid the user, it would be useful to display how the ACME is internally

representing the rule set. This topic is discussed in section 8.1.

begin
IF the status of my phone is active THEN do nothing.

IF the calling party is Bill and the location of me is not my office THEN transfer the call to

my secretary after 3 seconds.
IF the calling party is friends THEN transfer the call to where I am after 0 seconds.

IF the location of me is Garden THEN transfer the call to voice mail after 15 seconds.

IF the calling party is anyone and the time is after 18:00 THEN transfer my call to voice mail

after 0 seconds.
IF the status of the machine shasta is logged in THEN notify me by a pop-up window.

Figure 6-6: Sorted Rule Set

Chapter 7

The Telephony Language

The telephony language developed for ACME is a very simple English-like language, based on the

IF-THEN construct. for call management. The possible conditions are the paramneters that are

available to the ACME to model user activity, as discussed in section 3.4. They include the identity of

the calling party. user's locations. the time and the status of a workstation or telephone. The possible

actions are currently limited to transferring a call to a different location and alerting users their

workstation and through the paging system. The list. of possible actions can be extended to include all

the actions available to the phoneserver as the need arises.

The language is implemented using the lex and yacc Unix programimilng tools. An abbreviated

version of the program listing illustrating the grammar in a pseudo-Backus-Naur Form is displayed in

Appendix C. The lex and ya-cc files generate C functions are used by ACME. These functions read the

rules files. parsc the rules and fill the rule, condition and action structures shown in Figure 6-1 and

Figure 6-2.

- Users can specify more than one condition per rule. All the conditions in a rule must be satisfied

before the action will be executed or fired. There is one rule set per DN and the users can specify an

unlimited number of rules per rule set. Users can specify the rules in any order they like; however. the

order of specification is significant since it affects the behavior of the ACME.

7.1 Challenges of the Telephony Language

Specifying a rule set for call management is a challenging problem because conflicts can arise for several

re a so ns. There are tning problims. intra-rule conflicts. inter-rule conflicts aid inter-rule set conflicts.

Timing problems arise from the fact that there is a delay between when a condition is tested as

beng true and when an action fires. WV ithi tils delay. tihe state ot the phoneserver may change and

subsequently nullify an action. Consider the last example in Figure 7-2. If Peter calls, the ACME will

test the condition to be try and fire a transfer in four seconds. However, if after one second I answer

the call, the ACME can no longer transfer the call (nor do I want it to!) to voice mail.

Timing problems also arise due to race conditions. If more than one ACME process manages a

single DN, then this may lead to events where two ACMEs are competing for the attention of the

phoneserver.

Intra-rule conflicts arise because the telephony language is implemented as a. context-free

language without constraints. Thus, the language specification will allow for over production. In other

words, it is possible to generate well-formed rules that have nonsense or illogical semantic meaning.

For example, Figure 7-1 displays two rules that have correct syntax but are flawed. In the first

example. if I am in my office when an incoming call arrives, then the phoneserver will attempt to

transfer the call back to my own phone. This procedure will fail on the standard BRI line with three

CAs because there will be insufficient CAs for the 'phoneserver to use. In the second example, the

action will never fire since both conditions cannot be simultaneously true.

-IF the location of me is my office THEN transfer to where I am after 3 seconds."

or

-IF the calling party is Phil and the calling party is Marilyn THEN transfer the call

to voice mail after 5 seconds."

Figure 7-1: Intra-Rule Conflicts

Resolving conditions between rules will help to prevent situations where certain rules are never

reached. For exaipie, inW Figure 7-2, the latter rules in both examples are never reached since the

ACME processes test the rules sequentially. It is possible to resolve this rule set and eliminate the rule

deenmed to have a lower priority. However, if the rule with the higher priority is placed before the rule

with lower priority, then the correct rule will fire and no inter-rule resolving is necessary. The ACME

assunes that the more recently created rule has a higher priority. Thus. a newly created rule is placed

at the front of the set of rules.

Resolving rules across rule sets in a distributed environment is an even tougher problem.

Consider the example shown in Figure 7-3 of two separate ACMEs running on two separate rule sets

that have an inter-rule set conflict. In this example, if either party receives a call, the calls will be

tmusferred back and forth in an endless cycle.

It will be more nportant to (tal with these negative internctionx [1] as more advanced

mm1tions and actions are added to the ACME. For example, call-waiting and call-forward-on-busy are

"IF the time is before 18:00 THEN notify me by a pop-up window."

"IF the time is before 17:00 THEN transfer my call to voice mail after 3 seconds."
or

"IF the calling party is Peter THEN transfer my call to where I am after 0 seconds."

"IF the calling party is Peter THEN transfer my call to 3-0673 after 4 seconds."

Figure 7-2: Inter-Rule Conflicts: Second Rule Never Reached

"IF the calling party is anyone THEN "IF the calling party is anyone THEN

transfer my call to Peter after 0 seconds transfer my call to Chi after 0 seconds"

Chi's Rule File Peter's Rule File

Figure 7-3: Inter-Rule Set Conflicts: Cyclic Transfers

incompatible features for the same call appearance. Another example of a negative interaction, shown

in Figure 7-3. is if user Chi forwards calls to Peter who himself has calls forwarded to Chi.

Fortunately, none of the problems described above is known to crash the systeni even if they are

allowed to occur. In the case of cyclic transfers, the calling party will probably hang up after waiting a

short time without anl answer. In the case of cyclic forwards, the 5ESS will terminate a call that hops

between telephones after a few cycles and give the calling party a fast busy signal. However, though

these will not crash the system, they should be addressed because they can lead to unpredictable and

confusing results for the user. Rather than using fornal mechanisms in the language to alleviate these

problems. policies in the Phoneditor and the ACME are ised to prevent or resolve the (-onflicts.

The timing problem. addressed in section 6.2.2. is resolved by using callback routines. The race

conditions caii be prevented if each user is disciplined but only managing their owii DN. A less trusting

solution is proposed in section 10.4. The intra-rule conflicts are either prevented by the Phoneditor as

discussed in sectioni 8.1 or resolved in the ACME as discussed in section 6.3. The inter-rule conflicts

are alleviated by the sorting and execution method eiployed by the ACME as described in section 6.3.

No solution has been attempted or found for the inter-rule set conflicts. This is a problem inherent, to

distributed databases and may be resolved only at a central location such as the phoneserver. Such a

solution is beyond the scope of this thesis.

Chapter 8

The Phoneditor

The Phoneditor is a graphical user interface to call management. It is written in the C language using

the Athena Widget set of the X Window system under X11 R4. The output of the Phoneditor is an

ASCII test file called . cmerules .<DN> (see Appendix B.1). This file acts as a script for the ACME to

follow.

8.1 Graphical User Interface

When the Phoneditor process is running. a small icon (displayed in the top part of Figure 8-1) appears

on the screen. The icon is a picture beckoning the user to specify how to manage calls. Clicking on this

icon will popup the Phoneditor window displayed in Figure 8-1. Clicking on the icon while the

Phoneditor window is already displayed will popdown1 the window.

The layout of the Phoneditor is as follows. The top line of the window is ain -instruction' line

that provides contextual instructions to the user. Instructions at each point in the interaction are

provided to guide the user. The large icon selection box inunediately below the instruction line

contains all the -condition~ alnd --action" icons. All the condition icons are displayed on the left-hand

side of the screen except for the "My Phone" condition icon in the center. The "ACME Status- label

above the -My Phone" icon is used to inform the user as to whether the ACME process is actively

managing calls on his behalf. The arrows flowing into and out of the "My Phone" icon convey the idea

of managing incoming calls and indicate that the natural flow of the screen is from lkft to right. The

condition icons are placed on the left side to denote the initial conditions for an incoming call. The

-act1on~ icons are the right to denote what actions to take after ani incoming call arrives.

Condition icons umust be selected before any action icon may be selected. Upon clicking on a

condition icon, a condition is generated aid displayed in the -new rule* line that is discussed below.

Figure 8-1: Phoneditor

Also, a popup dialog box polls the user to enter how ever many arguments are required for the

condition. The user may enter the argument by typing it into the dialog box or by using a pulldown

menu available under the options button in the dialog box, as shown in Figure 8-1. This button is

provided only if a menu is available. Users can set up their own options menu by creating the alias files

described in section 4.3. Selecting more than one condition will cause all conditions to be combined by

the boolean and operator'. The "My Phone", "Calling Party" and "Location" condition icons cannot

be selected more than once to prevent intra-rule conflicts discussed in section 7.1. The "Time" icon can

be selected exactly twice to allow users to create upper and lower bounds on time. There is no limit on

the number of times the "Workstation" icon can be selected. After completing one or more conditions,

an action icon may be selected. The same interaction that is used to complete a, condition icon is used

to complete an action icon. Only one action icon can be selected and upon completion of a selection,

the rule is written to the . cmerules. <DN> file and an update message is immediately sent to ACME.

The ACME purges the current rule set in its memory, reads in the new rule set and acknowledges to

the Phoneditor that an update has been made. This constant update may seem very inefficient:

however. the protocol is designed to ensure that the rule set contained in the file . cmerules. <dn> is

consistent with the rule set that the ACME is currently using internally.

Below the icon selection box is a row of buttons. The Phoneditor interfaces to the ACME

through the Socket Manager. There may be times when users wish to manage their telephone by

themselves without having to kill the ACME process. The Sleep ACME button will signal the ACME

to stop processing all calls and the -ACME Status" label will be updated to inform the user that the

ACME is asleep. The converse of this action is perforned by hitting the Wake A CME button. The

Shw 01eRules button is provided to allow the user to see the sorted rule set that the ACME is using.

Selecting the button will display in a popup window the rule set contained in the file

. cmerules . <dn>. which, as discussed above, is necessarily consistent with the rule set that the

ACME is currently using internally. This facility helps make ACME more predictable. To remove a

rule. the user can double click on the rule and then hit the Remove Rules button. Hitting the Help

button at any time will popup a window of context, sensitive instructions for how to proceed. The

Clear button is used to clear a rule that is in the process of being created. Finally, the Quit but tol is

used to exit the Phoneditor application.

Below the set of buttons is the "new rule" line. This line displays the rule as it is being created.

In Figure 8-1. the user has began a new rule by clicking on the "Calling Party" condition icon and is

being asked to enter who the calling party is in argiiment1 . The new rule line displays the contents

The booleaii or operat1or is iot supported because tie rides are teste(l sequentially. Therefore all riies wil h1 -d A II* A-(i ; , nI! 1p. I 1,~ hor~ 4t-l vp IAI Iiv " w-%.u'; I i

currently in the rule.

Chapter 9

D .0
1SCUSS10R

9.1 Privacy and Security

The issues of security and privacy have been ignored in this thesis. It is not difficult to imagine that

this type of software can be abused. The main issues of concern regarding privacy are caller

idtiitificatioi and electronic surveillance. The issue of providing caller identification is currently being

debated in the telecommunications world and is more of an issue for the SS7 protocol than for this

thesis. Electronic surveillance of telephone activity can easily be accomplished by using the logger

program. discussed in section 5.3.5, which logs all the activity of a DN.

The inain concern for security is telephone or PBX fraud. The opeln interface to the phoneserver

nakes it easy to re-route calls through the transfer routine. Thus it is possible to steal incoming calls

ur-ant t'r a called party. It is also possible for a user to dial into a phoneserver line and instruct the

phoneserver to transfer the call to a long distance number and thus avoid paying long distance charges.

The ACME project has avoided these issues for two reasons. First ACME is meant to operate

within a trusted coununity of users to provide value-added services to their communication needs.

Thus, an attitude of trust prevails. Secondly. the main focus of the ACME project is on functionality.

In order to implement a truly secure solution. an authentication server such as Kerberos, is required to

authenticate the identity of each client process. This added complexity and substantial investment of

time in learning network security is beyond the scope of this thesis

9.2 Difficulties with ISDN

The difficulties encountered with interfacing the Sparcstation 1 with an ISDN BRI line have been

encountered previously in the MICE project. The researchers working on MICE found protocol

conformity problems exist between different implementations [3]. The ISDN network handler, nhatt,

was originally developed on an ISDN PBX provisioned to offer Basic Voice Services. The AT&T 5ESS

ISDN switch supplies Supplementary Voice Services. There are two noticeable differences between the

protocol for Basic Voice and Supplementary Voice Services. Supplementary Voice Services has an extra,

Associated Type message used to inform members of a Key System group of the status of a call.

Also. Supplementary Voice uses a Locking Shift Codeset 6 in the Call Setup message which

contains a few extra fields. These additions were put into nhatt.

An annoying feature discovered in building ACME is that the Q.931 protocol does not allow a

functional terminal to transfer a call without first answering it. The functional terminal must receive

the call, issue a transfer message to the switch, place a call on a free call appearance and then issue

another transfer message. Thus, calling parties who are dialing long distance are billed for calls as

soon as the ACME transfers it even though the call may not be successfully completed.

9.3 Personal Communications Networks

The introduction and interest in widespread tetherless portable radio coninications has led to a

surge of articles in Pcrsonal Communications Networks (PCN) in the comuinicatious journals in the

last few years. It is generally recognized that the deployment of tetherless radio communications will

take two evolution paths high-powered vehicular cellular mobile systems and low-powered hanudheld

portable sets. Both markets are experiencing tremendous growth. The cellular mobile system inl the

U.S. alone had two hundred million customers in 1988 [4]. By early next, century. cars with

factory-equipped cellular phones could easily increase the number of mobile cellular phone users to 100

million [5]. The trencidously successful introduction of cordless telephones indicates that the demand

for low-powered handheld portable sets is also as strong. Cordless telephones were introduced in the

U.S. in the late 1970s and sales grew to two million units by 1982. Since 1982 roughly four to six

million units were sold each year [4]. With such a rapid deployient of tetherless portable radio

communications, it's reasonable to assume that portable handheld telephone sets will become

ubiquitous in the urban centers of the U.S. in the not too distant future. If this assumption is true.

does it imply that wireline-based call managet'ent tools. such as the oles proposed in this thesis, will

become obsolete' 'The answer to this question is. "No- for two fulidaimeltal reasons - the nature of

lti I k . I 11 11 K rtlit f lit' tIll (\ tel t ie -IA. .t I-- sl it.11111 111 I l i iul r .

The vision of a Personal Communications Networks in the U.S. is rapidly evolving, although it is

lagging behind that of the Europeans vision who have already deployed PCNs in a small scale in the

form of the British CT-2 effort [24]. The view put forward by Bellcore is that personal communications

should enable a person to initiate or receive a call from anywhere within regions of reasonable

population densities [5]. For economic, political and technical reasons there seems to be no easy

migration path from the cellular mobile system to the handheld portable sets. For pragmatic reasons,

handheld sets must be light and pocket-size. This requirement means that smaller batteries must be

used and that high-power electronics are precluded, to increase the mean time between battery

rechargings and also for safety reasons. Whereas high-powered vehicular cellular mobile systems

operate in the range of one to ten watts I and cover an area of greater than three kilometers.

low-powered handheld portable sets must operat-e in the range of 0.001 to 0.01 watt range and cover an

area of less than 400 meters. The shorter coverage area means that the cell sizes would be smaller and

as a result the number of radio access ports for a given area would increase. Thus for economic reasons

the PCN network would have to be introduced first to areas of high population densities such as

factories, apartments, airports, shopping malls, and so forth. For economic and political reasons as

well. these radio access ports will be integrated into the existing local exchange networks. Since the

switch networks are already in place, there is no need to duplicate the effort. Also., using the existing

wireline infrastructure would impose a standard and provide access to a universal network - both of

which are needed to make PCN a truly ubiquitous service.

From a technological standpoint, using the local exchange network also makes sense because

PCN would be able to piggyback on the intelligent network services that would be provided. Since the

PCN network will be coupled to the local exchaiige network. one or more processes performing similar

functions to the ACME will be useful in locating users. filtering calls and routing calls. The fact that

the PCN nicrocells are so small means that the network must locate the user to determine which radio

access port to service. One mechanism proposed for tracking a handheld set is for the set to contain

the user's identity in memory (or in a "smart card- inserted by the user) and have an internal emitting

device transmit this unique identity number [5]. The nearest radio access port that receives and

decodes this number signal reports it to a central process interfacing with the local exchange network

to direct traffic. This scenario is analogous to the setup of the location server. However, using the

ACME to inform the network of the location of a user may be more reliable because it employs more

sor urces of information than just badge location to determine the actual location of a user. Also if the

user is moving. the network ust be instructed to perform handoff from one microcell to another. This

is anjalogols to call transfrer in the local exchange network. In this scenario, the alerting mechanism

' It .i sae o car phonie It) operiate at thij. power becaue.c the aieia i. placed outside of the car.

that is performed out-of-band may alert the handheld set and the ACME simultaneously. The ACME

may then tell the intelligent network which microcell to interface with.

These call routing and resource arbitration issues will become even more important if the plan

to implement a personal number calling service is adopted. Many major telecommunications companies

are working on a service plan to assign one number to a person and place the burden of alerting the

user on the network regardless of how many kinds of telephones he has at home, at work or in the car.

The AC.ME would be used here to inform the network where to route the calls.

Filtering calls will be useful regardless of whether a communications network is wireline or

wireless based. For the busy office worker, it will be necessary to filter out the unimportant calls or be

able to log calls while he is busy. This filtering process will become even more important if a plan for

assigning a personal number is actually adopted. Given this service, it would be important to be able

to divide personal calls from business-related calls so that users can handle all their business calls while

at work and let the ACME handle the rest. While this is currently beyond the capabilities of the

ACME. some technology should be provided to aid the called party and protect her privacy since the

network has made it easier than ever before to reach her.

The utility of ACME in the wireline network can be seen as providing greater mobility and a

level of call filtering. The ACME in the wireline network provides greater mobility because it uses

mIore chainels of alerting mechanisms. Users can now be alerted by phones other than their own, by a

pager and by a workstation. The mobility is not quite as great as a tetherless system. since after being

alerted. the user still nmust be close to a telephone. Call filtering is performed by having the

workstation manage some calls without having to alert or interrupt the user.

For the reasons stated in this section. there will still be a need for software to perform functions

similar to those performed by the ACME in an environment of widespread tetherless radio

conlhiuuICaItions. The ACME will not be rendered useless but be used to augment and enhance a

network such as PCN.

Chapter 10

Future Work

10.1 User Study

In many user interfaces it, is difficult to measure the success of an interface because it is difficult to find

an objective metric of measurement. However in ACME there are some objective metrics that could be

used. Using the logger program described in section 5.3.5, it is possible to measure telepholie activity

before and after the installation of the ACME. Somle metrics that can be objectively measured are

listed below.

* Does this service increase the call completion percentage?

" How many calls went to voice mail an(d of those calls how many lpeople left a voice mail message?

" Does this service increasc the time spent on the phone?

* Do people who use this service use more telephony features such as transfer. forward. hold. etc.

than before? Can they remeniber the services better than before?

The use of the ACME raises some other questions of interest that. are more appropriately

addressed in the form of the user study. These more subjective questions are listed below.

" In wht way does the- service replace or augment a human secretary?

" Row does this service compare with having a cellular telephone?

" How does this service affect how people view their telephone services?

" HmV is s1ste usaeu affec ted by systemii reliability?

10.2 Simulations for ACME

To aid in making the ACME more predictable, it would be useful to be able to simulate different types

of incoming calls and their associated conditions. Perhaps a companion to the Phoneditor could

graphically generate event packets that would send phoneserver to the ACME under real conditions.

The output of such an event could be visually displayed. An alternative to manually generating these

packets is to run the log file that is generated by the logger program through the simulator and display

how real world telephone activities would have been handled for a user.

10.3 Robustness of the ISDN Network Interface

For ACME to become a practical working system the (ode for the ISDN network handler. nhatt, must

become more robust. At the crux of autonmated call management is the transfer function. This

routine is not working for practical purposes. Once inhatt has been fully debugged, the ACME can

reach its full potential and start experimenting with other call processing routines such as

call-pickup for voice messaging systems. The forward program, described in section 5.3.4 can be

deployed on a larger scale. Perhaps this is a good first client application for people to introduce them

to call management from a workstation.

10.4 Miscellaneous

Databases are used by the phoneserver. Phoneditor and ACME. These databases are used to convert

CAs into DNs. DNs into paging strings. alias names into lists. room numbers into telephone numbers.

names into numbers and vice versa. Currently the databases are distributed over several locations.

Each server process has users in its own database. However, there is considerable overlap in

information between the various databases used by the different servers. In the interest of database

consistency, this information should be stored at one location.

ACME is currently connecting to the location server for information on the location of a user of

interest because at the present time the activity server is not robust enough for use. As was argued ini

this thesis, it would be much more reliable to connect to the activity server for this purpose since it

uses many more sources of information. Also as the activity server expands to incorporate even more

information, such as the user's calendar file, ACME will be able to take advantage of this information

as well.

Race couditions in the phoneserver may arise if two separate ACMEs manage one DN. One

'obtion is for the phoneserver to implemet: first come first serve policy and refuse to service the

latter ACME. However, there are situations when it is useful for an ACME to monitor the events of

another DN though not necessarily manage it. For example, a user may be more inclined to receive an

incoming call if he knows that his secretary is already busy on the phone. Thus the phoneserver may

offer two different classes of registering interest in a DN - managing and monitoring. In both classes,

clients receive the event packets of interest but only in the managing class is a client allowed to

manipulate telephony services of a DN. To prevent race conditions, the phoneserver simply has to

restrict the number of managing classes to one per DN.

Chapter 11

Summary

A system was built to enable distributed call processing by internetworking in a heterogeneous

computing and teleconnuiications environment. By integrating the workstation in telephony, a. better

user interface to advanced telecommunications services was provided by providing value added network

services that focused on service control. By distributing call processing, intelligent call management

agents that could model the user could participate dynamically in call processing.

A phioneserver was developed to enable the platform described above. It bridged client

applicatious in the computing world to the call processing services available to an ISDN basic rate

interface. A client software library was developed to interface client applications to the phoneserver

through inter-process communications. All applications developed by the Speech Group used a

client-server nodel and ran asynchronously.

The main application developed in this thesis was an automated call nanagement entity

(ACME). A telephony language was defined and implemented based on the IF-THEN construct to

manage the ACME. A graphical user interface was designed to provide a better user interface to the

rule-based system. It was found that providing an adequate and conflict free rule set was a complex

problem. Difficulties to overcome can be broken down into four parts: timing problems, intra-rule

conflicts., inter-rule conflicts and inter-rule set conflicts. Solutions to address the first three problems

were proposed. The approaches taken to these problems were to keep the entire ACME system

asynchronous. to constrain the rule set by putting constraints in the Phoneditor and to do sone

post-processing in the ACME to resolve conflicts.

A rule sorting algorithmi ivas develo)ed in the ACME. The sort was performed to order the rules

froim the imiost importait to the least important. A tradeoff was miade to give t he ACME niore

autonoi to make decisions and act dynamically at the expense of behaving less predictably. To help

alleviate the problem of predictability, a Show Rules button was designed in the Phoneditor to display

how the ACME is currently interpreting the rule set.

Some proposals were made about how to extend this work and how this work will fit into future

telecommunications networks and, in particular, personal communication networks.

Chapter 12

Acknowledgements

I would like to acknowledge the help and support of my supervisor. Chris Schmandt.

I am also indebted to the help of Peter Delaney and his supporting staff in the MIT

Telecommunications Department. Their assistance in providing specialized ISDN services and protocol

traces has been invaluable throughout whole project.

Ross Snyder. who was a UROP in the Speech Group, and Mick Gardina of Teleos Inc. were a

great hell) when this project began running off an IBM PC. I would like to thank Bill Keats, Debby

Hindus and Peter Wong for their help in proof reading this thesis.

Finiallv. I would like to thank the sponsors of this project - AT&T anid Sun Microsystems. In

particular. I would like to thanks Ben Stoltz of Sun, who made it possible for us to integrate an ISDN

BRI into the Sparcstation.

Appendix A

Configuring the Phoneserver

The phoneserver process nay execute on two Speech Group machines: thin-mint or shasta.

thin-mint is a Sun 386i that. runs off of the chips file server and shasta is a Sparcstation 1 that runs

off of the everest file server. Using the Yellow Pages services available in SunOS, the names of both

these machines are symbolically linked to the word phoneserver on their respective file systems. On

both machines the source code is in the path /u/desk/src/isdu/SERVER while the executable is run

froi a symbolic link in /u/desk/bin. The command line option -- d" will run the plioneserver in deblug

mode. The -l" option followed by a DN is used to select the BRI line to be used.

The phonleserver on thin-mint is used for production and serves the pager and qdvm programs

described in section 5.3. It has a serial connection to an IBM PC with a B100PC Teleos card that

monitors the PDN 34224. The port number used by the phoneserver is resolved in the /etc/services

file. The token phoneserver used by cliets to bind to the phoneserver is mapped to port 1400 using

Yellow Pages services.

The phoneserver on shasta is used for development and runs off of the PDN 88068. The nhatt

process in /u/stoltz/PICIA nmst be running before attempting to run the phoneserver. Again using

Yellow Pages services the token phoneserver-sparc used by clients to bind to the phoneserver is

napped to port 1500.

When the phoneserver process is started it loads the files

/ u/desk/sre/isdu/SERVERP/dnto-ca.db.<PDN> and /u/desk/calling.name.id into memory. The first file

maps a DN to a CA while the second file maps a DN to a name.

A.1 Enumerating the Event and Command Structures

The event structure is defined in the file /u/desk/src/isdn/event.h. The command structure is defined

in the file /u/desk/src/isdn/CLIENT/pserver.h. The structures shown in Figure 5-1 and 5-2 are

associated with the define variables shown below.

/* for event structure */

#define STATELEN 3

#define MAXCALEN 3

#define ISDNCALLINFOLEN 8

#define MAXDNLEN 20

#define MAXNAMELEN 48

#define LOCALDNLEN 6

/* for command structure */

#define CMDSIZE 2

#define MAXCALEN 3

#define MAXSRCLEN 20

#define MAXDESTLEN 20

A.2 Call Appearance States

#define UNKNOWNSTATE -1

#define WILDSTATE -2

#define NUMSTATES 13

#define REGidle Ox0001

#define REG-held 0x0002

#define REGactive Ox0004

#define REGincoming 0x0008

#define REG-dialing Ox0010

#define REGactivated 0x0020

#define REGdeactivated 0x0040

#define REG-pending 0x0080

#define REGlocalhold 0x0100

#define REGremote-hold 0x0200

#define REG-confirmed 0x0400

#define REG-ars 0x0800

#define REG-rejected Ox1O00

#define REG-outgoing 0x2000

A.3 Interest Structure

At startup time, the phoneserver initializes an array of pointers, called ca-pt, with each pointer

pointing to an empty linked list (shown in Figure A-1) representing the interest of a client. Since the

CA field in the Supplementary Voice Service protocol is only two bytes, the maximum array size is 99.

The first two fields entify and isdamchannel are used when conmunicating with nhatt. The next two

fields, curreni-state and requested-state, hold the state of the call appearance, which is assumed to be

idle2 at startup time. The field o_nsgiZsi is a pointer to a list of all the interest of the client.

struct ca-toilinklist {
int entity;

int isdrnchannel:
char current_state[STATELEN];
char requested state[STATELEN]:

msgsock-list *to-msglist;

struct ca-to-linklist *next:

J

Figure A-1: Call Appearance to Interest Structure

jUpon receivmg a register interest connnand fromi a client. the phoneserver converts the DN

into a CA and uses the CA as an index to the ca-pt array. It then creates interest, structures shown in

Figure A-2.

Starting with the msgsock-list structure, the msgsock field contains the socket number,

identifying the client. that was used to register an interest. The gqi field points to the interest-list

that actually contains the interest of the client. The msgsock-list field is a pointer to link the list since

more thani ole client can register interest in the same CA. Finally, the interestlist contains the

CA. the number of CAs, the interest an(] a pointer to link the list.. The interest value is a masked value

of any ole or comibilation of the (all appearance states shown iii Figure A.2.

When an ovent occurs, the CA for that event is obtained and used as an index in ca.pt. The

state f tihe event is extracted and omp7ared to the interesql ticlI in the interest _list structure. It

struct msgsocklist {
int msgsock;
interestlist *gqi;
struct msgsocklist *next;

}

struct interestlist {
char get-ca[MAX-CALEN];
int quantity;
int interest;
struct interestlist *next;

}

Figure A-2: Interest Structures

there is a match, then the entire event structure is sent to the client identified by the msgsock-list field

in the msgsock-list structure.

Appendix B

Configuring the ACME

Before executing ACME. users should set up a configuration file and define an environment variable

called MYDN to be the DN they wish ACME to manage. If MYDN is not defined the user may enter it

as a command-line option or else he will be asked to enter it by ACME. MYDN is also used as an

extension to the file . acmerules. <DN>. shown in section B.1, in the root directory of the user. If this

file does not exist. ACME will create one with the key word begin at the top but no rules. The

configuration file, shown in section B.2, is used when a user wishes to manage more than one DN from

a single machine. The file maps a DN into a relative port numlber used by the ACME to coiniunicate

with the Phoneditor. If no configuration file exists, the default service nane to bind to is

acmeservero. There are three ports that are dedicated to support ACME to Phoneditor

conunications acmeserverO. acmeserveri and acmeserver2. Using /etc/services on the

machine everest, they are bound to ports 1450, 1451 and 1452 respectively.

ACME can be executed from the /u/desk/bin directory. The line level options are as follows.

The "-n~ option followed by a DN is used to specify the DN of interest. The "-l" option will prilt on

the screen the rule fired by ACME without actually having ACME execute the action. The '-- option

puts ACME into debug niode.

B.1 Sample Rule Set File

File name: .acmerules.<DN>

begin

IF the location of me is myoffice THEN transfer the call to where I am

after 1 seconds

IF the calling party is not friends THEN transfer the call to voice mail

after 1 seconds

IF the calling party is speech-group THEN transfer the call to 8-8670

after 1 seconds

IF the calling party is anyone and the location of ccwong is Garden

THEN transfer the call to voice mail after 10 seconds

IF the calling party is anyone and the time is before 12:00 THEN transfer

the call to where I am after 1 seconds

IF the calling party is someone I recently called THEN transfer the call

to where I am after 1 seconds

IF the calling party is anyone THEN transfer the call to voice mail after

1 seconds

IF the time is after 18:00 THEN transfer the call to where I am after 0

seconds

IF the location of ccwong is 352 THEN transfer the call to 8-8670 after 1

seconds

IF the status of my phone is active THEN do nothing

B.2 Configuration File

Each line has a DN followed by an ACME port nuinber of 0. 1 or 2.

File name: .acmeconfig

38026 0

88670 1

B.3 Alias Files

Alias files reside in the root directory of the user. Systein wide alias files reside in the path

/iu/desk/data. These files are also used by the Phoieditor to include the aliases in the option button

within the (dialog box.

The l i t x of the <,)1, 114 ia lil t% ll*w. EEch uline al't begim wi p ie koke11 alias. Ti li

name immediately follows the alias token and than the alias list. Each member of the list must be

delimited by a coma.

File name: .acme-rooms

alias my-_office 352

File name: .acme-group-names

alias friends Phil, Bill, Marilyn, Carl, Angela, Stephanie

alias important-person Geek, Marilyn, Phil

B.4 Protocol between ACME and the Phoneditor

The Phoneditor can send three commands to ACME: update, sleep and wake. They are defined

ASCII strings listed below. ACME will either acknowledge the successful completion of the commands

or if the command fails. ACME will send back a negative acknowledgement.

/* Phoneditor to

#define UPDATE

#define WAKE

#define SLEEP

ACME messages */

"up" /* request ACME to

"wa" /* request ACME to

"sl" /* request ACME to

update rule set */

wake up */

go to sleep */

to Phoneditor messages */

ACK "ack" /* acknowledge the

ACKWAKE "acw" /* acknowledge the

ACKSLEEP "acs" /* acknowledge the

update request */

wake request */

sleep request */

/* ACME

#def ine

#define

#def ine

Appendix C

Lex and Yacc Description of

Telephony Language

C.1 Lex File - token.1

[0-9:1+ return(TIME);

[0-9-1+ return(DN);

"the person" return(APERSON);

"anyone" num-of-anyones++; return(ANYONE);

"and" andflag = TRUE; return(AND);

"begin" return(BEGINTOKEN);

"my calendar" return(CALENDAR);

'pick up the call" return(CALLPICKUP);

"the calling party is" return(CALLINGPARTY);

"convey the following message" return(CONVEY_MSG);

"drop the call" return(DROP);

"do nothing" return(DONOTHING);

"hold the call" return(HOLD);

"if" return(IF);

"IF" return(IF);

"is in" return(ISIN);

"log the call" return(LOG);

"is logged in" yylvl1 = 1; return(MACFTNF._STATUS);

"is logged out" yylval = 0; return(MACHINESTATUS);

"I'm away from my office" return(MYACTIVITY);

"not" notflag = TRUE; return(NOT);

"from off campus" return(OFFCAMPUS);

"from on campus" return(ON_CAMPUS);

"after" opvar = OAFTER; return(OPERATOR);

"around" op-var = OAROUND; return(OPERATOR);

"before" opyvar OBEFORE; return(OPERATOR);

"or" return(OR);

"1page me" return(PAGE);

"on hook" return(PHONESTATUS);

"off hook" return(PHONESTATUS);

"someone I recently called" return(RECENTLYCALLED);

"says that" return(SAYS);

"second" return(SECONDS);

"seconds" return(SECONDS);

"the status of" return(STATUS);

"the machine" return(THEMACHINE);

"my phone is" return(MYPHONEIS);

"the time is" return(THETIME);

"then" return(THEN);

"\nthen" return(THEN);

"THEN" return(THEN);

"\nTHEN" return(THEN);

"transfer the call to" return(TRANSFER);

"voice mail" return(VMAIL);

"where I am" return(WHERE_I_AM);

"notify me by a pop-up window" return(WINDOWNOTIFICATION);

\n return ('\n');

quit return 0;

[a-zA-Z-_]+ return(NAME);

[a-zl+ return(MAC.HNE);

{qstring} return (QSTRING);

C.2 Yacc File - parser.y

%token APERSON

%token AFTER

%token AND

%token ANYONE

%token BEGINTOKEN

%token CALENDAR

%token CALLPICKUP

Xtoken CALLING_PARTY

%token CONVEYMSG

%token DN

%token DONOTHING

%token DROP

%token HOLD

%token IF

%token ISIN

%token LOG

%token MACHINE

Xtoken MACHINESTATUS

%token MESSAGE

%token MYACTIVITY

%token NAME

%token NOT

Xtoken OFFCAMPUS

Xtoken ON-CAMPUS

Xtoken OPERATOR

Xtoken OR

Y.token PAGE

Xtoken PHONESTATUS

%token QUOTATION

%token QSTRING

%token RECENTLYCALLED

%token SAYS

%token SECONDS

%token STATUS

%token THEMACHINE

%token MYPHONEIS

%token THETIME

%token THEN

Xtoken TIME

%token TRANSFER

Xtoken VMAIL

%token WHERE_I_AM

%token WINDOWNOTIFICATION

lines: /* empty */

I lines line

line: '\n'

I BEGINTOKEN

| IF cond THEN action '\n'

cond: cond elem OR cond

I condelem AND cond

| condelem NOT cond

| cond_elem ;

cond-elem: CALLINGPARTY NOT calling-party-id

I CALLINGPARTY calling-party-id

| A_PERSON name ISIN location

I THETIME OPERATOR TIME

I STATUS THEMACHINE NAME MACHINESTATUS

I STATUS MYPHONEIS PHONESTATUS

I CALENDAR SAYS MYACTIVITY ;

calling-party-id: RECENTLYCALLED

I ANYONE

| DN

I ONCAMPUS

I OFF_CAMPUS

I NAME ;

action: TRANSFER place delay

| CALLPICKUP

I DROP

I HOLD

| LOG

I WINDOWNOTIFICATION

I PAGE

I CONVEYMSG QSTRING

I DONOTHING ;

place:.WHERE_I_AM

| DN

| VMAIL

I NAME

delay: OPERATOR TIME SECONDS

location: TIME

I NAME ;

name: NAME

Bibliography

[1] T Bowen, F Dworack, C Chow, N Griffeth, G Herman, and Y Lin. Feature interaction problem in

telecommunications systems. In Conference on Software Engineering for Telecom Switching

Systems, 1989.

[2] 1 Bowles, L Brunet, R Eckert, K Emami, R Kamel, and P Momtahai. Px: Integrating voice

communications with desktop computing. Journal of the American Voice I/O Society - Desktop

Audio Issue. 9:1-19, 1991.

[3] C Chow, D Braun, and M Adachi. An example in connecting isdn with the intelligent network

and the local area network. Bellcore internal paper.

[4] D Cox. Portable digital radio communications - an approach to tetherless access. IEEE

Communications Magazine, pages 30-40, 1989.

[5] D Cox. Personal communications - a viewpoint. IEEE Communications Magazine, pages 8-20., 92,

1990.

[6] J Gihnour and I' Gove. Intelligent network/2: - the architecture - the technical challenges - the

Opportunities. IEEE Communications Magaz ine. pages 8-11, 1988.

[7] R Hass and R Humes. Intelligent network/2: A network architecture concept for the 1990s. In ISS

'87. A 12.1. 1987.

[8] G Herman. M Ordun, and C Riley. Between laboratory and field trial: Experience with a,

colunications services testbed. In Proceedings of the Human Factors Society - 30th Annual

Meeting, pages 804-808, 1986.

[9] G Herman, M Orduni, C Riley. and L Woodbury. The modular integrated conmunications

envIroment (mice): A system for prototyping and evaluating communications services. In

Proccedings of International Switching Syniposiuvm 87. pages 442--447, Phoenix, Arizona. 1987.

[10] G Herman and C Riley. Services for the next generation network: Experience with a network

service testbed. In Proceedings of the First European Conference on Information Technology for

Organisational Systems - EURINFO '88, pages 1167-1172, 1988.

[11] Forward is an internal Speech Group phoneserver application written by Chris Schmandt.

[12] The Socket Manager is an internal Speech Group tool written by Barry Arons.

[13] QDVM is an internal Speech Group voice mail system written by Barry Arons, Sanjay

Manandhar, Lisa Stifelman, and Chi Wong.

[14] R Kamel, K Emami., and R Eckert. Px: Supporting voice in workstations. IEEE Computer,

23:73-80, 1990.

[15] S Manandhar. Activity server: A model for everyday office activities. Master's thesis,

Massachusetts Institute of Technology, June 1991.

[16] S Manandhar. Activity server: You can run but you can't hide. In to appear in Usenix Summer

1991 Technical Conference, June 1991.

[17] N Matsuo. K Shimohara, H Matsui. and Y Tokunaga. Personal telephone services using ic-cards.

IEEE Communications Magazine, pages 41-48, 1989.

[18] C Riley. Experiences with an integrated voice and text message service. In Proceedings of the

Hamia, Factors Society - 31st Annual Meeting. 1987.

[19] R Root and C Koster. Experimental evaluation of a mnemonic syntax for controlling advanced

telecommunications services. In Proceedings of the Human Factors Society - 30th Annual Meeting.

pages 809-813. 1986.

[20] R Root and C Koster. Experimental evaluation of a nienonic command syntax for controlling

advalnced telecommunications services. In Proceedings of the Human Factors Society - 31st Annual

Meeting. 1987.

[21] C Schmandt and B Arons. Desktop audio. Uniz Reviem, October 1989.

[22] C Schmandt and S Casner. Phonetool: Integrating telephones and workstations. In Proceedings.

GLOBECOM ^89. IEEE Communications Society, November 1989.

23] W Stallings. ISDN : an Introduction. Macmillan. New York. 1989.

[24] R Steele. Deploying personal communications networks. IEEE Communications Magazine, pages

12 15, 1990.

[2.] lelos Conmmunications. Inc.. Eatontown. i\J. ASK1UU Access Systems KAt User Manual, 1989.

[26] S Tufty. Watcher. MIT Bachelor's Thesis, 1990.

[27] P Zellweger, B Douglas, and D Swinehart. An experimental environment for voice system

development. IEEE Office Knowledge Engineering Newsletter, 1987.

