

1

Algorithmic Simulation in System Design and Innovation

by

Timothy Harsh

Bachelor of Science in Business Administration, Bryant University, 2001

Submitted to the System Design and Management Program

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

February 2011

© 2011 Timothy Harsh

All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of

this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author

Timothy Harsh

System Design and Management Program

December 16, 2010

Certified by

Christopher L. Magee

Thesis Supervisor
Professor of the Practice

Engineering Systems Division

Accepted by

Patrick Hale

Director

System Design and Management Program

2

[This Page Intentionally Left Blank]

3

Algorithmic Simulation in System Design and Innovation

by

Timothy Harsh

Submitted to the System Design and Management Program

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

Abstract

This thesis explores the use of genetic programming as a tool in the system design and

innovation process. Digital circuits are used as a proxy for complex technological designs.

Circuit construction is simulated through a computer algorithm which assembles circuit designs

in an attempt to reach specified design goals. Complex designs can be obtained by repeatedly

combining simpler components, often called building blocks, which were created earlier in the

algorithm’s progression. This process is arguably a reflection of the traditional development

path of systems engineering and technological innovation.

The choice of algorithm used to guide this process is crucial. This thesis considers two

general types of algorithms—a blind random search method, and a genetic programming search

method—with variations applied to each. The research focused on comparing these algorithms

in regard to: 1) the successful creation of multiple complex designs; 2) resources utilized in

achieving a design of a given complexity; and 3) the inferred time dependence of technological

improvement resulting from the process. Also of interest was whether these algorithms would

exhibit exponential rates of improvement of the virtual technologies being created, as is seen in

real-world innovation. The starting point was the hypothesis that the genetic programming

approach might be superior to the random search method.

The results found however that the genetic programming algorithm did not outperform the

blind random search algorithm, and in fact failed to produce the desired circuit design goals.

This unexpected outcome is believed to result from the structure of the circuit design process,

and from certain shortcomings in the genetic programming algorithm used.

This work also examines the relationship of issues and considerations (such as cost,

complexity, performance, and efficiency) faced in these virtual design realms to managerial

strategy and how insights from these experiments might be applied to real-world engineering and

design challenges. Algorithmic simulation approaches, including genetic programming, are

found to be powerful tools, having demonstrated impressive performance in bounded domains.

However, their utility to systems engineering processes remains unproven. Therefore, use of

these algorithmic tools and their integration into the human creative process is discussed as a

challenge and an area needing further research.

Thesis Supervisor: Christopher L. Magee

Title: Professor of the Practice of Mechanical Engineering and Engineering Systems

4

[This Page Intentionally Left Blank]

5

Acknowledgements

I would first like to offer my sincere thanks to Wolfgang Polak and W. Brian Arthur for

sharing the source code of their simulation model with me, as well as for offering their time and

energy in providing instruction and answering my questions. This model formed a central

element of the research in this thesis, and this product simply would not have been possible in its

current form without their assistance. I hope that my characterizations of this model and their

earlier papers—a pivotal part of the foundations for this thesis—do justice to the important

insights gained from both. Any errors or misunderstandings are of course my own.

I also owe a great debt of gratitude to Dr. Chris Magee for his patience, understanding,

valuable time, and generous help in guiding me through this process as my advisor. As work on

this pursuit over the past many months progressed through a meandering maze of ups and downs,

jubilations and disappointments, and many roadblocks, his wisdom and guidance provided the

means to finally succeed. The thesis work has been challenging—at times fun, and at other times

frustrating—and in the end, a highly rewarding endeavor.

Finally, I would also like to thank my family, friends, and colleagues, and especially, my

parents, for their understanding, support, and generous patience over the past two years as I

completed the SDM program. It has been a profound experience.

6

[This Page Intentionally Left Blank]

7

Table of Contents

Abstract ...3

Acknowledgements ..5

List of Figures and Tables ...9

Chapter 1: Introduction ...11

1.1: Background and Motivation ..11

1.2: Summary of Technical Approach ..12

1.3: Thesis Overview ..12

Chapter 2: Literature Review ..13

2.1: Evolutionary Computation ...13

2.2: Genetic Algorithms ..14

2.3: Genetic Programming ..17

2.4: Innovation and Design ...23

2.5: Digital Circuit Construction...25

2.6: Engineering Process Models ..26

Chapter 3: Methodology...29

3.1: Research Approach ..29

3.2: Algorithms ...30

3.2.1: Blind Random Search ...31

3.2.2: Genetic Programming ...32

Chapter 4: Results...35

4.1: Overview ..35

4.2: Blind Random Search ..35

4.3: Genetic Programming ..51

8

Chapter 5: Conclusion ..57

5.1: Future Work ...57

5.2: Conclusion ...58

5.3: Challenges ..59

Bibliography ...61

9

List of Figures and Tables

Figure 2.1: Graphical Representation of Algorithmic Methods and Relationships14

Figure 2.2: Illustration of a Binary Format Chromosome with Three Genes15

Figure 2.3: Illustration of a Genetic Programming Tree Chromosome with Five

Terminals and Four Functions ...20

Table 3.1: List of Technology Goals for Digital Circuit Construction30

Figure 4.1: Results of a Typical Run of Arthur and Polak Random Model36

Figure 4.2: Trial 1 – Typical Run of Arthur and Polak Random Model with Event-

Based Performance Intervals ...38

Figure 4.3: Trial 2 – Typical Run of Arthur and Polak Random Model with Event-

Based Performance Intervals ...39

Figure 4.4: Trial 3 – Typical Run of Arthur and Polak Random Model with Uniform

Performance Intervals ..40

Figure 4.5: Trial 4 – Typical Run of Arthur and Polak Random Model with Maximum

Concurrent Working Goals Constraint Removed ..42

Figure 4.6: Trial 5 – Typical Run of Arthur and Polak Random Model with Frequent

Removal of Unused Technologies ...43

Figure 4.7: Trial 6 – Typical Run of Arthur and Polak Random Model Using Only

Prior Solved Goals as Available Technology Library ...44

Figure 4.8: Trial 7 – Typical Run of Arthur and Polak Random Model Using Doubled

―Max Complexity‖ Parameter..47

Figure 4.9: Trial 8 – Typical Run of Arthur and Polak Random Model Using ―Max

Complexity‖ Parameter = 100 ...48

Figure 4.10: Trial 3 Data Scaled by Circuit Output Size ...49

Figure 4.11: Trial 3 Data Scaled by 2
N
 * Circuit Output Size..50

Figure 4.12: Four Runs of the Genetic Programming Model with Varying Fitness

Evaluation Parameters ...52

10

[This Page Intentionally Left Blank]

11

Chapter 1: Introduction

This chapter introduces the problem to be examined in this thesis and the rationale for doing

so. It also provides a very brief summary of the technical research approach to be pursued,

followed by a structural overview of the content contained in this work.

1.1: Background and Motivation

Using modern computational power to run simulations as a means of creating or optimizing

things of interest, particularly when the methods used are inspired by nature, is a subject of

fascination for many researchers. One such method is known as genetic programming, an

extension of the somewhat more widely-known genetic algorithm, which is a technique inspired

by natural processes. This tool goes far beyond more traditional optimization methods, which

merely make adjustments to an already-specified design framework, in that it adds the power of

creativity to the process. In other words, this tool can potentially not only optimize a design, but

also formulate initial and improved designs from very minimal initial specifications. Such a tool

offers a powerful new potential to enhance traditional engineering processes if it can be

successfully applied and harnessed to full effect on real-world problems of noteworthy concern.

Genetic programming has shown impressive results in some limited design contexts, such as

in designing analog circuits and radio antennas. However, this progress to date is still limited to

the technical aspects of the problem at hand and the algorithm itself. While this is a promising

first step, the art of real-world engineering and design is far more complicated, particularly in

that it necessitates human involvement. Thus, systems engineering, innovation, and design are

not just facets of a technical discipline, but rather are socio-technical processes. From this, it

follows that in order to fully harness the true power and potential of tools such as genetic

programming, not only the technical but also the managerial and human components of interest

must be integrated into a cohesive framework to support future progress.

This thesis seeks to take an initial, modest attempt at studying these two connected elements.

12

1.2: Summary of Technical Approach

Research work in this thesis first attempts to build a foundation upon earlier related work by

Arthur and Polak as a starting point and then extends focus toward genetic programming issues

and challenges. The algorithmic simulation model from that earlier work is reused to generate

initial results. Then, a number of experiments and variations are performed using that model to

gather insights into the process at large. Finally, a customized genetic programming model is

used to produce solutions to the same design problem for comparison.

1.3: Thesis Overview

Chapter 2 provides a review of pertinent literature and develops a background understanding

of the concepts and technologies covered in this thesis. The general class of algorithmic

simulation approaches is first introduced, followed by an increasing specificity in discussing

evolutionary computation methods, then genetic algorithms, and finally genetic programming, a

tool used for part of the research in this thesis. Due to its importance in this work, a survey of

certain techniques and issues relevant to genetic programming is also provided. Finally,

innovation and design elements, digital circuit technologies, and engineering process models,

including elements interrelated to social and managerial issues, are also briefly discussed.

Chapter 3 outlines the methodology and research approach followed in this thesis. This

includes a description of the two algorithmic simulation tools used in this research: a blind

random search model, and a genetic programming model.

Chapter 4 presents the results of the research conducted using the two algorithmic models.

Original research data is presented and discussed. For the genetic programming model, a

number of suspected causal factors pertaining to the results obtained are proposed.

Chapter 5 concludes the discussion and suggests areas where future work may prove fruitful,

along with challenges that may be encountered.

13

Chapter 2: Literature Review

This chapter examines the historical roots of genetic programming and related methods. It

also explores earlier work in technological innovation and design processes, with particular

emphasis on digital circuits and their construction as a representative technology—the substance

of which forms the basis for much of the work in this thesis. Finally, models of the engineering

process are surveyed to understand the connection between real-world challenges in

organizations and simulations of technological evolution.

2.1: Evolutionary Computation

Evolutionary Computation is a term applied to a large class of related methodologies for

computational problem solving that are based loosely on or inspired by biological processes.

The principal ideas involved have a surprisingly long history, with Alan Turing having proposed

a method of ―genetical or evolutionary search‖ as early as 1948, and active computer

experiments appearing by the 1960s [Eiben and Smith 2007].

Evolutionary computation methods can be considered a subset of a larger collection of

stochastic optimization algorithms, such as random searches, genetic algorithms, and particle

swarm methods. This family of techniques shares the common trait of employing randomness in

some aspect of their progression through the solution space. This feature is hypothesized to

improve overall algorithm effectiveness compared to non-stochastic techniques such as by

avoiding entrapment in local optima or overcoming the effects of noise in the optimization

objective [Spall 2004]. However, it is difficult to generalize among these methods as their

performance is often highly problem-specific and sensitive to a multitude of algorithmic tuning

parameters [Hassan et al. 2005; Eiben and Smith 2007]. A graphical representation showing

various algorithmic methods and relationships among them is presented in Figure 2.1. This

thesis focuses on an implementation of genetic programming as well as a random search method

used in earlier work by [Arthur and Polak 2006].

14

Figure 2.1: Graphical Representation of Algorithmic Methods and Relationships

2.2: Genetic Algorithms

As mentioned above, the genetic algorithm is an evolutionary computation method. The

development of genetic algorithms (commonly called GAs) was arguably launched by John

Holland in 1975 when he proposed a computational methodology mimicking processes seen in

living organisms [Holland 1975]. Genetic algorithms, along with various other evolutionary

computation approaches (such as particle swarm methods), employ a degree of parallelism in

their search through the problem’s solution space by employing a population of individuals, with

each one representing a possible solution, as opposed to a single-point-at-a-time search

procedure [Hassan et al. 2005]. Genetic algorithms are generally noted to be robust and efficient

tools, but they are non-deterministic and thus offer no guarantee of optimality (i.e., that the

global optimum has been found) [Goldberg 1989]. These algorithms also generally employ

some form of a survival and/or reproduction mechanism which has the effect of preserving the

15

better individuals (solutions) contained in the population. Thus, genetic algorithms possess a

type of memory effect or continuity feature.

Early implementations of genetic algorithms were generally constructed using fixed-length

binary strings roughly analogous to DNA encoding found in biological organisms, as seen in

[Goldberg 1989]. In this representation, each individual in the population is composed of a pre-

determined length of ―0‖ or ―1‖ characters called a chromosome [Mitchell 1998]. These binary

values are encoded or mapped in some pre-defined way by the algorithm operator to represent

the control variables to be included in the resulting design or contained in the problem to be

solved. Blocks of one or more adjacent bits then represent a single control variable in the

problem, with the number of bits needed within each block determined by the number of possible

permutations the experimenter wishes to represent within the algorithm. Again borrowing

biological terms, the functional block units are often called genes and the entire genetic code

representing a problem design solution contained within an individual may be called its genome

[Mitchell 1998]. A visual representation of this concept is shown in Figure 2.2. The encoding

format need not be binary, however, and various other encoding schemes have been devised for

specialized problem applications.

Figure 2.2: Illustration of a Binary Format Chromosome with Three Genes (adapted

from [Eiben and Smith 2007])

Genetic algorithms proceed by repetitively modifying the gene expressions contained within

the population of individuals on which it is operating. These modification processes, termed

16

operators, now exist in a multitude of variations, but many are based loosely on the functions

observed in biological organisms. The primary operators used generally include: selection,

reproduction, crossover or recombination, and mutation. Other secondary or specialized

operators are also seen, and a nearly limitless range of variations exists for genetic operators in

general. The selection operator is responsible for choosing one or more individuals out of the

population for which some other action (often provided by some other genetic operator) is to be

applied. Typically, individuals are sampled randomly from the population or a subset thereof,

often with some bias factor applied, such as with respect to the individual’s fitness score, as

discussed below. The reproduction operator simply copies or promotes an individual into the

next generation, or iteration of the algorithm. The crossover operator mixes the genes from two

or more parent individuals by cutting and splicing segments of their chromosomes, creating an

entirely new individual from its parent components. Finally, the mutation operator makes a

random modification to some gene within an individual in the population, mimicking the

occasional errors that occur in biological DNA [Eiben and Smith 2007; Goldberg 1989; Mitchell

1998; Koza 1992].

A core element of evolutionary algorithms is that each individual in the population must have

some assessment of how well that particular individual solves the objective problem. This

measure, called a fitness score, or simply fitness, is most commonly represented as a single real

number derived from some fitness evaluation function designed by the experimenter to capture

the desired traits of the design or solution being sought. This is a significant challenge and for

true innovation, fitness functions must be at least partially approximate. As each individual

within the population is created or modified, the design encoded by that individual’s genome is

passed through the fitness evaluation function to generate a fitness score for that individual. The

fitness measure is then available for heuristic use by the various genetic operators (discussed

above) as the algorithm proceeds. Likewise, the design space in which the experimenter is

operating the algorithm is characterized by a fitness landscape, and the algorithm can be viewed

simply as a mechanism for navigating a collection of points—the individuals—through that

space in search of the optimal design fitness [Mitchell 1998].

The exact mechanism through which genetic algorithms are able to operate and produce

success has been a matter of debate since their debut. In work dating back to Holland’s original

1975 proposal, an implicit assumption existed that the algorithm succeeded by creating, mixing,

17

and amplifying good partial solutions to the problem being run [Eiben and Smith 2007; Mitchell

1998]. These elements are called schemas and can be thought of either as similarity templates

among the design solutions [Goldberg 1989], or hyperplanes through the solution space

[Mitchell 1998]. Additional study of this phenomenon led to a formalization known as the

Schema Theorem. In this framework, genetic algorithms succeed by repetitively and

exponentially increasing the incidence of smaller, simpler schemas whose average fitness is

above the overall mean fitness of all schemas [Mitchell 1998]. Thus, small, basic elements of

the design that are valuable are collected together into larger and more complex elements.

An extension of this idea leads to the Building Block Hypothesis which asserts that genetic

algorithms solve problems by repeatedly assembling smaller, simpler components into larger,

more complex components to eventually arrive at the final optimal solution [Eiben and Smith

2007]. Such a mechanism is proposed as the source of much of the power of genetic algorithms

and related search techniques; by building ever larger components out of smaller elements

already discovered, the overall algorithmic complexity of the problem is dramatically reduced,

potentially making a large problem computationally feasible that would otherwise be intractable

[Goldberg 1989]. This concept is a recurring theme in the literature and it forms a component of

much of the prior work on which this thesis is based.

One topic of much interest related to building blocks is the concern of adequate supply of

building blocks within the genetic population while the algorithm runs. In order for the

algorithm to successfully ―discover‖ higher-order, more complex building blocks, it must be

supplied with or otherwise generate the necessary simpler building blocks to be used as

components in construction (according to the Building Block Hypothesis). Since building blocks

exist as subsets of an individual’s genome, the supply of total available building blocks is

implicitly linked to the population size. Consequently, the study of population sizing models has

been an active area of research, as in [Sastry, O’Reilly, and Goldberg 2005] and [Sastry et al.

2003].

2.3: Genetic Programming

Genetic programming, often called GP, can be viewed as an extension or specialization of the

class of genetic algorithms discussed above. The modern form of genetic programming was

18

effectively introduced by John Koza and popularized in [Koza 1992], although earlier elements

of the concept existed in the broader evolutionary algorithm arena dating back to at least the

1960s [Banzhaf et al. 1998]. Genetic programming, as originally proposed in [Koza 1992], was

designed to evolve computer programs (hence the name) in the Lisp programming language.

Although genetic programming can be implemented in any programming language, Lisp was

originally chosen largely because of its rather unique representation of both data and program

instructions in the same format—as symbolic expressions. This meant that Lisp programs could

be dynamically altered and then executed directly. In essence, this provided a means to create

self-modifying computer programs [Koza 1992].

Although GP was originally proposed as a means of creating or discovering computer

programs, the basic technique has since been enhanced and extended to more general constructs

that may simply represent the structure, or the instructions to create the structure, of a solution to

a given problem, rather than executable computer instructions in the form of a program. Other

problems and fields where GP has now been applied include: product and system design

(circuits, antennas, etc.), pattern recognition, data mining, control systems, neural network

structures, machine learning, optimization, data modeling and symbolic regression,

bioinformatics, visualization, and even music [Langdon and Poli 2002; Koza et al. 2003; Poli,

Langdon, and McPhee 2008]. More recently, GP has been credited with generating several

dozen inventions described as ―human-competitive,‖ including re-discovery of already-patented

inventions and at least two newly patentable inventions [Koza et al. 2003].

The primary difference between genetic programming and the older genetic algorithm is that

GP traditionally employs a tree-shaped genome or chromosome composed of objects rather than

the binary string most commonly seen in genetic algorithms. This is a distinguishing trait of GP,

and it implies that genomes can be of both variable and infinite size, which contrasts sharply

with the rigid, fixed-length string representations seen in GAs. This flexibility allows for

arbitrary representation of design solutions, and also permits designs of problem solutions to be

made of infinite levels of detail and specificity [Banzhaf et al. 1998]. Other representations of

GP do exist (such as graph or matrix structures), but they appear to be less prevalent than the

tree-based structures which are the form used in this thesis.

The genome tree is formed as a connected set of objects called nodes drawn from some

population provided by the experimenter. Each object may be either a function or a terminal,

19

depending on its behavior. Functions accept one or more inputs and produce one output while

terminals accept no inputs and return one output. Therefore, terminal objects always form the

―leaf‖ nodes of the tree while functions form the connecting nodes of the tree. The ―root‖ node

at the top of the tree returns the final result from the instructions being encoded within the tree

[Banzhaf et al. 1998].

Figure 2.3 shows a stylistic example of a genetic programming tree genome encoding a

collection of logic functions over three input variables, A, B, and C. In this illustration, the

terminal objects are represented as red circles while functions are shown as named rectangles.

This particular collection of functions and terminals might be used to represent the design of a

digital circuit. The function and terminal sets from which the genome trees are constructed are

chosen based on the problem domain for which the GP engine will be executed.

Implementations vary, but the instructions encoded within a genome tree are typically

evaluated in a depth-first order such that the lowest function branches on the tree are evaluated

first, and then evaluation proceeds recursively up the tree until the root node is reached. In

Figure 2.3, the XOR function would be the first function evaluated and the NAND function of

two sub-function results at the root of the tree would be the last evaluation.

20

Figure 2.3: Illustration of a Genetic Programming Tree Chromosome with Five

Terminals and Four Functions (adapted from [Luke 2000])

The fundamental genetic algorithm principles and operators, such as mutation, selection,

crossover, and so on (described earlier) are extended to genetic programming as well, though

with some adaptations necessary to function with the tree-shaped genome structures. For

example, the mutation operator is more complex than that seen in traditional genetic algorithms

where it merely flips a ―0‖ and ―1‖ value. In GP, it is adjusted to randomly select a node from

the genome tree and then make a random modification to it, such as substituting one function or

terminal for another from the available set, deleting an entire branch from the tree, or attaching a

randomly generated new branch to the tree. Similarly, the crossover operator is modified to

select a node (typically at random) within each of the genome trees to be crossed, and then

switch the entire sections, called subtrees, beneath the crossover points to generate a new

21

offspring individual, although ensuring data type safety and function compatibility complicates

implementation. Numerous variations on these and other GP-specific features exist throughout

the literature in the field [Banzhaf et al. 1998].

As with genetic algorithms, the concept of building blocks applies to genetic programming

too. In GP terminology, a building block is manifested as a subtree section of a genome tree, and

even the entire tree itself can be a building block. There is, however, debate in the literature over

the importance and implications of schemas and building blocks relative to GP implementations

[Banzhaf et al. 1998; Luke 2000].

The tree-shaped genome structure which allows infinite and flexible design encoding may be

responsible for much of the creative power seen in GP, but it also brings a severe and persistent

side-effect that often challenges practical applications of GP as a design tool. Given the

unlimited flexibility of the genome construction and size, the tree structures can (and frequently

do) grow to enormous sizes, leading to severe degradation of algorithm performance and acute

consumption of system resources. Often, large portions of such an inflated genome tree

accomplish little or nothing toward the fitness of the individual. This excess material is referred

to as junk DNA, bloat, or introns. Furthermore, bloated genomes tend to grow at exponential

rates, quickly resulting in stagnation of the run after which little additional progress is made.

Although the phenomenon is still not well understood, some research suggests that introns

(specific segments of genome code that have no practical effect) may actually serve a necessary

and beneficial purpose by protecting valuable building blocks of code within the population from

the destructive effects of the crossover operators by minimizing the chance of splicing through a

building block [Banzhaf et al. 1998; Luke 2000].

Given the severity of the problem of bloat in GP, a good deal of attention has been paid to

controlling its impact within an algorithm run. Perhaps the simplest method is simply to impose

a maximum size limit on each genome tree. Another common approach involves parsimony

pressure in some form, which seeks to penalize the fitness scores of individuals in the population

who carry excessively large genomes [Luke and Panait 2004].

In the original genetic programming form proposed by John Koza in [Koza 1992], all

information about the construction of a genetic individual was stored within the structure of the

tree-based genomes. Since then, numerous extensions and enhancements have been proposed to

further improve the efficiency and performance of GP projects. One of the earliest and most

22

common extensions seen in the literature is Automatically Defined Functions (ADFs), proposed

in [Koza 1994a]. ADFs provide a means to enable code reuse and reduce the size and

complexity of a solution, just as human programmers use functions to achieve the same benefits

when writing software. To implement ADFs, the genome structure is altered so that each

individual contains one main tree which encodes its final solution, called the result-producing

branch, and one or more additional trees, called function-defining branches, which encapsulate

segments of genetic encoding that can be referenced by the main result-producing branch. In

effect, the ADF structure provides a mechanism to store genetic code that would have to reside

within the main genome tree—often redundantly—in the original, classic form of GP, and to

enable that encapsulated code logic to be used repeatedly in constructing the evolved solution

[Koza 1994a].

Koza further elaborates that ADFs are most useful in problems that can be solved as a

decomposition of the main problem into subproblems, and where the problem contains

regularities, symmetries, or patterns. A large body of his analysis showed that total

computational effort of the GP algorithm can be significantly reduced on non-trivial problems

when ADFs are in use [Koza 1994a]. One example problem in [Koza 1994b] showed a 283-fold

improvement (decrease) in the computational burden expended to solve the problem when ADFs

were used versus solving the problem without them.

The general concept embodied in the ADF construct was later extended to other elements and

ideas from traditional software engineering, including Automatically Defined Loops (ADLs),

Automatically Defined Macros (ADMs), Automatically Defined Storage (ADSs), Automatically

Defined Recursion (ADRs), Automatically Defined Iterations (ADIs), and Automatically

Defined Copies (ADCs) [Koza et al. 1999]. However, these features do not appear to have

attained the same level of interest and attention in the literature as ADFs did.

Another mechanism to reuse parts of a genome tree has been proposed called Module

Acquisition (MA). It is conceptually similar to ADFs though it bears significant structural and

implementation differences. It operates on the GP population of individuals as a new genetic

operator where it occasionally selects an individual at random, then selects some random subtree

within that genome. The chosen subtree is then cut out and placed into a central ―module

library‖ as a packaged module available for reuse globally among other members of the

population, and a reference to the new module is inserted back into the original individual in

23

place of the excised code subtree [Kinnear 1994]. Curiously however, this mechanism

performed much worse than ADFs and even the original, basic GP when tested on a particular

problem in [Kinnear 1994].

The Module Acquisition method is of particular interest here because it bears a close

resemblance to the method of technology or invention encapsulation and reuse seen in [Arthur

and Polak 2006] and used in this thesis. However, a significant difference is that Module

Acquisition selects its code for module contents at random from the population, and thus adds

much content to the module library that may be of little value, while Arthur and Polak add only

fully successful designs to their technology library (as discussed below).

Overall, genetic programming attempts to re-invent the evolutionary process to obtain better

design solutions to a problem, whereas early GA work simply pursued mimicking of biological

evolution. It seems appropriate to look wider than biological processes for innovation and

design as these processes clearly do not evolve simply by biological mechanisms. Differences

include artificial or human selection as opposed to natural selection, the potential for inheriting

and sharing newly invented traits, and many others. However, a complete model of the human

(and especially the normal group) invention process does not exist.

2.4: Innovation and Design

The notion of building blocks is of significant interest for consideration of processes in the

realm of technological innovation. Recent works have begun to consider the connections

between ―computational innovation‖ (using tools and methods such as genetic algorithms or

genetic programming) and systems engineering, organizational design, technology transfer,

creativity, and the inventive process. In this sense, genetic engines (GAs and GP) can be viewed

as models of innovation. (See Epilogue in [Goldberg 2002].)

An offshoot of this is an idea by Goldberg for genetic engines described as competent: those

that can solve hard problems quickly, reliably, and accurately [Goldberg 2002; Sastry and

Goldberg 2003]. To that end, researchers are beginning to devise enhanced methods and

techniques in second-generation genetic engines to more effectively mirror the processes of

invention, design, creativity, and innovation seen in real-world human practices. These extended

methods may provide significant improvements in the capabilities and performance of genetic

24

engines as tools for innovation and design within engineering practice. In addition, study of the

effects often observed within genetic engine runs—taken as models of innovation—may provide

unique insights to help us better understand the analogous properties and issues encountered in

engineering and management problems [Goldberg 2002].

Another framework of technological innovation has been put forth in [Arthur 2007] and

further expanded in [Arthur 2009]. In this model, technological design and innovation is an

iterative, hierarchical, and recursive process whereby technologies are formed out of simpler

component technologies. This is closely aligned to the notions of systems of systems,

subsystems, assemblies, modules, parts, and similar terms that are commonplace within the field

of systems engineering. Additionally, this idea of recursive construction of complex

technologies from combinations of simpler ones strongly echoes the idea of building blocks

discussed earlier, particularly in the context of genetic engines.

In the Arthur framework, a distinction is made between the development of radical new

technologies and incremental improvement of existing technologies, with focus placed on the

former. Invention is described as a process of recursive problem solving. Technologies arise

through some structure or process whereby a phenomenon is exploited through a principle to

harness an effect as a means to fulfill a purpose. Novel technologies may be created through one

of two motivations: a needs-driven process where some opportunity or necessity exists that must

be met, or through a phenomenon-driven process where some observation or discovery leads to

or suggests the use of a new principle. In the course of developing a new technology, challenges

may be encountered with its constituent sub-technologies, each of which must be solved through

this same process, thereby giving rise to the iterative and recursive feature. Furthermore, once a

new technology is created, it may suddenly enable the completion of other larger technologies

using itself as a component, often leading to bursts or waves of inventions that Schumpeter

observed in economics [Arthur 2007; Arthur 2009].

Interestingly, the invention and design process need not involve humans. Significant

literature (e.g., [Koza et al. 1999; Koza et al. 2003]) exists using genetic programming to

autonomously design analog circuits, including various filters, amplifiers, and controllers. More

recent work has produced designs in various domains including analog circuitry, antennas,

biological metabolic pathways that are deemed ―human-competitive,‖ along with several

patented or patentable inventions [Koza et al. 2003]. In fact, Koza states: ―Genetic

25

programming is an automated invention machine‖ [Koza et al. 2003, pg. 530]. Other approaches

and algorithms have also been used to demonstrate automated invention of technologies,

including a random search construction process described below.

2.5: Digital Circuit Construction

Understanding the exact nature by which innovations and new technologies arise, and older

ones fail, has been of interest to both academics and practitioners alike for a long time. A series

of experiments contained in [Arthur and Polak 2006] ties together several of the concepts

discussed above, including building blocks and the recursive ―stepping stone‖ manner of

technological construction. This work was carried out by designing a virtual technology

invention program driven by a blind random search algorithm. The technologies to be created

are digital circuits, such as various adders and logic functions. Digital circuits were chosen

because they are readily analyzable from a pure computation perspective, and because digital

circuits can be readily modularized into parts and subsystems, just as is commonly seen in

physical systems and technologies. Therefore, digital circuits serve as a proxy for real-world

systems and technologies, and by studying the effects occurring within this model, the potential

exists to gain important insights about the innovation process.

The Arthur and Polak simulation model uses a simple, blind random search algorithm (i.e.,

one that does not possess any particular domain knowledge or any self-enhancement ability)

which was initialized with a primitive circuit component, such as a NAND gate. A list of

technologies or ―goals‖ for which invention is sought is input into the algorithm. The engine

then attempts to ―invent‖ technologies specified in the goal list by randomly hooking together

components from its primitive set and its accumulated library of earlier inventions. As the

algorithm runs, once it discovers a design solution that perfectly satisfies a goal technology, it is

added to an accumulated list of inventions, thus forming a module which may then be reused in

future designs [Arthur and Polak 2006].

This paper found that complex circuits, such as an 8-bit adder, could be constructed if

simpler, intermediate technologies were first invented by the algorithm and then reused as

modular components. Conversely, if modularity and reuse were not permitted, the algorithm

failed to create complex technologies. This finding provides strong empirical evidence in

26

support of the building block paradigm discussed earlier. More broadly, it provides insight into

the system design and innovation process, and how these effects relate to economic influences,

such as creative destruction [Arthur and Polak 2006].

One of the goals of this thesis is to explore whether these algorithms are consistent with

empirically observed exponential growth rates of technological progress. This thesis extends the

work in [Arthur and Polak 2006] by using the same simulation platform used in that study, along

with a genetic programming platform, as the two experimentation approaches performed in this

work.

2.6: Engineering Process Models

An important consideration when using algorithmic models for simulation of innovation and

design is whether the model is sufficiently detailed and robust to capture the core dynamics

observed in human-led processes, such as the acceleration of the growth rate of technological

progress. One of the key interests in this thesis is whether the results produced by the models

tested in this research agree with the empirical evidence from real-world systems and processes.

Innovation and design processes within engineering practice today can be viewed as

predominantly human social processes. Although various technological tools are available and

frequently used throughout the design process to aid the engineer, the process itself remains

chiefly driven by human engineers. For most modern product development initiatives of any

practical significance, this design effort is likely to involve more than a single individual.

Consequently, these engineering efforts involve teams of people, and with this comes the many

nuances and considerations surrounding team dynamics and organizational management.

Given this central importance of human socio-technical interaction, some studies have

attempted to capture the essence of the human-led design process. One such model is the Pugh

Controlled Convergence method (PuCC). This relatively simple model describes the design

concept phase (after specification development but prior to detailed design work) of the

engineering lifecycle involving an engineering team. It provides a somewhat structured and

disciplined process of narrowing down a set of design concepts under consideration by

iteratively reviewing and comparing strengths and weaknesses of competing designs in a matrix

format. As the process ensues, information is gathered, learned, and shared among team

27

members. This may lead to changes within the repertoire of design concepts under

consideration, such as enhancing some aspects of a given design to create a new, stronger

candidate solution, weeding out inferior (―dominated‖) designs, or pursuing additional

information to further improve decision making. This cycle is then repeated and the result is a

whittling down of the set of remaining designs worth further consideration. After a few

iterations, the design choice should converge to a superior design candidate agreeable to all team

members [Frey et al. 2008].

The rates of technological progress have been studied over relatively long periods of time

(100 to 150 years) in domains such as information technology (in [Koh and Magee 2006]) and

energy (in [Koh and Magee 2008]). These studies found persistent rates of exponential

improvement across the various technologies and functional performance metrics tested.

Progress within information technology grew at a significantly faster rate than in energy. This

exponential rate of growth is hypothesized to be the result of humans building new technologies

from cumulative prior knowledge—a theme consistent with the building block idea discussed

earlier [Koh and Magee 2008].

One of the objectives in this thesis was to see whether the algorithmic simulation models

were able to produce similar effects of knowledge accumulation and reuse so as to enable

exponential rates of technological improvement during the simulation runs.

28

[This Page Intentionally Left Blank]

29

Chapter 3: Methodology

This chapter describes the research and experiments performed for this thesis. This research

focused primarily on comparing two methods of algorithmic simulation of digital circuit

construction. These circuits are intended as models of technologies and as a representative proxy

for understanding effects and behaviors observed in the system design and innovation processes.

3.1: Research Approach

This thesis focused on testing the blind random search algorithm and the genetic

programming algorithm based on beliefs stated in [Goldberg 1989] and [Eiben and Smith 2007]

that the genetic programming algorithm is generally a more efficient and effective tool than a

blind random search algorithm. Therefore, this thesis tested the hypothesis that a GP engine

would successfully create new complex technologies—digital circuits—from simpler building

block components discovered earlier during the algorithm run, and that this effect would occur

faster and/or more efficiently than when using a blind random search algorithm.

The choice of digital circuits as the medium of study was made because digital circuits are

relatively straightforward to model and evaluate programmatically, and because this allowed the

work in this thesis to extend and build upon prior results found in [Arthur and Polak 2006].

The blind random search model used in this thesis (the ―Arthur and Polak model‖) was

responsible for generating the results presented in [Arthur and Polak 2006], [Arthur 2007] and in

[Arthur 2009]. Those publications collectively establish the following hypotheses: technology

is autopietic (meaning self-creating); invention is a process of recursive problem solving;

technologies are formed through combinations of earlier designs (building blocks); and invention

and innovation result as a process of linking human needs and goals with some phenomenon or

effect where the role of technology is to harness that effect.

Another aspect of technology innovation which this thesis attempted to test is the commonly

observed rate of exponential progression seen in real-world technologies (e.g., Moore’s Law).

Numerous runs were conducted on both the Arthur and Polak model and the genetic

programming model, which are described below, with various parameter settings and

30

configurations to ascertain whether evolved technologies appeared to be developing at an

increasing rate of progression. These results are discussed in Chapter 4.

3.2: Algorithms

This thesis tested and compared two types of algorithms from the literature, each powering a

model of the system design and technology innovation processes. The algorithms are described

in detail below.

Both algorithms were given the same task: to design and construct complex digital circuit

technologies starting from only rudimentary components. The desired designs are specified in

advance by the experimenter as ―goals‖ for each algorithm to work towards. The list of goals

used in this research is the same for both algorithms, and is shown in Table 3.1.

 Table 3.1: List of Technology Goals for Digital Circuit Construction (adapted from

[Arthur and Polak 2006])

Goal Technology Identifier Inputs (n) Outputs (m) Description

GOAL 1 (not-) 1 1 Negation

GOAL 2 (imply-) 2 1 Implication

GOAL 3 (and-) 2 1 Conjunction of 2 inputs

GOAL 4 (or-) 2 1 Disjunction of 2 inputs

GOAL 5 (xor-) 2 1 Exclusive Or of 2 inputs

GOAL 6 (equiv-) 2 1 Equality of 2 inputs

GOAL 7 (and3-) 3 1 Conjunction of 3 inputs

GOAL 8 (1-bit-adder-) 2 2 Addition of 1-bit inputs

GOAL 9 (full-adder-) 3 2 Addition of 2 inputs and carry

GOAL 10 (2-bit-adder-) 4 3 Addition of 2-bit inputs

GOAL 11 (3-bit-adder-) 6 4 Addition of 3-bit inputs

GOAL 12 (4-bit-adder-) 8 5 Addition of 4-bit inputs

GOAL 13 (5-bit-adder-) 10 6 Addition of 5-bit inputs

GOAL 14 (6-bit-adder-) 12 7 Addition of 6-bit inputs

GOAL 15 (7-bit-adder-) 14 8 Addition of 7-bit inputs

GOAL 16 (8-bit-adder-) 16 9 Addition of 8-bit inputs

31

3.2.1: Blind Random Search

Testing of the blind random search method used the same algorithm and code
1
 used to

generate the results in [Arthur and Polak 2006]. This model is programmed in the Common Lisp

programming language. It represents both its goals and the technology designs (circuits) being

evolved in the form of Binary Decision Diagrams (BDDs). BDDs provide a compact, efficient,

unique, and canonical method of representing any Boolean expression [Andersen 1998]. This

representation also makes possible a measurement of similarity between any two circuit designs

[Arthur and Polak 2006]. This feature allows the algorithm to easily test whether a given

candidate design solution correctly implements a desired goal, and to measure the degree of

―correctness‖ against such a goal. This measure is translated into a fitness score for each

candidate circuit design.

The blind random search algorithm is so named because it possesses no particular knowledge

about the problem domain in which it operates, and it does not evolve specific intelligence or

adaptation to guide or enhance its construction process. It is initialized with a set of one or more

primitives, the simple building block elements from which all other technologies can be

constructed. For the experiments performed in this thesis, the set of primitives included the

NAND logic function and the Boolean constants for TRUE and FALSE . The algorithm then

constructs a new circuit design by randomly choosing a number of components from this set of

primitive building blocks as well as from a growing library of already-solved design goals, and

then randomly connects them to form a new design as an invention to be considered against the

remaining list of unsolved goals. As the algorithm execution proceeds, it may eventually

discover a correct solution for a goal, at which point that design is encapsulated as a new

technology and added to the library of primitive components available for use in future design

construction, thus enabling reuse of prior work. This process of encapsulation and reuse enables

the algorithm to succeed at designing complex circuits through recursive construction of simpler

modules and subassemblies, even though it is a blind random search methodology.

1
 The code was graciously shared with this author by W. Brian Arthur and Wolfgang Polak.

32

3.2.2: Genetic Programming

Testing of the genetic programming method employed the Evolutionary Computation in Java

(―ECJ‖) package, version 19.
2
 ECJ is a free, flexible, open-source platform written in the Java

programming language and developed by Sean Luke et al. for performing evolutionary

computation research. It supports genetic programming (GP) amongst many other variations in

the broader class of evolutionary algorithms, such as evolutionary strategies, genetic algorithms,

and particle swarms. During testing, it was found to be full-featured and robust in this author’s

opinion.

The ECJ GP framework contains nearly unlimited flexibility to extend or alter various parts

of the framework, along with numerous configuration parameters and settings. Many of these

are pre-configured with default values popularized in [Koza 1992], and those settings were

generally retained for the experiments conducted in this thesis. Anecdotal evidence from various

sources in the literature suggests that the various configuration parameters and settings used in

GP can have dramatic influence over the outcome of the simulations, so the results found in the

research work for this thesis may be somewhat situation-specific. The sheer number of

parameters and their combinatorial interactions made testing for all of these sensitivities

infeasible, although some major ones were varied without significant impact on the results

reported herein.

Initial efforts with GP for this thesis attempted to represent circuit design goals and candidate

design solutions (individuals) in the population as vectors of BDDs, just as the Arthur and Polak

model does. However, significant difficulties in implementation and irregularities of behavior

necessitated the abandonment of this approach. Instead, both goals and design solutions encoded

within individuals’ genomes were represented in the form of Boolean logic truth tables. This

representation has notable drawbacks and undoubtedly impacted the results produced by the GP

model execution, as discussed in Chapter 4.

The primitive set given to the GP for this research was similar to the setup used by the Arthur

and Polak model: a NAND function, the Boolean TRUE and FALSE constants, and two

variables A and B . The model was executed with a population size of 1000 individuals over 250

2
 ECJ source code is freely available at: http://cs.gmu.edu/~eclab/projects/ecj/

http://cs.gmu.edu/~eclab/projects/ecj/

33

generations to mirror (as closely as practicable) the parameters used for the Arthur and Polak

model, which was 250,000 single-trial iterations.

The fitness function for individuals was designed to measure the similarity of the individual’s

truth table to the truth table of a given design goal. The fitness score represented the proportion

of ―correct‖ entries in the individual’s truth table vector when matched against the truth table

vector of one or more design goals. The number of design goals against which to evaluate an

individual was used as a control parameter, and various settings were tested; see Figure 4.12 for

results. A fitness score of zero would be produced with no matching truth table values, while a

score of one would indicate a perfect match of the design goal. Thus, discrete gradations were

possible for partial matches. This approach is reflective of the ―Hamming distance‖ measure

described in [Mitchell 1998].

The truth table necessary for fitness scoring of a given individual is derived dynamically by

evaluating the individual’s genome tree. Refer to Figure 2.3 for a visual representation. The

management of the genome tree is handled automatically by the ECJ GP framework, including

construction, crossover, mutation, type safety, evaluation, etc. The ECJ engine evaluates the

genome tree by locating the deepest function node (the XOR function shown in Figure 2.3) and

then processing the inputs to that node via the specified logic function to return a resultant truth

table for that node, then recursively propagating results upward through the tree until the root

node is reached. The root node contains the final truth table representation of that individual’s

genome, which is then evaluated against the design goals to produce a fitness score.

34

[This Page Intentionally Left Blank]

35

Chapter 4: Results

This chapter presents the findings of the experiments performed in evolving complex digital

circuits using two different algorithms—the Arthur and Polak blind random search model, and

the ECJ genetic programming model. Attributes of the models and an explanation of the

experimental setup are discussed in Chapter 3.

4.1: Overview

The initial premise at the start of this research was that the genetic programming model

would be able to design complex technologies in the form of digital circuits by using building

blocks from earlier solutions to construct ever more sophisticated products, just as the Arthur and

Polack blind random search model successfully does, but that GP would do so more efficiently,

more quickly, and more powerfully (and also possibly show exponential progress in capability

over time). This process of recursively constructing technologies is said to mimic the human

innovation process.

The research performed for this thesis was able to validate the work done by the Arthur and

Polak model. However, the GP engine did not perform as expected in these experiments. In the

particular implementation tested in this thesis, GP did not succeed in reliably constructing even

relatively simple digital circuits as technology goals. The sections below discuss in depth each

of the models and the specific results found. For GP, several suspected contributing factors in

the failure are offered, and Chapter 5 presents some possible features that may help overcome the

limits encountered in this work.

4.2: Blind Random Search

The blind random search model was executed with minimal modifications from its original

form, with minor changes being made mostly to facilitate data capture and study of results. The

model operated successfully and was consistently able to create complex circuit designs, thus

validating the results reported in [Arthur and Polak 2006]. Experiments were run with many

different variations of the control parameters and settings contained within the model to enable

36

better understanding of its behavior and the effects observed in the generated output. A selection

of progress profiles is presented here with a brief discussion of each. Note that due to the

stochastic nature of the algorithm, the results will differ from one execution to another.

Figure 4.1 shows the results from a typical run of the algorithm. The colored lines represent

the fitness progression of each of the circuit technologies as they arise from initial invention and

evolve toward completion. The list of goals is arranged in a deliberate order from simple designs

to complex ones (as described in [Arthur and Polak 2006]) so that more complex designs can

benefit from solutions to simpler goals found earlier in the simulation run.

Figure 4.1: Results of a Typical Run of Arthur and Polak Random Model

We observe recurring patterns in the data produced. Simpler goals are successfully solved

early in the simulation run, and these successes pave the way for more complex and far more

difficult goals to begin forming. Fitness values for a particular goal technology begin when a

random construction of components (primitive set values plus earlier solved goals) reaches a

fitness score (a measure of correctness against the prescribed goal) of at least 50%. The fitness

score of that technology then progresses on a generally upwards trajectory towards completion

with a fitness score of 100% when a perfect design is located. On occasion, the fitness score of

37

the design may dip downwards as the random nature of the model may permit a worse-scoring

design to be selected. This can serve as a means of escaping entrapment in localized optima

within the search space, particularly if such a lower-scoring design is ―cheaper,‖ meaning that it

contains fewer constituent components. The algorithm does consider ―cost‖ as a secondary

objective in the course of circuit design.

Another recurring pattern observed in the data is that progress on a given circuit design is

often rapid at first when the design first appears, but then tends to slow and often undergoes long

flat periods of no progression. Similarly, the overall progress of the algorithm as a whole when

combining the progress curves of all the goals exhibits a clear slowdown in the rate of progress

as the run proceeds. Thus, this data does not agree with the empirical fact that technologies

evolve and improve at an exponential (or at least an increasing) rate as is observed in real-world

technological progress. This suggests that the model misses some crucial element of human-led

innovation, such as a learning effect. Note that this finding does not undermine Arthur’s

hypothesis or results, as the model was not developed to test this particular aspect of innovation,

only that complex technologies can be formed out of simpler modules without human

intervention.

Below, Figures 4.2–4.4 present various trials of the algorithm with its default settings.

Multiple trials are presented to illustrate the differing outcomes resulting from the stochastic

variation within the model. Figures 4.2 and 4.3 use event-based sampling intervals (i.e., a data

snapshot was taken each time the algorithm made some improvement in any circuit design),

while the remainder of the figures in this section use uniform interval performance snapshots.

38

Figure 4.2: Trial 1 – Typical Run of Arthur and Polak Random Model with Event-Based Performance Intervals

39

Figure 4.3: Trial 2 – Typical Run of Arthur and Polak Random Model with Event-Based Performance Intervals

40

Figure 4.4: Trial 3 – Typical Run of Arthur and Polak Random Model with Uniform Performance Intervals

41

Other trials of the algorithm were conducted by varying certain control parameter settings to

gauge the impact on behavior and performance. Figure 4.5 shows a run of the algorithm with the

constraint on maximum concurrent working goals removed. By default, the algorithm normally

only processes the next three unsolved goals (from Table 3.1) at a time, and the completion of

one goal enables the commencement of work on another remaining unsolved goal. This

parameter has the effect of channeling the algorithm’s focus to a few narrow problems beginning

with simpler technologies and working toward more complex ones, rather than permitting a

concurrent broad-based search among all unsolved goals. As this figure shows, removing this

channeling constraint had a notable deleterious impact on the algorithm’s performance.

Although goal technologies were clearly started much earlier in the simulation than in the prior

trials, they tended to take much longer to complete, with many of them never finishing

successfully within the allotted run time. It seems that removing the constraint had the effect of

dispersing the algorithm’s focus across multiple technologies simultaneously, rather than forcing

it to use earlier solutions as building blocks toward more complex designs.

Figure 4.6 shows the performance of the algorithm when frequently sweeping all unused

interim technologies from its library. By default, the algorithm is able to construct intermediate

designs that have some degree of potential usefulness and add them to a growing library of

designs for reuse as components or modules in other designs (this is in addition to its library of

fully-solved goals, which similarly become available for reuse). Some of these designs may not

have practical use, and others may become obsolete as the run progresses and better designs are

discovered. Thus, by default, the model is programmed to periodically sweep out unused parts to

maintain a reasonable working set size. In this experiment, the sweep parameter was altered to

frequently remove unused designs. This had the effect of deleting many new designs before they

had a chance to be incorporated into other technologies, and the resulting performance of the run

was much worse than the default configuration. Figure 4.7 extends this notion by disabling this

library feature of temporary designs, thus forcing the algorithm to construct solutions using only

the set of primitives and its earlier solved goals. This change had a drastic negative impact on

performance and the model was not able to fully solve even the relatively simple design goals.

These observations reinforce Arthur’s findings that the algorithm succeeds only by using

building blocks of simpler technologies to generate more complex designs.

42

Figure 4.5: Trial 4 – Typical Run of Arthur and Polak Random Model with Maximum Concurrent Working Goals

Constraint Removed

43

Figure 4.6: Trial 5 – Typical Run of Arthur and Polak Random Model with Frequent Removal of Unused Technologies

44

Figure 4.7: Trial 6 – Typical Run of Arthur and Polak Random Model Using Only Prior Solved Goals as Available

Technology Library

45

Figure 4.8 shows the effect of changing the ―max complexity‖ parameter within the

algorithm. This limit controls how many components may be selected for assembly into a

potential design candidate. The default limit is 12 components, and for this test it was doubled to

24. This had a positive impact on the algorithm run and this trial produced the best results of any

test. Technology goals were solved earlier in general and some of the most complex goals were

completely solved in this trial that were never completely solved in other experiments. Also of

interest here is the observation that fitness score progress on the technologies tended to have

much less random fluctuation than in earlier trials, or in other words, the scores tended to

increase monotonically or have plateau periods with occasional drops instead of the jitter

observed in other runs. However, as Figure 4.9 shows, this particular parameter is apparently

subject to some optimality condition as drastically increasing the limit to 100 resulted in an

unexpected degradation of performance.

Another matter of interest in this thesis was the rate of advancement of technological

progress and whether, for example, the model would show an exponential (or at least an

increasing) rate of improvement in the virtual technologies being developed. In the real world,

this is typically measured using some functional performance metric, such as cost, size, weight,

speed, or some other measurable parameter of interest. However, virtual digital circuits as a

technology proxy have the disadvantage of bearing no obvious metric as a measure of value.

Intuition suggests that an 8-bit adder (Goal 16) is more valuable than a 4-bit adder (Goal 12), for

instance, but the degree of additional value provided by the more complex technology is not

clear. Two potential concepts for value measurement were considered as possible metrics, and

both are related to the size of the circuit as measured by the number of output bits it computes.

The scaling values considered were: Fitness * N , and Fitness * 2N (where N is

the number of output bits of the circuit) as shown in Figures 4.10 and 4.11. Data from Trial 3

was used here as a representative sample to apply scaling. This did not, however, change the

fundamental relationships among the technology progressions.

In these charts, progress of the innovation process is being achieved at a slowing rate, not at

an increasing rate as might have been expected. Part of the likely problem with this metric is

that fitness, as computed in this study, is fundamentally a measure of correctness of the design

rather than the capability or value of the design. A more appropriate measure of the true effects

of innovation occurring within this model is still needed. However, it also likely that the models

46

are not strong enough replicas of engineering invention over time to fully describe the empirical

world. This motivates the search for a stronger model.

47

Figure 4.8: Trial 7 – Typical Run of Arthur and Polak Random Model Using Doubled “Max Complexity” Parameter

48

Figure 4.9: Trial 8 – Typical Run of Arthur and Polak Random Model Using “Max Complexity” Parameter = 100

49

Figure 4.10: Trial 3 Data Scaled by Circuit Output Size

50

Figure 4.11: Trial 3 Data Scaled by 2
N
 * Circuit Output Size

51

4.3: Genetic Programming

The ECJ genetic programming framework is, in its default state, able to handle the standard

genetic programming functions and operators. The only modification required to the code is to

define the problem at hand (in this case, digital circuits) and to customize the GP engine to the

problem-specific parameters as needed. See Section 3.2.2 for a discussion of the ECJ

framework.

Results of several executions with different parameters are shown in Figure 4.12. The data is

not directly comparable to the early results from the Arthur and Polak model due to core

differences in the algorithms, since GP operates on a population of solutions simultaneously

rather than a single point at a time. Thus, the fitness curves plotted here show the average of all

fitness scores across the population at a given generation interval within the simulation run.

The four curves plotted reflect differing methodologies used to determine fitness scores and

goal management. As discussed in Section 3.2.2, this research utilized truth table matching as

the scoring mechanism for determining fitness values of individuals within the GP population.

Initially, the scoring algorithm required that the length of the truth table for a given individual

exactly match the length of the truth table of the goal technology before further evaluating the

individual elements within the truth table for correctness. This constraint appeared to make it

very difficult for the algorithm to find good-scoring designs. The length constraint was then

removed in an attempt to help the algorithm find high-scoring designs (albeit designs that would

be potentially incorrect due to their excess functionality). As the chart shows, this attempt

slightly improved performance, but much less than expected, indicating that the length constraint

was not the primary difficulty the algorithm was facing.

Another strategy that was tested was to control the number of goals that could be pursued

simultaneously by the algorithm. As discussed in Section 4.2, the Arthur and Polak model

restricts the number of goals that may be pursued at once, and that in testing, removing this

constraint led to a decrease in performance. The GP engine was initially permitted to process all

goals at once. Other experiments were then performed where only a single goal could be active

at one time, such that a particular goal had to be perfectly solved before proceeding to the next

goal. As Figure 4.12 shows, this generally worsened performance rather than improving it.

52

Figure 4.12: Four Runs of the Genetic Programming Model with Varying Fitness Evaluation Parameters

53

The use of genetic programming in this problem domain proved to be highly challenging,

and ultimately, disappointing. The original hypothesis at the outset of this thesis was that GP

would be able to construct complex technologies (in the form of digital circuits) just as the

Arthur and Polak model does, but to do so much faster and more efficiently, perhaps even

attaining an exponential rate of progress. That did not occur in the experiments for this thesis

despite many attempts. In this work, the GP engine failed to generate complex circuit

technologies, and did not even successfully design the mid-level ―full-adder‖ goal (see

Table 3.1). In fact, it rarely succeeded in creating more than a few of the most simplistic goal

technologies, and even those were suspected to be the result of random chance rather than from

deliberate operation of the algorithm. How could GP fail so spectacularly in this endeavor when

several sources in the literature (see Chapter 2) indicated that GP should function more

efficiently than the blind random search model, and what can be learned from this unexpected

result? The remainder of this section offers several suspected causes for the failures observed

based on insights gained from working with the GP framework.

 Fitness function not smooth: The failure of the GP engine to successfully invent digital

circuits in this study is somewhat surprising given that significant work exists in the

literature (see Chapter 2) with success reported in using GP to devise analog circuits.

However, deeper consideration reveals an important difference between these two

seemingly related problem domains. Analog circuits have the likely property of being

―continuous‖ within their design space. In other words, a minute change to a component

within the circuit is likely to result in a minute change in behavior, and therefore a small

change to the design’s fitness score. In contrast, digital circuits are, by definition,

discrete and discontinuous, so that a small change in the design may result in either a

drastic change or no change at all in the behavior of the design, and therefore a

corresponding effect is induced in the fitness score. Thus, analog circuits are suspected

to have ―well-behaved‖ and relatively smooth fitness landscapes whereas digital circuits

do not. Since GP works by repeatedly amplifying small superiorities within the

population, irregularities in the digital circuit fitness landscape could cause difficulties for

the algorithm. This is potentially a significant challenge in the use of GP as a design tool

as many real-world problems likely have non-continuous aspects and/or poorly-behaved

fitness features.

54

 Problem/goals not stationary: Some evidence in the literature (e.g., [Grefenstette 1992;

Yang 2003]) indicates that having a non-stationary problem or fitness landscape poses a

serious challenge to genetic engines. In this context, stationarity refers to whether or not

the problem and its associated fitness landscape remain static during the course of the

algorithm run. In the digital circuits problem used in this thesis, the problem is decidedly

non-stationary, particularly when using the simultaneous active goals constraint. The

implication is that as the population evolves toward the current goal, and once that goal is

correctly solved, the focus shifts to another goal which may have very different

characteristics, implying that the population at large is suddenly highly unfit for the new

challenge.

 No effective reuse of solved goals: In the Arthur and Polak model, once a circuit design

goal is perfectly solved, the design is added to the set of primitives—a small library of

building block elements where it is available for explicit reuse as a module in

constructing another design. But in the classic genetic programming framework used for

this research, no such obvious mechanism exists. Instead, the design logic of a

successfully-solved circuit goal exists within the tree-based genome of some individual in

the population. It is thus available for reuse in building other designs as the genetic

crossover operator mixes chromosome trees from the population to create new

individuals and thus new designs. However, this exposes an important distinction

between GP and the blind random search model. In the GP framework, the successful

design most likely exists only inside a single individual within the large population. In

order for the design to be reused, that individual would have to be selected as a parent for

the new offspring design—a probabilistically low chance due simply to the size of the

population. Furthermore, even if the successful individual is chosen as a parent during

crossover, the only way to reuse the design encoded within its genome tree is for that

individual’s entire tree to be selected and grafted into the new individual. Since the

splicing point where the crossover operator mixes genomes from the two parents can be

chosen as any node within the tree (and it may be a large tree), this also results in a low

probability of selecting the root node for crossover. Finally, both of these steps must

occur to successfully reuse the solved goal design, so the product of two low-probability

55

events results in a very, very low chance of success. A discussion contained in [Langdon

and Poli 2002] corroborates this explanation.

 Restrictive circuit representation: As discussed earlier, this work with the GP engine

originally attempted to represent circuit designs with Binary Decision Diagrams (BDDs),

just as the Arthur and Polak model does, but implementation issues forced the

abandonment of that approach in favor of a more constrained representation using truth

tables. Admittedly, the BDD representation is superior in many ways, not the least of

which is that it allows for multiple designs to achieve the same goal. There are many

possible designs of a given circuit which deliver equivalent behavior, thus there is

generally more than one solution to these problems. The truth table representation used

here however forces the expression of a very specific design. This had the effect of

sharply limiting the freedom available to the GP algorithm, and this inevitably made the

problem much harder to solve.

 Bloat: The issue of ―bloat‖ was discussed in Section 2.3. It is often a serious problem

within GP runs, and a significant amount of research has gone into controlling it or

managing it. Bloat is the tendency of GP’s tree genomes to grow in size exponentially as

the run proceeds—a side effect of the unconstrained flexibility of the tree-based genome

design. Once bloat begins to set in, it can quickly bring further progress of the algorithm

to a halt. This was certainly evidenced in the experiments for this thesis. Often, after

even the first few generations of a run, the resulting truth tables of most individuals in the

population had become so large that there was no effective hope of correctly encoding

even the simple unsolved goals remaining.

 Insufficient population size: A fair amount of research exists on the effect of

population size for GP runs. In [Koza 1992], several examples of Boolean parity and

multiplexer (a class of problems related to the digital circuit design problem) studies are

presented which examine the minimum population size necessary to successfully find the

problem solution with a certain probability. This data generally suggests that population

sizes of several hundred thousand to several million individuals may be required to solve

this class of problems. For the analog circuit design work that Koza has done, population

56

sizes of a half-million were often used, with more recent work in [Koza et al. 2003] using

populations of 10 million or more spread across hundreds or thousands of computers.

The research in this thesis used a population size of 1000—paltry by comparison. Larger

sizes were attempted but became infeasible on the computing equipment available.

In addition to each of these problems described above, the issue is further complicated by

complex interactions between the factors listed. For instance, the occurrence of bloat will drive

up system memory consumption which in turn will constrain the feasible population size that can

be run, and the population size impacts the probabilities of successful goal designs being selected

as parents of new designs, and so on. Thus, future experimenters are cautioned that overcoming

one or two of these hurdles in isolation may not bring the expected benefits, and could even have

unforeseen negative consequences due to multiple interactions.

57

Chapter 5: Conclusion

This chapter presents a brief summary of the findings of this thesis. The genetic

programming approach used here did not outperform the blind random search method as had

been expected. Several suggested improvements are offered that may enable the genetic

programming model to successfully invent complex technologies in the form of digital circuits in

future work within this field. Finally, some concluding remarks are presented.

5.1: Future Work

Although the genetic programming engine used in this thesis ultimately failed to function as

expected, this outcome still provides valuable insights. From an examination of the results of the

experiments, several suspected causes and contributing factors to that failure were provided in

Section 4.3. Building upon that knowledge, several improvements can be suggested that might

enable a better outcome in future work with the GP tools.

First, additional efforts with this model should almost certainly switch to Binary Decision

Diagram (BDD) representations of the circuit designs, rather than the truth table incarnation used

in this thesis. This would provide the algorithm the ability to create any number of designs that

correctly achieve the desired goal, rather than attempting to discover a prescribed, specific

version (which is a ―needle-in-the-haystack‖ problem). The BDD implementation has additional

computational benefits as well, and likely presents a much more compact representation of the

solution, thus sharply lowering system memory requirements and making equality computations

faster.

Second, one or more bloat control mechanisms will likely be needed. Various proposals and

means for accomplishing this are present in the literature, such as in [Luke and Panait 2004]. A

few methods include: limiting the size or depth of the genome trees to a specified level;

modifying the behavior of one or more of the genetic operators (such as crossover); penalizing

the fitness scores of large genomes; and altering the generation of trees during the initialization

process.

Third, a larger population size is needed. Some evidence in the literature suggests that the

size used in this thesis is but a fraction of what is really necessary for this class of problems.

58

This potentially calls for larger and more powerful computing equipment. Even without

different equipment, using the compact BDD representation and controlling genome bloat would

have allowed larger population sizes to be run on the same equipment.

Fourth, and most strikingly, some mechanism must be found to achieve effective reuse of

solved goals as building blocks. This feature seems to be key in the success of Arthur’s work,

and the lack of it is likely the main root cause of the failure in the GP work performed for this

thesis. In fact, it is not at all surprising that no complex technologies emerged in this framework.

This key insight comes from [Arthur and Polak 2006]:

“We should therefore not expect complicated circuits to appear without

intermediate elements and without the simpler intermediate needs that

generate these.”

In some sense, the behavior observed in the GP experiments implicitly reinforces Arthur’s

findings. Some mechanism that replicates the ability to reuse designs both explicitly and with

high probability when building new designs would need to be constructed. Some form of Koza’s

Automatically Defined Functions (ADFs) or an improved variant of Module Acquisition might

be suitable.

5.2: Conclusion

Genetic programming has shown itself to be a powerful tool. [Koza et al. 2003] and [Poli,

Langdon, and McPhee 2008] report at least two patentable inventions created by GP. [Eiben and

Smith 2007] recounts a recent problem where a genetic engine was given the task of designing a

support boom on a spacecraft with the goal of maximum vibration dampening ability at

minimum weight. The resulting design was tested to be an astounding 20,000% better than a

conventional human-engineered configuration. Yet the output was a twisted, irregular, organic

shape that no professional engineer would likely think of or even consider. This occurs because

GP does not possess any preconceived notions or human cognitive biases about the form of the

solution. This ability offers the field of engineering an exciting new realm of opportunity in the

years ahead. As computing power grows ever larger, the potential to apply GP to far more

difficult and sophisticated engineering challenges increases immensely. Similarly, using these

algorithmic simulation models can improve understanding of the system design and innovation

59

processes at work in traditional efforts. With better understanding of both the technical and the

human elements involved, engineers are empowered to better manage, organize, and facilitate

the engineering practice. This thesis embodies the synergy of those two elements—engineering

and management—in the continuing pursuit of addressing the complex challenges faced by

society.

5.3: Challenges

Although genetic programming is a powerful tool, it is only a tool, not a replacement for

human experience, wisdom, and judgment. Although GP has demonstrated impressive successes

in bounded design domains (circuits, antennas, etc.), using it for a large systems engineering

project (a central concern of this author’s degree program) would be anything but

straightforward. In truth, it probably exceeds current engineering and managerial capabilities.

This tool should be viewed as a means of enhancing human capabilities rather than replacing

them. At their core, the design process and the engineering discipline are both fundamentally

socio-technical processes. To maximize effectiveness, there is a need to harness both the social

aspects and technical aspects, and then integrate these into a cohesive, concrete framework

through which innovation can be better understood and nurtured. As technical tools such as GP

are gradually mastered, the human and social aspect becomes the next frontier—and the next

challenge.

60

[This Page Intentionally Left Blank]

61

Bibliography

[Andersen 1998]

Andersen, H. R. (1998.) ―An Introduction to Binary Decision Diagrams.‖ In Lecture notes

for 49285, Advanced Algorithms, E97, Department of Information Technology, Technical

University of Denmark. Lyngby, Denmark.

[Arthur and Polak 2006]

Arthur, W. B. and Polak, W. (2006.) ―The Evolution of Technology within a Simple

Computer Model.‖ In Complexity, vol. 11, No. 5, pp. 23–31. Wiley Periodicals, Inc.

[Arthur 2007]

Arthur, W.B. (2007.) ―The Structure of Invention.‖ In Research Policy, 36, pp. 274–287.

Elsevier B.V.

[Arthur 2009]

Arthur, W.B. (2009.) The Nature of Technology: What It Is and How It Evolves. Free

Press.

[Banzhaf et al. 1998]

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998.) Genetic Programming –

An Introduction; On the Automatic Evolution of Computer Programs and Its Applications.

Morgan Kaufmann.

[Eiben and Smith 2007]

Eiben, A.E. and Smith, J.E. (2007.) Introduction to Evolutionary Computing.

Springer-Verlag.

[Frey et al. 2008]

Frey, D. D., Herder, P. M., Wijnia, Y., Subrahmanian, E., Katsikopoulos, K., and Clausing,

D. P. (2008.) ―The Pugh Controlled Convergence method: model-based evaluation and

implications for design theory.‖ In Research in Engineering Design, vol. 20, No. 1, pp. 41–

58. Springer-Verlag.

[Goldberg 1989]

Goldberg, D. (1989.) Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley.

[Goldberg 2002]

Goldberg, D. (2002.) The Design of Innovation: Lessons From and For Competent Genetic

Algorithms. Kluwer Academic.

[Grefenstette 1992]

Grefenstette, J. J. (1992.) ―Genetic algorithms for changing environments.‖ In Manner, R.

and Manderick, B., eds., Parallel Problem Solving from Nature, 2, pp. 137–144.

Amsterdam, North Holland.

62

[Hassan et al. 2005]

Hassan, R., Cohanim, B., de Weck, O., and Venter, G. (2005.) ―A Comparison of Particle

Swarm Optimization and the Genetic Algorithm.‖ In AIAA 2005-1897, 46
th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,

Austin, TX, April 2005.

[Holland 1975]

Holland, J. (1975.) Adaptation in Natural and Artificial Systems. University of Michigan

Press.

[Kinnear 1994]

Kinnear, Jr., K. E. (1994.) ―Alternatives in Automatic Function Definition: A Comparison

of Performance.‖ In Kinnear, Jr., K. E., ed., Advances in Genetic Programming, pp. 119–

141. MIT Press.

[Koh and Magee 2006]

Koh, H. and Magee, C. L. (2006.) ―A functional approach for studying technological

progress: Application to information technology.‖ In Technological Forecasting & Social

Change, vol. 73, pp. 1061–1083. Elsevier.

[Koh and Magee 2008]

Koh, H. and Magee, C. L. (2008.) ―A functional approach for studying technological

progress: Extension to energy technology.‖ In Technological Forecasting & Social Change,

vol. 75, pp. 735–758. Elsevier.

 [Koza et al. 1999]

Koza, J. R., Bennett III, F. H., Andre, D., and Keane, M. A. (1999.) Genetic

Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann.

[Koza et al. 2003]

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G. (2003.)

Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Springer.

[Koza 1992]

Koza, J. R. (1992.) Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press.

[Koza 1994a]

Koza, J. R. (1994.) Genetic Programming II: Automatic Discovery of Reusable Programs.

MIT Press.

[Koza 1994b]

Koza, J. R. (1994.) ―Scalable Learning in Genetic Programming using Automatic Function

Definition.‖ In Kinnear, Jr., K. E., ed., Advances in Genetic Programming, pp. 99–117.

MIT Press.

[Langdon and Poli 2002]

Langdon, W. B. and Poli, R. (2002.) Foundations of Genetic Programming. Springer-

Verlag.

63

[Luke and Panait 2004]

Luke, S., and Panait, L. (2004.) ―A Comparison of Bloat Control Methods for Genetic

Programming.‖ Evolutionary Computation.

[Luke 2000]

Luke, S. (2000.) Issues in Scaling Genetic Programming: Breeding Strategies, Tree

Generation, and Code Bloat. Ph.D. Dissertation, University of Maryland, College Park.

[Mitchell 1998]

Mitchell, M. (1998.) An Introduction to Genetic Algorithms. MIT Press.

[Poli, Langdon, and McPhee 2008]

Poli, R., Langdon, W. B., and McPhee, N. F. (2008.) A Field Guide to Genetic

Programming. Creative Commons.

[Sastry and Goldberg 2003]

Sastry, K., and Goldberg, D. E. (2003.) ―Probabilistic Model Building and Competent

Genetic Programming.‖ IlliGAL Report No. 2003013, Illinois Genetic Algorithms

Laboratory, University of Illinois at Urbana-Champaign.

[Sastry et al. 2003]

Sastry, K., O’Reilly, U.-M., Goldberg, D. E., and Hill, D. (2003.) ―Building-Block Supply

in Genetic Programming.‖ IlliGAL Report No. 2003012, Illinois Genetic Algorithms

Laboratory, University of Illinois at Urbana-Champaign.

[Sastry, O’Reilly, and Goldberg 2005]

Sastry, K., O’Reilly, U., and Goldberg, D. E. (2005.) ―Population Sizing for Genetic

Programming Based on Decision-Making.‖ In O’Reilly, U.-M., Yu, T., Riolo, R., and

Worzel, B., eds., Genetic Programming Theory and Practice II, pp. 49–65. Springer.

[Spall 2004]

Spall, J. (2004.) ―Stochastic Optimization.‖ In Gentle, J., Härdle, W., and Mori, Y., eds.,

Handbook of Computational Statistics, pp. 170–197. Springer, Heidelberg.

[Yang 2003]

Yang, S. (2003.) ―Non-Stationary Problem Optimization Using the Primal-Dual Genetic

Algorithm.‖ In Proceedings of the 2003 Congress on Evolutionary Computation (CEC

2003), vol. 3, pp. 2246–2253. IEEE.

