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Abstract 

This thesis explores the use of genetic programming as a tool in the system design and 

innovation process.  Digital circuits are used as a proxy for complex technological designs.  

Circuit construction is simulated through a computer algorithm which assembles circuit designs 

in an attempt to reach specified design goals.  Complex designs can be obtained by repeatedly 

combining simpler components, often called building blocks, which were created earlier in the 

algorithm’s progression.  This process is arguably a reflection of the traditional development 

path of systems engineering and technological innovation. 

The choice of algorithm used to guide this process is crucial.  This thesis considers two 

general types of algorithms—a blind random search method, and a genetic programming search 

method—with variations applied to each.  The research focused on comparing these algorithms 

in regard to:  1) the successful creation of multiple complex designs; 2) resources utilized in 

achieving a design of a given complexity; and 3) the inferred time dependence of technological 

improvement resulting from the process.  Also of interest was whether these algorithms would 

exhibit exponential rates of improvement of the virtual technologies being created, as is seen in 

real-world innovation.  The starting point was the hypothesis that the genetic programming 

approach might be superior to the random search method. 

The results found however that the genetic programming algorithm did not outperform the 

blind random search algorithm, and in fact failed to produce the desired circuit design goals.  

This unexpected outcome is believed to result from the structure of the circuit design process, 

and from certain shortcomings in the genetic programming algorithm used. 

This work also examines the relationship of issues and considerations (such as cost, 

complexity, performance, and efficiency) faced in these virtual design realms to managerial 

strategy and how insights from these experiments might be applied to real-world engineering and 

design challenges.  Algorithmic simulation approaches, including genetic programming, are 

found to be powerful tools, having demonstrated impressive performance in bounded domains.  

However, their utility to systems engineering processes remains unproven.  Therefore, use of 

these algorithmic tools and their integration into the human creative process is discussed as a 

challenge and an area needing further research. 
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Chapter 1:  Introduction 

This chapter introduces the problem to be examined in this thesis and the rationale for doing 

so.  It also provides a very brief summary of the technical research approach to be pursued, 

followed by a structural overview of the content contained in this work. 

1.1:  Background and Motivation  

Using modern computational power to run simulations as a means of creating or optimizing 

things of interest, particularly when the methods used are inspired by nature, is a subject of 

fascination for many researchers.  One such method is known as genetic programming, an 

extension of the somewhat more widely-known genetic algorithm, which is a technique inspired 

by natural processes.  This tool goes far beyond more traditional optimization methods, which 

merely make adjustments to an already-specified design framework, in that it adds the power of 

creativity to the process.  In other words, this tool can potentially not only optimize a design, but 

also formulate initial and improved designs from very minimal initial specifications.  Such a tool 

offers a powerful new potential to enhance traditional engineering processes if it can be 

successfully applied and harnessed to full effect on real-world problems of noteworthy concern. 

Genetic programming has shown impressive results in some limited design contexts, such as 

in designing analog circuits and radio antennas.  However, this progress to date is still limited to 

the technical aspects of the problem at hand and the algorithm itself.  While this is a promising 

first step, the art of real-world engineering and design is far more complicated, particularly in 

that it necessitates human involvement.  Thus, systems engineering, innovation, and design are 

not just facets of a technical discipline, but rather are socio-technical processes.  From this, it 

follows that in order to fully harness the true power and potential of tools such as genetic 

programming, not only the technical but also the managerial and human components of interest 

must be integrated into a cohesive framework to support future progress. 

This thesis seeks to take an initial, modest attempt at studying these two connected elements. 
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1.2:  Summary of Technical Approach  

Research work in this thesis first attempts to build a foundation upon earlier related work by 

Arthur and Polak as a starting point and then extends focus toward genetic programming issues 

and challenges.  The algorithmic simulation model from that earlier work is reused to generate 

initial results.  Then, a number of experiments and variations are performed using that model to 

gather insights into the process at large.  Finally, a customized genetic programming model is 

used to produce solutions to the same design problem for comparison. 

1.3:  Thesis Overview  

Chapter 2 provides a review of pertinent literature and develops a background understanding 

of the concepts and technologies covered in this thesis.  The general class of algorithmic 

simulation approaches is first introduced, followed by an increasing specificity in discussing 

evolutionary computation methods, then genetic algorithms, and finally genetic programming, a 

tool used for part of the research in this thesis.  Due to its importance in this work, a survey of 

certain techniques and issues relevant to genetic programming is also provided.  Finally, 

innovation and design elements, digital circuit technologies, and engineering process models, 

including elements interrelated to social and managerial issues, are also briefly discussed. 

Chapter 3 outlines the methodology and research approach followed in this thesis.  This 

includes a description of the two algorithmic simulation tools used in this research:  a blind 

random search model, and a genetic programming model. 

Chapter 4 presents the results of the research conducted using the two algorithmic models.  

Original research data is presented and discussed.  For the genetic programming model, a 

number of suspected causal factors pertaining to the results obtained are proposed. 

Chapter 5 concludes the discussion and suggests areas where future work may prove fruitful, 

along with challenges that may be encountered. 
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Chapter 2:  Literature Review 

This chapter examines the historical roots of genetic programming and related methods.  It 

also explores earlier work in technological innovation and design processes, with particular 

emphasis on digital circuits and their construction as a representative technology—the substance 

of which forms the basis for much of the work in this thesis.  Finally, models of the engineering 

process are surveyed to understand the connection between real-world challenges in 

organizations and simulations of technological evolution. 

2.1:  Evolutionary Computation 

Evolutionary Computation is a term applied to a large class of related methodologies for 

computational problem solving that are based loosely on or inspired by biological processes.  

The principal ideas involved have a surprisingly long history, with Alan Turing having proposed 

a method of ―genetical or evolutionary search‖ as early as 1948, and active computer 

experiments appearing by the 1960s [Eiben and Smith 2007]. 

Evolutionary computation methods can be considered a subset of a larger collection of 

stochastic optimization algorithms, such as random searches, genetic algorithms, and particle 

swarm methods.  This family of techniques shares the common trait of employing randomness in 

some aspect of their progression through the solution space.  This feature is hypothesized to 

improve overall algorithm effectiveness compared to non-stochastic techniques such as by 

avoiding entrapment in local optima or overcoming the effects of noise in the optimization 

objective [Spall 2004].  However, it is difficult to generalize among these methods as their 

performance is often highly problem-specific and sensitive to a multitude of algorithmic tuning 

parameters [Hassan et al. 2005; Eiben and Smith 2007].  A graphical representation showing 

various algorithmic methods and relationships among them is presented in Figure 2.1.  This 

thesis focuses on an implementation of genetic programming as well as a random search method 

used in earlier work by [Arthur and Polak 2006]. 
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Figure 2.1:  Graphical Representation of Algorithmic Methods and Relationships 

2.2:  Genetic Algorithms 

As mentioned above, the genetic algorithm is an evolutionary computation method.  The 

development of genetic algorithms (commonly called GAs) was arguably launched by John 

Holland in 1975 when he proposed a computational methodology mimicking processes seen in 

living organisms [Holland 1975].  Genetic algorithms, along with various other evolutionary 

computation approaches (such as particle swarm methods), employ a degree of parallelism in 

their search through the problem’s solution space by employing a population of individuals, with 

each one representing a possible solution, as opposed to a single-point-at-a-time search 

procedure [Hassan et al. 2005].  Genetic algorithms are generally noted to be robust and efficient 

tools, but they are non-deterministic and thus offer no guarantee of optimality (i.e., that the 

global optimum has been found) [Goldberg 1989].  These algorithms also generally employ 

some form of a survival and/or reproduction mechanism which has the effect of preserving the 
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better individuals (solutions) contained in the population.  Thus, genetic algorithms possess a 

type of memory effect or continuity feature. 

Early implementations of genetic algorithms were generally constructed using fixed-length 

binary strings roughly analogous to DNA encoding found in biological organisms, as seen in 

[Goldberg 1989].  In this representation, each individual in the population is composed of a pre-

determined length of ―0‖ or ―1‖ characters called a chromosome [Mitchell 1998].  These binary 

values are encoded or mapped in some pre-defined way by the algorithm operator to represent 

the control variables to be included in the resulting design or contained in the problem to be 

solved.  Blocks of one or more adjacent bits then represent a single control variable in the 

problem, with the number of bits needed within each block determined by the number of possible 

permutations the experimenter wishes to represent within the algorithm.  Again borrowing 

biological terms, the functional block units are often called genes and the entire genetic code 

representing a problem design solution contained within an individual may be called its genome 

[Mitchell 1998].  A visual representation of this concept is shown in Figure 2.2.  The encoding 

format need not be binary, however, and various other encoding schemes have been devised for 

specialized problem applications. 

 

Figure 2.2:  Illustration of a Binary Format Chromosome with Three Genes (adapted 

from [Eiben and Smith 2007]) 

Genetic algorithms proceed by repetitively modifying the gene expressions contained within 

the population of individuals on which it is operating.  These modification processes, termed 
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operators, now exist in a multitude of variations, but many are based loosely on the functions 

observed in biological organisms.  The primary operators used generally include:  selection, 

reproduction, crossover or recombination, and mutation.  Other secondary or specialized 

operators are also seen, and a nearly limitless range of variations exists for genetic operators in 

general.  The selection operator is responsible for choosing one or more individuals out of the 

population for which some other action (often provided by some other genetic operator) is to be 

applied.  Typically, individuals are sampled randomly from the population or a subset thereof, 

often with some bias factor applied, such as with respect to the individual’s fitness score, as 

discussed below.  The reproduction operator simply copies or promotes an individual into the 

next generation, or iteration of the algorithm.  The crossover operator mixes the genes from two 

or more parent individuals by cutting and splicing segments of their chromosomes, creating an 

entirely new individual from its parent components.  Finally, the mutation operator makes a 

random modification to some gene within an individual in the population, mimicking the 

occasional errors that occur in biological DNA [Eiben and Smith 2007; Goldberg 1989; Mitchell 

1998; Koza 1992]. 

A core element of evolutionary algorithms is that each individual in the population must have 

some assessment of how well that particular individual solves the objective problem.  This 

measure, called a fitness score, or simply fitness, is most commonly represented as a single real 

number derived from some fitness evaluation function designed by the experimenter to capture 

the desired traits of the design or solution being sought.  This is a significant challenge and for 

true innovation, fitness functions must be at least partially approximate.  As each individual 

within the population is created or modified, the design encoded by that individual’s genome is 

passed through the fitness evaluation function to generate a fitness score for that individual.  The 

fitness measure is then available for heuristic use by the various genetic operators (discussed 

above) as the algorithm proceeds.  Likewise, the design space in which the experimenter is 

operating the algorithm is characterized by a fitness landscape, and the algorithm can be viewed 

simply as a mechanism for navigating a collection of points—the individuals—through that 

space in search of the optimal design fitness [Mitchell 1998]. 

The exact mechanism through which genetic algorithms are able to operate and produce 

success has been a matter of debate since their debut.  In work dating back to Holland’s original 

1975 proposal, an implicit assumption existed that the algorithm succeeded by creating, mixing, 
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and amplifying good partial solutions to the problem being run [Eiben and Smith 2007; Mitchell 

1998].  These elements are called schemas and can be thought of either as similarity templates 

among the design solutions [Goldberg 1989], or hyperplanes through the solution space 

[Mitchell 1998].  Additional study of this phenomenon led to a formalization known as the 

Schema Theorem.  In this framework, genetic algorithms succeed by repetitively and 

exponentially increasing the incidence of smaller, simpler schemas whose average fitness is 

above the overall mean fitness of all schemas [Mitchell 1998].  Thus, small, basic elements of 

the design that are valuable are collected together into larger and more complex elements. 

An extension of this idea leads to the Building Block Hypothesis which asserts that genetic 

algorithms solve problems by repeatedly assembling smaller, simpler components into larger, 

more complex components to eventually arrive at the final optimal solution [Eiben and Smith 

2007].  Such a mechanism is proposed as the source of much of the power of genetic algorithms 

and related search techniques; by building ever larger components out of smaller elements 

already discovered, the overall algorithmic complexity of the problem is dramatically reduced, 

potentially making a large problem computationally feasible that would otherwise be intractable 

[Goldberg 1989].  This concept is a recurring theme in the literature and it forms a component of 

much of the prior work on which this thesis is based. 

One topic of much interest related to building blocks is the concern of adequate supply of 

building blocks within the genetic population while the algorithm runs.  In order for the 

algorithm to successfully ―discover‖ higher-order, more complex building blocks, it must be 

supplied with or otherwise generate the necessary simpler building blocks to be used as 

components in construction (according to the Building Block Hypothesis).  Since building blocks 

exist as subsets of an individual’s genome, the supply of total available building blocks is 

implicitly linked to the population size.  Consequently, the study of population sizing models has 

been an active area of research, as in [Sastry, O’Reilly, and Goldberg 2005] and [Sastry et al. 

2003]. 

2.3:  Genetic Programming 

Genetic programming, often called GP, can be viewed as an extension or specialization of the 

class of genetic algorithms discussed above.  The modern form of genetic programming was 
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effectively introduced by John Koza and popularized in [Koza 1992], although earlier elements 

of the concept existed in the broader evolutionary algorithm arena dating back to at least the 

1960s [Banzhaf et al. 1998].  Genetic programming, as originally proposed in [Koza 1992], was 

designed to evolve computer programs (hence the name) in the Lisp programming language.  

Although genetic programming can be implemented in any programming language, Lisp was 

originally chosen largely because of its rather unique representation of both data and program 

instructions in the same format—as symbolic expressions.  This meant that Lisp programs could 

be dynamically altered and then executed directly.  In essence, this provided a means to create 

self-modifying computer programs [Koza 1992]. 

Although GP was originally proposed as a means of creating or discovering computer 

programs, the basic technique has since been enhanced and extended to more general constructs 

that may simply represent the structure, or the instructions to create the structure, of a solution to 

a given problem, rather than executable computer instructions in the form of a program.  Other 

problems and fields where GP has now been applied include:  product and system design 

(circuits, antennas, etc.), pattern recognition, data mining, control systems, neural network 

structures, machine learning, optimization, data modeling and symbolic regression, 

bioinformatics, visualization, and even music [Langdon and Poli 2002; Koza et al. 2003; Poli, 

Langdon, and McPhee 2008].  More recently, GP has been credited with generating several 

dozen inventions described as ―human-competitive,‖ including re-discovery of already-patented 

inventions and at least two newly patentable inventions [Koza et al. 2003]. 

The primary difference between genetic programming and the older genetic algorithm is that 

GP traditionally employs a tree-shaped genome or chromosome composed of objects rather than 

the binary string most commonly seen in genetic algorithms.  This is a distinguishing trait of GP, 

and it implies that genomes can be of both variable and infinite size, which contrasts sharply 

with the rigid, fixed-length string representations seen in GAs.  This flexibility allows for 

arbitrary representation of design solutions, and also permits designs of problem solutions to be 

made of infinite levels of detail and specificity [Banzhaf et al. 1998].  Other representations of 

GP do exist (such as graph or matrix structures), but they appear to be less prevalent than the 

tree-based structures which are the form used in this thesis. 

The genome tree is formed as a connected set of objects called nodes drawn from some 

population provided by the experimenter.  Each object may be either a function or a terminal, 
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depending on its behavior.  Functions accept one or more inputs and produce one output while 

terminals accept no inputs and return one output.  Therefore, terminal objects always form the 

―leaf‖ nodes of the tree while functions form the connecting nodes of the tree.  The ―root‖ node 

at the top of the tree returns the final result from the instructions being encoded within the tree 

[Banzhaf et al. 1998]. 

Figure 2.3 shows a stylistic example of a genetic programming tree genome encoding a 

collection of logic functions over three input variables, A, B, and C.  In this illustration, the 

terminal objects are represented as red circles while functions are shown as named rectangles. 

This particular collection of functions and terminals might be used to represent the design of a 

digital circuit.  The function and terminal sets from which the genome trees are constructed are 

chosen based on the problem domain for which the GP engine will be executed. 

Implementations vary, but the instructions encoded within a genome tree are typically 

evaluated in a depth-first order such that the lowest function branches on the tree are evaluated 

first, and then evaluation proceeds recursively up the tree until the root node is reached.  In 

Figure 2.3, the XOR  function would be the first function evaluated and the NAND  function of 

two sub-function results at the root of the tree would be the last evaluation. 
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Figure 2.3:  Illustration of a Genetic Programming Tree Chromosome with Five 

Terminals and Four Functions (adapted from [Luke 2000]) 

The fundamental genetic algorithm principles and operators, such as mutation, selection, 

crossover, and so on (described earlier) are extended to genetic programming as well, though 

with some adaptations necessary to function with the tree-shaped genome structures.  For 

example, the mutation operator is more complex than that seen in traditional genetic algorithms 

where it merely flips a ―0‖ and ―1‖ value.  In GP, it is adjusted to randomly select a node from 

the genome tree and then make a random modification to it, such as substituting one function or 

terminal for another from the available set, deleting an entire branch from the tree, or attaching a 

randomly generated new branch to the tree.  Similarly, the crossover operator is modified to 

select a node (typically at random) within each of the genome trees to be crossed, and then 

switch the entire sections, called subtrees, beneath the crossover points to generate a new 
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offspring individual, although ensuring data type safety and function compatibility complicates 

implementation.  Numerous variations on these and other GP-specific features exist throughout 

the literature in the field [Banzhaf et al. 1998]. 

As with genetic algorithms, the concept of building blocks applies to genetic programming 

too.  In GP terminology, a building block is manifested as a subtree section of a genome tree, and 

even the entire tree itself can be a building block.  There is, however, debate in the literature over 

the importance and implications of schemas and building blocks relative to GP implementations 

[Banzhaf et al. 1998; Luke 2000]. 

The tree-shaped genome structure which allows infinite and flexible design encoding may be 

responsible for much of the creative power seen in GP, but it also brings a severe and persistent 

side-effect that often challenges practical applications of GP as a design tool.  Given the 

unlimited flexibility of the genome construction and size, the tree structures can (and frequently 

do) grow to enormous sizes, leading to severe degradation of algorithm performance and acute 

consumption of system resources.  Often, large portions of such an inflated genome tree 

accomplish little or nothing toward the fitness of the individual.  This excess material is referred 

to as junk DNA, bloat, or introns.  Furthermore, bloated genomes tend to grow at exponential 

rates, quickly resulting in stagnation of the run after which little additional progress is made.  

Although the phenomenon is still not well understood, some research suggests that introns 

(specific segments of genome code that have no practical effect) may actually serve a necessary 

and beneficial purpose by protecting valuable building blocks of code within the population from 

the destructive effects of the crossover operators by minimizing the chance of splicing through a 

building block [Banzhaf et al. 1998; Luke 2000]. 

Given the severity of the problem of bloat in GP, a good deal of attention has been paid to 

controlling its impact within an algorithm run.  Perhaps the simplest method is simply to impose 

a maximum size limit on each genome tree.  Another common approach involves parsimony 

pressure in some form, which seeks to penalize the fitness scores of individuals in the population 

who carry excessively large genomes [Luke and Panait 2004]. 

In the original genetic programming form proposed by John Koza in [Koza 1992], all 

information about the construction of a genetic individual was stored within the structure of the 

tree-based genomes.  Since then, numerous extensions and enhancements have been proposed to 

further improve the efficiency and performance of GP projects.  One of the earliest and most 
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common extensions seen in the literature is Automatically Defined Functions (ADFs), proposed 

in [Koza 1994a].  ADFs provide a means to enable code reuse and reduce the size and 

complexity of a solution, just as human programmers use functions to achieve the same benefits 

when writing software.  To implement ADFs, the genome structure is altered so that each 

individual contains one main tree which encodes its final solution, called the result-producing 

branch, and one or more additional trees, called function-defining branches, which encapsulate 

segments of genetic encoding that can be referenced by the main result-producing branch.  In 

effect, the ADF structure provides a mechanism to store genetic code that would have to reside 

within the main genome tree—often redundantly—in the original, classic form of GP, and to 

enable that encapsulated code logic to be used repeatedly in constructing the evolved solution 

[Koza 1994a]. 

Koza further elaborates that ADFs are most useful in problems that can be solved as a 

decomposition of the main problem into subproblems, and where the problem contains 

regularities, symmetries, or patterns.  A large body of his analysis showed that total 

computational effort of the GP algorithm can be significantly reduced on non-trivial problems 

when ADFs are in use [Koza 1994a].  One example problem in [Koza 1994b] showed a 283-fold 

improvement (decrease) in the computational burden expended to solve the problem when ADFs 

were used versus solving the problem without them. 

The general concept embodied in the ADF construct was later extended to other elements and 

ideas from traditional software engineering, including Automatically Defined Loops (ADLs), 

Automatically Defined Macros (ADMs), Automatically Defined Storage (ADSs), Automatically 

Defined Recursion (ADRs), Automatically Defined Iterations (ADIs), and Automatically 

Defined Copies (ADCs) [Koza et al. 1999].  However, these features do not appear to have 

attained the same level of interest and attention in the literature as ADFs did. 

Another mechanism to reuse parts of a genome tree has been proposed called Module 

Acquisition (MA).  It is conceptually similar to ADFs though it bears significant structural and 

implementation differences.  It operates on the GP population of individuals as a new genetic 

operator where it occasionally selects an individual at random, then selects some random subtree 

within that genome.  The chosen subtree is then cut out and placed into a central ―module 

library‖ as a packaged module available for reuse globally among other members of the 

population, and a reference to the new module is inserted back into the original individual in 
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place of the excised code subtree [Kinnear 1994].  Curiously however, this mechanism 

performed much worse than ADFs and even the original, basic GP when tested on a particular 

problem in [Kinnear 1994]. 

The Module Acquisition method is of particular interest here because it bears a close 

resemblance to the method of technology or invention encapsulation and reuse seen in [Arthur 

and Polak 2006] and used in this thesis.  However, a significant difference is that Module 

Acquisition selects its code for module contents at random from the population, and thus adds 

much content to the module library that may be of little value, while Arthur and Polak add only 

fully successful designs to their technology library (as discussed below). 

Overall, genetic programming attempts to re-invent the evolutionary process to obtain better 

design solutions to a problem, whereas early GA work simply pursued mimicking of biological 

evolution.  It seems appropriate to look wider than biological processes for innovation and 

design as these processes clearly do not evolve simply by biological mechanisms.  Differences 

include artificial or human selection as opposed to natural selection, the potential for inheriting 

and sharing newly invented traits, and many others.  However, a complete model of the human 

(and especially the normal group) invention process does not exist. 

2.4:  Innovation and Design 

The notion of building blocks is of significant interest for consideration of processes in the 

realm of technological innovation.  Recent works have begun to consider the connections 

between ―computational innovation‖ (using tools and methods such as genetic algorithms or 

genetic programming) and systems engineering, organizational design, technology transfer, 

creativity, and the inventive process.  In this sense, genetic engines (GAs and GP) can be viewed 

as models of innovation.  (See Epilogue in [Goldberg 2002].) 

An offshoot of this is an idea by Goldberg for genetic engines described as competent:  those 

that can solve hard problems quickly, reliably, and accurately [Goldberg 2002; Sastry and 

Goldberg 2003].  To that end, researchers are beginning to devise enhanced methods and 

techniques in second-generation genetic engines to more effectively mirror the processes of 

invention, design, creativity, and innovation seen in real-world human practices.  These extended 

methods may provide significant improvements in the capabilities and performance of genetic 
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engines as tools for innovation and design within engineering practice.  In addition, study of the 

effects often observed within genetic engine runs—taken as models of innovation—may provide 

unique insights to help us better understand the analogous properties and issues encountered in 

engineering and management problems [Goldberg 2002]. 

Another framework of technological innovation has been put forth in [Arthur 2007] and 

further expanded in [Arthur 2009].  In this model, technological design and innovation is an 

iterative, hierarchical, and recursive process whereby technologies are formed out of simpler 

component technologies.  This is closely aligned to the notions of systems of systems, 

subsystems, assemblies, modules, parts, and similar terms that are commonplace within the field 

of systems engineering.  Additionally, this idea of recursive construction of complex 

technologies from combinations of simpler ones strongly echoes the idea of building blocks 

discussed earlier, particularly in the context of genetic engines. 

In the Arthur framework, a distinction is made between the development of radical new 

technologies and incremental improvement of existing technologies, with focus placed on the 

former.  Invention is described as a process of recursive problem solving.  Technologies arise 

through some structure or process whereby a phenomenon is exploited through a principle to 

harness an effect as a means to fulfill a purpose.  Novel technologies may be created through one 

of two motivations:  a needs-driven process where some opportunity or necessity exists that must 

be met, or through a phenomenon-driven process where some observation or discovery leads to 

or suggests the use of a new principle.  In the course of developing a new technology, challenges 

may be encountered with its constituent sub-technologies, each of which must be solved through 

this same process, thereby giving rise to the iterative and recursive feature.  Furthermore, once a 

new technology is created, it may suddenly enable the completion of other larger technologies 

using itself as a component, often leading to bursts or waves of inventions that Schumpeter 

observed in economics [Arthur 2007; Arthur 2009]. 

Interestingly, the invention and design process need not involve humans.  Significant 

literature (e.g., [Koza et al. 1999; Koza et al. 2003]) exists using genetic programming to 

autonomously design analog circuits, including various filters, amplifiers, and controllers.  More 

recent work has produced designs in various domains including analog circuitry, antennas, 

biological metabolic pathways that are deemed ―human-competitive,‖ along with several 

patented or patentable inventions [Koza et al. 2003].  In fact, Koza states:  ―Genetic 
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programming is an automated invention machine‖ [Koza et al. 2003, pg. 530].  Other approaches 

and algorithms have also been used to demonstrate automated invention of technologies, 

including a random search construction process described below. 

2.5:  Digital Circuit Construction 

Understanding the exact nature by which innovations and new technologies arise, and older 

ones fail, has been of interest to both academics and practitioners alike for a long time.  A series 

of experiments contained in [Arthur and Polak 2006] ties together several of the concepts 

discussed above, including building blocks and the recursive ―stepping stone‖ manner of 

technological construction.  This work was carried out by designing a virtual technology 

invention program driven by a blind random search algorithm.  The technologies to be created 

are digital circuits, such as various adders and logic functions.  Digital circuits were chosen 

because they are readily analyzable from a pure computation perspective, and because digital 

circuits can be readily modularized into parts and subsystems, just as is commonly seen in 

physical systems and technologies.  Therefore, digital circuits serve as a proxy for real-world 

systems and technologies, and by studying the effects occurring within this model, the potential 

exists to gain important insights about the innovation process. 

The Arthur and Polak simulation model uses a simple, blind random search algorithm (i.e., 

one that does not possess any particular domain knowledge or any self-enhancement ability) 

which was initialized with a primitive circuit component, such as a NAND  gate.  A list of 

technologies or ―goals‖ for which invention is sought is input into the algorithm.  The engine 

then attempts to ―invent‖ technologies specified in the goal list by randomly hooking together 

components from its primitive set and its accumulated library of earlier inventions.  As the 

algorithm runs, once it discovers a design solution that perfectly satisfies a goal technology, it is 

added to an accumulated list of inventions, thus forming a module which may then be reused in 

future designs [Arthur and Polak 2006]. 

This paper found that complex circuits, such as an 8-bit adder, could be constructed if 

simpler, intermediate technologies were first invented by the algorithm and then reused as 

modular components.  Conversely, if modularity and reuse were not permitted, the algorithm 

failed to create complex technologies.  This finding provides strong empirical evidence in 
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support of the building block paradigm discussed earlier.  More broadly, it provides insight into 

the system design and innovation process, and how these effects relate to economic influences, 

such as creative destruction [Arthur and Polak 2006]. 

One of the goals of this thesis is to explore whether these algorithms are consistent with 

empirically observed exponential growth rates of technological progress.  This thesis extends the 

work in [Arthur and Polak 2006] by using the same simulation platform used in that study, along 

with a genetic programming platform, as the two experimentation approaches performed in this 

work. 

2.6:  Engineering Process Models 

An important consideration when using algorithmic models for simulation of innovation and 

design is whether the model is sufficiently detailed and robust to capture the core dynamics 

observed in human-led processes, such as the acceleration of the growth rate of technological 

progress.  One of the key interests in this thesis is whether the results produced by the models 

tested in this research agree with the empirical evidence from real-world systems and processes. 

Innovation and design processes within engineering practice today can be viewed as 

predominantly human social processes.  Although various technological tools are available and 

frequently used throughout the design process to aid the engineer, the process itself remains 

chiefly driven by human engineers.  For most modern product development initiatives of any 

practical significance, this design effort is likely to involve more than a single individual.  

Consequently, these engineering efforts involve teams of people, and with this comes the many 

nuances and considerations surrounding team dynamics and organizational management. 

Given this central importance of human socio-technical interaction, some studies have 

attempted to capture the essence of the human-led design process.  One such model is the Pugh 

Controlled Convergence method (PuCC).  This relatively simple model describes the design 

concept phase (after specification development but prior to detailed design work) of the 

engineering lifecycle involving an engineering team.  It provides a somewhat structured and 

disciplined process of narrowing down a set of design concepts under consideration by 

iteratively reviewing and comparing strengths and weaknesses of competing designs in a matrix 

format.  As the process ensues, information is gathered, learned, and shared among team 
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members.  This may lead to changes within the repertoire of design concepts under 

consideration, such as enhancing some aspects of a given design to create a new, stronger 

candidate solution, weeding out inferior (―dominated‖) designs, or pursuing additional 

information to further improve decision making.  This cycle is then repeated and the result is a 

whittling down of the set of remaining designs worth further consideration.  After a few 

iterations, the design choice should converge to a superior design candidate agreeable to all team 

members [Frey et al. 2008]. 

The rates of technological progress have been studied over relatively long periods of time 

(100 to 150 years) in domains such as information technology (in [Koh and Magee 2006]) and 

energy (in [Koh and Magee 2008]).  These studies found persistent rates of exponential 

improvement across the various technologies and functional performance metrics tested.  

Progress within information technology grew at a significantly faster rate than in energy.  This 

exponential rate of growth is hypothesized to be the result of humans building new technologies 

from cumulative prior knowledge—a theme consistent with the building block idea discussed 

earlier [Koh and Magee 2008]. 

One of the objectives in this thesis was to see whether the algorithmic simulation models 

were able to produce similar effects of knowledge accumulation and reuse so as to enable 

exponential rates of technological improvement during the simulation runs. 
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Chapter 3:  Methodology 

This chapter describes the research and experiments performed for this thesis.  This research 

focused primarily on comparing two methods of algorithmic simulation of digital circuit 

construction.  These circuits are intended as models of technologies and as a representative proxy 

for understanding effects and behaviors observed in the system design and innovation processes. 

3.1:  Research Approach 

This thesis focused on testing the blind random search algorithm and the genetic 

programming algorithm based on beliefs stated in [Goldberg 1989] and [Eiben and Smith 2007] 

that the genetic programming algorithm is generally a more efficient and effective tool than a 

blind random search algorithm.  Therefore, this thesis tested the hypothesis that a GP engine 

would successfully create new complex technologies—digital circuits—from simpler building 

block components discovered earlier during the algorithm run, and that this effect would occur 

faster and/or more efficiently than when using a blind random search algorithm. 

The choice of digital circuits as the medium of study was made because digital circuits are 

relatively straightforward to model and evaluate programmatically, and because this allowed the 

work in this thesis to extend and build upon prior results found in [Arthur and Polak 2006]. 

The blind random search model used in this thesis (the ―Arthur and Polak model‖) was 

responsible for generating the results presented in [Arthur and Polak 2006], [Arthur 2007] and in 

[Arthur 2009].  Those publications collectively establish the following hypotheses:  technology 

is autopietic (meaning self-creating); invention is a process of recursive problem solving; 

technologies are formed through combinations of earlier designs (building blocks); and invention 

and innovation result as a process of linking human needs and goals with some phenomenon or 

effect where the role of technology is to harness that effect. 

Another aspect of technology innovation which this thesis attempted to test is the commonly 

observed rate of exponential progression seen in real-world technologies (e.g., Moore’s Law).  

Numerous runs were conducted on both the Arthur and Polak model and the genetic 

programming model, which are described below, with various parameter settings and 
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configurations to ascertain whether evolved technologies appeared to be developing at an 

increasing rate of progression.  These results are discussed in Chapter 4. 

3.2:  Algorithms 

This thesis tested and compared two types of algorithms from the literature, each powering a 

model of the system design and technology innovation processes.  The algorithms are described 

in detail below. 

Both algorithms were given the same task:  to design and construct complex digital circuit 

technologies starting from only rudimentary components.  The desired designs are specified in 

advance by the experimenter as ―goals‖ for each algorithm to work towards.  The list of goals 

used in this research is the same for both algorithms, and is shown in Table 3.1. 

 

 Table 3.1:  List of Technology Goals for Digital Circuit Construction (adapted from 

[Arthur and Polak 2006]) 

Goal Technology Identifier Inputs (n) Outputs (m) Description

GOAL 1 (not-) 1 1 Negation

GOAL 2 (imply-) 2 1 Implication

GOAL 3 (and-) 2 1 Conjunction of 2 inputs

GOAL 4 (or-) 2 1 Disjunction of 2 inputs

GOAL 5 (xor-) 2 1 Exclusive Or of 2 inputs

GOAL 6 (equiv-) 2 1 Equality of 2 inputs

GOAL 7 (and3-) 3 1 Conjunction of 3 inputs

GOAL 8 (1-bit-adder-) 2 2 Addition of 1-bit inputs

GOAL 9 (full-adder-) 3 2 Addition of 2 inputs and carry

GOAL 10 (2-bit-adder-) 4 3 Addition of 2-bit inputs

GOAL 11 (3-bit-adder-) 6 4 Addition of 3-bit inputs

GOAL 12 (4-bit-adder-) 8 5 Addition of 4-bit inputs

GOAL 13 (5-bit-adder-) 10 6 Addition of 5-bit inputs

GOAL 14 (6-bit-adder-) 12 7 Addition of 6-bit inputs

GOAL 15 (7-bit-adder-) 14 8 Addition of 7-bit inputs

GOAL 16 (8-bit-adder-) 16 9 Addition of 8-bit inputs
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3.2.1:  Blind Random Search 

Testing of the blind random search method used the same algorithm and code
1
 used to 

generate the results in [Arthur and Polak 2006].  This model is programmed in the Common Lisp 

programming language.  It represents both its goals and the technology designs (circuits) being 

evolved in the form of Binary Decision Diagrams (BDDs).  BDDs provide a compact, efficient, 

unique, and canonical method of representing any Boolean expression [Andersen 1998].  This 

representation also makes possible a measurement of similarity between any two circuit designs 

[Arthur and Polak 2006].  This feature allows the algorithm to easily test whether a given 

candidate design solution correctly implements a desired goal, and to measure the degree of 

―correctness‖ against such a goal.  This measure is translated into a fitness score for each 

candidate circuit design. 

The blind random search algorithm is so named because it possesses no particular knowledge 

about the problem domain in which it operates, and it does not evolve specific intelligence or 

adaptation to guide or enhance its construction process.  It is initialized with a set of one or more 

primitives, the simple building block elements from which all other technologies can be 

constructed.  For the experiments performed in this thesis, the set of primitives included the 

NAND  logic function and the Boolean constants for TRUE  and FALSE .  The algorithm then 

constructs a new circuit design by randomly choosing a number of components from this set of 

primitive building blocks as well as from a growing library of already-solved design goals, and 

then randomly connects them to form a new design as an invention to be considered against the 

remaining list of unsolved goals.  As the algorithm execution proceeds, it may eventually 

discover a correct solution for a goal, at which point that design is encapsulated as a new 

technology and added to the library of primitive components available for use in future design 

construction, thus enabling reuse of prior work.  This process of encapsulation and reuse enables 

the algorithm to succeed at designing complex circuits through recursive construction of simpler 

modules and subassemblies, even though it is a blind random search methodology. 

                                                 
1
 The code was graciously shared with this author by W. Brian Arthur and Wolfgang Polak. 
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3.2.2:  Genetic Programming 

Testing of the genetic programming method employed the Evolutionary Computation in Java 

(―ECJ‖) package, version 19.
2
  ECJ is a free, flexible, open-source platform written in the Java 

programming language and developed by Sean Luke et al. for performing evolutionary 

computation research.  It supports genetic programming (GP) amongst many other variations in 

the broader class of evolutionary algorithms, such as evolutionary strategies, genetic algorithms, 

and particle swarms.  During testing, it was found to be full-featured and robust in this author’s 

opinion. 

The ECJ GP framework contains nearly unlimited flexibility to extend or alter various parts 

of the framework, along with numerous configuration parameters and settings.  Many of these 

are pre-configured with default values popularized in [Koza 1992], and those settings were 

generally retained for the experiments conducted in this thesis.  Anecdotal evidence from various 

sources in the literature suggests that the various configuration parameters and settings used in 

GP can have dramatic influence over the outcome of the simulations, so the results found in the 

research work for this thesis may be somewhat situation-specific.  The sheer number of 

parameters and their combinatorial interactions made testing for all of these sensitivities 

infeasible, although some major ones were varied without significant impact on the results 

reported herein. 

Initial efforts with GP for this thesis attempted to represent circuit design goals and candidate 

design solutions (individuals) in the population as vectors of BDDs, just as the Arthur and Polak 

model does.  However, significant difficulties in implementation and irregularities of behavior 

necessitated the abandonment of this approach.  Instead, both goals and design solutions encoded 

within individuals’ genomes were represented in the form of Boolean logic truth tables.  This 

representation has notable drawbacks and undoubtedly impacted the results produced by the GP 

model execution, as discussed in Chapter 4. 

The primitive set given to the GP for this research was similar to the setup used by the Arthur 

and Polak model:  a NAND  function, the Boolean TRUE  and FALSE  constants, and two 

variables A  and B .  The model was executed with a population size of 1000 individuals over 250 

                                                 
2
 ECJ source code is freely available at:  http://cs.gmu.edu/~eclab/projects/ecj/  

http://cs.gmu.edu/~eclab/projects/ecj/
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generations to mirror (as closely as practicable) the parameters used for the Arthur and Polak 

model, which was 250,000 single-trial iterations. 

The fitness function for individuals was designed to measure the similarity of the individual’s 

truth table to the truth table of a given design goal.  The fitness score represented the proportion 

of ―correct‖ entries in the individual’s truth table vector when matched against the truth table 

vector of one or more design goals.  The number of design goals against which to evaluate an 

individual was used as a control parameter, and various settings were tested; see Figure 4.12 for 

results.  A fitness score of zero would be produced with no matching truth table values, while a 

score of one would indicate a perfect match of the design goal.  Thus, discrete gradations were 

possible for partial matches.  This approach is reflective of the ―Hamming distance‖ measure 

described in [Mitchell 1998]. 

The truth table necessary for fitness scoring of a given individual is derived dynamically by 

evaluating the individual’s genome tree.  Refer to Figure 2.3 for a visual representation.  The 

management of the genome tree is handled automatically by the ECJ GP framework, including 

construction, crossover, mutation, type safety, evaluation, etc.  The ECJ engine evaluates the 

genome tree by locating the deepest function node (the XOR  function shown in Figure 2.3) and 

then processing the inputs to that node via the specified logic function to return a resultant truth 

table for that node, then recursively propagating results upward through the tree until the root 

node is reached.  The root node contains the final truth table representation of that individual’s 

genome, which is then evaluated against the design goals to produce a fitness score. 
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Chapter 4:  Results 

This chapter presents the findings of the experiments performed in evolving complex digital 

circuits using two different algorithms—the Arthur and Polak blind random search model, and 

the ECJ genetic programming model.  Attributes of the models and an explanation of the 

experimental setup are discussed in Chapter 3. 

4.1:  Overview 

The initial premise at the start of this research was that the genetic programming model 

would be able to design complex technologies in the form of digital circuits by using building 

blocks from earlier solutions to construct ever more sophisticated products, just as the Arthur and 

Polack blind random search model successfully does, but that GP would do so more efficiently, 

more quickly, and more powerfully (and also possibly show exponential progress in capability 

over time).  This process of recursively constructing technologies is said to mimic the human 

innovation process. 

The research performed for this thesis was able to validate the work done by the Arthur and 

Polak model.  However, the GP engine did not perform as expected in these experiments.  In the 

particular implementation tested in this thesis, GP did not succeed in reliably constructing even 

relatively simple digital circuits as technology goals.  The sections below discuss in depth each 

of the models and the specific results found.  For GP, several suspected contributing factors in 

the failure are offered, and Chapter 5 presents some possible features that may help overcome the 

limits encountered in this work. 

4.2:  Blind Random Search 

The blind random search model was executed with minimal modifications from its original 

form, with minor changes being made mostly to facilitate data capture and study of results.  The 

model operated successfully and was consistently able to create complex circuit designs, thus 

validating the results reported in [Arthur and Polak 2006].  Experiments were run with many 

different variations of the control parameters and settings contained within the model to enable 
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better understanding of its behavior and the effects observed in the generated output.  A selection 

of progress profiles is presented here with a brief discussion of each.  Note that due to the 

stochastic nature of the algorithm, the results will differ from one execution to another. 

Figure 4.1 shows the results from a typical run of the algorithm.  The colored lines represent 

the fitness progression of each of the circuit technologies as they arise from initial invention and 

evolve toward completion.  The list of goals is arranged in a deliberate order from simple designs 

to complex ones (as described in [Arthur and Polak 2006]) so that more complex designs can 

benefit from solutions to simpler goals found earlier in the simulation run. 

 

Figure 4.1:  Results of a Typical Run of Arthur and Polak Random Model 

We observe recurring patterns in the data produced.  Simpler goals are successfully solved 

early in the simulation run, and these successes pave the way for more complex and far more 

difficult goals to begin forming.  Fitness values for a particular goal technology begin when a 

random construction of components (primitive set values plus earlier solved goals) reaches a 

fitness score (a measure of correctness against the prescribed goal) of at least 50%.  The fitness 

score of that technology then progresses on a generally upwards trajectory towards completion 

with a fitness score of 100% when a perfect design is located.  On occasion, the fitness score of 
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the design may dip downwards as the random nature of the model may permit a worse-scoring 

design to be selected.  This can serve as a means of escaping entrapment in localized optima 

within the search space, particularly if such a lower-scoring design is ―cheaper,‖ meaning that it 

contains fewer constituent components.  The algorithm does consider ―cost‖ as a secondary 

objective in the course of circuit design. 

Another recurring pattern observed in the data is that progress on a given circuit design is 

often rapid at first when the design first appears, but then tends to slow and often undergoes long 

flat periods of no progression.  Similarly, the overall progress of the algorithm as a whole when 

combining the progress curves of all the goals exhibits a clear slowdown in the rate of progress 

as the run proceeds.  Thus, this data does not agree with the empirical fact that technologies 

evolve and improve at an exponential (or at least an increasing) rate as is observed in real-world 

technological progress.  This suggests that the model misses some crucial element of human-led 

innovation, such as a learning effect.  Note that this finding does not undermine Arthur’s 

hypothesis or results, as the model was not developed to test this particular aspect of innovation, 

only that complex technologies can be formed out of simpler modules without human 

intervention. 

Below, Figures 4.2–4.4 present various trials of the algorithm with its default settings.  

Multiple trials are presented to illustrate the differing outcomes resulting from the stochastic 

variation within the model.  Figures 4.2 and 4.3 use event-based sampling intervals (i.e., a data 

snapshot was taken each time the algorithm made some improvement in any circuit design), 

while the remainder of the figures in this section use uniform interval performance snapshots. 
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Figure 4.2:  Trial 1 – Typical Run of Arthur and Polak Random Model with Event-Based Performance Intervals 
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Figure 4.3:  Trial 2 – Typical Run of Arthur and Polak Random Model with Event-Based Performance Intervals 
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Figure 4.4:  Trial 3 – Typical Run of Arthur and Polak Random Model with Uniform Performance Intervals 
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Other trials of the algorithm were conducted by varying certain control parameter settings to 

gauge the impact on behavior and performance.  Figure 4.5 shows a run of the algorithm with the 

constraint on maximum concurrent working goals removed.  By default, the algorithm normally 

only processes the next three unsolved goals (from Table 3.1) at a time, and the completion of 

one goal enables the commencement of work on another remaining unsolved goal.  This 

parameter has the effect of channeling the algorithm’s focus to a few narrow problems beginning 

with simpler technologies and working toward more complex ones, rather than permitting a 

concurrent broad-based search among all unsolved goals.  As this figure shows, removing this 

channeling constraint had a notable deleterious impact on the algorithm’s performance.  

Although goal technologies were clearly started much earlier in the simulation than in the prior 

trials, they tended to take much longer to complete, with many of them never finishing 

successfully within the allotted run time.  It seems that removing the constraint had the effect of 

dispersing the algorithm’s focus across multiple technologies simultaneously, rather than forcing 

it to use earlier solutions as building blocks toward more complex designs. 

Figure 4.6 shows the performance of the algorithm when frequently sweeping all unused 

interim technologies from its library.  By default, the algorithm is able to construct intermediate 

designs that have some degree of potential usefulness and add them to a growing library of 

designs for reuse as components or modules in other designs (this is in addition to its library of 

fully-solved goals, which similarly become available for reuse).  Some of these designs may not 

have practical use, and others may become obsolete as the run progresses and better designs are 

discovered.  Thus, by default, the model is programmed to periodically sweep out unused parts to 

maintain a reasonable working set size.  In this experiment, the sweep parameter was altered to 

frequently remove unused designs.  This had the effect of deleting many new designs before they 

had a chance to be incorporated into other technologies, and the resulting performance of the run 

was much worse than the default configuration.  Figure 4.7 extends this notion by disabling this 

library feature of temporary designs, thus forcing the algorithm to construct solutions using only 

the set of primitives and its earlier solved goals.  This change had a drastic negative impact on 

performance and the model was not able to fully solve even the relatively simple design goals.  

These observations reinforce Arthur’s findings that the algorithm succeeds only by using 

building blocks of simpler technologies to generate more complex designs.
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Figure 4.5:  Trial 4 – Typical Run of Arthur and Polak Random Model with Maximum Concurrent Working Goals 

Constraint Removed 
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Figure 4.6:  Trial 5 – Typical Run of Arthur and Polak Random Model with Frequent Removal of Unused Technologies 
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Figure 4.7:  Trial 6 – Typical Run of Arthur and Polak Random Model Using Only Prior Solved Goals as Available 

Technology Library 
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Figure 4.8 shows the effect of changing the ―max complexity‖ parameter within the 

algorithm.  This limit controls how many components may be selected for assembly into a 

potential design candidate.  The default limit is 12 components, and for this test it was doubled to 

24.  This had a positive impact on the algorithm run and this trial produced the best results of any 

test.  Technology goals were solved earlier in general and some of the most complex goals were 

completely solved in this trial that were never completely solved in other experiments.  Also of 

interest here is the observation that fitness score progress on the technologies tended to have 

much less random fluctuation than in earlier trials, or in other words, the scores tended to 

increase monotonically or have plateau periods with occasional drops instead of the jitter 

observed in other runs.  However, as Figure 4.9 shows, this particular parameter is apparently 

subject to some optimality condition as drastically increasing the limit to 100 resulted in an 

unexpected degradation of performance. 

Another matter of interest in this thesis was the rate of advancement of technological 

progress and whether, for example, the model would show an exponential (or at least an 

increasing) rate of improvement in the virtual technologies being developed.  In the real world, 

this is typically measured using some functional performance metric, such as cost, size, weight, 

speed, or some other measurable parameter of interest.  However, virtual digital circuits as a 

technology proxy have the disadvantage of bearing no obvious metric as a measure of value.  

Intuition suggests that an 8-bit adder (Goal 16) is more valuable than a 4-bit adder (Goal 12), for 

instance, but the degree of additional value provided by the more complex technology is not 

clear.  Two potential concepts for value measurement were considered as possible metrics, and 

both are related to the size of the circuit as measured by the number of output bits it computes.  

The scaling values considered were:  Fitness * N ,  and  Fitness * 2N  (where N  is 

the number of output bits of the circuit) as shown in Figures 4.10 and 4.11.  Data from Trial 3 

was used here as a representative sample to apply scaling.  This did not, however, change the 

fundamental relationships among the technology progressions. 

In these charts, progress of the innovation process is being achieved at a slowing rate, not at 

an increasing rate as might have been expected.  Part of the likely problem with this metric is 

that fitness, as computed in this study, is fundamentally a measure of correctness of the design 

rather than the capability or value of the design.  A more appropriate measure of the true effects 

of innovation occurring within this model is still needed.  However, it also likely that the models 
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are not strong enough replicas of engineering invention over time to fully describe the empirical 

world.  This motivates the search for a stronger model.
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Figure 4.8:  Trial 7 – Typical Run of Arthur and Polak Random Model Using Doubled “Max Complexity” Parameter 
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Figure 4.9:  Trial 8 – Typical Run of Arthur and Polak Random Model Using “Max Complexity” Parameter = 100 
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Figure 4.10:  Trial 3 Data Scaled by Circuit Output Size 
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Figure 4.11:  Trial 3 Data Scaled by 2
N
 * Circuit Output Size 
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4.3:  Genetic Programming 

The ECJ genetic programming framework is, in its default state, able to handle the standard 

genetic programming functions and operators.  The only modification required to the code is to 

define the problem at hand (in this case, digital circuits) and to customize the GP engine to the 

problem-specific parameters as needed.  See Section 3.2.2 for a discussion of the ECJ 

framework. 

Results of several executions with different parameters are shown in Figure 4.12.  The data is 

not directly comparable to the early results from the Arthur and Polak model due to core 

differences in the algorithms, since GP operates on a population of solutions simultaneously 

rather than a single point at a time.  Thus, the fitness curves plotted here show the average of all 

fitness scores across the population at a given generation interval within the simulation run. 

The four curves plotted reflect differing methodologies used to determine fitness scores and 

goal management.  As discussed in Section 3.2.2, this research utilized truth table matching as 

the scoring mechanism for determining fitness values of individuals within the GP population.  

Initially, the scoring algorithm required that the length of the truth table for a given individual 

exactly match the length of the truth table of the goal technology before further evaluating the 

individual elements within the truth table for correctness.  This constraint appeared to make it 

very difficult for the algorithm to find good-scoring designs.  The length constraint was then 

removed in an attempt to help the algorithm find high-scoring designs (albeit designs that would 

be potentially incorrect due to their excess functionality).  As the chart shows, this attempt 

slightly improved performance, but much less than expected, indicating that the length constraint 

was not the primary difficulty the algorithm was facing. 

Another strategy that was tested was to control the number of goals that could be pursued 

simultaneously by the algorithm.  As discussed in Section 4.2, the Arthur and Polak model 

restricts the number of goals that may be pursued at once, and that in testing, removing this 

constraint led to a decrease in performance.  The GP engine was initially permitted to process all 

goals at once.  Other experiments were then performed where only a single goal could be active 

at one time, such that a particular goal had to be perfectly solved before proceeding to the next 

goal.  As Figure 4.12 shows, this generally worsened performance rather than improving it.
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Figure 4.12:  Four Runs of the Genetic Programming Model with Varying Fitness Evaluation Parameters 
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The use of genetic programming in this problem domain proved to be highly challenging, 

and ultimately, disappointing.  The original hypothesis at the outset of this thesis was that GP 

would be able to construct complex technologies (in the form of digital circuits) just as the 

Arthur and Polak model does, but to do so much faster and more efficiently, perhaps even 

attaining an exponential rate of progress.  That did not occur in the experiments for this thesis 

despite many attempts.  In this work, the GP engine failed to generate complex circuit 

technologies, and did not even successfully design the mid-level ―full-adder‖ goal (see 

Table 3.1).  In fact, it rarely succeeded in creating more than a few of the most simplistic goal 

technologies, and even those were suspected to be the result of random chance rather than from 

deliberate operation of the algorithm.  How could GP fail so spectacularly in this endeavor when 

several sources in the literature (see Chapter 2) indicated that GP should function more 

efficiently than the blind random search model, and what can be learned from this unexpected 

result?  The remainder of this section offers several suspected causes for the failures observed 

based on insights gained from working with the GP framework. 

 Fitness function not smooth:  The failure of the GP engine to successfully invent digital 

circuits in this study is somewhat surprising given that significant work exists in the 

literature (see Chapter 2) with success reported in using GP to devise analog circuits.  

However, deeper consideration reveals an important difference between these two 

seemingly related problem domains.  Analog circuits have the likely property of being 

―continuous‖ within their design space.  In other words, a minute change to a component 

within the circuit is likely to result in a minute change in behavior, and therefore a small 

change to the design’s fitness score.  In contrast, digital circuits are, by definition, 

discrete and discontinuous, so that a small change in the design may result in either a 

drastic change or no change at all in the behavior of the design, and therefore a 

corresponding effect is induced in the fitness score.  Thus, analog circuits are suspected 

to have ―well-behaved‖ and relatively smooth fitness landscapes whereas digital circuits 

do not.  Since GP works by repeatedly amplifying small superiorities within the 

population, irregularities in the digital circuit fitness landscape could cause difficulties for 

the algorithm.  This is potentially a significant challenge in the use of GP as a design tool 

as many real-world problems likely have non-continuous aspects and/or poorly-behaved 

fitness features. 
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 Problem/goals not stationary:  Some evidence in the literature (e.g., [Grefenstette 1992; 

Yang 2003]) indicates that having a non-stationary problem or fitness landscape poses a 

serious challenge to genetic engines.  In this context, stationarity refers to whether or not 

the problem and its associated fitness landscape remain static during the course of the 

algorithm run.  In the digital circuits problem used in this thesis, the problem is decidedly 

non-stationary, particularly when using the simultaneous active goals constraint.  The 

implication is that as the population evolves toward the current goal, and once that goal is 

correctly solved, the focus shifts to another goal which may have very different 

characteristics, implying that the population at large is suddenly highly unfit for the new 

challenge. 

 No effective reuse of solved goals:  In the Arthur and Polak model, once a circuit design 

goal is perfectly solved, the design is added to the set of primitives—a small library of 

building block elements where it is available for explicit reuse as a module in 

constructing another design.  But in the classic genetic programming framework used for 

this research, no such obvious mechanism exists.  Instead, the design logic of a 

successfully-solved circuit goal exists within the tree-based genome of some individual in 

the population.  It is thus available for reuse in building other designs as the genetic 

crossover operator mixes chromosome trees from the population to create new 

individuals and thus new designs.  However, this exposes an important distinction 

between GP and the blind random search model.  In the GP framework, the successful 

design most likely exists only inside a single individual within the large population.  In 

order for the design to be reused, that individual would have to be selected as a parent for 

the new offspring design—a probabilistically low chance due simply to the size of the 

population.  Furthermore, even if the successful individual is chosen as a parent during 

crossover, the only way to reuse the design encoded within its genome tree is for that 

individual’s entire tree to be selected and grafted into the new individual.  Since the 

splicing point where the crossover operator mixes genomes from the two parents can be 

chosen as any node within the tree (and it may be a large tree), this also results in a low 

probability of selecting the root node for crossover.  Finally, both of these steps must 

occur to successfully reuse the solved goal design, so the product of two low-probability 
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events results in a very, very low chance of success.  A discussion contained in [Langdon 

and Poli 2002] corroborates this explanation. 

 Restrictive circuit representation:  As discussed earlier, this work with the GP engine 

originally attempted to represent circuit designs with Binary Decision Diagrams (BDDs), 

just as the Arthur and Polak model does, but implementation issues forced the 

abandonment of that approach in favor of a more constrained representation using truth 

tables.  Admittedly, the BDD representation is superior in many ways, not the least of 

which is that it allows for multiple designs to achieve the same goal.  There are many 

possible designs of a given circuit which deliver equivalent behavior, thus there is 

generally more than one solution to these problems.  The truth table representation used 

here however forces the expression of a very specific design.  This had the effect of 

sharply limiting the freedom available to the GP algorithm, and this inevitably made the 

problem much harder to solve. 

 Bloat:  The issue of ―bloat‖ was discussed in Section 2.3.  It is often a serious problem 

within GP runs, and a significant amount of research has gone into controlling it or 

managing it.  Bloat is the tendency of GP’s tree genomes to grow in size exponentially as 

the run proceeds—a side effect of the unconstrained flexibility of the tree-based genome 

design.  Once bloat begins to set in, it can quickly bring further progress of the algorithm 

to a halt.  This was certainly evidenced in the experiments for this thesis.  Often, after 

even the first few generations of a run, the resulting truth tables of most individuals in the 

population had become so large that there was no effective hope of correctly encoding 

even the simple unsolved goals remaining. 

 Insufficient population size:  A fair amount of research exists on the effect of 

population size for GP runs.  In [Koza 1992], several examples of Boolean parity and 

multiplexer (a class of problems related to the digital circuit design problem) studies are 

presented which examine the minimum population size necessary to successfully find the 

problem solution with a certain probability.  This data generally suggests that population 

sizes of several hundred thousand to several million individuals may be required to solve 

this class of problems.  For the analog circuit design work that Koza has done, population 
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sizes of a half-million were often used, with more recent work in [Koza et al. 2003] using 

populations of 10 million or more spread across hundreds or thousands of computers.  

The research in this thesis used a population size of 1000—paltry by comparison.  Larger 

sizes were attempted but became infeasible on the computing equipment available. 

In addition to each of these problems described above, the issue is further complicated by 

complex interactions between the factors listed.  For instance, the occurrence of bloat will drive 

up system memory consumption which in turn will constrain the feasible population size that can 

be run, and the population size impacts the probabilities of successful goal designs being selected 

as parents of new designs, and so on.  Thus, future experimenters are cautioned that overcoming 

one or two of these hurdles in isolation may not bring the expected benefits, and could even have 

unforeseen negative consequences due to multiple interactions. 
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Chapter 5:  Conclusion 

This chapter presents a brief summary of the findings of this thesis.  The genetic 

programming approach used here did not outperform the blind random search method as had 

been expected.  Several suggested improvements are offered that may enable the genetic 

programming model to successfully invent complex technologies in the form of digital circuits in 

future work within this field.  Finally, some concluding remarks are presented. 

5.1:  Future Work 

Although the genetic programming engine used in this thesis ultimately failed to function as 

expected, this outcome still provides valuable insights.  From an examination of the results of the 

experiments, several suspected causes and contributing factors to that failure were provided in 

Section 4.3.  Building upon that knowledge, several improvements can be suggested that might 

enable a better outcome in future work with the GP tools. 

First, additional efforts with this model should almost certainly switch to Binary Decision 

Diagram (BDD) representations of the circuit designs, rather than the truth table incarnation used 

in this thesis.  This would provide the algorithm the ability to create any number of designs that 

correctly achieve the desired goal, rather than attempting to discover a prescribed, specific 

version (which is a ―needle-in-the-haystack‖ problem).  The BDD implementation has additional 

computational benefits as well, and likely presents a much more compact representation of the 

solution, thus sharply lowering system memory requirements and making equality computations 

faster. 

Second, one or more bloat control mechanisms will likely be needed.  Various proposals and 

means for accomplishing this are present in the literature, such as in [Luke and Panait 2004].  A 

few methods include:  limiting the size or depth of the genome trees to a specified level; 

modifying the behavior of one or more of the genetic operators (such as crossover); penalizing 

the fitness scores of large genomes; and altering the generation of trees during the initialization 

process. 

Third, a larger population size is needed.  Some evidence in the literature suggests that the 

size used in this thesis is but a fraction of what is really necessary for this class of problems.  
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This potentially calls for larger and more powerful computing equipment.  Even without 

different equipment, using the compact BDD representation and controlling genome bloat would 

have allowed larger population sizes to be run on the same equipment. 

Fourth, and most strikingly, some mechanism must be found to achieve effective reuse of 

solved goals as building blocks.  This feature seems to be key in the success of Arthur’s work, 

and the lack of it is likely the main root cause of the failure in the GP work performed for this 

thesis.  In fact, it is not at all surprising that no complex technologies emerged in this framework.  

This key insight comes from [Arthur and Polak 2006]:   

“We should therefore not expect complicated circuits to appear without 

intermediate elements and without the simpler intermediate needs that 

generate these.”   

In some sense, the behavior observed in the GP experiments implicitly reinforces Arthur’s 

findings.  Some mechanism that replicates the ability to reuse designs both explicitly and with 

high probability when building new designs would need to be constructed.  Some form of Koza’s 

Automatically Defined Functions (ADFs) or an improved variant of Module Acquisition might 

be suitable. 

5.2:  Conclusion  

Genetic programming has shown itself to be a powerful tool.  [Koza et al. 2003] and [Poli, 

Langdon, and McPhee 2008] report at least two patentable inventions created by GP.  [Eiben and 

Smith 2007] recounts a recent problem where a genetic engine was given the task of designing a 

support boom on a spacecraft with the goal of maximum vibration dampening ability at 

minimum weight.  The resulting design was tested to be an astounding 20,000% better than a 

conventional human-engineered configuration.  Yet the output was a twisted, irregular, organic 

shape that no professional engineer would likely think of or even consider.  This occurs because 

GP does not possess any preconceived notions or human cognitive biases about the form of the 

solution.  This ability offers the field of engineering an exciting new realm of opportunity in the 

years ahead.  As computing power grows ever larger, the potential to apply GP to far more 

difficult and sophisticated engineering challenges increases immensely.  Similarly, using these 

algorithmic simulation models can improve understanding of the system design and innovation 
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processes at work in traditional efforts.  With better understanding of both the technical and the 

human elements involved, engineers are empowered to better manage, organize, and facilitate 

the engineering practice.  This thesis embodies the synergy of those two elements—engineering 

and management—in the continuing pursuit of addressing the complex challenges faced by 

society. 

5.3:  Challenges  

Although genetic programming is a powerful tool, it is only a tool, not a replacement for 

human experience, wisdom, and judgment.  Although GP has demonstrated impressive successes 

in bounded design domains (circuits, antennas, etc.), using it for a large systems engineering 

project (a central concern of this author’s degree program) would be anything but 

straightforward.  In truth, it probably exceeds current engineering and managerial capabilities.  

This tool should be viewed as a means of enhancing human capabilities rather than replacing 

them.  At their core, the design process and the engineering discipline are both fundamentally 

socio-technical processes.  To maximize effectiveness, there is a need to harness both the social 

aspects and technical aspects, and then integrate these into a cohesive, concrete framework 

through which innovation can be better understood and nurtured.  As technical tools such as GP 

are gradually mastered, the human and social aspect becomes the next frontier—and the next 

challenge. 
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