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Abstract

Faced with procuring transportation over its freight network, a shipper can either bid
out all of its lanes at once, or somehow divide up the network and bid it out in pieces.
For large shippers, practical concerns such as attendant manpower requirements and
exposure to financial/operational risks can make the former undesirable or even in-
feasible. Such a shipper therefore needs to determine how to best allocate the lanes in
its freight network to different bids to be run at different times. This thesis addresses
this allocation problem.

Two related approaches are presented. The first focuses on explicitly preserving
the synergies that arise in truckload network operations while attempting to balance
the sizes of each bid, and is framed as a graph partitioning problem. The second
treats lanes as independent entities and frames network allocation as a bin-packing
problem, with constraints that attempt to achieve both balance and, implicitly, syn-
ergy preservation. These two approaches are illustrated and evaluated using a small
subnetwork consisting of lanes from a large shipper. While the graph partitioning ap-
proach works in theory, the as yet unresolved question of what constitutes a "correct"
synergy definition for network partitioning purposes, and the practical significance of
the constraints considered in the bin-packing approach, make this second approach
more attractive. The development of a lane allocation model that can explicitly con-
sider inter-lane synergies as well as the kinds of constraints addressed in the second
approach is left for future work.

Thesis Supervisor: Chris Caplice
Title: Executive Director, Center for Transportation and Logistics



4



Acknowledgments

I would of course like to thank Team Walmart; in particular, my thesis advisor Dr.

Chris Caplice for his support and guidance, Dr. Francisco Jauffred for encouraging

me to pursue mathematics, and former MST/MLOG student Ali Lokhandwala for

his help and advice during my first year. I would also like to thank Patty Glidden,

Kris Kipp, and Mary Gibson for their help in all things administrative.

In addition, I would like to thank Walmart, whose funding helped make my time

here at MIT and this resultant thesis possible.

I'd also like to thank my classmates, from MST and otherwise, who helped make

the last two years memorable and worthwhile, and my roommate Joseph for his great

taste in movies, music, and books.

Finally, I'd like to thank my parents for their unwavering encouragement, and

Aric for the hilarious work anecdotes.



THIS PAGE INTENTIONALLY LEFT BLANK



Contents

1 Introduction

1.1 To Partition or Not to Partition

1.2 The Allocation Problem . . . .

1.2.1 Inter-Lane Synergies .

1.2.2 Business Constraints .

1.3 The Toy Subnetwork . . . . . .

1.4 Thesis Summary . . . . . . . .

2 TL

2.1

2.2

2.3

2.4

2.5

Transportation Background

The TL Trucking Industry . . .

TL Operations & Lane Pricing.

Economies of Scope . . . . . . .

Economies of Scale . . . . . . .

Summary . . . . . . . . . . . .

3 Explicit Synergy (Graph Partitioning) Approach

3.1 Modeling the Allocation Problem . . . . . . . . .

3.1.1 Synergy Measures . . . . . . . . . . . . . .

3.1.2 Partition Performance Measures . . . . . .

3.2 Graph Partitioning . . . . . . . . . . . . . . . . .

3.2.1 M otivation . . . . . . . . . . . . . . . . . .

3.2.2 Problem Definition . . . . . . . . . . . . .

3.2.3 Partitioning Heuristics . . . . . . . . . . .

7

15

16

21

21

23

24

24

27

27

28

30

33

35

37

37

38

41

42

42

43

44



3.3 Toy Subnetwork Allocations . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Measure 1: Reward High Volume . . . . . . . . . . . . . . . . 54

3.3.2 Measure 2: Reward Volume Balance . . . . . . . . . . . . . . 55

3.3.3 Measure 3: Reward Both High Volume & Balance . . . . . . . 55

3.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Implicit Synergy with Business Constraints (Bin-Packing) Approach 61

4.1 Modeling the Allocation Problem . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Modeling Lane Desirability . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Heuristic Method . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Learning a Classification Rule from the Data . . . . . . . . . . 72

4.2.4 Classification Performance . . . . . . . . . . . . . . . . . . . . 81

4.3 Toy Subnetwork Allocations . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Scenario 1: DC Volume Balance . . . . . . . . . . . . . . . . . 85

4.3.2 Scenario 2: Bid Value Balance . . . . . . . . . . . . . . . . . . 86

4.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Comparison of the Two Approaches 89

5.1 Synergy Preservation in the Bin-Packing Approach . . . . . . . . . . 89

5.2 Business Constraint Satisfaction in the Graph Partitioning Approach 92

5.3 Lane Pairs Frequently Allocated Together . . . . . . . . . . . . . . . 93

5.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion 97

6.1 Thesis Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



A Full Bin-Packing Formulation 103

A.1 Model ........................................... 103

A.2 Index & Variable Definitions ...................... . 104



THIS PAGE INTENTIONALLY LEFT BLANK



List of Figures

1-1 Comparison of Variable Cost Behavior . . . . . . . . . . . . . . . . . 19

1-2 The Toy Subnetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-1 Economies of Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-1 The Toy Subnetwork and Its Associated Neighborhood Network . . . 38

3-2 Parallel Sparse Matrix-Vector Muliplication Example . . . . . . . . . 44

3-3 Allocations: Synergy Measure 1 (Reward High Volume) . . . . . . . . 57

3-4 Allocations: Synergy Measure 2 (Reward Volume Balance) . . . . . . 58

3-5 Allocations: Synergy Measure 3 (Reward High Volume & Balance) . . 59

4-1 Expert-Classified Dataset: Bivariate Correlations . . . . . . . . . . . 69

4-2 Biological Basis for the McCulloch & Pitts Neuron . . . . . . . . . . 76

4-3 McCulloch & Pitts Neuron (Perceptron) . . . . . . . . . . . . . . . . 76

4-4 Average Neural Net Performance as a Function of Hidden Layer Size 82

4-5 Bagged Ensemble Performance as a Function of the Number of Trees

(Decision Stumps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-6 Allocation: Bin-Packing Scenarios 1 & 2 . . . . . . . . . . . . . . . . 85

5-1 How Do We Apply Synergy to General Allocations? . . . . . . . . . . 90

5-2 Pair Attributes By How Often Pairs are Allocated Together ..... 94

5-3 Pair Attributes By How Often Pairs are Allocated Together (Graph

Partitioning Allocations Only) . . . . . . . . . . . . . . . . . . . . . . 95



THIS PAGE INTENTIONALLY LEFT BLANK



List of Tables

3.1 Parallel Sparse Matrix-Vector Muliplication Example: Solution Space 45

3.2 Measure 1 (Reward High Volume): Bid Statistics . . . . . . . . . . . 55

3.3 Measure 2 (Reward Volume Balance): Bid Statistics . . . . . . . . . . 55

3.4 Measure 3 (Reward High Volume & Balance): Bid Statistics ..... 56

4.1 Lane Classification Methods: Test Set Performance . . . . . . . . . . 84

4.2 Scenarios 1 & 2: Bid Statistics . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Scenarios 1 & 2: DC Volume Splits . . . . . . . . . . . . . . . . . . . 86

5.1 Bin-Packing Allocation: Synergy Losses . . . . . . . . . . . . . . . . . 92

5.2 Best Graph Partitioning Allocations: Bid Statistics . . . . . . . . . . 92

A.2 Bin-Packing Formulation: Sets . . . . . . . . . . . . . . . . . . . . . . 104

A.3 Bin-Packing Formulation: Indices . . . . . . . . . . . . . . . . . . . . 105

A.4 Bin-Packing Formulation: Decision Variables . . . . . . . . . . . . . . 105

A.5 Bin-Packing Formulation: Data Variables . . . . . . . . . . . . . . . . 105

A.6 Bin-Packing Formulation: Objective Function Coefficients . . . . . . 105



THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 1

Introduction

The problem that this thesis is concerned with comes from Walmart's recent initiative

to ultimately take full control of freight inbound from vendors to its distribution

centers (DCs). Presently about two-thirds of the retailer's inbound loads are under

vendor control [24], i.e. the vendor is responsible for the transportation of its goods to

Walmart. This is typically fulfilled either with the vendor's private fleet, by directly

contracting with a third-party carrier, or through a freight broker. Walmart is in turn

charged for the freight either explicitly on the invoice, or implicitly through the price

paid for the good. A transition from the present "prepaid" freight terms to "collect",

in which the retailer takes ownership of the freight at the vendor's dock, has the

potential to drive down freight costs for Walmart and hence the prices of goods in its

stores. For example, the addition of new inbound lanes expands the space of possible

tours, and therefore opportunities for reducing empty miles, available to the 6,650

trucks [36] currently comprising Walmart's private fleet. Improved fleet utilization

could also provide increased leverage in negotiating fuel prices [4].

This large scale conversion in freight terms, however, could potentially lead to

a significant increase in the size of the retailer's for-hire (contract carrier) network.

This is because the private fleet is used primarily to fulfill deliveries outbound from

DCs to stores, which are typically characterized by both high volume and temporal

regularity and hence are desirable from a planning perspective. These lanes also

tend to have stricter delivery time and arrival window requirements [37] that can be



more easily managed through the increased control over dispatch time and routing

associated with private fleet usage. The fact that private fleet drivers are domiciled

at certain DCs, and must be routed back to their home domicile at regular intervals,

also contributes to the bias towards the private fleet in outbound lane fulfillment

[31]. This leaves the typically lower volume and less consistent inbound lanes to be

serviced primarily by for-hire carriers. While private fleet tours will certainly account

for some of the added inbound loads, the imbalance in inbound and outbound volume

(after conversion, about 4 to 4.5 million inbound loads per year, versus 2 to 2.5 million

outbound [24]) present in Walmart's network and the bias towards fulfilling outbound

loads via the private fleet mean a large increase in the number of loads Walmart must

bid out regularly is inevitable. For example, in a given month [24] Walmart receives

on the order of 315,000 inbound loads, with 115,000 loads under the retailer's control

and 200,000 under vendor control, at its DCs, and delivers 120,000 loads to its stores.

Hence converting the freight terms of all vendor controlled inbound freight could

potentially increase the number of for-hire loads bid out by a factor of two or more.

1.1 To Partition or Not to Partition

Such an increase in the size of the for-hire network begs the question of how trans-

portation over this network should be procured. In particular, is it to Walmart's, or

in general a large shipper's, advantage to bid out the entire network at once, or to

somehow divide it up and bid out each piece separately? Three important factors

relevant to this determination are TL economics, fixed vs. variable bid costs, and risk

exposure.

TL Economics The economics of truckload (TL) transportation, which are re-

viewed in Chapter 2, favor bidding out all lanes at once. In short, certain groups

of lanes can be served at lower cost by a single carrier than with multiple carriers,

i.e. the cost of serving a lane is often conditional on what other lanes the carrier is

serving. This is where the recent interest in the application of combinatorial auc-



tions, in which bidders are allowed to submit bids for items conditional on winning

certain other items, to TL procurement comes from. The concern with partitioning

the for-hire network, then, is that it will prevent certain conditional bids from being

formed that could have resulted in a lower cost allocation of lanes to carriers for

the shipper. In general, including more lanes in a TL network translates into more

opportunities for bidding carriers to find groups of lanes that complement each other

and/or their own network, which can potentially translate into lower bids due to the

predominantly cost-plus nature of the TL market. This is the motivation behind

collaborative logistics [11].

Fixed vs. Variable Bid Costs The prominence of fixed versus variable costs

involved in the transportation procurement process, from both the shipper and carrier

perspective, also affects the desirability of bidding the entire network out at once. This

process generally consists of three steps [8]:

(1) Pre-Auction The shipper prepares the information that carriers will use to bid

on the network. This includes defining lanes, forecasting lane demand over the

contract period, deciding which carriers to invite, and specifying the form of the

bids. The form of the bids includes the desired rate definition (e.g. rate per move,

rate per mile), service-related details (e.g. equipment type, capacity availability),

and allowable bid types (e.g. simple, conditional).

(2) Auction The shipper's network and related data is sent to the participating

carriers for analysis. The carriers then determine the rates with which they will

bid, and submit their bids to the shipper. If the auction consists of multiple

rounds, the carriers then receive feedback from the shipper and can update their

bids.

(3) Post-Auction The shipper determines the winning set of bids for each lane by

solving the Winner Determination Problem (WDP). Besides striving for a low

cost set of bids for its lanes, the shipper will often have other side constraints,

such as guaranteeing a certain amount of business to certain carriers or restricting



the number of different winning carriers. The results of the WDP are then sent

to the shipper's planning, execution, auditing, and payment systems.

The fixed costs are defined here as those that do not depend on the number of

lanes being bid out. The costs to the shipper associated with defining lanes, inviting

carriers, specifying the bid format, and communicating the network to carriers can

all be considered fixed costs. The costs of procuring a bidding tool and changing

contracts are also fixed. Variable costs, on the other hand, are those whose magnitude

does depend on the number of lanes bid out. From the shipper's perspective, these

include the costs of forecasting lane demand, solving the WDP, and uploading final

rates, while for carriers these include the costs associated with determining what rates

to submit (e.g. analyzing lanes, forming conditional bids).

If the shipper's fixed costs are more important than its variable costs, it would

be advantageous to bid out the entire network at once. This situation indicates the

presence of potential economies of scale for the shipper in carrier procurement, as the

shipper can reduce its procurement expenditure per lane by increasing the number of

lanes bid out at once. On the other hand, if variable costs are more important, one

needs to examine the behavior of the bid cost as a function of the number of lanes

contained in the bid. In general, there are four possibilities. The bid cost could, with

an increasing number of lanes:

(1) Increase linearly There is no cost advantage to not partitioning vs. partitioning.

(2) Accelerate (superadditive costs) The total cost of running several smaller bids

will be less than running one large bid; partitioning is desirable.

(3) Decelerate (subadditive costs) The cost of running one large bid will be less

than the total cost of running several smaller bids; partitioning is undesirable.

(4) Behave in some other nonlinear fashion The desirability of partitioning

depends on the total number of lanes to be bid out and how many lanes are in

each partition.



Bid Cost

C(100) ------------------------------------------

C(50), Subadditive ........................-- - - -

C(50), Linear ............... ........ 

C(50), Superadditive ..... ..... .............

0-
0 50 100

Number of Lanes Bid Out

Figure 1-1: Comparison of Variable Cost Behavior

Figure 1-1 illustrates the first three cases. In particular, comparing the cost of bidding

out all 100 lanes at once with running two bids with 50 lanes each, in the linear case

2. (50) = 100; in the superadditive case, 2. C(50) < C(100), and in the subadditive

case 2 - (50) > C(100).

Risk Exposure Increasing the fraction of a shipper's network up for bid at once

can create financial risks for both the shipper and carriers. The risk here is largely

related to "putting all of your eggs in one basket"; the shipper risks both picking the

wrong market environment and having to transition to a new set of carriers on a large

scale, while carriers risk either losing a significant portion of their business with the

shipper if they are incumbent, gaining more business than they can handle within a

short period, or missing out on opportunities to haul the shipper's freight.

Over time, the TL market can "tighten" or "loosen". The former means that

there is more freight to be hauled than carriers to haul it, implying that carriers have

more leverage in this case and that rates will tend to be higher. The latter means

that there is plenty of capacity; here shippers have more leverage in negotiating rates

since they have plenty of options. Hence in this case rates will tend to be lower. As

the market fluctuates over time between these two states, the rates that carriers will



bid on the shipper's lanes will fluctuate as well, assuming that carriers respond to

bids based on contemporaneous market conditions. In bidding out its entire network

at once, the shipper is hence exposed to the risk of poor market timing in that the

market may loosen after the bid, leaving the shipper locked into higher rates. Here

bidding out the network in pieces at regular intervals can mitigate the risk of poor

market timing when the market fluctuates. The reasoning is that, over time, the

well-timed bids (i.e. bids that happen before the market tightens) will tend to cancel

out the poorly timed ones.

In addition to the risk of poor market timing, letting the entire network out for bid

at once means that, absent constraints limiting the number of new carriers allowed

to win, the shipper can potentially move to a new set of carriers over its network.

This implies that there will be a period over which many of the shipper's lanes will be

served by carriers not necessarily familiar with the shipper's operations, e.g. routes

and transactional systems, and that many lanes will run an increased risk of service

failure.

From the carrier's perspective, having to bid on the shipper's full network can

present risks for both incumbent and new carriers. For incumbents, especially those

that are heavily invested in a shipper's network and for which the shipper's business

represents a significant portion of their revenue, having the shipper's entire network

up for bid at once means that such carriers can potentially lose a large fraction of

their business within a short period of time. At worst, this could mean bankruptcy

for these carriers. For non-incumbents, there are risks for both carriers having the

ability to bid on lanes across the shipper's entire network and those that are limited

by available resources in bid response. In the former case, the carrier may end up

winning a large number of its bids because the costs of hauling the shipper's freight

were underestimated (i.e. the "winner's curse" [5]), with the number of lanes that

can potentially be won in this way increasing as the number of lanes bid out at once

increases. Such a carrier would then risk incurring losses on a large scale in the short

term if it must default on certain lanes, as well as in the long term if the impact to

service level causes the carrier to not be invited to future bids. On the other hand,



some carriers may lose the opportunity to serve certain lanes in the shipper's network

if they are unable to bid on those lanes due to resource limitations.

1.2 The Allocation Problem

If the shipper ultimately decides that bidding out all lanes at once is to its advantage,

outside of preliminaries such as determining contract duration it is essentially ready to

begin the procurement process. However, if bidding out the network in pieces emerges

as a more desirable course of action, the shipper is faced with both determining how

many bids to run and how to allocate its lanes to each bid. This thesis addresses the

latter question. In particular, we consider two approaches to the allocation problem

- the first attempts to account for inter-lane synergies explicitly, while the second

considers business constraints that may be relevant to a large shipper.

1.2.1 Inter-Lane Synergies

The allocation problem can be approached from the perspective of maximizing the

preservation of network synergies that arise from the economics of truckload trans-

portation.

We do not know a priori what a bidding carrier's network will look like during an

arbitrary procurement event, and hence how well a given lane in the shipper's network

complements it. One can however identify groups of the shipper's lanes that, based

on the economics of TL operations, appear attractive and hence have the potential to

constitute a conditional bid. Of course, different groupings can have different degrees

of attractiveness. For example, while all round trips are desirable, one consisting of

25 loads per week both ways is more attractive than one with 49 one way and 1 in the

other direction, since the former can better preserve equipment balance. This degree

of attractiveness is defined here as the synergy existing between the lanes in question.

Since assigning any of the lanes in a grouping to different bids precludes bidding

carriers from forming a conditional bid with those lanes, the synergy associated with

a grouping can be interpreted as the cost of bidding out one or more of the constituent



lanes separately.

An additional objective in allocating the shipper's lanes to different bids is that

the bids should ultimately be about the same "size". Some measures of bid size

include the number of lanes, number of loads, and dollar value of the lanes being bid

out. This objective is useful in avoiding ending up with bids containing a single or

very few lanes. Also, we do not assume any reason to make certain bids larger than

others.

Hence the present partitioning problem involves finding an allocation of lanes to a

given number of bids such that the cost of the allocation, defined as the total amount

of synergy forfeited, is as small as possible while keeping the distribution of lanes

between bids as even as possible. The synergies between lanes or, as will be pursued

in this thesis, groups of lanes associated with a given DC can be represented by a

synergy network (see Chapter 3.1). If only pairwise synergies are considered, this is a

simple graph in which vertices represent the element (lane, DC) being assigned, edges

the existence of synergy between two elements, and edge weights the magnitude of

synergy. In general, if groupings containing more than two elements are considered,

the synergy network is a hypergraph. Viewed in this manner, the partitioning problem

becomes a graph/hypergraph partitioning problem.

Here we will only be concerned with preserving opportunities for follow-on loads,

round trips, and origin/destination packages. The latter involve bundling multiple

outbound/inbound lanes at a given location, and can arise when a carrier has in-

bound/outbound volume at that location in its own network that it needs to balance

[34]. While tours involving more than two lanes can certainly be beneficial to carri-

ers, the added value of identifying and attempting to preserve such groupings from

among the shipper's lanes is unclear. In practice, constraints on manpower, time, and

bid support tools often mean that when conditional bids are actually submitted they

remain relatively simple (e.g. out and backs) . Even when the carrier has access to

the resources necessary to create larger and more complex conditional bids, shipper

constraints can prevent many of these larger bids from being awarded. For example if

the shipper has a preferred carrier for a lane, any bids from other carriers containing



that lane will be unusable. Clearly, as the number of lanes in the conditional bid

increases the more likely that such a constraint will apply. In addition, even if such a

package is actually awarded, demand and timing variability between the constituent

lanes often mean that the tour rarely ends up being executed at the routing guide

level . Again, as the number of lanes in the proposed tour increases the likelihood of

execution in practice decreases.

1.2.2 Business Constraints

Alternatively, the allocation problem can be formulated as essentially a bin-packing

problem, i.e. we're given a set of bids (bins) to which we want to allocate lanes in a

manner consistent with certain shipper-defined constraints. The constraints that will

be dealt with in this thesis are:

(1) Bid Value Balance The total value of the lanes in each bid should be roughly

the same.

(2) Location Balance Depending on the location type, either

(a) evenly distribute the location's volume between bids (applies to fleet domi-

ciles, the inbound side of all distribution centers, and some ZIP clusters),

or

(b) keep all volume inbound to/outbound from the location in the same bid, and

evenly allocate locations of that type between bids (applies to center points,

import facilities, and some ZIP clusters).

(3) Lane Quality Balance Each bid should contain roughly the same number of

desirable and undesirable lanes1 .

(4) Region-to-Region Balance Each pair of regions should have roughly the same

volume, for both directions, assigned to each bid.

'Note that the concept of "desirability" depends on the particular shipper in question, and is
highly subjective. This will be considered in more detail in Chapter 4.
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Figure 1-2: The Toy Subnetwork

While this approach does not consider synergies explicitly, the Location Balance

(in particular (b)) and Region-to-Region Balance constraints have the effect of helping

to preserve certain synergies inherent in truckload operations - in particular follow-on

opportunities at a given location in the former, and out-and-backs in the latter.

1.3 The Toy Subnetwork

The two lane allocation approaches described in general in Section 1.2, and in more de-

tail in Chapters 3 and 4, were evaluated using a subset of lanes taken from a large ship-

per's inbound freight network. This subnetwork, shown in Figure 1-2 above, consists

of 19 lanes inbound to 5 distribution centers (each indicated by DC, i = 1,... ,5),

producing a total average flow of 1,623 loads per week. The distances depicted be-

tween the 10 vendor clusters (each indicated by V in the figure, j = 1,...,10) and

DCs in Figure 1-2 indicate how far their associated actual vendor clusters are from

the associated actual DCs. This depiction will be useful in constructing the toy

subnetwork's associated neighborhood network in Chapter 3.

1.4 Thesis Summary

The remainder of this thesis is organized as follows. Chapter 2 provides some back-

ground on the truckload (TL) transportation industry and operations, and explains



how inter-lane synergies arise in this setting. Chapter 3 presents the graph parti-

tioning approach to network allocation. In particular, several measures of inter-lane

synergy are proposed, and allocations of the toy subnetwork lanes are obtained by

applying different graph partitioning heuristics to the graph representation of the

lanes and these synergies. Chapter 4 in turn presents the bin-packing approach. A

representation of the allocation problem as an integer program is proposed, with con-

straints corresponding to those listed in Section 1.2.2. This chapter also explores

some potential methods to automate the ranking of lanes according to desirability,

and likewise presents sample allocations of the toy subnetwork lanes. Chapter 5 then

compares the approaches presented in Chapters 3 and 4. Finally, Chapter 6 summa-

rizes the thesis, provides a recommendation for large shippers faced with the network

allocation problem, and suggests directions for further research.
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Chapter 2

TL Transportation Background

This chapter begins by providing a brief overview of the truckload (TL) transportation

industry. Next, Section 2.2 reviews practical considerations associated with this mode

in terms of both operations and lane pricing. Finally, in Sections 2.3 and 2.4 we

identify, based on these concerns, the primary sources of cost efficiencies for carriers

operating in this mode.

2.1 The TL Trucking Industry

According to Standard & Poor's [25], the US commercial freight transportation mar-

ket's aggregate revenue, which includes the trucking, rail, air, water, and pipeline

modes, was approximately $665 billion in 2009, or about 4.7 percent of the US gross

domestic product. Trucking was the dominant segment, accounting for approximately

$545 billion (82 percent) of the market, and is itself comprised of private and for-hire

carriers. The private carriage industry is estimated to be valued at around $260

billion, or about 47.7 percent of the trucking market, with the for-hire industry ac-

counting for the remaining $285 billion.

We are concerned here with TL for-hire carriage, which accounted for about

$246 billion (86%) of the for-hire market, with the remainder attributed to less-

than-truckload (LTL) and ground package delivery companies. The TL market is

highly competitive; barriers to entry and exit are low, operators (with the exception



of specialty equipment carriers) compete primarily on cost, and switching costs for

shippers are usually low [8]. This market is also highly fragmented; about 30,000 of

an estimated 45,000 TL companies had annual revenues of less than $1 million [25].

2.2 TL Operations & Lane Pricing

TL, which is used for shipments in excess of 10,000 pounds, is a direct mode. This

means goods are shipped from origin to destination with no intermediate pickup/drop

off stops. By contrast, a package shipped via LTL is combined with others with

different origins and/or destinations and passes through one or more consolidation

terminals en route to its destination. Hence TL trucking is usually likened to taxi

operations, while LTL is analogous to buses or airlines [8].

Operationally, TL appears at first to be fairly straightforward. The process gen-

erally begins with a request from the shipper to pick up a certain load. If the carrier

has the capacity and is willing, it dispatches a truck and a driver to the load's origin.

Once the load is picked up, the driver drives directly to its destination, where the

trailer is either unloaded or dropped off. The driver then either holds at a local ter-

minal for a follow-on load from the same area, travels empty (deadheads) to a region

where loads will potentially become available, or is sent directly to pick up another

load.

Deciding which driver to assign to which load, however, is often not trivial. As the

carrier dispatches trucks across its network, its primary concerns are to (1) minimize

idling time , (2) minimize the number of empty miles driven, and (3) route drivers

back to their home locations and trucks to maintenance facilities at regular intervals.

Idling, or dwell time, is incurred when a driver is waiting to be dispatched to a load's

pickup point, or while waiting for a shipment to be loaded or unloaded. Loading and

unloading times can be reduced or eliminated through the use of trailer pools, where

the shipper pre-loads a tendered shipment prior to the dispatched driver's arrival,

and in general through improved shipper/carrier coordination. The second and third

concerns, however, are more difficult to address due to the high degree of uncertainty



in load locations over time. Shippers typically do not notify carriers of future loads

before they need to be hauled; hence carriers may not be certain a load will occur until

as little as 24 hours in advance [22]. Even when a load is known, there still remains

the possibility that a more desirable load may materialize in the near future. There is

therefore considerable uncertainty in whether, for a given empty truck and driver at

a given location, it is better to have the driver wait for a load at its current location,

move empty to pick up a known load, or move empty to another area. In addition,

since the available dispatch options depend on the current state of the network, the

carrier must balance the immediate costs/benefits of a given dispatch possibility with

longer term costs/benefits of changing the state of the network with that dispatch.

For example, always taking the next available or most valuable load may lead to a

situation where there are too many trucks in areas with not enough loads, or where

some driver requires excessive empty miles to return home on time.

In pricing a given lane in the face of often considerable uncertainty, the carrier

can protect itself by adjusting the quoted price according to the amount of perceived

uncertainty (i.e. "hedge" against unfavorable outcomes [9]). Here the value associated

with having a truck available at a certain location or region can serve as a guide

for lane pricing. Such "regional potentials" reflect the expected future availability of

freight originating from a given region and hence the possibility of having to deadhead

out of that region for a follow-on load. One measure of a region's potential is the

total value of all outbound loads from that region [8]. The potential P of region i is

found by summing, over all shipments (indexed by m) and all destinations (indexed

by j), the difference between the revenue RT from shipment m destined to region j
from i and the direct cost' Cij of hauling from location i to j.

Pi =( ( (RT) - C1.7)
m 3

The minimum rate r.! for a lane from region i to j (not including profit markups) can

then be taken to be the rate at which the carrier, based on the regional potentials for

'This includes fuel, driver wages, tire wear, etc.



i and j defined above, sees no net benefit/disbenefit:

ri ) C4; - P + P1.

One must keep in mind, however, that this rate does not take the variability of actual

shipment occurrences into account, and hence is not known with certainty.

2.3 Economies of Scope

Ultimately, the cost of serving a lane is highly dependent on the likelihood that

a follow-on load will be available at the lane's destination for arriving trucks, as

this determines the likelihood that empty miles will have to be incurred in finding

another load and/or routing the driver back to his home location. This in turn

means that the cost of serving a lane depends on what other lanes the carrier is

serving. For example, suppose a carrier is serving a single lane originating at location

A and destined to location B, and drivers are domiciled at A. Let CAB be the cost

to travel from A to B, rAB the revenue generated from the A to B delivery, and

CBA the cost of moving empty from B back to A. The carrier's total operating

cost is then C(AB) = CAB + CBA - rAB. But if the carrier also serves the reverse

direction, its total cost is C(AB,BA) = CAB + CBA - rAB - rBA < C(AB). Here

the added revenue generated from the B to A movement, which the carrier must

execute in both cases, effectively reduces the cost of making the A to B delivery.

Also, C(AB, BA) < CAB + CBA - rBA = C(BA), i.e. serving both lanes mitigates the

cost of moving empty in order to either get the driver home or to pick up a load (see

Figure 2-1).

One can view the "output", or product, of a carrier as the set of lanes it is serving,

where each lane is defined as the movement of a commodity between a certain origin

- destination pair during a certain time period [21]. The carrier's output can then be

expressed as an n-vector y, where n is the number of possible lanes that the carrier

can serve and each entry denotes the volume served on the corresponding lane. Under
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CAB - rAB

A

Lane AB Served Only
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Figure 2-1: Economies of Scope

this definition the carrier's cost function C(y) satisfies the definition of subadditivity

and, in particular, of economies of scope. A cost function is subadditive with respect

to y if, for any set of output vectors yi, .. . , y,

C C(yg) > C (y)

where
P

Sy = y, | I> |IiI > 0.

Here |lull = V/u -u. Economies of scope exist if the vectors y.... . ,y, are pairwise

orthogonal, meaning for any yj and y,, 1 < i < j < p, y -yJ = 0. For the present

TL freight example this corresponds to the constraint that each lane be served by

exactly one carrier, i.e. the demand on a lane cannot be satisfied by more than one

carrier. This implies that yl,...,y, are pairwise orthogonal because, for each entry

position from 1 to n, only one of the p vectors can have a nonzero entry. For example,

C([4, 0])+C([0, 4]) > C([4,4]) implies economies of scope, while C([1, 2])+C([3, 2]) >

C([4, 4]) only implies subadditivity. For the two - location example above, denoting

the lane from A to B as AB and the lane from B to A as BA, and letting Vi be the

CBA - rBA

Both AB and BA Served



demanded volume on lane i,

P

(C(yi) C([VAB, 0]) ± C([0, VBA]) > C(y) C [VAB, VBA]),
i=1

where

[VAB,0] ± [O1VBA I [VAB, VBA

and

II[VABVBA]II > II[VAB,0I II[0VBA]II >0-

An industry that has a subadditive cost function at the industry's output level

is one which would be more efficiently served cost-wise by a single firm than by two

or more [3]. The existence of economies of scope for a set of products means in

particular that it would be more cost-effective for a single firm to produce all of these

products than if more than one firm each specialized in only certain products. Here

one can interpret the scope economies present for the carrier's costs as indicating

that, given two carriers whose service network consists of locations A and B and a

shipper bidding out lanes AB and BA, it is more efficient cost-wise to have a single

carrier serve both lanes than to have each carrier serve only one of them.

In general, the driving force behind the economies of scope that carriers experience

for certain groups of lanes is the reduction of empty miles. This is an important cost

element for truckload carriers and, as mentioned above, can be incurred either in

repositioning a truck to a new load origin or in routing drivers back to their home

domiciles. Indeed, the reduction of such non-revenue-generating miles, along with

customer service, is a primary performance metric by which truckload dispatchers are

evaluated [35]. While bundles of the shipper's lanes such as headhaul/backhaul pairs,

lanes inbound and outbound from the same facility, and tours can all potentially help

in reducing empty miles, it is important to keep in mind that the carrier's valuation

of a given group of the shipper's lanes depends both on what lanes the carrier wins

and on the carrier's existing network [8]. Hence it is difficult to tell in advance how

valuable a given bundle of lanes will be; for instance, a headhaul/backhaul pair may



actually create or exacerbate equipment imbalances, while a set of disjoint lanes may

perfectly complement a carrier's existing flows.

2.4 Economies of Scale

The above implies that simply offering more freight for a TL carrier on a given

lane may not result in cost efficiencies. For example, increasing volume on a lane

whose destination does not typically see much outbound freight will only increase

the likelihood that the carrier's trucks will have to deadhead out of that destination.

Hence the importance of spatial (as well as temporal - an outbound lane from a

facility is useless as a follow-on load if the inbound truck arrives too early or too late)

relationships between lanes, and the absence of significant fixed costs [9], mean that

economies of scale, i.e. cost efficiencies from increasing volume, are largely absent

from TL operations.

Indeed, recent research has indicated that scope analysis, rather than scale anal-

ysis, is more appropriate in the context of transportation industries. One limitation

of scale analysis is that it is based on looking at the behavior of a producer's cost

function as outputs are increased proportionally. In the case of a single scalar out-

put, the producer exhibits economies of scale if a proportional increase in inputs (e.g.

resources needed for production) can result in a greater than proportional increase in

output. In terms of costs, assuming that the total cost of production is linear in the

inputs (e.g. total cost is simply the sum over all inputs of the input level times the

unit cost of that input), economies of scale exist if a proportional increase in costs

can result in a greater than proportional increase in output.

The generalization of scale analysis from a single scalar product to multiple prod-

ucts is carried out by looking at "bundles" of outputs, where the proportions of

individual outputs within each bundle are fixed [21]. Aggregating the firm's outputs

in this way allows essentially the same analysis as the single product case to be ap-

plied, since output can now be viewed in terms of the scalar amount of a given unit

bundle produced. The applicability of such an analysis to transportation, however, is



dubious. For instance, the two indices used to evaluate scale economies in transport

industries have been returns to density (RTD) and network returns to scale (RTS),

which are defined as follows:

1
RTD=

Z1m

RTS = 1

Here qj is the elasticity of the cost of producing output i with respect to the amount

of output i produced, and /N is the elasticity of the cost of production with respect

to N, a measure of network size. In particular, RTD, which is equivalent to the

definition of the degree of multiproduct scale economies [33], captures the effect of

increasing volume proportionally on all of a carrier's existing lanes on the carrier's

average cost , while RTS captures the effect on average cost of expanding both the

volume on all lanes and the network size proportionately [32].

Intuitively, based on the need to balance equipment over its network, a scenario

in which increasing all existing volumes proportionally does not benefit a TL carrier,

since existing imbalances are exacerbated, but where adding certain lanes can improve

balance and hence can reduce costs, is plausible. This applies, for instance, to the two-

location example network in the previous section. Such a situation would imply that

we have constant or decreasing returns to density and increasing returns to network

scale, i.e. RTD < RTS. But since all empirical studies have indicated that qN > 0

[1], under the above definitions RTD > RTS. In addition, it has been shown that

RTS is inherently ambiguous, and that scope analysis should be employed instead in

analyzing the behavior of costs with changing network size [2].

Returns to density have been found to exist at the corridor level for many truck-

load carriers, however [7]. That is, if one aggregates all of the lanes originating in

one geographic area (e.g. Chicago) that are destined to another area (e.g. Atlanta),

one will often find that as this corridor-wide volume increases carriers will find it



more desirable to ship along the given corridor. The increase in desirability is most

pronounced for corridor volumes between one and ten loads. A possible explanation

is that the increased consistency that comes with increased corridor volume allows

the carrier to better manage its network. In addition, if the destination area also has

significant outbound volume, increasing the inbound volume to this area would be

helpful in load balancing.

2.5 Summary

This chapter reviewed truckload trucking and its driving economics. In particular,

economies of scope were identified as the primary source of cost efficiencies in TL

operations. Such economies originate from the fact that carriers can derive an added

benefit of empty mile reduction from serving certain groups of lanes that cannot be

realized if the lanes are served by different carriers. On the other hand, the need

for equipment balance, i.e. to have trucks where they are needed, and the absence

of significant fixed costs mean that, beyond the corridor level, economies of scale are

practically nonexistent in truckload trucking [7].
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Chapter 3

Explicit Synergy (Graph

Partitioning) Approach

This chapter describes how the allocation problem can be formulated as a graph

partitioning problem, and defines several measures of synergy (Section 3.1.1). The

graph partitioning problem and several solution heuristics are subsequently described

in Section 3.2, and solutions for the toy subnetwork using these methods are presented

and analyzed in Section 3.3.

3.1 Modeling the Allocation Problem

Prior to allocation, the inbound network is redefined as a "neighborhood network".

The idea behind the redefined network is that trucks that have unloaded freight at

a particular DC can potentially pick up loads originating from vendors close to that

DC. To incorporate this, for each DC a neighborhood is created that consists of the

given DC and all vendor centroids such that the given DC is its nearest DC, with

all loads inbound to the DC and outbound from the associated vendor centroids now

incident to a single node representing the neighborhood. Hence each neighborhood

contains exactly one DC; for example, a given neighborhood A corresponds to the

neighborhood containing DC A. Additionally, instead of assigning individual loads

to each bid, lanes are associated with their destination DC and all lanes associated
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Figure 3-1: The Toy Subnetwork and Its Associated Neighborhood Network

with a DC are assigned together to a bid. Thus we are in effect using DCs as the

element to be assigned to each bid. This has the benefit of preserving carriers' ability

to package inbound lanes at each DC location while reducing the number of synergies

to be calculated. In particular, where we previously would have had to calculate

synergies between lanes, we now only need to effectively consider synergies between

DCs.

Figure 3-1 above shows the toy subnetwork's corresponding neighborhood network,

which is the graph that we will be partitioning. Section 3.1.1 proposes three ways in

which synergies can be represented in this graph, and Section 3.1.2 indicates how a

given allocation obtained via graph partitioning will be evaluated.

3.1.1 Synergy Measures

Here the type of synergy considered is that arising from the existence of follow-on

opportunities. Only pairwise synergies, representing follow-ons and out-and-backs,

are considered presently. Note that as the number of legs increases the continuous

move or tour becomes less likely to occur in practice due to both resource limitations at

many medium to smaller carriers preventing them from evaluating or even considering

such packages, as well as difficulties in executing such moves once they are awarded

(for example due to mismatches in actual lane volume occurrences or timing issues).

It is not clear at the moment where the "cutoff" for the number of legs considered



should be, i.e. the number beyond which the potential benefit of increased empty mile

reduction is outweighed by low probability of success for such a package bid. Hence

while hypergraph partitioning gives the option of considering more complex moves,

it seems reasonable to focus on packages derived from two-legged moves, as they are

both the most likely packages to materialize as bids and the most likely to actually

be executed in practice.

The three synergy measures considered here are all based upon the aggregate

volume flowing between neighborhoods. Let Fij be the number of loads flowing from

neighborhood i to neighborhood j, and Mkii be the amount of synergy between

neighborhoods i and j (note that Mki3 = Mkji) using measure k. Each attempts

to capture the benefit associated with high volume between pairs, balanced volume

between pairs, or both.

Measure 1: Reward High Volume

Mlij = Fi + Fjj

This measure is simply the total volume flowing between neighborhoods i and j. The

idea is essentially to use outbound lane volume from a neighborhood as a proxy for

the likelihood that volume will be available for trucks inbound to that neighborhood

to use as a follow-on, where a higher outbound volume implies a higher likelihood that

such volume will be available at that location. For example, suppose we have three

neighborhoods A, B, and C, where the only flows are 5 loads per week outbound

from A to C, and 50 loads per week outbound from B to C. Then if we require two

subsets, we would prefer to keep B with C over A with C and A with B, since keeping

B with C means the large number of opportunities for trucks inbound to B to find

follow-on loads are preserved.

Recall that each flow is an aggregation of all lanes originating from vendors in the

origin neighborhood to the given destination. Then assuming two bids are to be run,

according to the synergy measure B and C should be assigned to one bid and A to



the other. Since all lanes are associated with their destination DC, if A and C are

separated then no continuous move packages can be created using lanes inbound to

A and outbound to C via a vendor close to A. The same applies to B and C if

B is separated from C; the idea is then to preserve the ability of carriers to create

follow-on packages where it is likely that a follow-on load will be available.

Measure 2: Reward Volume Balance

M2i1 = MIN(Fig, Fj)

Here MIN(a, b) indicates the minimum of a and b. This measure also reflects the

degree of balance between two neighborhoods, since the minimum of the i to j and

j to i flow is the number of truckloads that are perfectly balanced between i and j.

Here greater values of the measure are more desirable, since more balanced flow is

better than less.

Measure 3: Reward Both High Volume & Balance

M3jj = 2 - M1, - IFij - Fjjl

This measure is essentially a modification of M1 that attempts to take both the

volume and the degree of volume balance between neighborhoods into account. The

idea is to scale up the total flow between a given pair of neighborhoods according to

the degree of volume balance between those neighborhoods.

Using M1, to the graph partitioner the cost associated with cutting a pair of

neighborhoods A and B with 2 loads per week in one direction and 0 in the other,

and another pair C and D with 1 in both directions, is 2 in both cases. Therefore to

make the latter more attractive we can scale up the flow between that pair in a way

that reflects its degree of volume balance. One way to do this is with the formula

M3ij =(Fi + Fji) 1 +a T J



where

T Max. allowable difference between Fi and Fji,

J I Fi - FjjI

a parameter determining how much to scale up for a certain amt. of balance.

For example, letting a = 1 and T = Fi + F = 200, in the example above the

flow between neighborhoods C and D is doubled,

M3CD = (1 + 1) 1 + 1* 2 20 = 4

while the flow between neighborhoods A and B remains the same,

M3AB = (2 + 0) 11 + 1. * = 2 -2.22

Here we will take a 1 and T = Fi + Fjj as defaults; hence recalling that Mlij =

F- + F- we have

M3jj = Mlig 1 + M1, MFi - Fjj]

= Mlig + Mlij - |Fjj - Fjjl

= 2 - M13 -|Fi -Fiji|

3.1.2 Partition Performance Measures

Given a synergy measure, the graph G = (V, E), where each vertex corresponds to

a neighborhood, vertex weights the total number of loads inbound to the neighbor-

hood's DC, each edge the existence of synergy between two neighborhoods, and edge

weights the magnitude of synergy, is partitioned using one of the methods described

in Chapter 3.2.3. The two partition performance metrics considered here are the

(1) Difference Between Subset Sizes, corresponding to the number of loads bid

out in each bid, and the



(2) Total Weight of Crossing Edges, corresponding to the "loss" in synergy,

according to the measure used, associated with bidding out the network in those

pieces.

It may not be possible to optimize both of these performance measures simultaneously.

This can be seen for the graph associated with the parallel sparse matrix-vector

multiplication example in Section 3.2.2 (see Figure 3-2); the smallest cut size can

only be achieved by increasing the imbalance in subset sizes from the optimal size,

and vice versa (see Table 3.1).

3.2 Graph Partitioning

This section provides background on graph partitioning. We begin by describing a

practical problem that motivated the development of graph partitioning. Section 3.2.2

then defines the graph partitioning problem in general. Finally, Section 3.2.3 describes

the three solution heuristics that were used to generate the toy subnetwork lane

allocations presented in Section 3.3.

3.2.1 Motivation

For some partitioning problems, a measure of the quality of a given partition may be

how "evenly" the objects are distributed. An example is the fair allocation of players

to teams. If each player is assigned a number indicating his/her skill level, a fair

allocation would be one where the sums of the players' skill levels for each team are

equal. If the numbers used to capture the players' skill levels are nonnegative integers,

this problem is known in general as the number partitioning problem. Other appli-

cations of number partitioning include evenly distributing tasks among workers or

computer processors, very-large-scale integrated (VLSI) circuit design [29], and pub-

lic key cryptography [28]. Number partitioning is also known to be NP-complete [15],

and is often used as the basis for proving the NP-completeness of other number-based

problems, such as bin packing, multiprocessor scheduling, quadratic programming,



and knapsack-type problems [29].

The quality of a partition may also depend on relationships between the objects

being allocated. For example, suppose we have a number of tasks for a computer

with distributed memory and multiple processors, or a set of connected computers,

to complete, and that the tasks have certain pairwise data dependencies. If commu-

nication between processors/computers is expensive, a good allocation of these tasks

would not only give each processing unit about the same amount of work, but would

also minimize the units' need to talk to one another.

Examples of parallel computation problems include the solution of partial differen-

tial equations, sparse Gaussian elimination, and sparse matrix-vector multiplication.

The latter, in particular, can be formulated as follows [10]. Suppose we are given

a vector x and a sparse' matrix A, and wish to compute the vector y = Ax. One

way to compute y in parallel is to define the calculation of the ith element of y,

yi =_ 1 Aijxj, as a single task, and to let the computer calculating y store the value

of xi and all nonzero values in the ith row of A. Under this definition, the computer

assigned to calculate yi needs to get the value of xz, for all j corresponding to a

nonzero A:,, from the computer assigned to calculate yj.

3.2.2 Problem Definition

The tasks to be assigned, and the data dependencies between them, can be represented

by an undirected graph G (V, E), where each vertex in V corresponds to a task

and each edge in E corresponds to a data dependency between two tasks. Each

vertex v and edge e can also have a weight, w, and we, corresponding to task v's

workload and data dependency e's inter-processor/computer communication burden,

respectively. An example of a sparse matrix-vector multiplication problem, and the

corresponding graph, are shown in Figure 3-2. Here vertex weights (in parentheses)

are taken to be the number of addition/multiplication operations required to calculate

the corresponding element of y, and edge weights are all equal to 1.

A solution to the task assignment problem for p processors/computers, or more

'Mostly zeros - only non-zero entries are stored in memory
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Figure 3-2: Parallel Sparse Matrix-Vector Muliplication Example

generally the graph partitioning problem, amounts to an allocation of vertices in G to

p disjoint sets P such that Uti= P= V. An optimal solution is one where the sizes

of each set |Pi = E,,,P w,, i.e. the sum of the weights of the vertices assigned to

that set, are exactly or approximately equal and the sum of the weights of all edges

crossing between sets, EeeEnwf(PixP), Yi/ we, is as small as possible.

For the example problem in Figure 3-2, for p = 2 there are 5 + (i) 15 possible

solutions. This is because we can either have one vertex in one set and four in the

other, or two in one set and three in the other. Given the former, we have 5 choices

for the isolated vertex; given the latter, there are (') ways to select two vertices to

isolate from the rest. The possible solutions are enumerated in Table 3.1. Since the

sum of the vertex weights is odd (21), a "perfectly balanced" partition here is one

where the subset sums differ by 1. There is one such partition for this problem,

{{YI, Y3}, {Y2, Y4, Y5}}. We can, however, reduce the cut size by 1 by allowing the

subset sum imbalance to increase by 1 ({{Y1, y5}, {Y2, Y3, y4}}), or reduce the cut size

by 2 by allowing the subset sum imbalance to increase by 2 ({{y1, Y2}, {Y3, y4, Y5 }} or

{{Y3, Y4}, {Y1,Y2, Y5}})-

3.2.3 Partitioning Heuristics

A variety of heuristics have been developed to find approximate solutions to the graph

partitioning problem, which is known to be NP-complete [13]. The implementations



Solution |P11 |P21 Cut Size
{{Y1}, {Y2, Y3, Y4, Y5}}

{{Y2}, {Y1, Y3, Y4, Y5}}

{{Y3}, {Y1, Y2, Y4, Y5}}

{{Y4}, {Y1, Y2, Y3, Y5}}

{{Y5}, {Y1, Y2, Y3, Y4}}

{{Y1, Y2}, {Y3, Y4, Y5}}

{{Y1, Y3}, {Y2, Y4, Y5}}

{{Y1, Y4}, {Y2, Y3, Y5}}

{yY1, Y5}, {Y2, Y3, Y4}}

{{Y2, Y3}, {Yi, Y4, Y5}}

{{Y2, Y4}, {Y1, Y3, Y5}}

{{Y2, Y5}, {Y1, Y2, Y4}}

{{Y3, Y5}, {Y1, Y2, Y4}}

{{Y4, Y5}, {Y1, Y2, Y3}}

Table 3.1: Parallel Sparse Matrix-Vector
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of several of these heuristics in the partitioning software Chaco [17] - inertial, spec-

tral, and multilevel Kernighan-Lin - were used to generate the toy subnetwork lane

allocations presented in Section 3.3. These heuristics are described in this section.

Inertial

The idea behind the inertial heuristic is that cutting a graph perpendicularly to the

direction in which it is elongated the most will likely give a small cut. This of course

means that the vertices must be assigned fixed coordinates. Given this, a partition

into two subsets can be obtained as follows. First, the vertices are interpreted as

point masses, and the vertex weights as mass values. The direction of elongation

then corresponds to the principal axis of the distribution of point masses that has

the smallest corresponding principal moment of inertia, i.e. the principal axis about

which the masses are most closely concentrated. For vertex coordinates located in



R2 , the inertia matrix for the corresponding distribution of masses is

I'=

where, denoting the x-coordinate of a vertex v by v, and the y-coordinate by vy,

IXX = E v 2
vCV

IY = E Vo
v6V

IxY = x = - Z vv
vCV

The principal axes turn out to be defined by the eigenvectors 2 , and the principal

moments of inertia the eigenvalues, of I [14]. Let the eigenvectors be denoted by

I1 and 12, and the eigenvalues by a1 and a 2, where a1 < a 2 . Having obtained

the direction of elongation 3 , defined by I1, the mass distribution is cut in two by

projecting the point masses onto the axis passing through I1, finding the median of

the projected point masses, and letting all points on one side of the median be in one

subset and all points on the other side be in the other subset. This procedure can be

repeated on one or both of the resulting subsets to obtain partitions of the original

vertex set into any number of subsets.

The solutions generated with this heuristic tend to be "banded", which depending

on the application may or may not be a good thing [17]. In addition, while the method

is fast, the quality of the partitions tend to be poor in general, as it does not take the

connectivity of the graph into account [17]. In particular, an example of a pathological

case [14] is a graph that is "+"-shaped, where the vertices along the horizontal are

widely dispersed along the horizontal axis and densely connected and those along the

vertical are narrowly dispersed around the median of the vertices on the horizontal

2An eigenvector u of a matrix T is defined as a vector for which the linear transformation defined
by T amounts to a scaling of the vector by some constant A, i.e. Tu = Au. The A associated with
an eigenvector u is its corresponding eigenvalue.

3Note that since we want the axis about which the point masses are most tightly clustered, this
axis can also be obtained by finding the least squares linear fit for the point mass distribution.



and densely connected. Here the inertial heuristic would result in a partition with a

large associated cut.

Spectral Bisection

Spectral methods use the "spectrum" of a graph to generate a partition. Here a

graph's spectrum refers to the set of eigenvalues of the graph's Laplacian matrix

L, defined as the difference between the graph's degree matrix D and its adjacency

matrix A, i.e.

L=D-A

where, for some numbering of the graph's vertices from 1 to n = IVI, the elements of

D and A are defined as

Dig =- di = degree4 of vertex i ,if i = j

0 otherwise

and

Ai 1 ,if an edge exists between vertices i and j

0 , otherwise,

respectively.

In Chaco the spectrum of L can either be used to recursively bisect a graph, or to

divide it into four (quadrisection) or eight (octasection) pieces at once. Here however

we will only be concerned with bisection. To demonstrate how the spectrum of L can

be used to partition a graph, we now describe the formulation presented in [16] of

spectral bisection for a connected graph where all vertex and edge weights are equal

to 1. A detailed description of the formulation used in Chaco for weighted spectral

partitioning can be found in [18].

Suppose the vertices of a connected graph G = (V, E) are numbered from 1 to

n = |Vl. We can then assign, for each vertex i G V, a variable xi = 1 such that

iEV xi = 0. Such an assignment corresponds to a partition of V into two sets (all
4The degree of a vertex is the number of edges touching that vertex.



vertices assigned 1 in one set and -1 in the other) that, assuming the number of

vertices is even, is perfectly balanced (for each vertex assigned 1, there is some other

vertex assigned -1).

For a given assignment x, we can then use the function f(x) = EE ( -xj)2

to count the number of edges crossing between subsets in the corresponding partition.

This works because if vertices i and j, {i, j} E E, are in the same set, they contribute

[(1) - (1)]2 [(-1) _ (_l)]2= 0 to the sum, while if they are in different sets they

contribute [(1) - (-1)]2 [(-1) - (1)12= 4 to the sum. Expanding f(x), we have

1 X - j)2 1X + X ( 2+x) I: 2xixj
{i,j}EE {ij}EE {ij}EE

Recalling that the degree sum EoEV di counts each edge exactly twice, we can

rewrite the first term in brackets as

( (xi+xi)= (3 2=2|E|=>3di=>4di=xDx.
{i,j}EE {ij}EE iEV iEV

The second term in brackets can be rewritten as

E 2xixj = II xiA>x> =E xi: AiAxj = xTAx.
{i,j}EE iEV jEV iEV jEV

Hence

(xi - x) 2  r(xDx-xTAx)= 1xT(D - A)x 4 xTLx.
{i,j}EE

Therefore the discrete optimizaton problem we wish to solve is

1
Minimize -xTLx

4

such that xi = ±1 Vi G V, (3.1)

ZiGVX =0.



Since 3.1 is difficult to solve exactly (would require a large enumeration of feasible

solutions and solving via branch and bound), and for practical purposes an approx-

imate solution is adequate, the discreteness constraint can be relaxed, yielding the

continuous approximation

1
Minimize -xTLx

4

such that xTx = n xi E R V i E V, (3.2)

iEv Xi - 0.

The solution of (3.2) relies on four properties of the Laplacian matrix L, which are

given in Theorem 3.2.1 and proven in [18]:

Theorem 3.2.1. Let u 1 , u2,... , u be the normalized ' eigenvectors of L, and A,

A2 < --- < A, be the corresponding eigenvalnes. Then L has the following properties.

(a) L is symmetric and positive semidefinite.6

(b) The U are pairwise orthogonal. 7

(c) u 1 = n- 1, andA , 0.'

(d) If G is connected, then A, is the only zero eigenvalue of L.

Property (b) implies that the ui span R"n; hence we can write x in (3.2) as a linear

combination of the ui's, i.e. x = EiV aiuj, where the ai's are real constants. The

5||s|= Vufi = = ufui = 1 for all i.6 An n x n matrix T is positive semidefinite if, for any n-vector x with real-valued entries,
xT Tx > 0.

7 uTu = 0 for all i: fj.
81 is the n-vector (1,1, ... ,1 )T.



first constraint in (3.2) implies that, for any feasible x, EiEV a? = n:

)TXTX= (aiui )aiu

(a2ufui+ -- - + aianufun+ + anaiu Tu+ - - - + a u u )

iEV

since ufuj = 1 if i = j (normalized) and 0 otherwise (pairwise orthogonal). Substi-

tuting x = ZEV aiui into the objective function in (3.2) gives

T

xTLx I( a ui L (aiui
iGV iV

a Ciui :aiLiui

)T4 iGV ) iGV

I(aiu T + --- + aesu T) (a1111+ --- + aenAnun)

41n
- (cA 1uT ui + - - - + ana1 Aiu Tui + - -- + aiaAu un + ± - - aAu u)

- (a2A1 + -- + ae2An)
41n
I (aA2 + ±- aA),

since, by Properties (c) and (d), A1 = 0 and Ai > 0 Vi > 2. But A2 < ... < A, means

that

-xTLx = -(ae2A2 + --- + all A) > - (aZ + --- + a 2)A2 = nA2-
4 4  2  2 n - 4 2  n 4

This lower bound on the objective funcion in (3.2) can be achieved by setting x



x* = v/u2:

**x1 1

-x*Lx* = -(A/u2)TL(Vu2)
4
1

= -nu 'Au 24

4 4

This solution is also feasible, since

x*Tx* (if/u 2)T(x/iu 2) = nu u2 = n,

and

x= x*T1 (vu 2 )T1 uf /1 = uT 1 = nunu 1 = 0,
iEV 

Vn

where the satisfaction of the latter constraint follows from Properties (c) and (b).

Hence x* is a solution to (3.2). A bisection of the corresponding graph can be found

by calculating the median of the values in x* and assigning the vertices corresponding

to all x* greater than the median to one set, and the remaining vertices to the other set.

Since multiplying all x! by -1 does not change the median, x = -# u2 corresponds

to the same partition. Finally, if A2 / A3, x* is a unique solution.9

Multilevel Kernighan-Lin

A major difficulty in finding an optimal graph partition is that the number of candi-

date partitions grows very quickly as the number of vertices increases. For example,

suppose we want to partition the graph G = (V, E) into two pieces. Then the num-

ber of possible partitions, without any restrictions on the sizes of each piece, can be

derived by first considering the power set 'P(V) 10 of V. Each possible subset of V

corresponds to a partition of G into two pieces (for a given subset A, the correspond-
9Recall that we have assumed here that the graph being bisected is connected. As noted in [16],

during recursive spectral bisection disconnected subgraphs do arise in practice. This is addressed
in Chaco by adding a minimal number "phantom edges" to any disconnected subgraphs that arise,
partitioning the resulting connected subgraph, and then removing the added edges.

10The power set P(S) of the set S is the set of all possible subsets of S. For example, for
S = {a, b, c}, -P(S) = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.



ing pieces of G are the vertices in A and those in V \ A). However, if we were to

simply count the number of possible subsets of V we would be double counting, since

the partitions defined by A and V \ A and V \ A and V \ (V \ A) = A are the same.

Also, we do not want to count the trivial partition (one piece is the original graph,

the other has nothing), which in P(V) corresponds to 0 and V. Hence the number of

possible partitions of G into two pieces is"

IP(V)| - 2 21Vl - 2 y 1
2 2

This of course grows very fast with IV; for example, a graph with 100 vertices has

299 - 1 = 6.34 x 1029 possible partitions into two pieces.

The multilevel Kernighan-Lin heuristic [19] attempts to reduce the difficulty in

finding a good graph partition by first finding a good partition of a coarse approx-

imation of the original graph, which is often a much easier problem. The graph is

then de-coarsened in stages, and refined along the way.

In particular, a coarse graph is generated by finding a maximal matching' 2 in

the original graph, merging each pair of matched vertices into a single vertex, and

repeating on the resulting graph until it is sufficiently small. Each vertex in a coars-

ened version of the original graph is also assigned a weight equal to the sum of the

weights of the finer vertices it contains, and the adjacency structure of the original

graph is preserved by making each coarse vertex adjacent to all the neighbors of its

constituent finer vertices. Where two finer vertices share a neighbor, the two edges

are merged into one with a weight equal to the sum of the two finer edges' weights.

Once the original graph has been suffciently coarsened, any graph partitioning

heuristic that can handle vertex and edge weights can be invoked. The implementa-

tion in Chaco uses either spectral bisection, quadrisection, and octasection described

111P(S) I = 2|s| because each element of S is either in a given subset or not; hence each subset
corresponds to exactly one binary sequence of length ISI, where each digit corresponds to a unique
element of S and 1 indicates subset membership. The number of possible subsets is therefore equal
to the number of binary sequences of length ISI, i.e. 21sl.

12A matching in a graph G = (V, E) is a subset of E whose endpoints are all distinct. A matching
is maximal if adding any edges would cause the set to no longer be a matching.



in the previous section [19] for this step.

The coarse, partitioned graph is then uncoarsened by proceeding along the initial

coarsening process in reverse. At each step, a generalized version of the Kernighan-Lin

algorithm [19], first proposed in [23] and implemented in linear time in [12] is invoked

if desired to improve the current partition. The use of this algorithm is appropriate

here since it is essentially a local, greedy optimization heuristic [17] whose utility

depends on the quality of the initial partition it is given. Given an initial partition,

it works by moving one vertex at a time between sets based on the "gain", i.e. the

improvement to the partition, associated with the move. In particular, let w,,, be the

weight of edge (v, w) E E, and Cpq be the (symmetric) cost of having an edge cross

between pieces p and q. Then the gain gq(v) associated with moving a vertex v E V

currently in piece p to piece q is defined as

9qWwe~cq if vertex w is in piece q,

9q(v) = ,if vertex w is in piece p,
(v,w)EE

W (cpm - cqm) ,if vertex w is in neither piece p nor q.

Details on how the generalized Kernighan-Lin algorithm selects moves can be

found in [19], which also contains a comparison of how the multilevel Kernighan-

Lin heuristic performs compared to the inertial and spectral methods described in

the previous section. While the inertial method was the fastest but produced the

poorest partitions, and spectral was much slower but produced high quality partitions,

multilevel Kernighan-Lin produced partitions similar in quality to the spectral method

in times closer to the inertial method.

Chaco can also apply the Kernighan-Lin algorithm to any given initial partition,

and in particular can use it to improve partitions generated by the inertial and spectral

methods. In this thesis both the inertial and spectral methods alone, as well as

coupled with (local) Kernighan-Lin, will be considered.



3.3 Toy Subnetwork Allocations

Each of the three methods described in Section 3.2.3 were used to allocate the toy

subnetwork's lanes into two hypothetical bids. As noted in Section 3.1.2, the quality

of a given allocation depends both on the imbalance of subset sizes (measured by

the total number of loads per week bid out at once) as well as the total weight of

neighborhood network edges whose endpoints are in different bids. The importance of

these two performance measures can of course be weighed differently; hence depending

on the decision maker, the ultimate attractiveness of a given allocation generated by

the graph partitioning approach may vary. In practice, this approach could be taken

as an initial step in the allocation process, with the generated allocations forming the

basis for improvements based on other constraints.

3.3.1 Measure 1: Reward High Volume

The top left hand corner of Figure 3-3 shows the edge weights, corresponding to

inter-neighborhood synergy values, of the toy subnetwork's neighborhood network

obtained using Measure 1, which rewards high volumes. The figure also shows the

allocations of the toy subnetwork's lanes found using the multilevel Kernighan-Lin,

inertial, and spectral methods, with the latter two applied both with and without

the local Kernighan-Lin algorithm. In particular, lanes drawn with a solid line were

allocated Bid 1, and those drawn with a dashed line were allocated to Bid 2. The

performance of each allocation is summarized in Table 3.2, where both the bid sizes

("BI Size" & "B2 Size" columns) and synergy loss (S. Loss column) are in loads per

week. Here the "BI Lanes" column indicates the number of lanes assigned to Bid

1, and similarly for "B2 Lanes". The multilevel-KL and spectral (without local KL)

methods produced the best allocations according to bid size difference and synergy

loss. If however one is willing to allow for a larger discrepancy between the bid sizes,

one can have the synergy loss reduced from 36 to 34 using the allocations produced

with the inertial with KL and spectral with KL methods.



BI Lanes B2 Lanes BI Size B2 Size Size A S. Loss

Multilevel-KL 7 12 37 43 6 36

Inertial 6 13 36 44 8 46

Inertial w/ KL 11 8 50 30 20 34

Spectral 7 12 37 43 6 36

Spectral w/ KL 11 8 50 30 20 34

Table 3.2: Measure 1 (Reward High Volume): Bid Statistics

Method B1 Lanes B2 Lanes BI Size B2 Size Size A S. Loss

Multilevel-KL 10 9 44 36 8 3

Inertial 6 13 36 44 8 5

Inertial w/ KL 10 9 44 36 8 3
Spectral 9 11 35 45 10 4

Spectral w/ KL 13 6 49 31 18 3

Table 3.3: Measure 2 (Reward Volume Balance): Bid Statistics

3.3.2 Measure 2: Reward Volume Balance

The neighborhood network edge weights and allocations using Measure 2 are shown in

Figure 3-4, while the performance of each allocation is summarized in Table 3.3 above.

Here the multilevel-KL and inertial with KL methods produced identical allocations

which dominate the others with respect to both bid size difference and synergy loss.

3.3.3 Measure 3: Reward Both High Volume & Balance

Figure 3-5 shows the edge weights of the neighborhood network using Measure 3,

as well as the allocations based on this measure. Table 3.4 gives the associated

allocation statistics. Here if minimizing bid size difference is paramount then the

spectral method produced the best allocation, while if minimizing synergy loss is

more important the allocation generated by the inertial with KL and spectral with

KL methods is best. The allocation generated using the multilevel-KL method is a

constitutes an intermediate solution.

Method



Method B1 Lanes B2 Lanes B1 Size B2 Size Size A S. Loss

Multilevel-KL 11 8 45 35 10 47

Inertial 6 13 36 44 8 56

Inertial w/ KL 11 8 50 30 20 46

Spectral 7 12 37 43 6 48

Spectral w/ KL 11 8 50 30 20 46

Table 3.4: Measure 3 (Reward High Volume & Balance): Bid Statistics

3.4 Summary

This chapter presented an approach to the allocation problem that is based on min-

imizing the loss in inter-lane synergies resulting from allocating lanes in the net-

work to different bids. We began by translating the inbound toy subnetwork into a

neighborhood network, and defining several measures of synergy over this network

(Section 3.1). This network was then allocated to two different bids using different

approaches to solving the graph partitioning problem. While the best allocation was

clear under synergy measure 2, for measures 1 and 3 the allocation with the smallest

bid size difference did not also have the smallest synergy loss, and vice versa. Hence

to be able to apply this approach in practice the relative importance of minimizing

bid size difference versus minimizing synergy loss needs to be known. In Chapter 5,

we will revisit the allocations presented in this chapter in comparing the graph par-

titioning approach to the bin-packing approach, which is described in Chapter 4.
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Chapter 4

Implicit Synergy with Business

Constraints (Bin-Packing)

Approach

This chapter explains how the problem of finding a good allocation of lanes to a given

number of bids, given a set of business constraints, can be formulated as an integer

program [20]. In addition, the problem of automating the rating of lanes according

to desirability is addressed in Section 4.2, and results for the toy subnetwork are

presented in Section 4.3.

4.1 Modeling the Allocation Problem

Recall that the criteria given in Section 1.2.2 for a good allocation of lanes are:

(1) Bid Value Balance The total value of the lanes in each bid should be roughly

the same.

(2) Location Balance Depending on the location type, either

(a) evenly distribute the location's volume between bids (applies to fleet domi-

ciles, the inbound side of all distribution centers, and some ZIP clusters),

or



(b) keep all volume inbound to/outbound from the location in the same bid, and

evenly allocate locations of that type between bids (applies to center points,

import facilities, and some ZIP clusters).

(3) Lane Quality Balance Each bid should contain roughly the same number of

desirable and undesirable lanes.

(4) Region-to-Region Balance Each pair of regions should have roughly the same

volume, for both directions, assigned to each bid.

Section 4.1.1 explains the objective function that the model attempts to minimize,

while Section 4.1.2 explains the constraints. The complete formulation is given in

Appendix A, along with a tables with the definitions of the sets of things used in the

model (Table A.2), the indices used (Table A.3), the decision variables (Table A.4),

the data variables (Table A.5, and the objective function coefficients (Table A.6).

4.1.1 Objective Function

For each type of balance, we assign a weight indicating the desirability of achieving

that type of balance. Each of these weights can be interpreted as the cost of having

one unit of imbalance (e.g. a difference of $ 1 between the values of the two bids)

between the bids we're allocating lanes to. The objective is then to minimize the total

cost that arises from the different kinds of imbalances (bid value, location volumes,

etc. ). Letting bi refer to bid i, contained in the set of all bids B among which we want

to allocate the lanes in the network, and where R, refers to region m, the weights

for the different kinds of balance are

(1) W(bi,bj), for bid value balance (amount of imbalance denoted by -(bi,b,)),

(2) K(bib,),,, for location volume balance (amount of imbalance denoted by v(bi,bj),U),

(3) Q(bi,bj), for the balance of the number of locations between bids for those loca-

tions where we want to keep all inbound/outbound volumes together (amount of

imbalance denoted by P(b,b)),



(4) WD(bi,b,), for lane quality balance (amount of imbalance denoted by o(b,b,),d), and

(5) WR(bi,bj),(Rm,R.), for region-to-region balance (amount of imbalance denoted by

X(bi,bj),(Rm,Rn) -

Besides the set of all bids B, other sets used in the model include the set of all

lanes 1 E L, the set of all locations w E 9, the set of all possible lane ratings d E A,

and the set of all regions R, E R. The model's objective function is shown in (4.1).

Minimize E(bi,bj):i,<j(W(bibj) -ob-,bj)) + Ewen X(bi,bj):i<j(K(bi,b),w Vtb,,j),w) -+

Z(bi,b):i<j (Q(bi,bj) P(bi,b 3)) + idEi Z(bi,b,):i<j (WD(bi,bj) '(bi,bj),d) +

(R,,)E RxR E(b;,b,):i<j (WR(bi,bj),(Rm,R.) - Xts,,b,),(Rm,R,))

(4.1)

The decision variable for this problem is Xl,b, which is 1 if lane 1 in the set of all lanes

L is assigned to bid b and 0 otherwise.

4.1.2 Constraints

To ensure that each lane is assigned to exactly one bid, we add the constraint

i, = 1,b
bcB

Vl E L. (4.2)

Bid Value Balance

Letting pi be the value of lane 1, the total value assigned to each bid is

( PlXl,b = Sb,
EL

Vbc B. (4.3)

We then define o-(bi,b,) as the absolute difference between the total values assigned to

bids bi and bj, i.e.

ISbi - Sbj 1 V5 -(be(4 V bi, bj E B. (4.4)



Location Balance

In this formulation, location balancing is done on the number of lanes assigned. One

can balance on value instead by multiplying each Xl,b in (4.5) by pi and each y,,b in

(4.8) by Ee LMPe.

Balance at Locations We first consider the constraints for the balanced distri-

bution of volume at each location w where we wish to do so. Letting L, be the set

of lanes incident to location w, the number of lanes assigned to each bid b at each

location w is

X,b = N,, VbEB, wEQ. (4.5)
IEL,

We then define utb,,,,, as the absolute difference between the number of lanes at

location w assigned to bids bi and b3, i.e.

|Nb,, - N,w15 v(bi,b),w V b, b7 E B, w E Q. (4.6)

Balance of Locations For each location p in the set M of locations where we want

all incident lanes to be assigned to the same bid, the variable y1,b is defined to be 1

if location t is assigned to bid b and 0 otherwise. To ensure that each such location

is assigned to exactly one bid, we add the constraint

E Y,,ab=1 VbEB. (4.7)
,GM

The total number of such locations assigned to bid b is then

( yp,b = T V b E B. (4.8)
IEM

Letting L, be the set of all lanes incident to location [t, to ensure that each lane

incident to each such location is assigned to the same bid we add the constraint

Xt,b = Yy,b V f e L,bEB,t yEcM. (4.9)



The absolute difference between the number of such locations assigned to bids bi and

bj is defined to be ptb,,,), i.e.

|Tb, - T 1 P(b,,b3 ) V bi, b3 C B. (4.10)

Lane Quality Balance

Here the quality of a lane is designated by -1 if the lane is undesirable, 0 if neutral,

and 1 if desirable. Letting A = {-1, 0, 1}, and Ld be the set of all lanes of quality d,

the total number of lanes of quality d assigned to each bid b is

(4.11): Xe,b= Dd,b VdcA, b EB.
eELd

The absolute difference between the number of lanes of quality d assigned to bids bi

and bj is defined by 6 (b,,bj),d, i.e.

IDd,b, - Dd,b| 5 6 (b,,b,),d V d c A, bi, bj c B. (4.12)

Region-to-Region Balance

Letting v, be lane 1's volume in loads per week, and L(R.,R) the set of lanes between

regions R, and R,, the total volume between regions R, and R assigned to bid b is

(4.13)
E Vze,b = Z(Rp,R,),b V Rm, Rn E R, b e B.

-EL(Rm,Rn)

The absolute difference between the volume between regions R, and Rn assigned to

bids bi and bj is defined by X(bi,bj),(Rm,R,), i.e.

IZ(R.,R),b, - Z(R.,Rn),bjI X(bi,bj),(Rm,Rn) V Rm, R, e R, b,b CR. (4.1(4.14)



4.2 Modeling Lane Desirability

This section considers how the lane desirability ratings that come into play in the Lane

Quality Balance constraints can be obtained in practice. For small networks, one may

have an expert review and rate the desirability of each lane by hand. However, in

applications to large networks, which is the primary focus of this thesis, this is likely

to be infeasible. Here we would like to automate the lane rating process by somehow

translating the expert's thought processes in coming up with a lane rating into one or

more classification rules that can be implemented on a computer. In general, such a

classification rule would, for each lane to be rated, receive as input a certain number

of the lane's characteristics captured in numeric form and output the lane's rating,

which of course should agree with what the expert's rating would have been.

In general, while we expect that the expert will employ a set of internal rules

for desirability that are applied to each lane, we also expect her to possess a great

deal of business knowledge, such as future freight availability in certain locations,

that will play into her final decision. It may be difficult to translate such knowledge,

which may be very lane and/or time specific, into a set of general rules we can use to

automate the rating process. In addition, different experts will likely employ slightly

different rules and, even if the same rules are used, weigh the importance of certain

rules differently based on past experience. Hence here the problem of how to translate

expert knowledge into machine knowledge is not trivial in general.

Because of this difficulty in obtaining a literal representation of the human expert

on a computer, we instead consider an indirect approach. While we expect particular

experts to vary somewhat in their lane ratings, we also expect that there is some sort

of underlying regularity to these ratings, and that if we choose the proper set of lane

characteristics, these underlying patterns can be extracted. This pattern can then

be used on its own as an acceptable approximation to an expert's opinion, or may

constitute an initial step in a large-scale classification scheme in which the computer

performs the initial classification and an expert subsequently identifies important

lanes and adjusts the computer's ratings if necessary.



This approach of using data to learn about the underlying process that gener-

ated the data is the primary concern of the related fields of statistics and machine

learning. When applied to large datasets, this approach is also aptly termed data

mining. Section 4.2.1 describes the data that we attempted to "mine" for patterns

that can be turned into classification rules. Section 4.2.2 describes a heuristic clas-

sification method obtained from trial and error, while Section 4.2.3 desribes three

statistical/machine learning methods that can be used to find classification rules

from expert-classified data. Finally, Section 4.2.4 considers the performance of these

four methods compared to the human expert.

4.2.1 Data Description

The dataset from which we attempted to generate a good classification rule was

obtained by first randomly selecting 267 lanes' from a large shipper's inbound network

and giving these lanes to an expert at the shipper to rate. Each lane was ultimately

assigned a rating of either undesirable, neutral, or desirable. We then considered the

available statistics for each lane (e.g. distance, volume, etc.) and came up with a set

of lane statistics that we felt would help indicate why a given lane was rated the way

it was. This set of statistics includes

(1) Distance Increased distance was observed in the data to contribute to desirability

in some cases.

(2) Average Weekly Volume Increased volume can mean increased operational

predictability, and hence increased desirability.

(3) Lane Revenue This is the total amount charged to the carrier for a lane, i.e.

Revenue = MIN(Raw Lane Rate x Distance, Min. Charge) x Avg. Weekly Vol.,

where, for our dataset, Raw Lane Rate is in dollars per mile per load, Distance

'Only lanes that are TL, dry van, and which have a raw lane rate greater than zero were consid-
ered.



is miles, Min. Charge is in dollars per load, and Avg. Weekly Vol. is in loads per

week. We expect that an increase in revenue would make a lane more desirable.

One of the two following variables can be used.

(4) Driver Idle Hours Because of limitations on driver working hours, serving a

given lane entails a certain amount of idling time for the driver. We expect that

lanes with less associated idle time will appear more desirable.

To estimate the total time that the driver for a given lane is idle, we first assumed

that drivers drive in 11-hour shifts, and that on average a truck travels at 60 miles

per hour. Given these assumptions, the amount of idling time for a given lane

is simply the remainder of the total number of hours required to serve the lane

divided by 11, i.e.

Drive Idle Hours = MOD[Distance/(60 mph), 11 hours],

where MOD(a, b), or a modulo b, indicates the remainder of a/b.

(5) Geographic Impact Value (GIV) As was noted in Section 2.2, the particu-

lar origin and destination of a lane plays an important role in determining the

carrier's final rate for the lane. This is because to the carrier there is a certain

amount of value associated with having a truck in a certain location. If a location

is a consistent source of freight, the value of having a truck at that location is

high; conversely, at locations where it is difficult to secure outbound freight the

value to the carrier may even be negative.

The values, or "geographic impacts", perceived by a carrier for each relevant 3-

digit ZIP code were obtained from [6]. These values are the origin and destination

3-digit ZIP code coefficients obtained by regressing lane cost per load on distance

and origin & destination, i.e. the estimated impact on a lane's cost per load due

to the lane's origin & destination alone.

All of the aforementioned variables are real-valued. Of course, any of these vari-

ables can be discretized, e.g. by defining the variable to be 0 if the associated real-
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valued variable is within a certain range, 1 if within another range, etc. This was

attempted with the Drive Idle Hours variable, but no clear improvements in classifica-

tion performance were observed with the arbitrarily chosen cutoff of 5.5 hours. Future

work may involve attempts to find good discretizations of this and other variables.

Figure 4-1 above shows the correlations between all pairs of features and features,

as well as between features and the response. Besides Distance, Average Weekly Vol-

ume, and Revenue (the latter of which is derived from the former two), and between

Distance and Driver Idle Hours (which is derived from Distance), no other pairwise

correlations among the features and response are apparent.
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4.2.2 Heuristic Method

Prior to investigating methods to extract patterns from the data, several heuristic

classification rules were tested and improved upon via trial and error. This section

outlines the approach taken in coming up with the best-performing heuristic method

(Algorithm 4.2.1).

Initial Classification Based on Extremity of GIV Value

One way to classify the lanes is to first treat the geographic impact value of each lane,

defined as the origin GIV plus the destination GIV, as an indicator of the degree of

that lane's desirability with, in our case, smaller (negative) GIV's corresponding to

greater desirability. Then, assuming that in general the proprtions of lanes that are

undesirable, neutral, and desirable are fixed to P(U), P(N), and P(D), respectively,

a given lane can be classified according to how extreme that lane's GIV is compared

to all possible lane GIV's. In particular, if the lane's GIV falls within the top [P(U) x

100]th (e.g. if the proportion of undesirable lanes is 25%, the top 25 th) percentile, the

lane is classified as undesirable. If the GIV falls below the bottom [P(D) X 100]th

percentile, the lane is classified as desirable. Otherwise, the lane is classified as

neutral. The two assumed distributions of lane desirability that were tested are an

even split into thirds, and 25% undesirable and neutral and 50% desirable. The former

was an a priori assumption, while the second was based on the observed proprtions

in the dataset. Of course, other proportions are possible, and one can even find a set

of proportions that minimize the misclassification error on the dataset. One concern,

however, is how well this optimized set of proportions can generalize on new data.

Improving Classification Performance Based on Distance

To improve on the classification obtained from lane GIV's, each lane's initial class was

modified based on the lane's distance. First, it was observed that an upper distance

cutoff, above which any lane that was not already classified as desirable was promoted

by one level (e.g. undesirable made neutral), improved classification performance. In



addition, since intra-state/short haul lanes are often undesirable in practice, both

an intra-state indicator (1 if the lane is intra-state, 0 otherwise) and lower distance

cutoffs were tested. The final values of the upper and lower cutoffs were obtained by

trial and error.

Final Heuristic Method

The best performing heuristic method is given as Algorithm 4.2.1. The method takes

as an input a set of n lanes L = {e}fU to be rated, where each lane has a GIV,

Distance, and empty Class attribute (denoted by GIVt, Distancet, and Classt), and

returns the same set of lanes with updated classes.

Algorithm 4.2.1: HEURISTICCLASSIFY(L)

for t +- 1 to n

if GIVt < -589.14

then Classt <- 1

else if GIVt > -380.28

then Classt +- -1

else Classt <- 0

do if Distancet > 1700

if Classt < 1
then

then Classt <- Classt + 1

else if Distancet < 250

if Classt > -1
then

then Classt +- Classt - 1

return (L)



Note that what we have essentially done here is generate a classification tree

by trial and error. Methods such as the ID3 and C4.5 algorithms can be used to

generate classification trees. However, we were unable to generate a classification

tree that outperformed the three methods described later in this chapter. In fact,

this heuristic method turned out to be very competitive in terms of classification

performance (see Table 4.1 in Section 4.2.4 for a summary of the performance of

all tested methods) compared to the performance of the machine learning models

presented in Section 4.2.3.

4.2.3 Learning a Classification Rule from the Data

This section considers three methods that can be used to find patterns in data and

translate these patterns into a classification rule. In particular, the following methods

are all particular approaches to the problem of supervised learning, which is concerned

with finding an association between features (e.g. distance, revenue, etc.) and some

response (e.g. the desirability of a lane) that agrees well with a given set of correct

features and responses (e.g. the dataset with rated lanes obtained from the expert).

There are many approaches to supervised learning (see any data mining or machine

learning text); the three methods presented here appeared to work best out of those

tested on the given dataset.

Multinomial Logistic Regression

Given a K-class classification problem (each object belongs to one of K classes)

multinomial logistic regression estimates, based on the given already-classified data,

a set of K - 1 functions. Each of these functions fk takes as inputs the features of an

object we want to classify and returns the probability that the object belongs to class

k. In other words, given an input vector of N features x = [zX]N , each function

returns the probability, conditional on this vector of features, that the object the

features correspond to belongs to class Ck, i.e.

fk = Pr(ck | x), k = 1,.., K - 1,



Only K - 1 functions are needed because, since any object we consider must belong

to one of the K classes,
K

S Pr(ck I x) = 1,
k=1

which means that once we know K - 1 of the probabilities, we know the remaining

probability is 1 - i Pr(ck | x). The class with the highest probability given x is

then taken to be the class of the corresponding object.

To find these functions, multinomial logistic regression first assumes that they are

of the form

exp (wk,O + EnN=i Wk,nXn
fk = Pr(ck I x) = , k = 1 K

1+ if= exp (wio + INz4 inx )

where exp(a) = ea, and then attempts to find good values of the parameters Wk,O,

... Wk,N for each class Ck based on the data. This is usually done using maximum

likelihood estimation, which selects the set of parameters that makes observing the

given dataset most likely given the assumed form of the conditional probability distri-

bution. More precisely, given a set of M objects, each with an associated N-vector of

given features, without being given the correct classes we don't know with certainty

which class a given vector of features corresponds to. Hence we can model the class

of each feature vector as a random variable C which, given the vector of features,

has a (discrete) probability distribution, i.e. fclx(ck) = Pr(C = ck I x). Since we're

assuming a parametric form for this distribution, this is written more precisely as

Pr(C = Ck I x, W), where W = {w,}1_I is the set of P parameters. We can then

view each of the correct classes we're given for our set of objects as a realization (i.e.

a "draw") from the corresponding conditional probability distribution.

The question that remains then is how to choose the values of the parameters

in W. The approach taken by maximum likelihood estimation is based on the as-

sumption that, since each object has a true class (given in the data), each probability

distribution should "peak" at this class. Hence if we were to go through each of the

feature vectors for our M given objects and draw from its conditional distribution we



should, given the correct distribution, get the true class with very high probability.

If we assume that knowing the result of a draw from one conditional distribution

does not affect any of the other conditional distributions (which is reasonable since

each object's true class should not change if we know the true value of some other

object), the joint probability, or likelihood L, of getting the given dataset by making

M conditional draws is

M

L(X, r, W) = JJ Pr(C = rm | Xm, W), (4.15)
m=1

where X = [xm]m_1 is the M x N matrix of given features and r = [rm]M1 is the

vector of correct classes for each vector of features2 . To make each actual class as

likely to be drawn as possible, given the assumed parameterization of the feature-

conditional probability distributions, we can find the set of values of the parameters

in W that maximize equation (4.15). Since taking the logarithm of a function does not

change the location(s) of its extreme point(s) (the maximum/minimum of a function

will require the maximum/minimum power of any base to get that value), we can

maximize the log-likelihood f to work with a sum instead of a product3 :

M

f(X, r, W) = log L (X, r) = log Pr(C =rm I xm, W) (4.16)
m=1

The log-likelihood is usually maximized iteratively using gradient ascent, since there is

no closed-form (i.e. a set of equations were we can plug in X and r and get the optimal

values of the parameters in W) set of solutions for the best values of the parameters

in W [30]. In general, given a vector-valued function f(x), where x = [x,]n_1, gradient

ascent works by first choosing some starting values x = ao for the variables we want

to maximize our function with respect to, and taking those values as an initial guess

for the optimum values. Then, assuming that the function is differentiable around

21f two events A and B are independent, then Pr(A I B) = Pr(A) and Pr(B I A) = Pr(B). Hence
Pr(A n B) = Pr(A I B) Pr(B) = Pr(A) Pr(B I A) = Pr(A) Pr(B).

3Recall that log AB = log A + log B. This is because, taking the base of the logarithm to be b,
we have AB = blog AB . But since A = blg A and B = blog , b log AB (b log A) (blog B) log A+log B.



our initial guess, we calculate the gradient

Vf(ao) [8f(ao) of(ao)
laxi a2,]

at that point, which is a vector pointing in the direction in which f(x) is increasing

the fastest at ao, whose magnitude corresponds to the steepness of ascent. We then

update our initial guess by moving it a certain number of steps q in the direction of

the gradient, i.e.

ai +- ao + - Vf (ao).

We then set a1 as our new guess for the optimum, and repeat the process above until

the difference between guess i and guess i + 1 is small enough (i.e. Iai - ai+1| < E,

for some small e > 0, which implies that the gradient at a. is basically flat), and take

ai+1 as the value of x that maximizes f(x).

To estimate the values of the parameters in W that maximize (4.16), then, we

initialize gradient ascent with some initial guess wo = [wo,,)(_ 1 for the optimal pa-

rameter values, set some step size q, and update the initial guess according to the

gradient of E(X, r, W) = f(w) 4 at wo:

w1 ~-w~ri.V~wo)Of0±wo) &f(wo)1wi <-- wo + n - Vf (WO)= wo +g - ,... .WI ) f(O

A variant of gradient ascent called conjugate gradient ascent, which tends to converge

more quickly, is used when computational efficiency is important [30].

Neural Network Classification

Neural network classification is an approach to estimating the function that maps

feature vectors to one of the K possible classes that is inspired by certain aspects of

how biological neural networks, e.g. brains, function. The most basic functional unit

in a biological neural network is the neuron. Figure 4-2 shows the neuron's general

structure. Each neuron can be viewed as a simple processing unit, and is connected
4 The data X and r is taken as given, so the log-likelihood is a function only of the parameter

values given by the vector w.
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to other neurons via connections called synapses. The input to each neuron comes in

the form of electrochemical signals from other neurons, which are conducted by the

dendrites to the body of the cell. If the input signals are strong enough, i.e. beyond

some threshold, the neuron itself generates a signal that is transmitted down along its

axon and out to other neurons connected to it via its axon terminals. Computation

in the brain, which contains on the order of 100 billion neurons and 100 trillion

synapses [26], occurs in parallel over these simple processing units, in constrast to

most modern personal computers, for which processing is centralized over at most

only a few processors.

The mathematical model of the neuron which constitutes the basic building block

of neural network classification is the McCulloch and Pitts neuron [27], or perceptron,

shown in Figure 4-3 above. The input to the perceptron is an N-vector x [xn][_1 .

The perceptron takes this input and first calculates the dot product of x with a

stored weight vector w = [w ]N_ 1, w x EN_ The dot product is then fed

to a threshold function T, which is used to decide how the perceptron fires, i.e. what

the response r will be. One common threshold function simply returns 1 if the dot



product is greater than some threshold 0 and 0 otherwise, i.e.

r +- r(w -x) 1 if W -X > (4.17)
0 otherwise.

Another common threshold function is the sigmoid, which transitions smoothly from

0 to 1:
1

r <- T(W - x) = . (4.18)
1 + exp{-(w -x - 0)]

The value of the threshold 0 can be represented as an input (or "bias") weight by

creating an additional "zeroth" input xo whose value is always 1', and whose weight is

denoted by wo, i.e. 0 = woxo = wo. If this is done, the threshold function (4.17) simply

checks the sign of the dot product of the input vector (with the additional element xo)

with the weight vector (with the additional element wo). For the threshold function

is (4.18), we simply let 0 = wo.

A single perceptron can perform binary classification. In particular, given a set

of weight values and a threshold value, if we use (4.17) the perceptron simply checks

whether the input vector x is on one side of the hyperplane wix 1 + - - - + WNXN = 0

or the other. If x is on one side, it is assigned to one class, and if it is on the other

it is assigned to a second class. If we use (4.18), the output of the perceptron can be

interpreted as the probability that x belongs to the class corresponding to an output

of 1. Of course, in order for the single perceptron to be able to perfectly discriminate

between the two classes, the classes must be linearly separable, i.e. if each object is

represented in N-space, we can draw a hyperplane such that all objects of one class

lie on one side, and those of the other class lie on the other.

Given M feature vectors X = 1Xm]1 and a vector of corresponding classes t =

[tm]I-1, tm C {0, 1} V m, the perceptron can "learn" the orientation of the hyperplane

that best separates the two classes using Algorithm 4.2.2, where the weights w are

randomly initialized to small values, r; is the "learning rate" indicating how much we

5 The sign of the bias input x0 doesn't really matter, as long as its absolute value is 1. The
point of expressing the threshold in this way is to have the perceptron learn the proper value of the
threshold, given by the weight wo, rather than setting it ourselves.



want to update the weights by when they're updated, and T is the desired number

of iterations [26].

Algorithm 4.2.2: TIRAINPERCEPTRON(X, t, w, r1, T)

for t +- 1 to T

for m <- 1 to M

do TM +- 'r(w Xm)
do

do for n +- 0 to N

down +- wn +q - (tm - rm)-x

The reasoning behind the update term q - (tn - rm) - xn is as follows. Suppose

the object corresponding to the mt' feature vector belongs to the second class, i.e.

tm = 1. If the neuron's response rm, given the mth feature vector, is also 1, no weight

update is necessary. If however rm = 0, we need to change the weights in a way that

will bring the neuron closer to giving the correct response of 1. Since the neuron's

response is determined by the magnitude of the dot product w -x = _ I wnxn, if

we want to make the neuron go from a response of 0 to 1 we need to increase the

value of the dot product. We can do this by updating each w, so that wnxn increases.

The amount by which we change each w is determined both by the magnitude of

the learning rate as well as by the magnitude of xn, and the direction of change

(positive or negative) is determined by the sign of xn. The reason we multiply by

x, is to move the dot product in the correct direction6 . If x, > 0, then we need to

increase the value of wn. On the other hand, if x, < 0 we need to make w smaller

in order to make w. xv, greater (less negative).

If K > 2 classes are involved, we can first encode the class of each object as a

binary vector of length K, where the kth element is 1 if the object belongs to class k

6 Alternatively, we can replace rx in the weight update term with sign(xn).



and 0 otherwise. Hence the vector of targets t above becomes an M x K 0-1 matrix

T = [tm]m 1, where tm = [t K I encodes the class of the mth feature vector. We

can then assign a single perceptron to each of the K target positions, and train each

using Algorithm 4.2.2. What we're essentially doing here is training each perceptron

to recognize its assigned class, i.e. output 1 if the input vector belongs to its assigned

class and 0 if it belongs to any other class.

Another approach to learning more than two classes is to start with a certain

number of perceptrons, all of which share the same input vector x, and connect

the outputs of these perceptrons to an additional layer of perceptrons. The outputs

of this second layer of perceptrons can then either be taken as the final output of

the resultant multilayer perceptron, or connected to still more layers. However, in

theory only two layers of perceptrons are required , since it can be shown [26] that a

multilayer perceptron with only two layers can potentially approximate any function

to an arbitrary accuracy. Training a multilayer perceptron, however, is more involved.

The gradient descent backpropagation algorithm (see, for example, [26]) is a popular

way to train multilayer perceptrons.

Ensemble Classification

As was noted at the start of this section, there are many different approaches to the

problem of learning patterns from data besides multinomial logistic regression and

neural nets. Each of these methods has different strengths and weaknesses, and often

a method that works well on a particular dataset will perform poorly on another (and

vice versa). In other words, different types of methods are better at extracting certain

kinds patterns than others.

Given a dataset where the underlying pattern (e.g. the distribution of objects of

different classes in the feature space) is very complex, no single learning method may

be capable of finding that pattern on its own. If however we can assemble a group

of classifiers that can each learn something different about the data, and properly

combine what these classifiers learn into a composite classifier, it may be possible

to find this complex pattern. This approach is called ensemble classification, and is



analagous to doctors having a battery of medical tests done before reaching a final

diagnosis and having a panel of experts over a single one. The power of any individual

test or expert may be limited, and their results may vary from one to another, but

taken together can give stronger and more consistent results.

The ensemble approach evaluated on the lane dataset is called bagging, which is

short for bootstrap aggregating7 . It involves first taking a number (e.g. 50-100) of

bootstrap samples (samples with replacement ) from the original dataset. Then a

classification method with poor performance on its own is trained on each bootstrap

sample. To classify a given feature vector, the vector is first classified by each trained

weak classifier, i.e. each classifer "votes" on what it thinks the correct class is. The

final class given by our ensemble is then taken to be the one with the most votes. The

ensemble's vastly greater performance over the individual performance of any of its

constituent classifers (see, for instance, [26] pp. 161) comes from both the bootstrap

samples, which help ensure that each weak classifier sees a slightly different part of

the data with greater emphasis (from duplicates) on certain aspects of the data, and

the aggregation of results. Regarding the latter, suppose that each classifier has a

success rate p that is greater than 50% (i.e. in a two-class problem, each classifier

performs better than chance). Under majority voting, in order for the ensemble to

output the correct class for a given feature vector, we need more than half of them to

vote for the correct class. Letting L be the number of weak learners, the probability

that [L/2] + 18 or more of the weak classifers are correct is

L~ ~ (LP( - AL-k

k=LL/2]+1

which approaches 1 as L approaches infinity when p > 0.5 [261. In other words, if

for a two-class problem each classifier performs better than chance, as the number of

weak learners increases the probability that the bagged ensemble classifier will give

7Another popular method called boosting, performed much worse than bagging on the lane
dataset.

8Here [a] is equal to the largest integer that is less than or equal to a, i.e. a with its decimal
part removed. For example, [1.5] = 1.



the correct class approaches complete certainty. This however does not say anything

about exactly how many weak learners will be needed for a given problem for the

ensemble to perform perfectly.

Two bagged ensemble learners were constructed using the lane dataset. The first

consists of 100 decision tree stumps (i.e. decision tress consisting only of a root node

and terminal branches emanating from the root), while the second consists of 20

neural networks with 10 hidden layer nodes each and 20 decision tree stumps.

4.2.4 Classification Performance

Each of the three approaches mentioned above was used to fit one or more models,

representing the patterns in the distribution of classes in the feature space that were

extracted, based on that approach using the already-classified lane dataset. The im-

portant performance consideration for these models is whether they can be used with

confidence to classify new lanes. This "generalization performance" was estimated

for each model by first fitting the model using only a subset of the full lane dataset,

called the training set. Then, we feed the feature vectors in the subset not used for

training, called the test set, into the model, and compare the output class from the

model for each feature vector to the vector's given correct class. The fraction of model

outputs that are correct is then taken as an estimate of how well the model will do

in general on unseen data. A total of 201 out of the 267 already-classified lanes were

assigned to the training set, and the remaining 66 to the test set.

A total of four models were estimated - one multinomial logistic regression model,

one 2-layer neural network, and two ensemble classifiers. The two layers in the neural

network consist of a hidden layer in which each neuron has a sigmoid activation

function, and an output layer in which each neuron simply outputs the sum of its

inputs. The number of hidden layer nodes used - 84 - was decided on first by

finding, for a number of hidden nodes from 1 to 100, the average performance of 10

neural networks with that number of hidden nodes on a subset of the training set

called the validation set' The average performance is used because, due to the initial

9To get a better estimate of generalization performance, the data in the test set should not be
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randomization of weights, the performance of neural networks trained at different

times will vary even if each shares the same training set. Figure 4-4 above shows how

the 2-layer neural network's average performance changed as the number of hidden

layer nodes was increased. The final number of hidden nodes to use was then taken to

be the smallest number of hidden nodes that gave the least average misclassification

rate.

The first ensemble classifier is a bagged ensemble consisting only of decision tree

stumps. The number of decision stumps to use was obtained in the same way as

the number of hidden nodes for the 2-layer neural network; namely by setting aside

a validation set from the training set and evaluating the performance of ensembles

trained with different numbers of decision stumps. Figure 4-5 shows the behavior of

used at all in either model training or selection. This is why a validation set, a subset of the training
set, is held out and used to evaluate the performance of the neural networks with different hidden
layer sizes.
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the misclassification rate as the number of stumps is increased. The final number of

10decision stumps - 40 - was chosen semi-arbitrarily given this behavior0.

The second bagged ensemble consists of 20 2-layer neural networks, each with 8

hidden layer nodes 1 , and 20 decision stumps. This combination seemed to give decent

performance compared to the others; systematically checking different numbers of

neural nets and decision stumps, as well as the use of other types of weak learners, is

of course possible.

Table 4.1 summarizes the classification performance of the four models on the

test set. Of these, the heuristic method and bagged ensemble using 40 decision

10After around 20 decision stumps, the misclassification rate levels off, but it seems better to
choose a number greater than the point where it levels off, since the further away we are the further
we are from the area where the ensemble's performance varies. A decision stump count of 40 was
chosen because it gave fairly consistent performance.

"Arbitrarily chosen - all that was desired here was a weak nonlinear classifier for the present
problem.



Model % Correct % Over-Rated % Under-Rated

Heuristic Method 74.24 16.67 9.09

Multinomial Log. Reg. 65.15 19.70 15.15

2-Layer Neural Net 53.03 25.76 21.21

Bagging - 40 DS 74.24 12.12 13.64

Bagging - 20 NN, 20 DS 65.52 18.97 15.52

Table 4.1: Lane Classification Methods: Test Set Performance

stumps both performed similarly well, with the former having a greater bias towards

over-rating than the latter towards under-rating. It is important to keep in mind,

however, that the correct classification rates given in Table 4.1 are only estimates of

how well the model will perform on data it was not trained on, based on a relatively

small number of datapoints (recall the test set here contains 66 lanes). Also, these

estimates pertain to the case where future objects to be classified are drawn from

the same population as that of the objects used to build the models. In other words,

the models are only valid for lanes with the same relationship between features and

desirability as those used to build the models, i.e. the models' validity depends on the

validity of the labels given in the training and test sets. The models also depend on

the selection of features used to build them; in particular, it is possible that the errors

in the models above are simply because one or more unidentified features, which are

relevant to lane desirability, were left out. For the feature to be useful, however, it of

course must be measurable.

The "validity" of the given labels, of course, may not be something that can

be absolutely determined. As noted at the beginning of this chapter, experts may

vary in how they rate lanes; based on their past experience and business knowledge,

different factors may come into play, and the same factors may be weighed differently

in arriving at the final rating. Here we assumed that the data were labeled correctly;

determining whether the initial labelings themselves are correct is outside the scope

of this thesis.



Figure 4-6: Allocation: Bin-Packing Scenarios 1 & 2

4.3 Toy Subnetwork Allocations

While it would of course be ideal to simultaneously balance bid value, location vol-

umes, lane quality, and region-to-region volumes, in practice this may not be feasible.

In particular, in order to get a solution it is likely that one will need to trade off bal-

ancing one attribute against balancing another. Here we will consider two scenarios;

in the first, we focus on balancing DC volumes between bids, while in the second the

focus is on balancing bid value.

4.3.1 Scenario 1: DC Volume Balance

In this scenario, the objective function coefficient corresponding to bid value balance,

W(bs,), was set to 1, while the value of the coefficient corresponding to location bal-

ance, K(bi,b 3),w, was set to 15. The region-to-region balance coefficient WR(bi,bs),(R,n,R,)

was set to 15, and all other coefficients set to zero, in both scenarios. The resulting

allocation is shown in Figure 4-6 above. Table 4.2 summarizes each bid. Both bids

are fairly balanced in terms of number of lanes, value, and the number of desirable,

neutral, and undesirable lanes between bids.

Table 4.3 gives the volumes assigned to each bid for each DC. The relatively large

discrepancy for DC3 is due to the fact that DC3 only has two inbound lanes, one

with a volume of 7 loads per week and the other with 16.



Bid # Lanes Tot. Value # Desirable # Neutral # Undesirable

1 10 $21,379.40 6 1 3

2 9 $ 21,321.50 6 1 2

Table 4.2: Scenarios 1 & 2: Bid Statistics

DC Bid 1 Volume Bid 2 Volume

DC1  2 6

DC 2  6 7

DC 3  7 16

DC 4  14 8

DC5  7 7

Table 4.3: Scenarios 1 & 2: DC Volume Splits

Since each location in the toy subnetwork corresponds to a single region, and each

lane's origin/destination pair is distinct, the region-to-region constraint does not affect

the solution because each value of X(bj,b,),(Rm,R,.) will be the same regardless of how

the lanes are allocated. In particular, the left hand side of each of the contraints of

the form (4.14) will be the same regardless of the lane allocation because, in the toy

subnetwork, "region-to-region" flows are all-or-nothing.

4.3.2 Scenario 2: Bid Value Balance

The only difference between this scenario and the one above is that the values of the

bid value objective function coefficient and the origin balance coefficient are swapped.

The resulting allocation, which is exactly the same as that obtained in Scenario 1, is

also depicted in Figure 4-6, and Table 4.2 again summarizes each bid.

4.4 Summary

This chapter presented a linear (integer) programming approach to the allocation

problem. Here the minimization of synergy loss was not accounted for explicitly, as

it was in Chapter 3. Rather, the focus was on satisfying a set of constraints regard-

ing the characteristics of each resultant bid, in particular the even distribution of



lanes with respect to attributes such as value, desirability, and origin/destination.

However, some of these constraints may be seen as, or can potentially help in, en-

couraging the preservation of certain synergies in the TL network. As was mentioned

in Section 1.2.2, evenly distributing the volume inbound and outbound to a location

between bids can have the effect of preserving the structure of the network (i.e. we get

a scaled version of the location's flows in each bid), and hence any synergies at that

location. Keeping region-to-region flows evenly distributed between bids, on the other

hand, helps preserve flow relationships, in terms of both the existence of flow as well

as the proportions of flows between regions, at the regional level. Hence one would ex-

pect region-level synergies arising from regional flows to be evenly distributed between

bids. In fact, using a generalization of the synergy measures proposed in Chapter 3,

the toy subnetwork allocation presented in this chapter is fairly competitive with

the allocations obtained using the graph partitioning approach in terms of the total

amount of synergy lost from separating the lanes into two bids (see Section 5.1 for

the generalization, and Table 5.1 for the total synergy loss, for each synergy measure,

associated with the bin-packing allocation).

The question of how to automate the process of rating lanes according to their

desirability was also considered by exploring several methods related to estimating

(either through trial and error or via machine learning methods) the human expert's

thought processes in rating a lane. The performance of neither the heuristic method

nor the machine learning methods considered, however, indicates that the relationship

between the lane features and lane ratings hidden in the set of already-rated lanes

has been found. While many other methods, derived from either trial and error or

machine learning, potentially exist for this problem which were not explored for this

thesis, for future work it seems equally if not more important to consider in more

depth what sorts of features, and what subsets of these or other features, will make

the hidden patterns more apparent. Of course, this problem of automating lane

ratings will be solved if an agreed-upon checklist or flow chart defining how lanes are

to be rated is developed.



THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 5

Comparison of the Two

Approaches

The two approaches presented in Chapters 3 and 4 to the allocation problem are

compared in this chapter. In particular, we will first look at the performance of the

bin-packing allocation in terms of the synergy measures presented in Section 3.1.1.

Then, we will see how the best graph partitioning allocations fare in terms of the

business contraints used in the bin-packing approach.

5.1 Synergy Preservation in the Bin-Packing Ap-

proach

In order to apply the synergy measures presented in Chapter 3, they first must be

generalized to the case where not all lanes inbound to the same DC (i.e. neighborhood)

are assigned to the same bid. In particular, we know how to calculate the synergy loss,

using one of the three synergy measures, associated with separating all of the lanes

inbound to DC A from those inbound to DC B, shown on the left in Figure 5-1. Under

measure 1 the loss (cut size in the neighborhood network) is simply FAB+ FBA, under

measure 2 it is MIN(FAB, FBA), and under measure 3 it is 2.(FAB+FBA)-IFAB-FBAI-

The question that we must address in applying these synergy measures to allocations



Feasible Graph Partitioning Allocation General Allocation

FBA

FAB ?

Neighborhood Network Neighborhood Network

Figure 5-1: How Do We Apply Synergy to General Allocations?

obtained via the bin-packing approach is how to treat the case on the right in Figure 5-

1, which is impossible under the graph partitioning approach (all lanes are assigned

to their destination DCs) but perfectly possible under the bin-packing approach.

The synergy measures are generalized as follows. Consider the inbound and out-

bound lanes to a given neighborhood C. A loss in synergy is incurred whenever some

outbound lanes are assigned to a different bid than some inbound lanes, the idea

being that such a separation means that one or more follow-on opportunities for in-

bound lanes are lost. For a pair of neighborhoods D and E, under syergy measure

1 a synergy loss of FDE is incurred in the D to E direction if the lanes inbound to

D are assigned to one bid and the lanes constituting the flow from neighborhood

D to E are assigned to another, and similarly for the E to D direction. Hence if

the graph partitioning method cuts the edge between neighborhoods D and E, i.e.

assigns the inbound lanes to D to one bid and the inbound lanes to E to the other,

the loss associated with this neighborhood pair will be FDE + FED. In other words,

the loss under measure 1 for a given pair {i,j j} of neighborhoods is constructed as

follows. Using only the lanes assigned to Bid 1, we write out the neighborhood flows

in both directions between the neighborhood pair, and similarly for Bid 2. These

flows are denoted by Fmn,k, the flow between neighborhoods m and n assigned to

bid k. Then, we define the variable <n,k as the fraction of lane volume inbound to



neighborhood n assigned to bid k, where for two bids 4n,2 = 1-# ,. Under the graph

partitioning approach, this is always either 0 or 1. The synergy loss under measure 1

for neighborhood pair {i,j} is then

2

Lossig (Ml) = Z[Fi,k - (1 - #,,k) + Fij,k - (1 - #i,k)].
k=1

The total loss associated with a given allocation is then found by summing Lossig (M1)

over all neighborhood pairs {i, j} in the network, i.e.

Loss(M1) = Lossij(M1),
V{i,j}

which gives the same result in the graph partitioning approach as summing the weights

of all cut edges in the neighborhood network. Similarly, the following generalizations

of measures 2 and 3 give the same result as summing the weights of cut neighborhood

network edges:

Loss(M2) = { MIN [Fjik - (1 - 5j,k) + Fij,k - (1 - #i,k)I
Vfi'j} kE{1,2}

{ 2

Loss(A13) - 2z -2 Lossij (M1) _ Z(_1) 2 n-1[ Fji,k -(1 - /jJ,k) + Fi 7k. (1-Oi,k)]
Vf i'j} k=1

Note that these are only valid for at most two bids; the consideration of allocation

to more than two bids at once is beyond the scope of this thesis.

Table 5.1 gives the total synergy losses for the bin-packing allocation given in

Section 4.3 calculated using the three loss functions given above. Interestingly, while

the bin-packing approach does not explicitly attempt to minimize the defined synergy

measures in allocating the lanes, the total losses associated with each measure are

not significantly worse than those of any of the graph partitioning allocations, and

are better than the worst graph partitioning allocations under each measure.



Synergy Measure Total Loss Avg. Graph Part. Loss

MI 41.58 37.2

M2 4.11 3.6

M3 49.79 48.6

Table 5.1: Bin-Packing Allocation: Synergy Losses

Allocation Bid # Lanes Tot. Value # Des. # Neu. # Und.

MI MKL/Spec. 1 7 $ 17,246.10 7 0 0

2 12 $ 25,454.80 5 2 5

M2 MKL/In. KL 1 10 $ 22,088.40 4 1 5

2 9 $ 20,612.50 8 1 0

M3 MKL 1 11 $ 28,593.85 9 1 1

2 8 $ 14,107.05 3 1 4

M3 Spectral 1 7 $ 17,246.10 7 0 0

2 12 $25,454.80 5 2 5

Table 5.2: Best Graph Partitioning Allocations: Bid Statistics

5.2 Business Constraint Satisfaction in the Graph

Partitioning Approach

We now consider how the best graph partitioning allocations based on each synergy

measure fared in terms of the business constraints used in the bin-packing approach.

The best allocation under measure 1 is taken to be the one generated using the

multilevel-KL & spectral methods. The best under measure 2 is taken to be the

allocation generated by multilevel-KL & inertial with KL. Finally, for measure 3 we

will evaluate the allocations generated using the multilevel-KL and spectral methods.

The bid statistics for each of the above allocations are given in Table 5.2 above.

Not surprisingly, all of the allocations are more unbalanced over # of lanes, value,

and distribution of lanes by desirability. Also, since each DC's inbound lanes are con-

strained to be assigned to the same bid, there is no balancing happening whatsoever

with respect to location volumes under these methods.



5.3 Lane Pairs Frequently Allocated Together

Another way to compare the two approaches, as well as allocations generated using

the same approach, is to look at the frequency with which pairs of lanes are allocated

to the same bid, and to see whether any common characteristics exist between lanes

that are commonly, or never, allocated to the same bid. Based on the frequency

with which each possible pair of lanes is allocated to the same bid, i.e. the number

of distinct allocations under which each pair was allocated to the same bid, we can

check how many of the possible pairs were in the same bid in none of the allocations,

one of the allocations, etc. Five distinct allocations are considered here - the graph

partitioning methods yielded a total of 4 distinct allocations, while the bin-packing

approach yielded 1. The toy subnetwork includes a total of 19 lanes, so the number of

lane pairs we consider here is (2) = 171. The plot in the top left corner of Figure 5-2

shows the number of pairs, out of all possible pairs, allocated in the same bid for

each of the possible number of allocations. The majority of pairs were allocated to

the same bid in one to four of the distinct allocations. At the extremes, fourteen

pairs were never allocated to the same bid, while eleven pairs were allocated together

in all 5 allocations. The characteristics observed for lane pairs allocated together a

certain number of times include, for each lane pair, the average distance, value, and

volume. The average values of these characteristics, for each number of times the

pairs were allocated together, are also shown in Figure 5-2 in the top right (avg. pair

average distance), bottom left (avg. pair average value), and bottom right (avg. pair

average volume) plots. For distance and value, there is a weak upward trend - the

lane pairs more frequently allocated together tend to have greater average distances

and value than those less frequently allocated together. For volume, on the other

hand, the trend is downward - the pairs most frequently allocated together have a

lower average volume than those less frequently allocated together.

Figure 5-3 provides the same information as Figure 5-2, except only the distinct

allocations obtained using the graph partitioning approach are considered. Here the

majority of lane pairs were allocated together in either 1 or 3 of the 4 graph parti-
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tioning allocations (90 total out of 171). Among the graph partitioning allocations,

the relationship between frequency of allocation to the same bid and average pair

distance is weaker. For value, there is still a discernible upward trend, albeit a weak

one. The downward trend for volume seems to persist here as well, despite a spike at

3 allocations.

Hence while there does seem to be a tendency for longer-haul, more valuable,

and lower volume lane pairs in the toy subnetwork to be allocated together more

frequently by the two approaches considered in Chapters 3 and 4, the trend is not

a particularly strong one. This inconclusiveness may be due to the small number

of distinct allocations obtained using the two approaches; on the other hand, the

consideration of other characteristics may yield stronger relationships.
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5.4 Summary

This chapter presented several ways to compare the allocations produced by the two

approaches proposed in this thesis. First, we considered how to apply the synergy

measures developed for allocations generated using graph partitioning to allocations

where the lanes inbound to a given DC do not all have to be allocated to the same

bid. Based on the proposed generalizations of the three synergy measures, the synergy

losses associated with each measure were calculated for the bin-packing allocation.

Despite not considering these synergy measures explicitly, the bin-packing allocation

did not perform much worse than the graph partitioning allocations with respect to

synergy loss.

The graph partitioning allocations, however, produced much more unbalanced

allocations, with respect to value balance, lane desirability balance, etc. , than the bin-



packing allocation. In other words, the bin-packing approach produced an allocation

that is comparable to those produced by the graph partitioning approach which,

although not the best in terms of "synergy", represents a more even distribution of

the toy subnetwork lanes over two bids with respect to characteristics which are likely

important in practice for a large shipper.

Finally, an analysis of the frequencies with which pairs of lanes in the toy sub-

network were allocated together by the two approaches was attempted. While some

trends were observed, with lane pairs more frequently allocated together tending to

have greater average distance, greater average value, and lower average volume, none

of these were especially strong and, considering the toy subnetwork's small size, should

not be seen as general trends without caution.



Chapter 6

Conclusion

This chapter begins by providing a recap of the previous chapters. Then, based on

the findings in these chapters, we provide a recommendation for large shippers faced

with the problem of bidding out the lanes in its freight network in two or more pieces.

Finally, we conclude by identifying some directions for further research.

6.1 Thesis Recap

Since the problem this thesis is concerned with - how a shipper should bid out its

truckload (TL) lanes over time - rests on how bidding out lanes separately may affect

carriers', and hence the shipper's, costs, we began in Chapter 2 by considering how

truckload (TL) carriers operate. In particular, the point-to-point nature of TL oper-

ations, i.e. loads are shipped from their points of origin directly to their destinations,

implies that it is up to the carrier to make trucks available where shipments are re-

quested. This in turn means that the desirability of a load to a carrier depends not

only on the revenue generated from the load itself, but on where the load is situated

in time and space with respect to the carrier's existing service network. For exam-

ple, a load for which the shipper pays a high linehaul rate may actually be seen as

undesirable by a carrier if it does not have any trucks available within a reasonable

distance for the load's departure time, or if it is known that it will be difficult to

find additional loads for the carrier's trucks at the load's destination. On the other



hand, the carrier may be willing to reduce its minimum linehaul rate for a lane that

"complements" its existing network by providing follow-on opportunities for trucks

moving across its service network. The availability of these follow-on opportunities

mean increased chances for cost savings due to empty mile reduction for the carrier

and in turn, since TL is predominantly a cost-plus business, reduced rates for the

shipper.

In bidding out groups of the shipper's lanes that are complementary in the sense

of providing follow-on opportunities to the carrier, either among themselves or with

the carrier's existing lanes, we want the carrier's bid on these lanes to reflect the

savings associated with these opportunities, i.e. the lowest rate possible for these

lanes. A combinatorial auction setting, in which carriers can make their bids on

certain lanes conditional on winning other lanes, can encourage carriers to bid their

"true valuations" of groups of lanes, which take into account cost savings from empty

mile reduction. Hence in such a setting we want to keep lanes which are highly

complementary, which we term as having a large amount of synergy, in the same bid so

that participating carriers can form conditional bids with these lanes, and in turn give

the shipper a chance at achieving a lower cost allocation of lanes to carriers than may

have been possible if carriers could only bid on lanes individually. In Chapter 3, we set

out to define quantities which can serve as proxies for synergy, which we called synergy

measures. Three such measures were proposed for a modified version of an inbound

freight network called a neighborhood network, and graph partitioning methods were

used to allocate the nodes of the toy subnetwork's neighborhood network to two bids.

Each of these allocations were then translated into allocations of the individual toy

subnetwork lanes to the two bids. These lane allocations were then evaluated based

on their associated synergy loss under each of the three synergy measures.

Chapter 4 presented a different approach to the allocation problem. Rather than

attempting to quantify synergies explicitly and minimize their loss, the focus here

was instead on making the resulting allocation of lanes to bids as "balanced" as

possible. Several forms of balance which may be desirable from the shipper's business

perspective are presented, which include balancing the total value of lanes in each



bid, volumes at the shipper's locations, the number of certain types of locations, the

number of desirable/undesirable lanes, and region-to-region flows. To find allocations

which are balanced in this manner, we proposed a linear (integer) programming/bin-

packing model, and ran the model on the same toy subnetwork used in Chapter 3.

In Chapter 5, we then compared the two approaches by comparing the allocations

that they generated. In particular, we found that, in terms of synergy as defined by

our three measures, the allocation produced by the bin-packing approach in Chapter 4

was comparable to those obtained via graph partitioning. On the other hand, some of

the graph partitioning allocations were much more unbalanced than the bin-packing

allocation.

6.2 Recommendation

While minimizing the loss in "synergy" due to allocating the shipper's lanes to dif-

ferent bids is desirable from a theoretical point of view, especially if these bids will

be combinatorial, the issue of how exactly one can best capture/measure inter-lane

synergy is still an open question. In other words, it is not at all clear at this point

that the measures of synergy proposed in Chapter 3 are actually useful in a practical

sense with respect to giving allocations of lanes to bids that will help elicit lower

rates from carriers. In particular, if the lanes will not be bid out in a combinatorial

setting, one may not even have to consider synergy at all because, even if synergistic

lanes are kept together, carriers will likely not bid based on the potential cost savings

associated with these synergies because there is no guarantee that they will get all

the lanes they need to actually realize these cost savings.

On the other hand, as mentioned in Section 4.4, while the bin-packing approach

presented in Chapter 4 does not explicitly deal with synergy, some of the constraints

can be seen as helping to preserve follow-on opportunities among the shipper's lanes

being bid out. These constraints (location volume balance, region-to-region flow

balance) help preserve the structure and flow proportions of the shipper's network

across the separate bids to be run, and hence helps to keep synergies that may exist for



the full network intact, albeit in a scaled down form, in each bid. In any event, at least

based on the synergy measures presented in this thesis, the bin-packing allocation

of the toy subnetwork's lanes to two bids entailed a sacrifice in synergy that was

comparable to the graph partitioning allocations on average, while also providing

more "balanced" allocations.

Hence for shippers faced with the need to bid out their freight network in pieces,

we would at this point suggest focusing more on the sorts of constraints on bid

characteristics that are beneficial to the shipper, rather than explicitly trying to deal

with synergy. Inter-lane synergy has proved to be difficult to characterize in a succinct

way, and its potential utility is only in encouraging, not guaranteeing, lower bids from

carriers. This potential is also contingent on information about participating carriers'

networks, i.e. it is not clear whether a bundle of the shipper's lanes, which seem to

complement each other, will actually be of value to any bidding carriers. With a focus

on business constraints, the shipper can at least be more sure of reaping the benefits

of a "good" allocation, for example being able to adjust volumes at locations on a

regular basis (a result of the location volume balance constraint). One important

caveat to the bin-packing approach, however, is that it may not be possible to have

perfect balance simultaneously over all types of balance considered. In addition, the

behavior of the bin-packing model on larger (e.g. around 500 or more lanes) has not

been tested.

6.3 Next Steps

There are a number of ways in which the work in this thesis can be extended. These

include:

(1) Lane Rating Automation The performance of the lane desirability models in

Chapter 4.2 indicate that, at least for the lane dataset we used, the relationship

between lane attributes and desirability has not been found. Both further in-

vestigation into the nature of lane desirability from the expert at the shipper's

standpoint, and a deeper exploration of statistical/machine learning methods,

100



will be needed before we can delegate the rating of lanes to the computer with

any sort of confidence.

(2) Explicit Synergy with Business Constraints If an attractive measure of

network synergy were found, it would be desirable to extend the bin-packing

approach to take inter-lane synergies explicitly into account. Alternatively, or

perhaps equivalently, one could attempt to create an algorithm that solves the

graph partitioning problem with additional (business) constraints.

(3) Up-scaling the Bin-Packing Model Finally, in order to make the bin-packing

model usable in practice, it of course needs to be able to actually handle the

large number of lanes that large shippers will be bidding out. Modifications to

the formulation may be necessary in order to make the model produce useful

solutions.
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Appendix A

Full Bin-Packing Formulation

A.1 Model

Minimize Z(bibj):i<j(W(bi,bj) -"(bi,bj)) + EwQ E (bi,b):i<j(K(bi,b),W ' V(bi,bs),w) ±

:(bi,b,):i<j (Q(bi,b,) P(bi,b,)) ± ZdEA Z(bi,bj):i<j(WD-(bi,bj) 3 (bbj),d) +

(Rm,R)ERxR (bi,b,):i<j (W R(bi,bj),(Rm,Rn) ' X(bi,bj),(Rm,Rn))

(1) EbEB X,b = 1, V 1 E L

(2) ElELPIXl,b = Sb, V b c B

Sb, - Sb, < O(b,b) V bib 3 E B

-(Sb, - Sb,) <0 (bib) V bi, bi E B

(3) EZELx 1,b = Nb, VbEB, wGE)

(Lane Cover)

(Bid Value Balance)

(Balance at Locations)

NbiW - Nbj, < V(bi,bs),w V bibj E B, w E 2

-(Nbi ,u - Nbjl) < v(bi,bj),u; V bi, b E B, o E

(4) E>lEMY,,b 1 V b B

EZEMyp,b Tb V b B

Xe,bYy,b VicL L,, bB, I E M

(Balance of Locations)
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Tb -Tb,<p(-b) Vbz,bjcB

-(Tbi - T.) < p(,b,) V bi,b E B

(5) EtEL, Xe,b Dd,b V d c A, b c B

Dd,bi - Ddb. < 6 (b,,b,),d

(Lane Quality Balance)

V d E A, bj,bj E B

-(Dd,bi - Ddb.) :5 (,b,),d V d E A, bi,bj C B

(6) ECEL(RR)'VeXe,b Z(Rm,Rn),b (Region-to-Region Balance)

VRm,Rn cR, bcB

Z(R.,R.),b, - Z(R.,Rn),b, < X(b,bj),(R.,Rn) V Rm, Rn ER, bi,bj E B

-(Z(R.,Rn),b - Z(IR,n,R),b,) < X(bi,bj),(Rm,Rn) V Rm, Rn c R, bi, bc B

A.2 Index & Variable Definitions

Set Includes All

B Bids (Subsets of Lanes)

L Lanes to be Allocated 1

LA Lanes Incident to Location ft

Ld Lanes with Rating d

R Regions

A Distinct Lane Ratings

M Locs. to Keep All Vol. in Same Bid

Q Locations to Split Vol. Btwn. Bids

Table A.2: Bin-Packing Formulation: Sets
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Indexes

Bids

Specific Bid i

Lane Ratings

Lanes

Regions

Lanes with a Particular Characteristic

Locations

W Locations where Vol. Split is Desired

Table A.3: Bin-Packing Formulation: Indices

Decision Variable Definition

1 if Lane 1 is Allocated to Bid b, 0 otherwise

Yy,b 1 if Location p is Allocated to Bid b, 0 otherwise

Table A.4: Bin-Packing Formulation: Decision Variables

Data Variable Definition

Value of Lane I

Volume on Lane f

Table A.5: Bin-Packing Formulation: Data Variables

Cost per Unit of

W(bi,bj)

K(bi ?bj), 1

Q(bi,bj)
WD(i,bj)

WR(bi, b3), (Rm, Rn)

Diff. Btwn. Bid bi & bj Tot. Values

Diff. Btwn. # of Lanes in Bids bi & by at Loc. w

Diff. Btwn. # of Locs. in Bids bi & bj

Diff. Btwn. # of Lanes w/ Given Rating in Bids bi & bj

Diff. Btwn. R, to R. Flow in Bids bi & b

Table A.6: Bin-Packing Formulation: Objective Function Coefficients
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d

1
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