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ABSTRACT

The principal objective of this thesis is to assess the capabilities of an already
established analytical framework for understanding and predicting the behavior of piles
driven in highly overconsolidated clays (OCR24). The skin friction mobilized during pile
loading to failure depends on the sequence of preceding events, i.e. pile installation and
soil consolidation. This research utilizes the Strain Path Method (SPM) to simulate the
disturbance caused by pile installation with a general effective stress soil model, MIT-Si,
which is capable of modeling adequately the anisotropic stress-strain response of clays at
large OCR. Following the pile installation, one-dimensional, non-linear, coupled
consolidation analyses around the pile shaft are performed using the finite element code
ABAQUS, simulating the earth and pore pressure equalization. The MIT-Si model has
been integrated within the ABAQUS code.

The MIT-SI model provides predictions of installation stresses that are generally
consistent with prior work by using the MIT-E3 model. However, the research
encountered several numerical problems during consolidation. Although some of these
numerical issues have not been resolved, they do not appear to affect the current
predictions of stresses at the pile shaft.

The main contribution of this research is the extension of the capability offered by the
aforementioned analytical framework to cover highly overconsolidated clays (OCR24).
In general, the results show that the zone of disturbance in in terms of excess pore
pressures around the pile generated by the MIT-SI model is much larger compared to
MIT-E3 predictions. This discrepancy leads to different predictions between the two soil
models particularly close to the pile shaft at the end of consolidation.

Thesis Supervisor: Andrew J. Whittle
Professor of Civil and Environmental Engineering
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1. INTRODUCTION

The principal objective of this work is to estimate the pore pressure dissipation and

the effective stress changes after installation of a driven pile using non-linear, elasto-

plastic, anisotropic constitutive models for clays. This study can be divided into two

parts: i) the first outlines the analytical framework and its corresponding predictions on

effective stresses and excess pore pressures during pile installation providing initial

conditions for subsequent testing activities; and ii) the second performs one-dimensional,

non-linear, coupled consolidation around the pile shaft simulating the earth and pore

pressure equalization.

This research is motivated by the uncertainties involved in predicting the capacity and

performance of friction piles driven in clays. Soil resistance is generated at the tip (point

resistance) and along the shaft (skin friction). For long piles in clays, the point resistance

usually represents a small fraction of the pile capacity. On the other hand, the major

portion of pile capacity is derived from skin friction along the shaft, especially when no

competent end bearing layer exists. Therefore, the limiting skin friction, fs, provided by

the soil is of primary importance in the design of piles.

Past research involves the formulation of analytical models which are capable of

making realistic predictions of pile performance. This sustained research effort included

the development of: i)integrated and systematic techniques depicting the mechanics of

the pile installation process, i.e. Cavity Expansion Method (Soderberg, 1962; Vesic,

1972; Randolph & Wroth, 1979; Levadoux, 1980) and Strain Path Method (Baligh, 1985,

1986a,b); and ii) effective stress soil models (MIT-El, Kavvadas, 1982; MIT-E3,

17



Whittle, 1987) which can describe realistically the constitutive behavior of Ko-

consolidated clays which are normally to moderately overconsolidated (OCRS4).

This study aims to contribute by extending the capability offered by the

aforementioned analytical framework to cover highly overconsolidated clays (OCR>4).

To accomplish this goal, a third generation of effective stress models describing

adequately the non-linear shear stress-strain behavior at large OCR's, MIT-Si (Pestana,

1994), is utilized to model pile shaft performance. The results illustrate the effects of

installation analysis, soil model, stress history and other factors on the limiting skin

friction, f,, which can be mobilized at the pile shaft. Predictive capabilities and

limitations of the analyses are assessed from comparisons with previous analytical results

and high quality field data at a number of clay sites.

This thesis consists of the following chapters. Chapter 2 discusses existing

approaches for estimating the limiting skin friction, f,, of driven piles in clays. To begin

with, a summary of the methods, i.e. empirical and rational, used to model and quantify

the axial static capacity of a pile in clay is attempted. More specifically, the one-

dimensional cylindrical Cavity Expansion Method (CEM) of analysis and the more

sophisticated two-dimensional Strain Path Method (SPM) are described in detail. Finally

a series of field experiments using extensively instrumented closed-ended steel piles is

presented to identify the parameters influence the performance of driven piles.

Chapter 3 gives a brief outline of the two constitutive soil models, i.e. MIT-E3

(Whittle, 1987) and MIT-SI (Pestana, 1994), that are used to describe the behavior of Ko-

consolidated Boston Blue Clay (BBC). Using the installation analyses mentioned above

in conjunction with these soil models, the values of the effective stresses in the soil



during steady pile installation are estimated. Closing this chapter, the parameters

affecting the installation stresses are examined by investigating: i) the effect of method of

analysis; ii) the effect of soil model; and iii) the effect of stress history.

Chapter 4 concentrates on the excess pore pressure changes at the shaft of a pile in

Boston Blue Clay (BBC) during pile installation. An evaluation of the installation

predictions follows by comparing the analytical results with field/laboratory

measurements from several sites.

Chapter 5 summarizes the existing methods used to model and analyze consolidation

analyses. Subsequently, this chapter describes the numerical algorithms used to integrate

the constitutive relations of MIT-Slin the general purpose finite element code ABAQUS.

Following this section, the initial distribution of the pore pressures and the effective

stresses estimated in Chapters 3 and 4 are employed to perform -dimensional, non-linear,

coupled consolidation far behind the tip of a cylindrical driven pile in Boston Blue Clay

(BBC).

Finally, Chapter 6 summarizes the main conclusions and findings reached in this

study.



20



2. METHODS FOR ESTIMATING THE SKIN
FRICTION OF DRIVEN PILES

2.1 INTRODUCTION

Many offshore structures rely on driven pile foundations for supported anchorage.

These deep pile foundations derive their capacity primarily from the shaft resistancce

which is mobilized along the pile shaft. A rational procedure for predicting the

performance of the "friction piles" may be made by systematically estimating the changes

in effective stresses and properties of the soil in all three (3) distinct stages of pile

penetration:

1. Pile installation

2. Consolidation around driven piles

3. Pile Loading

This chapter summarizes the existing empirical approaches for assessment of the

axial static capacity of a pile in clay. Rational methods attempt to model and quantify the

complex stress changes occurring during pile installation, when severe straining of the

soil takes place. Subsequently, a summary of the stress fields resulting from the one-

dimensional cylindrical Cavity Expansion Method of analysis and the more sophisticated

two-dimensional Strain Path Method is introduced. Finally, a series of field experiments

using extensively instrumented closed-ended steel piles is presented to outline the

parameters influence the performance of driven piles.



2.2 EMPIRICAL APPROACHES

Rational estimates of the limiting skin friction along pile shafts are difficult to obtain

because of the very complicated mechanism of pile-soil interaction. Therefore, early

design methods relied solely on empirical approaches. Empirical methods equate the

limiting skin friction to a measurable or quantifiable initial parameter, such as the

undrained shear strength or vertical effective stress, by a factor derived from pile load

tests. These methods can be broadly classified into total stress, effective stress or mixed

approaches.

2.2.1 Total Stress Approach: the a method

In total stress methods, the limiting skin friction, f., is expressed as a fraction of the

undrained shear strength, s,, of the virgin clay,

f =a-s, (2.1)

where, a is an empirical parameter back-figured from the results of pile load tests.

Therefore, the parameter a combines the effect of all factors affecting the limiting skin

friction, e.g. the type of clay, dimensions and method of installation of the pile, tome

effects, etc.

Terzaghi & Peck (1967) indicate that the soil adjacent to a pile driven into soft clay

becomes stronger than the surrounding soil because of the consolidation. They suggest

that a equals to unity when the undrained shear strength is determined by means of

unconfined compression tests on clay samples (recovered prior to pile driving).



Peck (1958) and Woodward et al. (1961) recommend different values of a (Figure

2.1) mostly based on pile load tests in stiff clays (su>0.75 TSF). In the same figure, the

American Petroleum Institute (API) recommended curve is also shown. It can be seen

that the values of a decrease from 1.0 for soft clays (su<0.25 TSF) to 0.5 in stiff clays

(s>0.75 TSF).

Tomlinson (1971) provides design values of the parameter a for piles driven into stiff

clays, as shown in Table 2.1 and Figure 2.2.

Flaate (1968), after a comprehensive analysis of a number of pile load tests, suggests

that a depends not only on the average undrained shear strength of the clay, but also on

the plasticity index, Ip, as shown in Figure 2.3.

Flaate & Selnes (1977) compiled results of 44 pile load tests performed mainly on

timber piles (length 8-16 m) driven into soft to medium Norwegian clays, and compared

the unit average shaft resistance (after subtracting the estimated point resistance) with

values of the undrained shear strength measured by means of the field vane test. Figure

24 presents their data and clearly indicates that significant scatter and uncertainty exist in

the selection of an adequate value of a (0.4<a<1.6).

A large database, consisting of over a thousand axial load tests on piles, has been

assembled under the auspices of API. This database has been used by Randolph &

Murphy (1985) as a basis to formulate and assess a new method for calculating the factor

a. Figure 2.5 shows the selected correlations between a and the undrained shear strength,

s,, that fit the experimental data best.



2.2.2 Effective Stress Approach: the 1 method

It is widely accepted that soil failure is controlled by effective stresses. Therefore, it

appears reasonable to estimate the limiting skin friction of piles by means of effective

stress methods.

Several authors (Zeevaert, 1959; Eide et al., 1961; Chandler, 1968) proposed

equations of the following form estimating the limiting skin friction of driven piles in

cohesive soil.

f = K -tan '- -'(2.2)

where, K is a earth pressure coefficient relating horizontal to vertical effective

stresses, <p' is an effective friction angle, equal to the pile-soil interface friction angle, 8'

for failure at the interface and a', is the in situ vertical effective stress.

Although this is a reasonable approach, the determination of the coefficient, K, is

very complicated. Burland (1973) assumed that the original 'at rest' value (Ko) is a lower

bound and, ignoring subsequent changes of stress during pile loading, suggested the

relationship:

fs = KO -tan V''-o-', = -o-'a, V (2.3)

Values of the empirical factor p were back-figured from a large number of load tests

on concrete, timber and steel piles of lengths up to 50 ft driven in soft to medium clays,

giving a range of values of 0.25 to 0.40 with an average of 0.32.

After reviewing data from pile load tests performed by various investigators,

Meyerhof (1976) showed that the factor [ decreases with the pile length as shown in



Figure 2.6. Meyerhof therefore concluded that in soft and medium clays (e.g. normally

consolidated and lightly overconsolidated) deposits the factor p is a function of the

overconsolidation ratio, OCR.

2.3 RATIONAL APPROACHES

It is widely accepted that effective stresses control the shear strength of soils. Thus,

rational approaches for estimating the limiting skin friction, fs, attempt to estimate the

effective stresses controlling the shearing resistance along pile shafts. A rational approach

to deep penetration requires an analytical framework, capable of predicting the soil

disturbances around the pile.

The theoretical analysis of penetration remains a very challenging class of problem

due to the high gradients of the field variables (displacements, stresses, strains and pore

pressures) around the penetrometer, the large deformations and strains in the soil, the

complex constitutive behavior of soils (non-linear, inelastic, anisotropic and time

dependent material behavior), and the non-linear penetrometer-soil interface

characteristics.

All existing theoretical solutions make several simplifying assumptions regarding the

soil behavior, the failure mechanism and/or the boundary conditions. Two approximate

theoretical methods for the simulation of the installation process have been proposed.

Both of these approaches assume kinematic constraints such that the strains in the soil

around the pile can be estimated without considering the stress-strain properties.



1. Cavity Expansion Methods (CEM): These methods are widely utilized approach

for estimating penetration effects. CEM assume that during the pile installation,

the soil is displaced by an expanding cavity (cylindrical or spherical shape). The

changes in stresses and pore pressures are predicted using either closed-form

solutions (e.g. Soderberg, 1962; Vesic, 1972; Randolph & Wroth, 1979;

Levadoux, 1980) or numerical finite element solutions (Randolph et al., 1979).

2. Strain Path Method (SPM; Baligh, 1985): This method assumes that the soil

moves relative to the pile tip in the same manner of incompressible, inviscid fluid

flow around the tip and that this flow pattern is independent of the shearing

resistance of the soil. The flow streamlines are used to determine a set of strain

paths for all elements surrounding the penetrometer.

Apart from these two theoretical approaches, three novel numerical methods have

recently been proposed to solve the cone penetration problems. These methods include:

1. Dislocation methods (Elsworth, 1991 &1993): This model simulates penetration

effects by integrating fundamental solutions for a point dislocation in a poro-

elastic medium (i.e., it is limited to assumptions of linear elastic stress-strain

behavior).

2. Lagrangian formulation (Abu-Farsakh et al., 1997): This technique simulates

penetration effects by adopting the complicated re-meshing schemes for finite

element discretization.

3. Large-strain ALE formulation (van den Berg, 1992 & 1994): This technique uses

an updated Lagrange approach that decouples the material displacement from the

nodal displacement.



All approaches have advantages over the aforementioned theoretical techniques, since

they can simulate frictional cone-soil interface as well as drained and partially drained

penetration. However, they also have some disadvantages such as requirement for highly

efficient interpolation schemes along with computer storage capacity, which result in a

longer analysis time and higher expense.

From the summary of the above-mentioned methods together with recent analytical

and experimental studies by Aubeny (1992), Lehane (1992) and Varney (1998), it has

become evident that the SPM remains a promising theoretical approach for modeling

cone penetration, when used in conjunction with a realistic constitutive model. Taking

into consideration the above statement, the SPM, as the most appropriate method, is

utilized in this study for dealing with pile installation problems. However, for the sake of

completeness a specific category of the Cavity Expansion Methods, i.e. cylindrical shape,

will be described briefly in the next section.

2.3.1 Cylindrical Cavity Expansion Method (CEM)

Pile installation is modeled as the undrained expansion of a long cylindrical cavity.

The radial displacement, u, is the only non-vanishing component of the soil deformation

vector. Thus, the infinitesimal increment of the circumferential strain at any time during

cavity expansion is given by:

4= (2.4)
R



where, R is the current radial coordinate and i is the infinitesimal increment of u.

Integration of nO between the initial (undeformed) and the final (after cavity expansion)

states, gives the circumferential strain',

eoo = In (R. (2.5)
Sr

of a soil element with radial coordinates R. and r before and after cavity expansion,

respectively. For soft soils undrained deformation is incompressible and, in this case Ro

and r are related by:

R, = r2 (2.6)

where, r0 is the radius of the cavity (pile) after expansion. Combining Equations 2.6

and 2.7 we get:

0 = -err =ln I- r (2.7)
2 - r,

6= =C , =Yro =7Yz = 0  (2.8)

or, using the transformed strain measures introduced in Table 22 (Kavvadas, 1982):

El= E3 = E4 = E5 =0 (2.9)

E2= In 1- ( r(2.10)

Thus, the strain in the soil around the pile after cavity expansion is estimated solely

by considering the kinematics of the deformation, i.e. without assuming any stress-strain

since 6 = -R



model for the soil. A soil model must, however, be used in order to compute the effective

stresses corresponding to the estimated strains.

The excess pore pressures caused by the pile installation can be obtained by

integrating the stress equilibrium equation in the radial direction,

a- 00-'" 
(2.11)

Or r r

using the effective stresses computed based on the corresponding soil model.

The modeling of pile installation by means of the cylindrical Cavity Expansion

Method is attractive because of the simplifications it offers in the analyses. However,

prior studies have found limitations in predictions of stresses and pore pressures at the

shaft of model piles (Morisson, 1984; Lehane, 1992; Whittle, 1992).

2.3.2 Strain Path Method (SPM)

The Strain Path Method (SPM) was developed over the period 1975-1985, by Baligh

and his colleagues at the Massachusetts Institute of Technology (MIT). Their aim was to

provide an integrated and systematic framework for elucidating and predicting pile

foundation behavior, interpreting in situ tests, assessing sampling disturbance effects and,

in general approaching "deep geotechnical problems" in a consistent and rational manner.

The principal assumption of the SPM method is that the soil deformations and strains

are independent of the shearing resistance of the soil, due to the severe kinematic

constraints involved in deep penetration problems, and thus can be estimated with

reasonable accuracy based only on kinematic considerations and boundary conditions.



Figure 2.7 describes the necessary steps to obtain solutions by means of Strain Path

Method. More specifically these steps are the following:

1. Estimate the initial stresses, (ao)", and initial pore pressure, uo, in the soil prior to

penetration.

2. Estimate a velocity field satisfying the conservation of volume (or mass)

requirement and the boundary conditions. The velocity field describes the velocity

(or rate of deformation) of soil particles as they move around the indenter, which

is covered afterwards. For the case of a penetrometer generated by a point source

of incompressible material in a uniform flow field (Simple Pile; Baligh 1985),

solutions can be obtained in closed form (Baligh, 1985; Teh & Houlsby, 1989).

3. Determine soil deformations by integration along streamlines from the velocity

field.

4. Compute the strain rates, eij, along streamlines by differentiating the velocities

with the respect to the spatial coordinates.

5. Integrate the strain rates, se'X, along streamlines to determine the strain path of

different soil elements.

6. At this stage, and in case of undrained shearing of clays, the effective stresses can

be determined from the strain path (or history) of various elements by either: (a)

an effective stress approach, by determining the deviatoric stresses, sj (=aj -

aoct8,2), (b) a total stress approach, by estimating the shear induced pore

pressures, us, such that the effective stresses, a's (=sj - us8jj) can be computed.

2where 6j is the Kronecker defined by:

bij =to isijl



7. Given the effective stresses, a'ij, the pore pressures, u (=oae + us) are computed

from equilibrium considerations. For axi-symmetric problems, the equilibrium

equations in terms of effective stresses can be expressed in a cylindrical

coordinate frame as,

=- + "0'77+ "'r7  - 00 (2.12)
Or Or Oz r

Ou O0-' Oc-' a-N=-1 " + "~r + " r (2.13)
"z Gz Or r

In principle, the pore pressures can be calculated by integrating in either the radial

(r) or the vertical (z) direction. If the stress fields are exact, the predicted pore

pressures will be independent of the integration path and the stress gradients will

satisfy the relation:

r - a~r (2.14)
z Or

This condition is satisfied if the strain paths are compatible with the model used to

determine the stresses. However, from step 2, the strains are approximated using

potential flow theory and are not compatible with the soil model used in Step 6.

8. Knowing u and o'ij, the total stresses (=a'ij + u8ij) can easily be computed at every

soil element.

2.3.3 Simple Pile Solution

The Strain Path Method (SPM) hinges on the assumption that soil deformations

during deep cone penetration can be estimated with reasonable degree of accuracy by

integrating a known velocity field. Baligh (1985) developed a velocity field, also known
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as Simple Pile Solution, using a graphical technique to investigate the deep steady quasi-

static undrained penetration of an axi-symmetric solid pile in a saturated, incompressible,

homogeneous isotropic clay initially subjected to an isotropic state of stress.

2.3.3.1. Fundamentals of Simple Pile Solution

Consider a 3-D spherical source located at p=O which discharges an incompressible

material at a rate of volume V per unit time. Using a spherical coordinate system, shown

in Figure 2.8a, the velocity components of a fluid element located at any radius p is given

as:

V IUP = . uq, =0 (2.15)
4xr p2

On the other hand, in a cylindrical coordinate system the non zero velocity

components 3 u,*, uz*, are given by:

u"= - sin ; u= cos p 2=r 2+z 2; q>=arctanr (2.16)
P 4 ;P Z 4;rp 2  z

Figure 2.8a shows the deformation induced by a 3-D spherical source. This

deformation grid is exactly the same as the deformation grid generated by a spherical

cavity expansion in an incompressible material with radius p.

The Simple Pile Solution, shown in Figure 2.8b, is derived when a single spherical

source discharging incompressible material at a rate (of volume) V per unit time is

inserted in a uniform flow field with velocity U in the vertical direction. By

superimposing a spherical source and a uniform flow with velocity U in the z direction,

3 where the superscript "o" refers to the spherical situation
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the soil particle velocity components u, and uz in a cylindrical coordinate system are

given by:

ur =u,"; u, = U+u (2.17)

Clearly, the addition of a uniform flow in the z direction changes only the vertical

velocity by a uniform amount U. This apparently small deviation from the spherical

cavity solution though causes drastic changes in soil deformations and strains.

2.3.3.2. Geometry and soil distortions

Superimposing soil velocities corresponding to a point source and a uniform flow,

and using the concept of stream functions in cylindrical coordinates, Baligh (1985)

showed that the stream line (or path) of a particle originally located at a radial distance r,

from the pile center line is described by the equation,

r 2 _ 2 +

R1J= ( -(1+cos)

= arctan

Figure 2.8b represents soil deformations obtained by direct substitution into Equation

219 and observing soil incompressibility. In the special case of r0=0 corresponding to

soil elements initially located at the center line, Equation 219 provides an analytical

expression for the geometry of the penetrometer considered, the Simple Pile, having the

following characteristics:

" The pile tip (r=O) is located at z=-R/2.

" Far behind the tip, the shaft radius of the Simple Pile R -+ (V/nU)"2.



* Theoretically, the radius of the Simple Pile increases indefinitely but, for all

practical purposes, it can be assumed to have a uniform radius equal to R from

point C in Figure 2. 8b located 4R behind the tip.

The geometry of the Simple Pile guarantees the absence of a relative normal velocity

at the soil-pile interface. Practically this means that solutions presented herein correspond

to a rigid pile and that soil particle velocities are in the tangential direction with respect to

the pile surface.

The remaining condition required to describe the Simple Pile penetration is the

boundary condition in the tangential direction, i.e. along the soil-pile interface. Trying to

retain the simplicity of the analysis, it was decided that deformations and strains caused

by penetration should become independent of the shearing behavior, (i.e. the problem

becomes totally strain controlled). Hence, these results should be considered

approximate, since they do not satisfy equilibrium everywhere in the soil. However, this

is a good approximation for deep penetration problems, since soil deformations and

strains are not seriously affected by the shearing characteristics of the soil (Baligh, 1985).

The aforementioned solution techniques are used to determine the velocity, deformation

and strains during penetration in this research project.

2.3.4 Effects of Pile Installation

Pile installation causes severe straining of the soil and drastic changes in the soil

stresses. A rational estimate of the shaft resistance of piles requires that the mechanism of

installation be understood and then formulated in a comprehensive method to perform

predictions.



2.3.4.1. Strains in the soil during Pile Installation

In axi-symmetric problems, the strains are described by four non-vanishing

components: Err, Ezz, 600, Erz. Taking into account that the soil herein is treated as

incompressible, the three normal strains must satisfy the condition of no volume change:

e. +e +e, =0 (2.19)

Therefore, three strain components are sufficient to fully describe the state of strain.

For graphical representation of different states of strain, the Ei-space {E1, E2, E3}

(Levadoux, 1980), is utilized, defined as:

E= E2 =--(_6 - 6rr ); E, =-2 (2.20)

Figure 2.9 shows a strain point in the three-dimensional Ei-space where its distance

from the origin is proportional to the octahedral shear strain ydt:

[E + E 2 + E 2]1 = v27y, (2.21)

7 , , = ( e , ., - e , 2 + ( C '- 90 ) 2 + ( C o o -_ , .) 2 + 6 ] V 2( . 2

The octahedral strain, yea, representing the second deviatoric strain invariant provides

a good measure of overall shear strain levels. Furthermore, the strain paths of

conventional strain controlled tests correspond to the three axes; E1 - triaxial mode; E2 -

pressuremeter or cavity expansion mode; and E3 - Direct Simple Shear mode, as shown in

Figure 29.



Cylindrical CEM assumes conditions of radial symmetry and hence, restricts the

dependence of field variables to the radial coordinate only. Therefore, the components of

axial strain, &r, and shear strain, erz, are zero according to this method. This assumption

greatly simplifies the problem and enables solutions to be obtained with a modest level of

effort.

Figure 210 shows the radial, r, and the circumferential strains, so, far behind the tip

of a long cylindrical pile as a function of the normalized radius, rJ/R, estimated according

to the Cavity Expansion and the Strain Path4 methods. The CEM predicts that the radial

and circumferential strains are equal and opposite at all locations because the axial strain

vanishes and deformation is incompressible. The predictions of the Strain Path and the

Cavity Expansion methods are almost identical, indicating that the effect of the (non-

zero) axial strain is small.

Figure 2.10 represents the final strain states after pile installation, and thus does not

contain information for the prior strain paths followed by the individual soil elements.

The strain paths predicted by the Cavity Expansion and the Strain Path methods are very

different: the CEM predicts monotonic radial strain paths between the initial

(undeformed) state and the final strain state (after pile installation) for all soil elements,

whereas Levadoux & Baligh (1980) show that the SPM predicts large strain reversal and

complicated strain paths5, due to the effect of the pile tip which is neglected by the CEM.

4 using a 60" tip angle
s especially for soil elements located close to the pile wall (rd/R<3-4)
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Furthermore, it is well established fact that the effective stresses around the pile are

controlled by the strain paths followed during pile driving rather than the final strain

states. Thus, the effective stresses predicted by both methods are expected to be different.

Figure 211 shows SPM projections of strain paths in (E1 , E2) and (E2, E3) spaces

during penetration of a Simple Pile for three soil elements initially located at rJ/R=0.2,

0.5 and 1.0 (i.e. relatively close to the pile axis). The following remarks can be made:

* The straining levels close to the pile are much greater than normally imposed in

common laboratory and pressuremeter tests as illustrated by the shaded zones.

Therefore, the post peak behavior of the clay should be expected to have an

important effect on stresses and pore pressures in the soil close to the pile.

e Ahead of the pile, straining of the soil located near the axis takes place essentially

due to E1 (vertical compression) with possibly some contribution of E3 well

before E2 (cylindrical cavity expansion) is felt.

e The strains caused by penetration are not monotonic. The reversal of strain paths

and the high straining levels caused by penetration have a major influence on

stress predictions.

Figure 212 shows contour lines of the octahedral strains, yet, and strain rates, tod,
during penetration of a Simple Pile. Further examination of this figure reveals many

interesting aspects of deep penetration:

* Contour lines of yo provide a good indication of the shearing severity in isotropic

clays and conveniently divide the soil mass into an inner plastic zone and an outer

elastic domain. In this case the contour of yet= 2% represents the boundary of the



plastic zone surrounding the Simple Pile in a clay obeying the Von Mises

criterion for yielding at this strain level (corresponding to a strain of 4.9% in

simple shear). Outside this boundary, the strains are relatively small and the soil

does not reach failure and thus significant analytic simplifications are permitted.

* Contour lines of yoct far behind the tip are virtually identical to those predicted by

cylindrical cavity expansion except in the vicinity of the shaft, where the amount

of shearing is slightly larger during pile penetration.

The strain contours of toet in case of a Simple Pile consists of spheres centered at the

origin located at distance R/2 behind the tip and correspond to a pile with a radius

R=1.78cm pushed with a steady velocity U=2 cm/s, as in cone penetration testing.

Clearly, the soil is sheared non-uniformly and very rapidly during penetration. For

example, the soil in the shaded area (Figure 2.12) is strained more than 14,000 times

faster than undrained triaxial tests conducted at an axial rate t=0.5% per hour. Such high

strain rates have important effects on soil behavior, e.g. increasing the peak strength,

decreasing the strain to peak and enhancing strain softening.

2.3.4.2. Installation Stresses and Pore Pressures

Predictions of effective stresses around the pile after installation were made using the

MIT-E3 model. The MIT-E3 model (Whittle, 1987) is a generalized effective stress soil

model for describing the rate independent behavior of normally to moderately

overconsolidated clays (OCR 8). Figure 2.13 presents Strain Path (SPM) and cylindrical

Cavity Expansion (CEM) predictions of installation stresses and pore pressures around

the shaft of a pile in Ko-normally consolidated Boston Blue Clay (BBC) (Whittle, 1993).



The individual stress components are normalized by the in situ vertical effective stress,

U'vo, while radial dimensions are normalized by the radius of the pile, R. Based on these

predictions the following comments can be made:

e Although both CEM and SPM predict a similar accumulation of excess pore

pressures, Aui/a'vo, in the far field (3<_r/R530), there are differences in the

distribution close to the pile (r/RS3). The net result is that the CEM predicts

excess pore pressures which are typically 20-25% larger than those obtained from

corresponding SPM analyses.

* During installation undrained shearing generates positive shear induced pore

pressures and there is a corresponding net reduction in the mean effective stress,

a'/a',, close to the shaft (r,/Rs6). Differences in the magnitude of a'/&', for

SPM and CEM analyses reflect the differences in strain histories.

* The SPM predicts very low radial effective stresses, a'Wa',, and cavity shear

stresses6, qh/a'v acting at the pile shaft. In contrast, CEM analyses give higher

values of radial effective stress, G'/a'vo, and predict that a'/a'v,> '/'y over a

wide radial zone (r/R 20). At this point, it has to denoted that strain path

predictions of o'W/',o are affected significantly by soil properties.

Figure 2.14 presents Strain Path (SPM) predictions of installation stresses and pore

pressures far behind the tip of a pile in Ko-normally and lightly overconsolidated BBC

(Sutabutr, 1999). The two principal parameters of interest in these analyses are the

normalized excess pore pressures, Aui/a'vo, and radial effective stresses, a'/a'v, that

6 q r
0

6
h=



occur at the pile shaft for overconsolidation ratios, OCR=1.0, 1.5 and 2.0. The results

show the following:

* The normalized excess pore pressures, Aui/o'vo, far behind the tip of the pile

increase with OCR of the soil, due to the increase in undrained shear strength

ratios, s./o'%o.

* For normally and lightly overconsolidated clays (OCRs2), there is a large net

decrease in the radial effective stress close to the pile shaft compared to the far

field Ko condition.

2.3.5 Effects of Soil Consolidation

The shaft resistance of piles in clays increases with time due to pore pressure

dissipation and soil consolidation. However, the time to reach the maximum resistance

varies significantly because of different soil (e.g. permeability, compressibility) and pile

(e.g. radius, permeability) conditions. Pore pressure dissipation rates are needed to

estimate the time for the pile to "set up" and thus obtain its full resistance.

Figure 2.15 presents solutions for non-linear, coupled consolidation around a pile

following penetration in Ko-normally consolidated BBC, based on the MIT-E3 soil model

(Whittle, 1993). Installation pore pressures and stress fields are obtained from the

solutions presented in Section 23.4.2. The predictions are presented using a

dimensionless time factor, T, for both Strain Path and cylindrical Cavity Expansion

methods. The results show the following:



* The analyses using the SPM predict a final set-up stress ratio 7, K-=o',y

equals to Ke=0.37 which is significantly lower than the initial, in situ earth

pressure coefficient (Ko=0.48).

* Predictions using cavity expansion analysis of pile installation (CEM) show

higher set-up (K,=0.50). This results is primarily due to the predicted initial

conditions (Ki=0.33) since the net change in radial effective stress during

consolidation is relatively small.

2.4 FIELD EXPERIMENTS USING INSTRUMENTED PILES

This section describes a series of field experiments using high-quality instrumented

piles developed at Imperial College. The purpose of the pile test program was to identify

the major factors controlling displacement-pile performance by providing reliable data

regarding the physical processes of driven piles.

The instrumented displacement piles were equipped to measure the effective stresses

acting at the pile/soil interface during the three main stages of the pile's lifetime (i.e. pile

installation; consolidation; and pile loading). The general arrangement of the model pile

is shown in Figure 2.16. The instruments, used at the three clusters located over the lower

3 m length of the pile, are described in detail by Bond et al. (1991).

The following sections evaluate the experimental data of the instrumented piles from

three well-documented pile test sites: i) London clay (Bond & Jardine, 1991); ii) stiff

where a', is the radial effective stress acting on the pile after full dissipation of excess pore pressures
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glacial clay (Lehane & Jardine, 1993); and iii) soft estuarine Bothkennar clay (Lehane &

Jardine, 1993).

2.4.1 London clay, Canons Park Site

The ground conditions at Canons Park comprise superficial deposits of topsoil,

gravel, and silty clay head, overlying heavily overconsolidated London clay. The strength

profile for the site has been established from unconsolidated undrained triaxial

compression tests on thin-walled jacked samples (Jardine, 1985). In situ

overconsolidation ratios range from OCR=25 at depth d=7 m to OCR=45 at depth d=3 m.

Comparing the field data with the two leading theories for predicting the behavior of

displacement piles in clay soils (i.e. cylindrical Cavity Expansion Method, CEM; and

Strain Path Method, SPM) the following conclusions can be drawn:

e The central assumption of the cylindrical CEM is that pile installation has the

same overall effect on the ground as the monotonic expansion of a long

cylindrical cavity under undrained plane strain conditions. The validity of this

hypothesis can be directly tested by comparing the radial total stresses, or,

measured at the end of installation with limit pressures plim extrapolated from self-

boring pressure-meter tests. Figure 2.17 shows that values of ar at Canons Park

fall well below plim values showing the inadequacy of CEM to predict the

behavior of displacement piles in high OCR clay.



2.4.2 Glacial clay, Cowden Site

The United Kingdom Building Research Establishment (BRE) developed a test site at

Cowden, northeast England, for research into the engineering properties of glacial tills.

The BREs site investigation and laboratory testing at Cowden are summarized by

Marsland & Powell (1985).

A general observation based on the field data of all instrumented sites is that the rate

of penetration has a marked influence on the mobilized skin friction, f,8 . More

specifically, Figure 2.18 outlines this rate dependence by including data reported by

Lehane & Jardine (1993) and Ponniah (1989) from other jacked piles at Cowden. The

rate effect appears to be slight at pile velocities less than about 50 mm/min. However, at

faster rates the trend line climbs steeply, with a maximum gradient of about 100% per

logarithmic cycle, matching closely the response measured in pile tests in London clay

(Bond & Jardine 1991).

2.4.3 Soft marine clay, Bothkennar Site

The UK Science and Engineering Research Council set up a soft clay test bed site at

Bothkennar, Scotland, on the southem bank of the Forth estuary. The ground conditions

have been investigated thoroughly using state of the art sampling, laboratory testing, and

in situ test techniques. Details of these investigations were reported by Hawkins et al.

(1989), Hight et al. (1992) and Smith et al. (1992).

8 based on Total Stress Approach, fs=asu



Comparing the field data of the aforementioned test sites with the results of

Bothkennar clay the following remarks related to the consolidation phase can be made:

* The radial total stress changes9, H/Hi, observed during consolidation in Figure

2.19 are generally reduced through time, with the greatest relative reductions

taking place in the low-OCR sensitive Bothkennar clay. A wider ranging review

by Lehane (1992) shows that equalized values of H/Hi decrease with increasing

clay sensitivity and reducing OCR.

e The radial effective stresses, a'r, recorded at all instrumented sites shown in

Figure 2.20, is normalized by the corresponding o'rc values measured at the end

of the consolidation process. The pattern recognized is a large overall increase in

01'r during consolidation at Bothkennar, a relative neutral effect at Cowden and a

net reduction of 0'r in the London clay. Taken together, these data show that the

degree of set-up decreases with increasing OCR.

9H (@ru

1 koa1-,%)



Penetration Ratio* f
Case Soil Conditions a = -

L/D s,

<20 1.25
Sands of sandy gravels overlying

stiff to very stiff clays
>20 use curve I in Figure 2.2

<20 0.40
Soft clays or silts overlying stiff to

very stiff clays
>20 0.70

<20 0.40
Stiff to very stiff cohesive soils

III
without overlying strata

>20 use curve 2 in Figure 2.2

* L = length of pile

D = diameter of pile

Note: a values are not applicable to H-section piles. su obtained from unconfmed compression

tests.

Table 2.1: Umiting skin friction values into stiff to very stiff clays (Tomlinson, 1971)



2.2: Transformed tensorial measures (Kavvadas, 1982)
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Figure 2.8: Deformation of square grid in saturated clays: (a) Spherical Cavity Expansion; (b) Simple Pile Solution
(Baligh, 1985)
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Figure 2.9: Strain representation on Erspace (Levadoux, 1980)
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Figure 2.10: Distribution of (a) radial; (b) circumferential strains far behind the pile tip (Kavvadas,1982)
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Figure 2.12: Octahedral shear strain and shear strain rate contours during Simple Pile penetration (Baligh, 1985)
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Figure 2.16: Imperial College instrumented pile
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3. STEADY STATE PILE INSTALLATION

3.1 INTRODUCTION

The increase in pile capacity with time after installation has been a widely discussed

subject over the past 30 years. This phenomenon is usually associated with

driven/displacement piles in low permeability soils, where high excess pore pressures are

generated during installation.

Analytical predictions of pile installation have been pursued by a number of research

groups including: i) Cambridge University, UK (Randolph, 1979; Randolph & Wroth,

1979); ii) University of Houston (O'Neill, 1985; Heydinger & O'Neill,1986); and iii)

Massachusetts Institute of Technology (Baligh, 1985; Levadoux, 1980; Kavvadas, 1982;

Whittle, 1987; Azzouz et al., 1990).

The analytical methods attempt to simulate the changes of soil stresses and properties

around the pile shaft during the different stages in the life of the pile. The extensive

research at MIT has produced a series of analytical tools for predicting the performance

of friction piles in clays. The analytical tools include: i) Strain Path Method (SPM;

Baligh, 1985) for modeling penetration behavior, and ii) a series of effective stress soil

models for describing non-linear elasto-plastic response of anisotropic clays, namely

MIT-E3 (Whittle, 1987) and MIT-Sl (Pestana, 1994).

The primary objective of this chapter is to combine the MIT-SI model with the Strain

Path Method to predict the effective stresses in the overconsolidated clays during steady



undrained pile installation (Stage 1). These values represent the initial conditions for the

consolidation (Stage 2) and thus, they are essential in the rational interpretation of the

consolidation that takes place after pile penetration. Subsequently, this chapter endeavors

to identify the critical parameters affecting the installation stresses by investigating: i) the

effect of method of analysis; ii) the effect of soil model; and iii) the effect of stress

history.

3.2 SOIL MODEL AND METHOD OF ANALYSIS

The key step of both analytical frameworks described in Section 2.3 (i.e. Cavity

Expansion Methods, CEM; Strain Path Method, SPM) is that the soil velocities are

estimated without reference to the properties of the soil and rely solely on the method of

analysis used. This "decoupling" drastically simplifies the problem of modeling pile

installation.

Another key decision is choosing the constitutive model to describe the soil behavior.

This section reports briefly the soil models used to study pile penetration, along with the

analytical procedures used to acquire the strains associated with each analytical

framework.

3.2.1 Soil Model

Two constitutive soil models are used to outline the behavior of Boston Blue Clay

(BBC). These models are the following:

1. MIT-E3



2. MIT-SI

For the sake of comparison, this section evaluates each soil model by indicating its

significant features but its limitations as well.

3.2.1.1. MIT-E3

The MIT-E3 model (Whittle, 1987) was developed over the period 1984-1987 to

describe the anisotropic behavior of normally and lightly overcnsolidated clays. It has

been used successfully by Aubeny (1992) to predict the performance of piles installed in

clays with OCR's up to four (OCR:4). The model incorporates several important features

of soil behavior, including anisotropic hardening, undrained brittleness at low OCR's,

small strain (i.e. pre-yield) non-linearity in undrained shear and irrecoverable straining

pre-yielding.

Certain features of the individual components of MIT-E3 are worth noting:

" The "perfectly hysteretic" model describes a closed (symmetric) hysteresis loop

(such as A-B-A in Figure 3.1a). It assumes that the soil is isotropic and its

volumetric and shear behavior are uncoupled; and it controls the soil's non-

linearity at small strains.

" Bounding surface plasticity alters the unload/re-load path A-B-A by introducing

irrecoverable strains (A") as the stress state approaches the virgin consolidation

line (VCL). The clay's behavior is therefore described by the loop A-B-C (Figure

3. 1b). In this way, every loading cycle produces some plastic straining.

Like all soil models, MIT-E3 suffers from a number of limitations, the principal ones

being:



* It over-predicts the maximum stress obliquity in triaxial compression tests for

overconsolidated clays. Predictions are less reliable for OCR>4.

* It tends to underestimate the undrained shear strength in triaxial shear modes.

* The model was designed for rate-independent soils and hence takes no account of

rate effects, drained creep, etc.

Table 3.1 summarizes the input parameters used by the MIT-E3 to model the

behavior of the behavior of Ko-consolidated Boston Blue Clay (BBC) together with their

physical significance and proposed laboratory tests from which these properties can be

determined.

3.2.1.2. MIT-Si

Pestana (1994) developed the MIT-Si model using a unified work capable of

describing the behavior of sands, silts and clays. This new model retained the

aforementioned basic components of its predecessor (MIT-E3; Whittle, 1987) but in the

meantime improved three (3) previously reported limitations of MIT-E3 model (Whittle

& Kavvadas, 1994):

1. The stress obliquity is well described, especially at high OCR through the use of

one of the input parameters, <p'm.

2. The model assumes that the yield behavior of Ko-consolidated soils becomes

more isotropic with increasing overconsolidation, while MIT-E3 implicitly

generates large anisotropy at high OCR

3. The model simulates the measured tendency of the soil to dilate (negative induced

pore pressures) when sheared to large strains in extension tests.



In its most general form, the MIT-Si uses sixteen (16) input parameters, while only

thirteen (13) of these are used for clays. Table 3.2 summarizes the input parameters used

by MIT-Si, together with the laboratory tests from which they can be determined, and

gives the specific values to describe the behavior of Ko-consolidated Boston Blue Clay

(Pestana, 1994).

Extensive comparisons with measured data from undrained shear tests performed in

different modes of shearing and for high overconsolidation ratios (OCRS32) show that

the model: i) gives excellent predictions of maximum shear stress conditions and

accurately describes the non-linear shear stress-strain behavior; ii) accurately describes

the anisotropic shear stress-strain-strength conditions for different radial consolidation

stress histories; and iii) gives more realistic description of mobilized friction angles,

especially at large OCR's.

Figures 3.2, 3.3 and 3.4 (Pestana, 1994) compare the computed and measured shear

stress-strain behavior for Ko-consolidated BBC in the three modes of shearing which

occur during pile installation (see Figure 2.9).

Figure 3.2 compares model predictions with measured shear stress-strain behavior of

undrained triaxial compression (CKoUC) and extension (CKoUE) for Ko-consolidated

samples. The MIT-SI model predicts that the stress-strain behavior is non-linear over the

full range of measured strains (no 'distinct' yielding is observed) for both normally and

overconsolidated samples. The model gives excellent predictions of the shear-strain-

strength behavior for OCR=2,4 and 8 for the database by Sheahan (1991). On the other

hand, the observed behavior of the BBC tested by Fayad (1986) for the same nominal

OCR's shows a stiffer response at all strain levels with significantly higher (~20%)
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undrained shear strength especially in the extension tests. The data of Fayad (1986) may

be affected by thixotropic properties (strength and stiffness increases with storage time),

while the data presented by Sheahan (1991) are considered the most reliable tests

performed in resedimented BBC to date.

Figure 3.3 compares model predictions with measured shear stress-strain behavior for

undrained Direct Simple Shear tests (CKoUDSS) on recent resedimented BBC for

nominal OCR's=1, 2, 4, 8, 15 and 32 (Ahmed, 1991; Ortega, 1992; Cauble, 1993). At

OCR=1, model predictions are in good agreement with the measured stress-strain

behavior. At OCR=2 and 4, the model gives excellent predictions of undrained shear

strength and maximum stress obliquities (i.e. /o',) mobilized in horizontal planes, but

significantly over predicts the stiffness for y<2 % for OCR=4. For OCR's 8 and 15 model

gives good predictions of undrained shear strength at large strains (y-10%) , but

overestimates significantly the shear stiffness throughout the test. Predictions at OCR=32

greatly overestimate the measured stiffhess and strength of the clay. Figure 3.3b shows

that, in general, the model gives good predictions of secant stiffness at low OCR's (<4) at

strains typically larger than 1-2%, while significantly overpredicting the stiffness at

higher OCR's (>4) at all levels of strain.

The pressuremeter shear mode (E2, Figure 2.9) is especially important for estimating

the effects of pile installation and can be simulated in laboratory element tests using more

sophisticated equipment such as the Directional Shear Cell (DSC). Figure 3.4a compares

the predicted and measured shear stress-strain behavior of Ko-normally consolidated

BBC. The DSC measurements at Sin,=O0 and 90* are in reasonable agreement with the

plane strain data reported by Ladd et al. (1971) and are well described by the MIT-Si



model. The model tends to underpredict the strength and stiffness in tests with Principal

stress rotations (i.e. Sinc=45*, 600), but gives excellent predictions of material response,

strength and stiffness for 6inc=75*, as reported by Seah (1990). Overall, the MIT-Si

model gives a good description of the stress-strain (Figure 3.4b) for all directions of

shearing at strain levels, y>O. 1%, but overestimates the small strain stiffness for Y70. 1%

for Sinc<60 0.

Taking into consideration the previously mentioned improvements of MIT-Si over

MIT-E3, especially at high OCR, makes MIT-SI a powerful tool in predicting the

behavior of pile penetration in highly overconsolidated clays. The ultimate goal of this

work is to describe typical predictions of pile shaft performance using Strain Path

analyses in conjunction with MIT-Si soil model for values of OCRL16.

3.2.2 Method of Analysis

The two methods described thoroughly in Section 2.3.1 and 2.3.2, are utilized to

analyze the steady state pile installation. These methods are the following:

1. The cylindrical Cavity Expansion Method (CEM)

2. The Strain Path Method (SPM)

The assumptions used in both methods impose kinematic constraints such that the

strains in the soil around the pile can be estimated without considering the stress-strain

behavior of the soil. The following sections explain in detail the numerical schemes used

to compute the predicted stress changes in soil during pile installation according to each

one of the aforementioned methods.



3.2.2.1. Numerical scheme used for CEM

During undrained cavity expansion, all soil elements follow the same (radial) strain

path, but each corresponds to a different point along this path depending on its distance

r/R from the center-line of the cavity. Thus, all soil elements trace the same stress-strain

curve (corresponding to the undrained cylindrical cavity expansion mode of deformation)

and, their effective stress can be directly computed from the level of strain associated

with each soil element (via Equations 2.8 and 29 or Equations 2.10 and2.11).

Forty five (45) intervals (i.e. 46 nodal points) are used with interval length gradually

decreasing towards the cavity to provide better resolution in the zone of high strain

gradients near the cavity wall. The locations of the nodal points are shown in Table 3.3.

Solutions are obtained by means of a computer program modified by the author to

incorporate MIT-Si as the constitutive soil model. This program calculates the effective

stresses and excess pore pressures during the undrained expansion of cylindrical cavity.

Appendix A presents a user's manual and a complete listing of this program.

3.2.2.2. Numerical scheme used for SPM

The Strain Path Method (SPM) predictions are determined by means of the procedure

explicated in Section 2.3.2 using the Simple Pile Solution. Analyses are performed using

90 stream-lines to cover the soil mass for r/R-+ 111.4. Strain paths are computed over a

fixed vertical interval relative to the pile tip, -190 5 z/R 5 200.

Each stream-line consists of 1332 nodal points. The radial coordinates of the first

point (i.e. in front of the pile tip) on each stream-line are shown in Table 3.4.



Solutions are obtained by means of a computer program modified by the author to

incorporate MIT-Si as the constitutive soil model. This program calculates the effective

stresses and the remaining state variables across a cylindrical pile using the Strain Path

Method. Appendix A presents a user's manual and a complete listing of this program.

3.3 INSTALLATION EFFECTIVE STRESSES

Pile installation in clays is modeled as the undrained, steady penetration of a rigid

axi-symmetric indenter. This section attempts to identify the parameters affecting the pile

set-up processes for friction piles in normally to highly overconsolidated clays. The

predictions consider the following combination of parameters:

1. Two methods of analysis, cylindrical Cavity Expansion Method (CEM) and Strain

Path Method (SPM)

2. Two constitutive soil models, MIT-E3 and MIT-SI for the reference soil (Kol'-

consolidated Boston Blue Clay; BBC)

3. Five overconsolidation ratios, OCR=1.0, 2.0, 4.0, 8.0 and 16.0

The strain fields around the indenter are estimated using the assumptions discussed

extensively in Section 2.3.4.1.

3.3.1 Effect of method of analysis

Installation effective stresses are presented in the form of normalized plots of a'r/a'vo,

a'/A'vo, ('ea's)/ 2 'vo versus the normalized radial distance from the pile shaft, ro/R

Normalization using the vertical effective stress assumes that the soil exhibits normalized

10 in situ earth pressure of undisturbed soil; K0=0.49



stress-strain-strength behavior, and enables comparison with measurements at any depth

below the mudline.

Figures 3.5, 3.6 and 3.7 present Strain Path (SPM) and cylindrical Cavity Expansion

(CEM) predictions of installation stresses far behind the tip of a pile" in Ko-normally

consolidated BBC using the MIT-Sl soil model for five (5) overconsolidation ratios,

OCR=1.0, 2.0, 4.0, 8.0 and 16. The following remarks can be made:

* For every overconsolidation ratio (Figures 3.5-3.7), the method of analysis affects

significantly the magnitude and distribution of stresses in the vicinity of the pile

wall, r/R 10.

* For normally or lightly overconsolidated clay (OCR4), undrained shearing

generates positive shear induced pore pressures and a corresponding net reduction

in the mean effective stress, '/a'v, close to the pile shaft. Differences in the

magnitude of '/&'v for SPM and CEM (r0/Rs10; Figure 3.5 and 3.6a) reflect

how the anisotropic and strain softening properties described by the MIT-S1

model are affected by differences in strain histories.

* The effects of the analysis used to model installation can be seen more clearly in

predictions of the radial effective stress, ' and cavity shear stress, (a'r-

a'O)/2G'o. The SPM predicts very low radial effective stresses and cavity shear

stresses acting at the pile shaft for all OCR's. This means that the radial effective

stress is similar in magnitude to the mean effective stress ( for

ro/R10. In contrast, CEM analyses give higher values of radial effective stress

"at an elevation z=20R above the tip



and predict that ao',aV'/'v over a radial zone of r/R510 for OCR=1 (Figure

3.5a) and escalating to r/R5100 for OCR=16 (Figure 3.7).

3.3.2 Effect of soil model

According to Pestana (1994), the behavior of highly overconsolidated clays (with

OCR 32) measured in laboratory tests can be simulated better using the MIT-Si rather

than the MIT-E3 soil model. Thus, more realistic predictions are anticipated using the

MIT-SI to model the behavior of Ko-consolidated BBC.

Figures 3.8, 3.9 and 3.10 show contour plots of the effective stresses around the

Simple Pile using the SPM for OCR's=1, 2 and 4 according to MIT-E3 & MIT-Sl. The

following effects of soil models can be observed:

e Distributions of radial effective stress, o'1/a'vo, predicted by MIT-Si for OCR=1

are similar to results for the MIT-E3 model, since distinct differences between

these two models occur especially with increasing overconsolidation, as

mentioned before. At OCR's=2 and 4 the radial effective stress contours predicted

by MIT-Si are qualitatively similar to MIT-E3 model, with higher values of

a'r/a'vo for MIT-E3 acting on the tip of the pile.

* The pattern of mean effective stress, '/a'vo, is similar for both MIT-Si & MIT-

E3 soil models. According to this pattern, '/a' decreases from a maximum

value at the tip of the pile, to a minimum value on the pile shaft. Hence, the

maximum shear-induced pore pressures are along the pile shaft. These results

reflect the anisotropic and strain softening behavior of both soil models.



* At a given OCR, the MIT-SI model predicts similar values of cavity shear stress,

(o'ra')/2 'vo, acting on the penetrometer to MIT-E3. Differences in magnitude

of ('ra's)/2a'vo can be attributed to the different anisotropic behavior of the two

soil models at high OCR.

3.3.3 Effect of stress history

Figures 3.11 and 3.12 show predictions of the installation stresses around the Simple

Pile for the base case analysis (MIT-Si; Ko-consolidated BBC) at OCR's=1, 2, 4, 8 and

16. The results present the following:

" The radial effective stress, a'', reaches a maximum value around the same

radial distance (r/R=8) for every OCR apart from low OCR's (OCR=1 and 2),

where the maximum value is achieved at far locations around the shaft (r/R=100).

It should also be noted that at the far field (r/R=100), the value of a'/a'v

increases with OCR, since it is direct proportional to the earth pressure coefficient

at rest Ko.

* Changes in mean effective stress (i.e. shear-induced pore pressure) are related to

the critical state conditions described by the MIT-Si model. The magnitude of

a increases substantially with OCR, but is approximately constant over a

radial zone of rJR 4 as the large strains produce critical state conditions.

Similarly, contours fo cavity shear stress, (a'ra'o)/2 a'vo, are qualitatively similar

for all OCR's.



Parameter / Physical Contribution / Boston Blue
Test Type Symbol Meaning Clay (BBC)

Void ratio at reference stress on

e. virgin consolidation line 1.12
Hydrostatic or 1-D Compressibility of virgin normally

Compression (Triaxial, consolidated clay 0.184

Oedometer or CRS
C Non-linear volunetric swelling 22.0

apparatus)--. -.- -
n behavior 1.60

h Irrecoverable plastic strain 0.2

KO for virgin normally consolidated

clay

Ko-oedometer or Ko-triaxial Ratio of elastic shear to bulk

2G/K modulus (Poisson's ratio for initial 1.05

unload)

9'TC Critical state friction angles in 33.40

triaxial compression and extension

(large strain failure criterion)
Undrained Triaxial Shear Undrained shear strength (geometry

Tests: 0.86
c of bounding surface)

OCR=1; CKOUC Amount of post-peak strain softening
OCR=1; CKoUE St in undrained triaxial compression

(OCR>1; CKoUC optional)
Non-linearity at small strains in

w 0.07
undrained shear

y Shear pore pressure for OC clay 0.5

Resonant Column icO Small strain stiffness at load reversal 0.001

Rate of evolution of anisotropy 100.0

(rotation of bounding surface)

Table 3.1: Input material properties used by the MIT-E3 model (Whittle, 1987)



Parameter / Physical Contribution / Boston Blue
Test Type Symbol Meaning Clay (BBC)

Compressibility of normally
Hydrostatic or 1-D Pc cosldtd(C ly0.178

consolidated (NC) clay
Compression (Triaxial,

D Non-linear volumetric swelling 0.04
Oedometer or CRS

R behavior 0.85
apparatus)

h Irrecoverable plastic strain 6.0

KoNC Ko for NC clay 0.49

Poisson's ratio at stress reversal
s'o 0.24

Ko-oedometer or Ko-triaxial controlling 2Gm./Km.

Non-linear Poisson's ratio; Stress
Ci) 1.0

path in 1-D unloading

Critical state friction angle in triaxial 33.5*
compression

Undrained Triaxial Shear
(p m Geometry of bounding surface. 46.00

Tests:
Stress path of undrained

OCR=1; CKOUC m 0.80
CKoUTC/TE tests

OCR=1; CKOUE

(OCR>1; CKOUC optional) o Small strain non-linearity in shear 8
Rate of evolution of anisotropy 15
(rotation of bounding surface)

Shear wave velocity /
hesonant C o ci Cb Small strain stiffness at load reversal 450
Resonant Column I u b

Table 3.2: Inp.ut material properties used by the MIT-S1 Model (Pestana, 1994)



Node r./R Node r,/R

1 1.00000 24 3.16219

2 1.00445 25 3.44810

3 1.00746 26 3.73622

4 1.02156 27 4.12302

5 1.04530 28 4.60968

6 1.07794 29 5.09893

7 1.11866 30 5.83621

8 1.16661 31 6.57637

9 1.22093 32 7.56626

10 1.28079 33 8.55850

11 1.34545 34 9.55236

12 1.41425 35 11.04522

13 1.48661 36 12.04144

14 1.56202 37 14.03550

15 1.72040 38 16.03103

16 1.88672 39 18.02755

17 1.97223 40 20.02477

18 2.10289 41 30.01638

19 2.23598 42 40.01217

20 2.41652 43 50.00963

21 2.59991 44 70.00669

22 2.78559 45 100.00440

23 2.97312 46 150.00000

Table 3.3: Radial coordinates used to model pile Installation via the cylindrical Cavity Expansion Method (CEM)



Node r./R Node r/R Node r/R

1 0.09000 31 3.46000 61 15.90000

2 0.11000 32 3.50000 62 16.00000

3 0.13000 33 3.54000 63 16.10000

4 0.19000 34 3.96000 64 18.90000

5 0.21000 35 4.00000 65 19.00000

6 0.23000 36 4.04000 66 19.10000

7 0.29000 37 4.46000 67 21.90000

8 0.31000 38 4.50000 68 22.00000

9 0.33000 39 4.54000 69 22.10000

10 0.39000 40 4.95000 70 24.90000

11 0.41000 41 5.00000 71 25.00000

12 0.43000 42 5.05000 72 25.10000

13 0.46000 43 5.95000 73 27.90000

14 0.50000 44 6.00000 74 28.00000

15 0.54000 45 6.05000 75 28.10000

16 0.96000 46 6.95000 76 30.80000

17 1.00000 47 7.00000 77 31.00000

18 1.04000 48 7.05000 78 31.20000

19 1.46000 49 7.95000 79 40.80000

20 1.50000 50 8.00000 80 41.00000

21 1.54000 51 8.05000 81 41.20000

22 1.96000 52 8.95000 82 50.60000

23 2.00000 53 9.00000 83 51.00000

24 2.04000 54 9.05000 84 51.40000

25 2.46000 55 9.90000 85 80.60000

26 2.50000 56 10.00000 86 81.00000

27 2.54000 57 10.10000 87 84.40000

28 2.96000 58 12.90000 88 110.60000

29 3.00000 59 13.00000 89 111.00000

30 3.04000 60 13.10000 90 111.40000

Table 3.4: Radial coordinates of the nodal points in front of the tip of the pile used to model pile installation via the
Strain Path Method (SPM)
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4. PENETRATION PORE PRESSURES

4.1 INTRODUCTION

Pore-water pressures occupy a central position in modem soil mechanics for

conceptual and practical reasons. Conceptually, effective stresses control most soil

behavioral aspects of interest to geotechnical engineers, while total stresses are controlled

by equilibrium considerations. Therefore, pore pressures are necessary to estimate

effective stresses from calculated total stresses and thus allow a rational interpretation

and/or prediction of the deformation response of soil masses.

The undrained penetration of a pile or any intrusive test device (e.g. piezocone, field

vane, dilatometer, etc.) in low permeability clay leads to the development of excess pore

pressure in the soil. For normally and moderately overconsolidated clays, these pore

pressures are large and dominate other soil stresses and hence hold the key to the

understanding of skin friction mechanisms and ultimately the rational prediction of shaft

resistance of driven piles.

The pore pressures generated in the clay due to steady pile penetration, Au=u-u, are

the sum of two components: i) the increase in octahedral normal total stress, Aa, and; ii)

the shear induced pore pressure, Au. The main objective of this chapter is to calculate the

installation pore pressures around the shaft of a pile in Ko-consolidated Boston Blue Clay

(BBC). An evaluation of the installation predictions will follow by comparing the

analytical results with field/laboratory measurements from several sites.



4.2 PENETRATION PORE PRESSURES USING SPM

According to Baligh (1985), the effects of gravity on stress changes in deep

foundation problems are negligible, thus the equilibrium equations in a cartesian frame

can be expressed in terms of total stresses as:

ao-
- 0 (4.1)

ax,

in which, xi (=x1,x 2,x 3) are the coordinates of a material point and repeated indices

imply summation. By invoking the effective stress principle, oij=a'ij+6 ju, it can be shown

that,

au ac-'.' -g (4.2)
ax, ex,

Alternatively, from a known field of deviatoric stresses, the changes in mean total

stress, Aa, is determined from:

o- as.

- =-- 1  (4.3)

whereupon, the excess pore pressure can be computed from:

Au= Ao-+Au, (4.4)

For axi-symmetric problems, the equilibrium equations in terms of effective stresses

can be expressed in a cylindrical coordinate frame as:

=u + a + "r 00" (4.5)
ar z r
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According to the Strain Path Method, the excess pore pressures are derived by

integrating in either the radial (Equation 4.5) or the vertical (Equation 4.6) direction. This

condition is only satisfied if the strain paths are compatible with the model used to

determine the stresses. However, from the first step of the SPM, the strains are

approximated using potential flow theory and are not compatible with the soil model used

afterwards.

An approach suggested by Baligh (1985) can ameliorate the difficulties associated

with the path dependent pore pressures by taking the divergence of Equation 4.2,

V2 u = -Vg = -q (4.7)

In general, Poisson pore pressures fields will not satisfy either equilibrium equation

exactly. However, the Poisson solution does not rely upon an arbitrary selection of an

integration path; it therefore provides a flexible method for extending SPM solutions to

penetrometers of general shape.

In principle, the flux term, q, can be calculated by numerical differentiation of the

stress components from the SPM. However, accurate numerical evaluation of second

derivatives is very difficult to achieve, especially in regions of high stress gradients.

Considerable simplifications in computing can be achieved using the divergence theorem

to estimate an average flux within a given finite element:

q dV =fg -n dS (4.8)
V A



qV=Y(g.n), AS, (4.9)
i=1

where, V is the volume of the element, g is the pore pressure gradient vector on side i

of the n-sided element, n is the unit vector normal to side i of the element and Si is the

surface area of side i of the element.

Regarding to the first derivatives of the effective stresses (gr,gz, Aubeny (1992)

obtained accurate numerical solutions using an isoparametric interpolation scheme. The

same procedure has been adopted in this research.

4.3 INSTALLATION PORE PRESSURES

This section presents predictions of pore pressure changes, (u-u,), following pile

penetration in Ko-consolidated Boston Blue Clay (BBC). Predictions are made to assess

the effects of: i) method of analysis (CEM & SPM); ii) soil model (MIT-E3 & MIT-Sl);

and iii) stress history (OCR=1, 2, 4, 8 & 16) on excess pore pressure distribution.

4.3.1 Effect of installation analysis

The cylindrical Cavity Expansion Method (CEM) predictions are obtained by means

of the method described thoroughly in Section 3.22.1. Integration of the equilibrium

equation in the radial direction begins at a radius equal to 150 times the radius of the

cavity where the initial (Ko) stresses and the ambient (hydrostatic) pore pressures are

imposed.



The Strain Path Method (SPM) predictions are determined by means of the method

described extensively in Section 4.2.2. Figure 4.1 shows the finite element mesh used in

the pore pressure calculations representing a cylindrical pile using the Simple Pile

Solution. Subsequent studies of pore pressures around the pile shaft are selected at an

elevation z=20R above the tip. At this elevation, there is minimal variation of stresses

(see Section 3.3.3) in the vertical direction and thus no significant change occurs in the

same direction for pore pressures as well.

Figure 4.2 presents Strain Path (SPM) and cylindrical Cavity Expansion (CEM)

predictions of installation pore pressures, (u-u0)/a',o, using the MIT-Si soil model for

five overconsolidation ratios, OCR=1.0, 2.0, 4.0, 8.0 and 16. The following remarks can

be made:

e For all OCR's, the CEM analyses predict pore pressures at the pile shaft which

are 25 to 55% larger than those predicted by the SPM analyses, except for the

case of OCR=1.

e The shape of excess pore pressure distribution around the shaft exhibits

characteristic trends for all OCR's. More specifically, all Cavity Expansion

solutions predict an almost logarithmic' 2 increase of the excess pore pressure in

the region close to the cavity (i.e. rJ/R<10), since the stresses are approximately

constant13 in this region. The Strain Path Method predicts an almost constant

distribution of the excess pore pressure in the immediate vicinity of the pile (i.e.

r/R<2) for every overconsolidation ratio.

12 shown as linear in the semi-log plot
13 indicating that the Critical State is reached



4.3.2 Effect of soil model

Pestana (1994) has shown that much more realistic predictions of the behavior of

highly overconsolidated clays (with OCR 32) measured in laboratory tests can be

achieved using the MIT-Sl soil model. Figure 4.3 shows installation pore pressures, (u-

u,)/o'vo, around the Simple Pile for OCR's=1, 2 and 4. When compared with the

predictions for the MIT-E3 model (Figure 4.3) the following effects of soil model can be

observed:

e Predictions of the MIT-E3 and MIT-SI models are very similar in all respects.

This confirms that the MIT-Si captures all aspects of the MIT-E3 model

providing better predictions for overconsolidated clays.

* Major difference between the two soil models, MIT-E3 and MIT-Si, is related to

the region where the maximum excess pore pressures occur. For OCR's=1 and 2,

the MIT-E3 model predicts that maximum excess pore pressure appears at

locations along the face of the pile. The excess pore pressures around the face (-

0.55z/Rs1.7) are up to 30-40% lower for the MIT-E3 model as compared to MIT-

Si results for OCR=1 and 2. At locations far above the tip, however, the two soil

models give very similar results of (u-uo)/o',, acting on the pile wall.

" The MIT-Si compared to the MIT-E3 model predicts a much larger zone of

disturbance (i.e. (u-u0 )/&'vo) around the pile. This difference between these two

models increases as the OCR increases.



4.3.3 Effect of stress history

Figure 4.4 summarizes the predictions of installation pore pressures around the

Simple Pile for the base case analysis (MIT-Sl; Ko-consolidated BBC) at OCR's=1, 2, 4,

8 and 16. The excess pore pressures are reported at locations: (a) radially around the shaft

of the penetrometer at steady state conditions (far above the tip of the penetrometer), and

(b) along the centerline (ahead of the tip) and surface of the penetrometer geometry. The

results present the following:

0 The shape of excess pore pressure distribution along the radial direction is similar

for all OCR's. However, as OCR increases there is a significant increase in (u-

uo)/o've at the pile shaft.

* According to Figure 4.4b, the maximum excess pore pressures, (u-uo)/o'V0 >2-3,

occur at the tip of the pile. More modest changes occur at locations around the

pile shaft. This last observation explains up to a point the satisfactory agreement

between one-dimensional radial solutions (u-u0)/a'v (e.g. Whittle, 1987) and two-

dimensional solutions on the shaft far above the pile tip.

4.4 EVALUATION OF INSTALLATION PREDICTIONS

In this section, the analytical predictions of pile installation are compared directly

with field/laboratory data from separate sites. These comparisons are trying to illustrate

the capabilities and limitations of the Cavity Expansion and Strain Path analyses for

predicting the installation pore pressures following the penetration of a pile.



4.4.1 Field Tests and Laboratory Experiments

Simultaneous measurements of shaft pore pressures and lateral earth pressures (radial

total stresses; ar) during installation have been obtained at a number of sites using: i)

instrumented pile shaft elements or probes (PLS cell, Morrison, 1984; t-z and x-probes,

Bogard et al., 1985; IMP, Coop & Wroth, 1989); instrumented model piles (Kalsrud &

Haugen, 1985; Kalsrud et al., 1992; Bond et al., 1991). Further measurements of

installation pore pressures are associated with the development of in-situ testing devices

such as the piezocone and include both filed tests and laboratory experiments in large

scale calibration chambers.

Before proceeding to a direct comparison of the analytical results with the measured

data, a brief outline of the seven (7) well-documented cases reported herein, will be

given. These cases are: i) Saugus, MA (Morisson, 1984); ii) St Alban, Quebec (Roy et al.,

1981); iii) Onsoy, Norway (Kalsrud et al., 1992); iv) Empire, LA (Azzouz & Lutz, 1986);

v) Haga, Norway (Kalsrud & Haugen, 1985); vi) Inchinnan, Scotland (May, 1987); and

vii) Kaolin (May, 1987; Nyirenda,1989).

4.4.1.1. Saugus, MA

In-situ measurements on a closed-ended model pile shaft referred to as the Piezo-

lateral Stress cell (PLS) were performed at the station 246 of the 1-95 test embankment in

Saugus, Massachusetts (Morisson, 1984). Extensive field and laboratory testing has been

carried out at the site to establish stratigraphy and engineering properties of the site.

Figure 4.5 shows the soil profile, index properties and stress history at the site. In situ

overconsolidations ratios range from OCR=7 at depth d=30 ft. to OCR=1.23 at d=120 ft.
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4.4.1.2. St Alban, Quebec

A full scale investigation with six instrumented test piles has been carried out on the

Saint Alban test site in order to study the behavior of friction piles in soft sensitive soils

(Roy et al., 1981). The test site is located about 80 km west of Quebec City at the

northern fringe of the Saint-Laurent low lands. The typical soil profile consists of 0.4 m

of top soil, 1.2 m of weathered clay crust, 8.2 m of soft silty clay of marine origin, 4.0 m

of very soft clayey silt, and a deep layer of dense sand extending from a depth of 13.7 m

to more than 25 m. Figure 4.6 shows the soil profile, index properties and stress history

at the site.

4.4.1.3. Onsoy, Norway

Onsey clay is a thick deposit of highly uniform marine clay. The test site is situated in

southeastern Norway. A wide variety of in situ devices and different laboratory tests have

been used to investigate the properties of the material (Kalsrud et al., 1992). Figure 4.7

shows the plasticity data of Onsoy clay (Lunne et al., 2003). Overconsolidation ratio

values have been determined directly from oedometer tests and range from OCR-5 at

depth d=5 m. to OCR~1.5 at d=35 m.

4.4.1.4. Empire, LA

The test site at Empire is situated in the Mississippi Delta, approximately 40 miles

south of New Orleans. The site has been used for several research programs since 1975,

which studied the behavior of friction piles. Figure 4.8 presents a profile of index
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properties, stresses and undrained shear strength as reported by Azzouz & Lutz (1986)

based on pre-1984 laboratory data.

4.4.1.5. Haga, Norway

The Norwegian Geotechnical Institute conducted one of the most comprehensive pile

load-test programs at the Haga test site, 50 km outside of Oslo, between 1980 and 1984

(Kalsrud & Haugen, 1985). The program included both monotonic and cyclic axial load

tests on 16 heavily instrumented piles and 11 non-instrumented piles on the same

dimension. Figure 4.9 shows the soil profile at the test site, comprising a lean marine clay

(Haga clay) extending to 4.5 m depth. The preconsolidation pressures measured by

incremental oedometer tests give overconsolidation ratios decreasing from OCR=7 at 5 at

depth d=1 m. to OCR=3 at d=5 m.

4.4.1.6. Inchinnan, Scotland

The test site at Inchinnan is located just over 1 km to the south of Glasgow's

Abbotsinch Airport. The first phase of site investigation at this specific site was carried

out using the 1 cm2 and 5 cm2 Oxford piezocone and a 10 cm2 Fugro piezocone. The

second phase of the investigation consisted of a borehole, which produced 13 consecutive

samples giving a complete recovery from 1.2 m to 13.1 m. The details of the material

grading and Atterberg limits are given on Figure 4.10.
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4.4.1.7. Kaolin

The principal objective of this small scale laboratory experiment was to measure the

change in radial stress at the calibration chamber wall wall due to probe penetration at the

center of the chamber of radius, R=50 cm (May, 1987; Nyirenda, 1989). The test

described above was performed on speswhite kaolin clay with the corresponding

properties shown in Table 4.1.

4.4.2 Comparison with measured data

Figure 4.11 compares MIT-Sl predictions of excess pore pressures at the pile shaft

during steady penetration in Ko-consolidated BBC with measurements obtained from the

sites mentioned above. In general, the measured data are very consistent at low OCR (i.e.

(u-u)/a'vo=2 ± 0.4 for OCR<3), but exhibit large scatter in the more overconsolidated

clay (i.e. OCR>3). Significantly lower installation pore pressures (i.e. (u-u0)/Y'v0=1.2-1.3)

have been reported from laboratory calibration chamber tests in kaolin (May, 1987;

Nyirenda, 1989). As a rule, the Strain Path predictions underestimate the measured pore

pressures, particularly at low OCR, while there is a better agreement with results from

CEM analyses. On the other hand, there is a better agreement between the SPM

predictions and the pore pressures measured in kaolin for the entire range of OCR (i.e.

1<OCR<1 0), which are the only results measured in the laboratory.

Figure 4.12 compares MIT-Si predictions of the excess pore pressure distribution

using both methods of analysis (i.e. SPM and CEM) for Ko-consolidated BBC at OCR i)

field measurements (Roy et al., 1981) around an instrumented pile installed in St Alban

clay at OCR~2.3; and ii) measurements around the shaft of a cone penetrometer installed
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in speswhite kaolin clay within a large calibration chamber (of radius, Rc=50cm). In

general, CEM analyses do not describe accurately the shape of the pressure distribution

and hence, overestimate (u-uo)/y've at the shaft while underestimating pore pressures

measured in the far field. In contrast, the SPM predictions at OCR=1 are in very good

agreement with penetration pore pressures measured in kaolin. In the case of St Alban

clay, the SPM predictions at OCR=2 capture overall the shape of the pore pressure

distribution but they tend to underestimate both the magnitude and the radial extend of

the disturbance zone.
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*Note: These values were measures in standard CRU triaxial tests from initial loading and

unload-reload loops. Displacements were measured external to the cell on the loading

ram

Table 4.1: Soil properties of speswhite kaolin clay, (May, 1987; Nyirenda, 1989)
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Soil Properties Values

Liquid Limit, LL 66%

Plasticity Index, PI 33%

Specific Gravity, G, 2.65

Peak Friction Angle 230

Coefficient of consolidation, c, 0.5 mmn2/sec

Slope of virgin consolidation line, 2 0.25

Slope of swelling line, K 0.05

Normally consolidated rigidity index, Ir=G/c, 150-250*
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5. CONSOLIDATION AROUND DRIVEN PILES

5.1 INTRODUCTION

The previous chapters (Chapters 3 and 4) have described the effective stresses and

excess pore pressures which develop during steady penetration of driven piles in low

permeability clays. When the penetration process is interrupted, excess pore pressures

dissipate and there are concomitant changes in the effective stresses. This process

corresponds to a process of radial consolidation around the shaft of the pile.

It is well established fact that the shaft resistance of piles in clay increases with time

due to soil consolidation. However, the time taken to reach the maximum resistance

varies significantly with: i) soil properties (e.g. permeability, compressibility); and ii) pile

conditions (e.g. radius, permeability). The objective of soil consolidation analyses around

pile shafts is to estimate the time dependent changes in effective stresses within the soil

mass around the pile shaft. Stress conditions close to the pile shaft play a crucial role in

controlling subsequent pile loading and hence control pile capacity.

This chapter summarizes the existing methods used to analyze consolidation around

the pile shaft. Numerical algorithms used to integrate the MIT-Si soil model in the

general purpose finite element code ABAQUS14 are described in Section 5.3. Predictions

of consolidation along with numerical issues encountered in the application of MIT-Si

are presented in detail in Section 5.4. Finally Section 5.5 compares results of the current

analyses using the MIT-SI with prior solutions using MIT-E3 (Whittle, 1992).

1 ABAQUS is commercially available from SIMULIA and is made available through an academic license
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5.2 BACKGROUND

Consolidation studies are generally treated by means of one of two theories: i) the

Terzaghi (1923) - Rendulic (1936) uncoupled theory which treats the excess pore

pressures independent of the total stresses during consolidation; and ii) Biot (1935)

coupled theory where the interaction between total stresses and pore water pressures is

considered.

5.2.1 Consolidation Theories

Terzaghi (1923) formulated the one-dimensional consolidation theory to rationalize

observations of time-dependent settlements of soil. His theory still represents the

backbone of consolidation analyses in geotechnical engineering and is based on the

assumption that, at any time, the strain in the soil is controlled by changes in effective

stresses.

To avoid the oversimplification of one-dimensionality, Rendulic (1936) formulated a

three-dimensional consolidation theory based on the assumption that the mean total

stress, a, does not change during consolidation. Viggiani (1970) and Davis & Poulos

(1970) show that in a wide range of practical problems Rendulic's theory predicts fairly

well the pore pressure dissipation profiles but has serious limitations in predicting the

changes in effective stresses during consolidation.

Biot (1935) formulated a general coupled consolidation theory, which is based on the

assumptions:

. The soil is fully saturated.
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" Soil deformation is associated with infinitesimal strains and rotations, i.e.

geometric non-linearities are neglected. However, non-linearities resulting from

the constitutive law are included.

" Soil deformations and pore fluid flow occur under quasi-static conditions.

" Consolidation occurs under isothermal conditions, which means that the

conservation of energy law is redundant.

Under these conditions, the Biot theory can be derived from the conservation laws of

Mechanics: i) the Conservation of Momentum; and ii) the conservation of mass, as

follows:

V-a+f =0 (5.1)

V -[k -V(u -u,)]= -pgi (5.2)

where, a is a total stress tensor, f is a vector of body forces/volume of soil, k is the

hydraulic conductivity tensor, (u-u0) is excess pore water pressure, p is the pore fluid

density, g is the acceleration of gravity and L is the volumetric strain rate.

In general, these two equations must be solved simultaneously in conjunction with a

constitutive law for the stress-strain behavior of the soil. As a result, the consolidation

problem involves coupling of the change in effective stresses with the pore pressures.

For a linear isotropic elastic soil, Sills (1975) shows that for the case of radial

consolidation around piles, around piles the general Biot theory reduces to the uncoupled

form:

cV 2 (u-u) = - (5.3)
at
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where, the differential operator is defined as:

V2=a + a (5.4)
Sr

2  r r

and c is the coefficient of consolidation given by:

_ k 3K(1-v') (55)
y," (1+v')

where, y, is the unit weight of water, K is the bulk moduli and v' is the drained

Poisson's ratio.

The limitations of this analytic solution are obvious: the soil is assumed linear, elastic

and isotropic, which is not a realistic assumption for soils. Thus, the main reason for

presenting Sills analytic solution is to check the results of the Finite Element numerical

discussed hereafter rather than to obtain realistic predictions for the pore pressure

dissipation rates.

5.2.2 Theoretical Framework

The flow chart in Figure 5.1 summarizes the analyses that are used to predict the

dissipation of penetration-induced pore pressures in clay. The calculations are subdivided

into two phases: i) simulation of undrained pile penetration conditions using either the

Strain Path Method (SPM) or the cylindrical Cavity Expansion Method (CEM); and ii)

finite element calculations of pore pressure dissipation. During penetration, the changes

in soil stresses can be computed by either total stress or effective stress soil models, while

pore pressures are obtained from equilibrium conditions. Two types of analyses are then

possible for the dissipation phase:
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1. Total stress soil models and Uncoupled consolidation (T-U Method).

Simple total stress soil models (EPP-elastic perfectly-plastic; or HPP-hyperbolic-

elastic, perfectly plastic) can provide realistic predictions of the shear stresses and

excess pore pressures caused by undrained pile penetration in clays (Baligh &

Levadoux, 1980; Teh & Houlsby, 1991). However, these same total stress models

cannot describe changes in the effective stresses that occur during consolidation

and hence, cannot simulate the process of set-up at the pile shaft. The dissipation

of excess pore pressures, (u-ut,), is then modeled as an uncoupled, linear

consolidation problem. The dimensionless time factor for uncoupled

consolidation is given by:

c -t
T = -t (5.6)

R2

where, c is the coefficient of consolidation; t is the time after the pile installation;

and R is the radius of the pile.

2. Effective stress soil models and Coupled consolidation (E-C Method).

Analyses using effective stress soil models (MIT-E3, MIT-Sl etc.) can simulate

the non-linear stress-strain behavior of the soil consistently throughout the

installation and dissipation phases. This type of analyses is more complex

involving non-linear soil behavior and coupling between pore pressures and total

stress changes in the soil during the consolidation phase. All previous E-C

analyses have assumed that pore water flow in the soil is controlled by D' Arcy's

law, with constant (homogeneous) hydraulic conductivity, k. Hence, non-linearity
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is controlled exclusively by stiffness changes of the soil skeleton. The time factor

for the E-C analyses is then defined as:

T = -k -t (5.7)
y,-

where, o'o, is the initial mean effective stress in the ground; k is the soil

permeability (assumed isotropic and constant); t is the time after the pile

installation; y, is the unit weight of water; and R is the radius of the pile.

5.2.3 One-dimensional non-linear consolidation

This section describes numerical procedures used to compute one-dimensional, non-

linear, coupled consolidation around a driven pile. Consolidation is analyzed in this

chapter assuming:

" The soil is fully saturated.

* Soil deformations and fluid flow occur under quasi-static conditions.

* Soil particles and the pore fluid are assumed to be incompressible.

The computations are performed using the finite element code ABAQUS. The

relevant equations for coupled consolidation are based on: i) equilibrium, which can be

expressed in terms of the principle virtual work,

fa: SdV = f t .- vdS+ff .5vdV (5.8)
V S V

where, 6v is a virtual velocity field, Be is the virtual rate of deformation, a is the true

Cauchy stress, t are the surface tractions per unit area and f are the body forces per unit

volume; and ii) continuity for fluid flow, which can be expressed as,

124



f dp dV+ pndS=0 (5.9)

where, V, is the fluid volume within the control volume, V is the control volume and

p, is the fluid density. Discretization and solution of these equations are discussed in the

ABAQUS Theory Manual (HKS, 2007).

Figure 5.2 displays a finite element mesh of 52 elements and 263 nodes extending to

a radial distance 150 times the pile radius (r0/R=150), which was used for solving the

one-dimensional, non-linear, coupled consolidation around the shaft of a pile. The

analyses use mixed elements with eight displacement nodes and four pore pressure corner

nodes, which enable quadratic interpolation of displacements and linear interpolation of

pore pressures. The selected boundary conditions during consolidation include the

following considerations:

" At locations around the pile shaft, there is radial dissipation of pore pressures and

radial displacements in the soil. Thus, the vertical displacement should be zero,

wz=0, and Du/Oz=0 along the upper (CD) and lower (AB) boundary.

* Symmetry along the pile shaft requires that the horizontal displacement should be

zero, wr=0, and Ou/Or=0 along the left boundary (AD), which represent the

interface between the soil and the pile wall.

" On the far radial boundary (BC), the excess pore pressures Au=O and &'r=O'ho

corresponding to the in situ Ko conditions prior to penetration.

In non-linear problems, it is possible that the solution procedure may not converge

with the default convergence criteria or may use an excessive number of increments and

iterations. Thus, it is quite common to use less stringent tolerance to achieve
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convergence. This approach has been recommended in the past by Hashash (1992) for

MIT-E3 finite element analyses using ABAQUS.

This section presents a brief synopsis of the two (2) solution control parameters

modified to achieve convergence in a typical one-dimensional, non-linear, coupled

consolidation analysis using MIT-Sl. These parameters are the following:

1. The force residual control, Rna, is the ratio of the largest residual, ramax, to the

corresponding average force, qa. Most non-linear engineering calculations will be

sufficiently accurate if the error in the residuals is less than 0.5%. Therefore

ABAQUS normally uses:

r" Rq; R"'=0.005 (5.10)

2. The displacement correction control, Cn" is the ratio of the largest displacement

correction, camax, to the largest corresponding incremental displacement, Auam.

For this control parameter ABAQUS uses:

c" Ca Aum C =.0 (5.11)

The preceding parameters are modified accordingly at each step of the following

consolidation analyses based on successive iterations, until a converged state is achieved.

The solution control parameters along with the iterations needed per step are reported

separately at each one of the succeeding analyses.

5.3 MIT-Si IMPLEMENTATION IN ABAQUS

This section outlines the explicit integration method used for the MIT-Si model in

the ABAQUS finite element code. A similar algorithm was used previously for the MIT-
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E3 model (Hashash, 1992). In order to achieve accurate, stable solutions, the algorithm

should used in conjunction with the following:

0 Sub-stepping (sub-incrementation).

The explicit integration scheme only converges to the 'exact' solution for

As/AT-+. However, numerical accuracy can be evaluated by comparing the

response (stress path) for integration over n substeps, ds, where As=nds (e.g.

Hermann et al., 1987; Faruque & Desai, 1985) Thus, for a given soil model, the

user can estimate the maximum allowable size 1dssmax to achieve numerically

accurate solution (i.e. within prescribed tolerance). However, experience reported

in the literature shows that there is no general prescriptive method for estimating

Ids. a priori.

* Drift Correction.

If the plastic consistency is not imposed in the integration algorithm, the stress

point tends to 'drift' away from the yield surface, even for small (sub-stepping)

strain increments, Ids|<|desI. To avoid accumulating errors, a shortest path

return-to-surface correction is applied after each sub-step to ensure that the stress

point always remains in contact with the bounding surface.

Figure 5.3 shows the flow chart of the computational procedure used in explicit

(Euler) integration of the MIT-Si model. In order to achieve numerically accurate

solutions, the maximum sub-step size is set to be dem=0.001%. A return drift correction

is applied at the end of each sub-step to ensure that plastic consistency is satisfied.
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Appendix B contains a complete listing of the subroutine responsible for the integration of

MIT-SI in ABAQUS.

5.3.1 Intersection with Bounding Surface

Plastic behavior of soil elements which are consolidated along radial effective stress

paths (i=4 =constant) in MIT-S1, is described by a yield/bounding surface which is
a

initially oriented along the direction of consolidation. The MIT-Si model introduces a

bounding surface (yield surface for normally consolidated specimens) which has the form

of a distorted lemniscate surface, as shown in Figure 5.4 (in triaxial stress space):

f = p'2 (n-b):(n -b)-(2 1-( ) 20
a') (5.12)

2 = c2 +b:b-2n:b

where, p' is the mean effective stress, n is the current stress ratio tensor, a is the size

of the bounding surface, b is the orientation tensor for the bounding surface, c controls

the aperture of the surface for p'-+ and the constant m describes the shape (slenderness)

of the yield surface.

One of the most important corrective procedures in integration is the method used to

determine the intersection point when the current stress point crosses the bounding

surface. The algorithm used for this procedure is based on the Intermediate Value

Theorem and is called Bisection Method (Burden & Faires, 1985).

Figure 5.5 illustrates the flow chart of the subroutine used to locate the intersection

point according to the Bisection Method by considering stress states a and b at t. and t.+1

respectively. At each step the method divides the interval in two by computing the
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midpoint, m=(a+b)/2 and the value of the bounding surface f(m) at that point. Unless m is

itself a root (which is very unlikely, but possible) there are now two possibilities: i) f(a)

and f(m) have opposite signs and bracket a root; or ii) f(m) and f(b) have opposite signs

and bracket a root. The method selects the subinterval that is a bracket as a new interval

to be used in the next step. In this way the interval that contains the root of f is reduced in

width by 50% at each step. The process is continued until the absolute value of f(m) is

below a specified tolerance (in this case TOL=10 5 ).

The Bisection Method, though conceptually clear, is relatively slow to converge,

since the number of iterations can become quite large before |fmI!TOL. However the

significant feature of this method is that always converges to a solution and for that

reason is used compared to more sophisticated and time-efficient numerical methods.

Figure 5.6 shows a numerical experiment which demonstrates the accuracy, stability

and convergence properties of the Bisection Method as integrated in MIT-Si model.

More specifically at this case, the stress point crosses the bounding surface and thus the

intersection subroutine is activated to restore the stress point on the bounding surface.

5.3.2 Model Input Parameters

Table 3.2 summarizes the input parameters used by the MIT-SI model together with

their physical significance and proposed laboratory tests from which these properties can

be determined (Pestana, 1994). In addition to these material constants, the MIT-Si model

uses the following state variables:

" The effective stress tensor (c', S)

" The size and orientation of the bounding surface (a', b)
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* Effective stresses at the most recent reversal state ('Y, Se)

e The strains accumulated since the last reversal state (AlE, AlE)

e The size of the bounding surface at the last reversal state, a',,; and the size of the

load surface at first yield, a'oi

Initial values of these state variables must be implemented in ABAQUS at the start of

an analysis. Appendix B presents a typical layout of the input file used to specify these

parameters.

5.4 MIT-Si PREDICTIONS

This section presents one-dimensional solutions for non-linear, coupled consolidation

around a driven pile following penetration in Ko-consolidated BBC. More specifically,

the effects of: i) installation analysis (CEM, SPM); and ii) constitutive model (MIT-E3,

MIT-SI) on consolidation predictions will be investigated subsequently.

5.4.1 The effects of installation analysis

The installation stress and pore pressure fields obtained using SPM analyses are more

realistic than those obtained by CEM analyses. For completeness, Figures 5.7a and 5.8a

present predictions of the radial consolidation behavior of a soil element adjacent to the

pile shaft according to the cylindrical Cavity Expansion (CEM) and Strain Path (SPM)

method respectively. The results show the variation of excess pore pressures, (u-uo) and

effective radial stress, a'r all normalized with respect to the initial vertical effective stress,

'vo, with time as expressed using the dimensionless time factor, T:
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* The consolidation behavior is qualitatively similar regardless the method used for

the initial stress and pore pressure fields. This behavior involves a monotonic

increase in radial effective stress, while the excess pore pressure decreases with T.

Similar behavior suggests that the mechanism of consolidation is not controlled

by the method of analyzing pile installation. On the contrary, the mechanism of

consolidation is, in fact controlled primarily by the constitutive model used in the

analysis.

* The rate of pore pressure dissipation for CEM conditions is more rapid than for

SPM conditions especially at early times during consolidation. This is mainly due

to the differences in the shape of the pore pressure fields during installation

(Figure 4.12).

* Complete dissipation of excess pore pressures occurs for T~10 based on SPM

predictions. In contrast, CEM predictions require further time for pore pressures

to dissipate completely, since (u-u0)/a'yo#0 for T=1 0.

Figures 5.7b and 5.8b show the fields of effective stresses, a',/a'o, o',/a'o, a'o/0',

predicted at the end of consolidation for each installation analysis.

* Adjacent to the pile shaft, for both installation analyses, the radial effective stress,

G'r/a'vo, is the major principal effective stress while the vertical stress, a',/a'v,,

and tangential stress, '/a'vo, are the intermediate and minor principal effective

stresses, respectively.

" In the region 7 r0/R 45, numerical oscillations occur at the field of effective

stresses for both installation analyses. These numerical oscillations seem to affect
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mainly the vertical stresses, ' with less impact on the radial effective

stresses,ara'o

0 In the far field, the vertical effective stresses G',/'o~l.0 based on the SPM

predictions corresponding to the in situ Ko conditions prior to consolidation. On

the other hand, CEM predictions do not simulate efficiently the far field

conditions, since a',/o'vo<l.0. This behavior is linked to the incomplete

dissipation of pore pressures, (u-u)/o'yo, observed in Figure 5.7a.

The numerical oscillations that occur in the region 7:5ro/R45 are primarily the

outcome of the convergence tolerance relaxation at the last steps of consolidation. Figure

5.9 shows graphically the convergence characteristics for both CEM and SPM analyses

with respect to the number of steps and the dimensionless time factor, T. Based on this

figure the default convergence criteria were insufficient for the solution to converge at

the last steps, i.e. Steps 7 and 8 and thus the control parameters were increased. More

specifically, the force residual control, Raa is increased by a factor of 18 in the case of the

SPM analysis, while the displacement correction control, Ca" is increased by a factor of

20 in the case of the CEM analysis. The relaxation of the control parameters explains to a

certain degree the numerical instabilities but not the specific region that they affect

consistently.

Further interpretation of the soil behavior after consolidation is given in Figure 5.10,

which shows the volumetric behavior (i.e. mean effective stress, ' and volumetric

strain, As,.) for two radial distances (i.e. ro/R=1, 9) using both installation analyses

(CEM,SPM) along with the Ko-Virgin Consolidation Line (Ko-VCL) predicted for the

undisturbed clay (using MIT-Si). The initial stress states in these figures correspond to
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the conditions predicted at the end of pile installation. It can be seen that both installation

analyses follow the same trend, which justifies previous conclusion that the controlling

mechanism of consolidation is the constitutive model used in the analysis. For both radial

distances, r/R=l, 9, effective stress paths exhibit an initial decrease in shear stress level

during installation, followed by a gradual return towards the Ko-VCL during

consolidation. In any case, the final state (end of set-up) corresponds to a net reduction in

mean effective stress and void ratio. This behavior reflects the intense shearing of the soil

during pile installation which completely alters the anisotropic structure of the material.

Regarding the numerical oscillations, the previous analyses at radial distance r/R=9

do not provide an additional insight to the problem located in the region 75ro/R<45.

Therefore, further investigation is required establishing that these oscillations are not

derived from any modeling parameters, such as: i) boundaries; and ii) mesh. These

parameters are investigated thoroughly in the following sections, presenting only SPM

predictions.

5.4.1.1. Effect of boundaries

The predictions notably for CEM in Figure 5.7b indicate that the far radial boundary

(BC) affects the far field predictions, since a',/cF',o<1.0 at ro/R-150. Thus, it is well

justified to investigate effect of the location of the far field radial boundary (BC). Three

trial analyses have been performed with the boundaries located at rdR=60, 150 and 300.

Figure 5.11 shows in detail these three (3) finite element meshes used for solving the

one-dimensional, non-linear, coupled consolidation around the shaft of a pile along with
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the selected boundary conditions. The analyses use eight node isoparametric elements

with pore pressure degrees of freedom at the corner nodes.

The primary parameter of interest in Figure 5.12b is the distribution of effective

stress components ( a', a'v/a, a'o/'v) at the end of consolidation for the radial

region of 75r/R 45. For informational purposes, Figure 5.12a shows excess pore

pressures, (u-uo)/a',o, and radial effective stresses, 'r/'vo, at selected time factors, T,

during intermediate stages of consolidation. The following remarks can be made:

* Adjacent to the pile shaft, the predictions of the normalized stresses either with

time (T) or with radial distance (r/R) seem not to be affected by the location of

far radial boundary (BC).

* In the region 75ro/Rs45, numerical oscillations occur in the field of effective

stresses for each finite element mesh. Moreover, no specific pattern is recognized

at the way these oscillations distribute through space.

* In the far field, the finite element extending to a radial distance 150 times the pile

radius (r/R=150), appears to capture the soil behavior sufficiently. Thus, no

further extension of the far field boundary is needed.

5.4.1.2. Effect of mesh

Reviewing the effect of the far field boundary to the numerical instabilities, the finite

element mesh is investigated thoroughly thereafter. Figure 5.13 exhibits the geometry of

the two finite element meshes used to produce one-dimensional solutions for non-linear,

coupled consolidation around a driven pile. The second mesh introduced in this section,

consists of 99 elements and 498 nodes extending to a radial distance 150 times the pile

134



radius (r/R=150). Both analyses share the same boundary conditions and elements as

described above.

The principal objectives of this study are: i) examining the adequacy of the mesh

density close to the pile; and ii) eliminating the numerical oscillations throughout the

problematic region. Following the same format, Figures 5.14a and 5.14b display excess

pore pressures, (u-uo)/a',o, and radial effective stresses, a'r/'yo, at selected times at the

pile shaft and selected stress components (''r/'v, G'/'v, &'/o'yo) at the end of

consolidation throughout the entire radial range. These predictions suggest the following:

" Adjacent to the pile shaft, similar predictions are achieved using both mesh

geometries. Thus the original finite element mesh captures adequately the

problem in this region and no further refinement is needed.

* In the region 7 ro/RJ 45, the numerical instabilities deteriorate by refining the

mesh geometry. In general, it can be observed that the instabilities tend to follow

the frequency of the integration points, which is quite common to unstable

solutions.

" In the far field, no particular effect is witnessed related to the density of the mesh.

Having analyzed all the obvious modeling parameters that can cause the numerical

noise, it is reasonable to assume that the problem may be linked to the implementation of

MIT-SI in ABAQUS. However, reliable conclusions can be drawn at the regions close to

the pile (i.e. r/R<7) and in the far field (ro/R>45), since these are unaffected in each

scenario.
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5.5 COMPARISON WITH MIT-E3 PREDICTIONS

In order to assess the role of the MIT-Sl soil model in the predictions of

consolidation behavior, results of consolidation analyses performed by means of the

MIT-Sl model are compared with MIT-E3 predictions (Whittle, 1987). Initial conditions

from pile installation are based on the SPM analysis.

Figures 5.15a and 5.15b display excess pore pressures, (u-u0 )/&',o, and radial

effective stresses, a'r/o'vo, at selected times at the pile shaft and selected stress

components (a'r/a'vo, o'v/a'y,, a'/'o) at the end of consolidation for the complete radial

range. From these results, it is difficult to separate the effects of constitutive models on

consolidation behavior from their effects on pile installation. However, the following

observations may be made:

e The MIT-E3 and MIT-Si models give generally different predictions of effective

stresses at the pile shaft (i.e. r/R<7) at the end of consolidation.

* Comparing qualitatively the predictions of the effective stress components not

only in the far field (ro/R>45) but also in the problematic region (7 r/RS45), both

models give generally similar results. Thus, it is safe to assume that MIT-Si

predictions can simulate the soil behavior even at this radial range.

e The MIT-E3 model predicts more rapid pore pressure dissipation than the MIT-SI

model. This behavior is a reflection of differences in the pore pressure fields

predicted during installation. Following the same logic, the increase rate of radial

effective stresses, a'r/'vo, is different for the two soil models.
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Figure 5.16 compares the effective stress paths and volumetric behavior of soil

elements adjacent to the pile shaft based on MIT-E3 (Whittle, 1993) and MIT-SI results.

The Ko-Virgin Consolidation Line (Ko-VCL) is estimated for the undisturbed clay using

MIT-Si. Both soil models generate large shear induced pore pressures (reductions in o')

during pile installation associated with severe shearing of the soil at constant water

content. During re-consolidation MIT-SI predicts much stiffer response with smaller

volumetric strains than MIT-E3.
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Figure 5.1: Overview of the method of analysis used to compute stress, strain and pore pressure during penetration
and dissipation of driven piles
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Figure 5.3: Flow chart of MIT-Si explicit integration algorithm
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Figure 5.4: Anisotropic and isotropic bounding surfaces in MIT-Si (Pestana, 1994)
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Figure 5.5: Flow chart of intersection subroutine
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Figure 5.6: Numerical example of intersection subroutine (n=14 iterations)
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Figure 5.7a: Set-up behavior at pile shaft
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Figure 5.7b: Distribution of effective stress at the end of set-up
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Figure 5.8a: Set-up behavior at pile shaft
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Figure 5.8b: Distribution of effective stress at the end of set-up
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Figure 5.9a: Force residual control R," during pile set-up
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Figure 5.9b: Displacement correction control C,,a during pile set-up
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6. SUMMARY AND CONCLUSIONS

This research represents an effort to develop a better understanding of the

mechanisms governing the development of axial capacity of piles driven in

overconsolidated clays. A rational approach for analyzing the performance of friction

piles in clays is made by estimating the changes in effective stresses and pore pressures

caused by: i) pile installation; and ii) consolidation around the pile shaft. These

predictions depend mainly on the method used to simulate pile installation but also the

model used to describe the mechanical behavior of the clay. The following sections

summarize the principal conclusions and findings reached in this study.

6.1 PILE INSTALLATION

The effective stresses and pore pressures caused by steady state pile installation are

predicted using the MIT-SI model in combination with the Strain Path (SPM) and the

cylindrical Cavity Expansion (CEM) methods of analysis in normally to highly

overconsolidated clays (OCR=1.0, 2.0, 4.0, 8.0 and 16.0). Trying to assess the parameters

affecting the mechanics of pile installation, the effect of: i) method of analysis; ii) soil

model; and iii) stress history, are investigated thoroughly.

The results may be summarized as follows:

* For radial distances less than about 10R, there are significant differences in the

stress fields predicted by SPM and CEM analyses at all OCR's. At the pile shaft,
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cavity expansion analyses (CEM) always predict much larger values of &'/',

a'/a've and ('ra')/ 2o've than are found using the strain path method (SPM).

" Pile installation leads to the development of excess pore pressures, (u-u)/'vo,

extending to a distance 60 times the pile radius (r/R=60) based on SPM

predictions. In contrast, CEM predictions produce excess pore pressures, (u-

u,)/&Y'y, extending to distances greater than 60 times the pile radius (r/R>60).

* The pore pressures, (u-u0)/&'y, predicted at the pile shaft are between 25 to 55%

higher for CEM analyses than for SPM analyses for all OCR's, except for the case

of OCR=1.

e The zone of disturbance in terms of excess pore pressures (i.e. (u-u0)/a'yo) around

the pile generated by the MIT-Si model is much larger compared to MIT-E3

predictions. This discrepancy between the two model predictions increases as the

OCR increases.

* For lightly overconsolidated clays (OCRS2) the maximum excess pore pressures,

(u-u0)/o'yo, appear around the face (-0.55z/Rs1.7) of the pile according to MIT-SI

analyses. On the contrary, MIT-E3 predicts that maximum excess pore pressure

appears at locations along the face of the pile above the tip (1.0z/RS2.5).

* The radial effective stresses, a''vo, and pore pressures, (u-u0)/o'vo, induced at

the pile shaft increase significantly with OCR.

The MIT-SI model predictions of (u-u,)/&Y'v using both installation analyses (SPM,

CEM) may be evaluated by comparison with field/laboratory data from separate sites.

The evaluations may be outlined as follows:
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" For normally to lightly overconsolidated clays, the CEM analyses have a good

agreement with the experimental data while the SPM tends to underestimate the

measured pore pressure.

* Overall the SPM compared to CEM predictions seem to capture more accurately

both the magnitude and the radial extend of the disturbance zone. Hence, CEM

analyses incline to overestimate (u-u0)/a'v. at the shaft while underestimating pore

pressures in the far field.

6.2 CONSOLIDATION

The predominant aims of the consolidation analyses are to estimate the net changes in

effective stresses around the pile shaft as well as the rates of pore pressure dissipation and

radial effective stress set-up (at the pile shaft). The final radial effective stress at the pile

shaft, o'/o' 0, is believed to be the most important prediction of the analysis as it controls

the subsequent frictional behavior during axial loading. The rates of dissipation and set-

up are particularly important to assess the time required for pile loads to be applied

safely.

Predictions of the consolidation behavior are obtained using the MIT-SI model in

conjunction with the general purpose finite element code ABAQUS. The complexity of

the model precludes the use of the efficient implicit integration scheme. Hence, the

implementation of MIT-SI is achieved using an explicit integration scheme, with

correction for drift from the bounding surface, and local sub-incrementation. A numerical

example is presented to demonstrate the accuracy and convergence characteristics of drift

correction.
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Predictions are produced for initial conditions corresponding to installation using

CEM and SPM analyses and compare the effects of soil model (using the MIT-E3 model)

for OCR=i. The main results may be summarized as follows:

* The logarithmic increase of the excess pore pressure in the region close to the

cavity (i.e. r/R<10) leads to a more rapid rate of pore pressure dissipation for

CEM conditions compared to SPM conditions.

* For soil elements adjacent to the pile shaft (r)/R<7), at the end of consolidation,

the MIT-SI model predicts that o'r/a'vo is the major principal effective stress for

both CEM and SPM installation analyses.

* At the region 7r,/Rd545, numerical oscillations occur at the field of effective

stresses for both installation analyses. Investigating all the modeling parameters

(e.g. boundaries, mesh) possibly related to numerical instabilities, it is concluded

that the problem may be linked to the implementation of MIT-Sl into ABAQUS

and affects specifically this radial region.

* At the far field (r/R-+150), the stress state corresponds to the in situ Ko

conditions prior to consolidation and thus the soil behavior is simulated efficiently

at this region.

* In general, the MIT-E3 and MIT-SI models give different predictions of effective

stresses and particularly close to the pile shaft (i.e. r/R<7) at the end of

consolidation. This discrepancy can be attributed to the observed differences in

the installation stresses discussed above.
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* For soil elements adjacent to the pile shaft (r/R<7), different soil behavior is

predicted by the two soil models, with MIT-Si revealing a stiffer behavior

compared to MIT-E3 analysis.
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APPENDIX A: COMPUTER PROGRAMS

A.1 INTRODUCTION

Appendix A contains the descriptions, manuals and listings of various computer

programs modified by the author and used in this thesis. These programs are coded

according to the 1977 standard for Fortran (Fortran 77).

This Appendix contains the following programs:

1. A computer program for the cylindrical Cavity Expansion Method (CEM)

2. A computer program for the Strain Path Method (SPM)

Both computer programs use a generic library (Release 8.0) which contains all the

subroutines associated with the effective soil models implemented into these programs.

A.2 COMPUTER PROGRAM FOR CEM

This program computes the effective stresses and excess pore pressures during the

undrained expansion of a cylindrical cavity using one of the following soil models:

1. Linear Isotropic Model

2. Modified Cam-Clay

3. MIT-El

4. MIT-E3

5. MIT-SI
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The program reads the initial values of the state variables required by the model to be

used in the analysis and the number and location of points where stresses and pore

pressures will be computed. It prints the effective stresses, excess pore pressures and

remaining state variables at these points.

A.2.1 User's manual

The program reads input from units 09 and 28. More specifically, the input files

related to the MIT-SI are described herein.

Unit 09 contains the input parameters of the soil model used in the analysis. For MIT-

Si, data should be put according to Table A.1.

Line # Variable Entry

Pc rhoc

C, xkb
1

01ref sigref

0 theta
2G _1-2p

K= xnu

2 KO Ko

,CS phitc

m m

3DM phimax

V// psi

P PQ

r r

D D
4

0 W

COS w2

5p gamma
h hpo

Table A.1: Input material properties used by the MIT-S1 model
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Unit 28 contains the initial conditions and specifically for MIT-SI is described in the

following:

* First line lists the initial stresses, i.e. Or, Gz, 00, Grz, az0, 0r.

* Second line lists the initial conditions. Accordingly:

- nsurf: position of the initial stress point, (0 inside yield surface, =1 on the

yield surface)

- alpha: initial size of yield surface (mean initial pressure)

- e: initial void ratio

- itip: position of the initial stress point if on the yield surface. 1 implies that

initial state is at the tip of the yield surface, 0 implies that initial stress state is

not at the tip the yield surface, so exact position needs to be specified on the

third line.

- irev = 0 Reads conditions of SRP (Stress Reversal Point), > 0 implies that

initial state is a SRP, -1 Consolidated along Radial Path

* Third line lists the anisotropy tensor in case that the initial stress point is not at the

tip of the yield surface.

* The next "n" lines lists the radial coordinates, r0/R (normalized with the pile

radius) of points where program output is computed.

A.2.2 Program output

The program outputs "n" on each of the units 18 and 19. The unit 19 is not used in

case of the Linear Isotropic Model. Based on the same logic, only the output files related

to MIT-SI will be reported thoroughly thereafter.
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Each record on unit 18 contains information for a point, starting from the point

located at the largest distance from the pile. It contains:

1. The radial coordinate ro/R (normalized with the pile radius)

2. The excess pore pressure

3. The mean effective stress

4. The transformed deviatoric stress components Si and S2

Finally, each record on unit 19 contains the following information:

1. The value of variable "nsurf'

2. The value of variable "alpha"

3. The value of the variables b1 and b2

A.2.3 Program listing
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* Program to Compute Effective Stresses and Pore
* Pressures during the Undrained Expansion of a

Cylindrical Cavity
*

* Models implemented:

model-I......Linear Isotropic model
* model=2...MCC
* model-3 .... MIT-El
* model-6.... MIT-E3
* model-l.....MIT-Si
*

* Update Aug 16th,2011 D.G. Niarchos

implicit real*8(a-h,o-z)
common /state/ sigma,s(5),n,nsurf,alpha,nsurf2,alpha2,bo,b(5),
1 prop(30),bk,two-g,vr, sv,cpor,vro,svo
common /slmdl/ mdmits,xn(5),xj3n,xnnx2nb,bb,xx2,c2,dj3dn(5)
common /hysb/ sigrev,xnrev(5),evdd,edd(5),ekk,xnuh,pr,pri,
1 sigmar,sr(5),xx,alphoi,alpho,bki,two-gi
common /test / ex ,ey(5), evol,octgam,dgammax,gammax, es,
1 taux,tau(5),tsigma, octq, deltaq, qmax, qx,
2 fevd,fed(S).px,uxcyc,idxidz
dimension x(51),ed(S),srev(5),a(5),orev(5),ds(5)

character*40 name@9,name28
c

data two,six/0.7071067812d@,0.4082482905d0/
c

write (*,157)
157 format C' Input factor vs (-I CEP. 0.0975 for B/t-40:')

read (*,*) vs
write (*,16)

16 format (' Input filenames, unitO9,unit28 ;')
read (*,*) name09,name28
write (*,17)

17 format (' Input model , No of points :')
read (*,*) model,np

c
open (unit-28,file-name28,status-'old')

open (unit-09,file-name09,status-'old')
call read.model.properties (model)

close (09)

c Initialize state variables
C

call init-routine (model)
alphoi-alpha
ao-0.dO
evdd-0.d0
do 119 i=1,3

119 edd(i).O.dO
p-O.dO

C

c read normalized with pile radius coordinates
c

do 15 i=1,np
read (28,*) x(i)

15 continue
evd-0.d0
ed(1)-0.dO
e2-0.dO

C
open (unit=18,file-'stress',status-'new')
open (unit-19,file.'sstate',status-'new')

c
do 100 i-np,1,-l

c write (9,*) i
dum=x(i)
if (x(i).lt.1.0001d0) dum=1.0001d0
dum-1.do/dum
dum-two*dlog(1.d0-vs*dum*dum)
ed(Z)=dum-e2
e2-dum
if (model.eq.1) go to 30

c
c Adjust dlimit
c

dlimit-1.d-5
c

call maxinc( evd,ed,3,dlimit,ndiv)
c
30 call model-lib (model,evd,ed,ndiv)

Compute pore pressure



dx-x(i)-x(i+1)
dum-dlog(x(i+1)/x(i))
dum-dum*(dx*s(2)-x(i)*ds(2))/(dx*two)
pap-dsig+six*ds(l)+3.d0*two*ds(2)-dum
taux-sigma
tau(l)-s(1)
tau(2)-s(2)
tau(3)-0.dO
tau(4)-0.dO
tau(5)-0.dO
call convert (1,1,2,taux,tau)
write (*,*) i,np,x(i),p
write (18,145) x(i),p,toux,tau(1),tau(2),tau(3)

3 format (1x,d14.6,4d16.8)
145 format (1x,d14.6,6d16.8)

if (model.eq.1) go to 100
if (model.ge.3) go to 21
write (19,4) nsurf,alpha
go to 100

21 write (19,4) nsurf,alpha,b(1),b(2),b(3)
4 format (lx,i4,4d16.8)
100 continue

close(17)
closeC18)
close(19)
stop
end



A.3 COMPUTER PROGRAM FOR SPM

This program computes the effective stresses and the remaining state variables across

a cylindrical pile, using the Strain Path Method and one of the following soil models:

1. Linear Isotropic Model

2. Modified Cam-Clay

3. MIT-El

4. MIT-E3

5. MIT-SI

The program processes the strains along a specific stream-line around the tip of the

pile and uses the specified soil model to compute the effective stresses and the remaining

state variables at each nodal point of the stream-line. After processing the specific

stream-line, the program continues to the next stream-lie, where the computations are

resumed.

A.3.1 User's manual

The program reads input from units 09, 10, 11 and 28. The input files related to MIT-

SI are listed below.

Unit 09 contains the input parameters of the soil model used in the analysis and its

contents are mentioned in Section A.2.1.

Unit 10 contains the following control information:

* Type of model
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- model = 1; Linear Isotropic Model

- model =2; Modified Cam-Clay

- model = 3; MIT-El

- model =6; MIT-E3

- model = 11; MIT-S1

* Type of output

- iout = 0; output last data point only for each-stream-line

- iout = n; output every nt h point

" Input file names

" Number of nodal points per streamline (incr) and number of streamlines (nslines)

Unit 11 contains "incr" number of records for each stream-line. Each record contains

information for a point along the stream-line starting from points in front of the pile:

" The axial coordinate z (the origin is located at the tip of the pile and the positive

z-axis is upwards)

" The radial coordinate rdR (the origin is located along the axis of the pile)

normalized with the pile radius

* The strain increments AFz, A~r, Aeo and AF,

Unit 28 follows the same format as the one acknowledged in Section A.2.1, except for

the last "n" lines including information regarding the radial coordinates, rdR.

A.3.2 Program output

The program outputs records on units 29 and 30 (unit 30 is used only if model > 1).

Each record contains information for each nodal point of the streamline. Thus, the
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number of records outputted on each unit is equal to the number of nodal points (incr)

times the number of stream-lines (nslines).

Each record on unit 29 contains:

1. The radial coordinate rO/R (normalized with the pile radius)

2. The axial coordinate z

3. The effective stresses, i.e. Or, Gz, a0, arz

Each record on unit 30 contains:

1. The value of variable "nsurf"

2. The value of variable "alpha"

3. The value of the variables bi, b2 and b3

A.3.3 Program listing
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*******************4*4*************4**********

* Program for Pile Driving using the Strain Path *
* method. It computes the Effective Stresses *
* far behind the tip of *

a cylindrical pile.

MODELS IMPLEMENTED: (model)
*

model-I .. Linear Isotropic model
model-...Modified Cam-Clay
model-3. MIT-El (R1.0) & (R2.0)
model-6..MIT-E3 (R4.0)

* model-11... MIT-SI (R1.0)

Update Sep 7th,2010 D.G. Niarchos

1991 *

1991 *

1992
1993

implicit real*8(a-h,o-z)
common /state/ sigma,s(5),n,nsurf,alpha,nsurfz,alpha2,bo,b(5),

1 prop(30),bk,two-g,vrsv,cpor,vro,svo
common /slmdl/ mdmits,xn(5),xj3n,xnn,xznb,bb,xxz,cZ,dj3dn(5)
common /hysb/ sigrev,xnrev(S),evdd,edd(5),ekk,xnuh,pr,pri,

1 sigmar,sr(5),xx,alphoi,alpho,bki,two.gi
O common /test / ex ,ey(5), evol,octgam,dgammax,gammax, es,

1 taux,tau(S),tsigma, octq, deltaq, qmax, qx,
2 fevd,fed(S),px,u,xcyc,idx,idz

dimension ed(S),srev(S),a(5),arev(5),ds(5)
character*40 nome09,name28,namell

C

open(unit=10, file-'pdrive.dat' ,status='old')
read (10,*) model

C--------------------------------------------------------------------
c read output data
c iout-0 - output last data point only for each streamline
c iout-n - output every nth point
c iout.lt.0 - output data at a specified elevation

read(10,*)iout
if(iout.lt0)red(10,*)zout

C

read(10,*)name@9
reod(10,*)name28
read(10, *)namell

open(unit-09,file-nameO9,status-'otdl)

open(unit-28,file-name28,status- 'old')
open(unit-11, file-namell,statuss'old')

c ... Read number of strain steps along the streamlines
c

read (10.*) incr,nslines
c

c Read model properties
c

call readjmodel-properties (model)
c
C ---------------------

c... Outer loop
c -------------------------------------------

c
100 do 250 jj-1nslines
c

c... Initialize state variables.
C

write (18,*) jj
C

call initsroutine (model)

rewind (28)

evdd-0.dO
do 22 i-1,3

edd(i)-0.d
22 continue
c - ----------------------------------------------------
C Main LOOP
c------------------------------------------------------------

nnn-0
el-C.dO
e2-0.d0

e3-0.dO
C------------------------------------------------------------
c... Inner Loop
c -----------------------------------------------------

do 200 i-1,incr
nnn-nnn+1

c
write (19,*) i

c

C... Read coordinates z,r and strain increments dezder,detderz.



c... streamline data read from filell
read (11,4) zzz,rrr,ed(1),evded(2),ed(3)

c... beware format of input
4 format (flO.5,flO.6,fl4.A0,fl4.10,f14.10,f14.10)
C

call convert (0,0,3,evd,ed(1).ed(2),ed(3))
del-ed(1)
de2.ed(2)

de3-ed(3)
evd-0.d0
dum-dabs(ed(3))
do 52 j-1,2

zum-dabs(ed(j))
if (zum.gt.dum) dum-zum

52 continue

dlimit-1.d-7

call maxinc( evd, ed, 3, dlimit, ndiv)

call model-lib (model,evd,ed,ndiv)

el-el+del
e2-e2+de2

e3-e3+de3
ee-dsqrt(evel+eZ*eZ+e3*e3)
ee2-dsqrt(edd(1)*edd(1)+eddCZ)*edd(2)+edd(3)*edd(3))

if(nnn.eq.iout)then
nnn-0
taux-sigma
taul-s(1)
tau2-s(2)
tau3-s(3)

call convert (1,1,3,taux,taul,tau2,tau3)

write (29,1031) rrr,zzz,tauxtaultau2,tau3
write (30,1032) nsurfalpha,b(1),b(2),b(3)

if(model.eq.2) then
write (30,113) nsurf,alpha

endif

if(model .eq.S)then
write (30,106) 0,ao,alpholekk

write (30,104) alpha,a(1),a(2),a(3)
write (30,104) sigrev,srev(l),srev(2), srev(3)
write (30,104) alphrev,arev(1),arev(2) ,arev(3)
write (30,104)evdd,edd(1),edd(2),edd(3)

endif

endif

200 continue

if(tout.eq.0)then

toux-sigma
taul-sc)
tauz-s(2)
tau3-s(3)
call convert (1,1,3,toux,taul,tau2,tau3)

write (29,103) rrr,taux,taul,tau2,tau3

if(model.eq.2) then
write (30,113) nsurf,alpha

endif

if(model.eq.5)then
write (30,106) nsurf,ao,alphoi,ekk
write (30,104) alpha,a(1),o(2),a(3)
write (30,104) sigrev,srev(1),srev(2),srev(3)
write (30,104) alphrev,orev(1),arev(2),arev(3)
write (30,104)evdd,edd(1),edd(2),edd(3)

endif

format (2(f10.5,1x),4Cd24.16,1x))
format (i3,7(fl0.S,lx))
format (2f11.6,6dlS.7)
format (2f1l.6,6d15.6)
format (4d25.17)
format(i3, 3d25.17)
format (i3,d25.17)

c

1031
1032
103
107
104
106
113

endif
250 continue

stop
end
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APPENDIX B: INTERSECTION SUBROUTINE

B.1 INTRODUCTION

Appendix B contains the complete listing of the subroutine developed by the author

to determine the intersection point when the current stress point crosses the bounding

surface. The program is coded according to the 1977 standard for Fortran (Fortran 77).

This subroutine is part of the user-defined subroutine responsible for the integration

of MIT-SI in ABAQUS.

B.2 PROGRAM LISTING
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subroutine mitsl.intersect
* (c2,cZa,c2b,zm,sigmos,n,alpha,b,xn,sigmad,sd,f,y,

noel,npt)
c ----------------------------

c - * Computes intersection with yield/bounding surface -

c - Update: July 7th,2011 Dimitrios G. Niarchos -

c ---------------------------------------------------

implicit real*8(a-h,o-z)
dimension s(5),ts(5),as(5),bs(5),xs(5),b(5),sd(5),xn(5),

* txn(5),xxn(5)1 dj3dn(5)

c - * Computes value of yield function before crossing
tsigma- sigma - sigmod
do 1 i-1,n
ts(i) - s(i) - sd(i)

1 txn(i) a ts(i)/tsigma
call mitsl.auxilior (c2a,c2b,txn,n,b,

* tc2,txj3n,txnn,tx2nb ,tbbtxxz)
fold - txnn - tc2 + txx2*(tsigma/alpha)**zm

c - * Computes lower (b) and upper (a) boundary.
asigma - sigma

do 2 i-1,n
2 asti) - s(i)

bsigma - tsigma
do 3 i-1,n

3 bs(i) - tsCi)
if(fold.lt.0) goto 5
yx - alpha/tsigma * ((tc2-txnn)/txx2 )**(.dO/zm)
sigma = sigma*yx
do 4 i-1,n

4 s(i) - s(i)*yx
return

c --

c - Main Loop for finding intersection
c - Dimitrios G. Niarchos
c - 7 JUL 2011

5 do 30 iter=1,100
xsigma - asigma - 0.5d0*(asigma-bsigma)
do 10 i-1,n
xs(i) - as(i) - O.5dO*(as(i)-bs(i))

10 xxn(i) - xs(i)/xsigma
if (xsigma.lt..dG) then

xsigma - O.dG
do 12 i-1,n

12 xs(i) - (asigma*bs(i)-bsigma*as(i))/asigma-bsigma)

asigma - xsigma
do 15 i-1tn

15 as(i) - xs(i)

goto 5
endif
call invoriant-xj3 (xxn,n,xj3)
xc2 = c2a + c2bxj3
call mitsL-yield (xcZ,zm,xsigxnarxxn,n,alpha,b,fx)
if (fx.gt.0.dG) then

asigma - xsigma
do 20 i-1 n

20 s(i) - xs(i)
else

bsigma - xsigma
do 25 i-1,n

25 bs(i) = xs(i)
endif
DO I=1,N
WRITE(74,*)B(I),XS(I)
ENDO
if (dabs(fx).lt.1d-5) then

y - 1.d-dbs((xsigma-tsigmo)/sigmad)
WRITE(74,*)'inside MITS1INTERSECT5',NOEL,NPT
WRITE(74,*)y
goto 50

30 endif
write(73,*) ' It didnot converge finding intersection.'
write(73,*) ' Note: It didnot converge finding intersection.'

50 write(73,*)'NOEL',noel,'NPTI,npt
write(73,1000) iter,sigma,alpha,xn(1),b(1),y
return

1000 format(' Intersect,iter-,i4,' sigma,olpha,xn,b,y ',5f12.5)
end


