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Abstract

Major airports in the United States and around the world have seen an increase in congestion-
related delays over the past few years. Because airport congestion is caused by an imbalance
between available capacity and demand, the efficient use of available capacity is critical to
mitigating air traffic delays.

A frequently-adopted traffic management initiative, the Ground Delay Program (GDP),
is initiated when an airport expects congestion, either because of very high demand or
a reduction in its capacity. The GDP is designed to efficiently allocate the limited airport
capacity among the scheduled flights. However, contemporary GDP practice allocates delays
to arrivals independent of departures, and relies on deterministic capacity forecasts. This
thesis designs and evaluates a GDP framework that simultaneously allocates arrival and
departure delays, and explicitly accounts for uncertainty in capacity forecasts.

Efficient capacity allocation requires the accurate estimation of available airport capac-
ity. The first module of this thesis focuses on the modeling of airport capacity and its
dynamics. A statistical model based on quantile regression is developed to estimate air-
port capacity envelopes from empirical observations of airport throughput. The proposed
approach is demonstrated through a case study of the New York metroplex system that esti-
mates arrival-departure capacity tradeoffs, both at individual airports and between pairs of
airports. The airport capacity envelope that is valid at any time depends on the prevailing
weather (visibility) and the runway configuration. This thesis proposes a discrete choice
framework for modeling the selection of airport runway configurations, given weather and
demand forecasts. The model is estimated and validated for Newark (EWR) and LaGuardia
(LGA) airports using archived data. The thesis also presents a methodology for quantifying
the impact of configuration switches on airport capacity, and applies it to EWR and Dallas
Fort Worth (DFW) airports.

The second module of this thesis extends two existing stochastic ground-holding models
from literature, the static and the dynamic, by incorporating departure capacity consider-
ations to existing arrivals-only formulations. These integer stochastic formulations aim to
minimize expected system delay costs, assuming uniform unit delay costs for all flights. The
benefits of the integrated stochastic framework are demonstrated through representative case



studies featuring real-world GDP data.
During GDPs, the Collaborative Decision-Making framework provides mechanisms, termed

intra-airline substitution and compression, which allow airlines to redistribute slots assigned
by ground-holding models to their flights, depending on flight-specific delay costs. The final
part of this dissertation considers collaborative decision-making during GDPs in stochastic
settings. The analysis reveals an inherent trade-off between the delay costs achieved by the
static and the dynamic stochastic models before and after the application of the CDM mech-
anisms. A hybrid stochastic ground-holding model that combines the desirable properties of
the static and dynamic models is then proposed. The performance of the three stochastic
ground-holding models under CDM are evaluated through real-world case studies, and the
robustness of the final system delay cost reduction achieved by the hybrid model for a range
of operating scenarios is demonstrated.

Thesis Supervisor: Hamsa Balakrishnan
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The air transportation system is a large, complex, global network that transports people

and cargo around the world. It is a key facilitator of global business and tourism. It is

estimated that about 10% of travelers worldwide rely upon air transport for at least a part

of their trips, and that these services contribute to about 8% of the world's Gross Domestic

Product (GDP) through both direct and induced gains [34]. Given its global outreach, the

aviation industry impacts a number of stakeholder groups on social, economical, and political

fronts. These stakeholders include passengers, air carriers and other businesses associated

with passenger and freight traffic, system operators, and environmental groups. The interests

of these groups are closely linked to the safe and efficient functioning of the air transportation

system.

1.1 Air Traffic Delays

Flight delays are among the most challenging problems faced by the air transportation sys-

tem, and have been the focus of many studies over the last few decades. A recent NEXTOR

report [7] estimated the total cost of delays suffered in the U.S. National Airspace System

(NAS) to have exceeded $31 billion in 2007 (Table 1.1). This estimate accounted for both

direct and derivative impacts of air transportation delays, with over half of the costs being

borne by passengers. While there exist factors like unforeseen mechanical problems that

occasionally drive aircraft delays, the most common cause is supply-demand imbalance and



Cost Component Cost ($ billions)
Costs to Airlines 8.3

Costs to Passengers 16.7
Costs from Lost Demand 2.2

Total Direct Cost 27.2
Impact on Gross Domestic Product 4.0

Total Cost 31.2

Table 1.1: Direct costs of air transportation delays in 2007 [7].

the resulting system congestion. Figure 1-1 presents the breakdown of delay attribution

across various causal factors as reported by the Bureau of Transportation Statistics (BTS)

[72]. According to this chart, over 90% of the delays are attributed to either a demand

surge (Volume) or capacity reduction (Weather). While such imbalances between capacity

" Weather - 63.45 %

* Volume - 29.05 %

" Equipment - 0.01 %

" Closed Runway - 4.47 %

* Other - 3.02 %

Figure 1-1: Estimated breakdown of air traffic delays by causal factors (courtesy Bureau of Trans-
portation Statistics [72]).

and demand are localized in terms of temporal and geographical scope, they can propagate

delays across the air traffic system due to the underlying network connectivity and generate

system-wide impacts, as discussed by Pyrgiotis (2011) [64]. With a growth in demand and

escalating costs of delays due to system overloading, the effective utilization of available



airport and airspace capacity has become more important in recent years. In the NAS, the

supply-side element that is usually constrained is the airport capacity. This is in contrast to

Europe, where enroute airspace serves as a typical bottleneck, as noted by Lulli and Odoni

(2007) [52].

1.2 Delay Mitigation Techniques

Given that the major causes of air delays are congestion-related, potential solutions can

be grouped into two broad categories: infrastructure enhancements, and operational re-

finements. The first class of measures involves increasing the system capacity through the

development of new airports, runways or airspace routes. However, in addition to being

very expensive, most of these approaches and their associated benefits materialize over a

long time-frame. The gains from such measures are also likely to be offset by a rise in NAS

demand stimulated by system capacity expansion [21].

By contrast, operational refinements try to improve system functioning so that existing

capacity is used more effectively. This class of solutions includes schemes for regulating

capacity and demand, that proactively or reactively mitigate delays and complement the

existing Air Traffic Management (ATM) infrastructure. This family of congestion man-

agement approaches can be further classified as Demand Management or Air Traffic Flow

Management (ATFM) measures [21].

Demand management initiatives are strategic economic and administrative policies that

seek to alter the magnitude or temporal characteristics of air traffic demand. Proposed

approaches include slot restrictions at major airports, congestion pricing, and slot auctions

for airport capacity allocation. ATFM measures are tactical schemes that are invoked on a

day-to-day basis, as needed, to tackle short-term air traffic congestion by effective redeploy-

ment of air traffic flows. They represent a popular area of research because of the relatively

low cost of implementation, and have generated a large body of literature over the recent

decades. A number of such initiatives are currently practiced to varying degrees of sophis-

tication around the world. Prominent examples include Ground Delay Programs (GDPs),

Airspace Flow Programs (AFP), aircraft rerouting, etc.



This thesis focuses on ATFM methods related to airport capacity utilization, since air-

port capacity is believed to be the most frequent bottleneck in NAS operations [52]. The

broad theme of this dissertation is the development of novel approaches to airport capacity

management. The next section presents an overview of the state-of-art ATFM designs for

airport capacity management in practice and in research literature.

1.2.1 Ground Delay Programs (GDPs)

A frequently-adopted ATFM practice for managing airport capacity is the Ground Delay Pro-

gram (GDP). GDPs are invoked when an airport expects congestion, either because of very

high demand or a reduction in its arrival capacity (due to adverse weather or maintenance-

related closures), and are used to ration the limited capacity by assigning ground-holds to

the scheduled arrivals in an efficient and equitable way. The underlying principle of a GDP

is that by delaying a flight's departure at its origin airport, it can avoid airborne delays on

arrival at its overloaded destination airport. This approach is reasonable because ground

delays are safer and less expensive than airborne delays.

In the NAS, GDPs are one of the most frequently adopted ATFM measures. During the

year 2006, more than 1200 initiations were recorded across all airports, accounting for total

flight delays in excess of 13 million min [24].

1.2.1.1 GDP example

Consider an airport with good weather arrival capacity of 30 operations per hour (2 min

inter-operation separation), that is expected to be halved in the immediate future. Given a

scheduled demand comprising of uniformly spaced arrival slots from 11:00 am to 11:10 am as

depicted in Table 1.2, the delayed arrival slots and the corresponding ground delays assigned

by a GDP to conform to the reduced capacity are as shown in Table 1.2.

Note that the scheduled arrival order is preserved following ground delay allocation. This

is in compliance to the Ration-by-Schedule (RBS) principle observed during GDPs, which

ensures fairness in the allocation of airport capacity. Also, flights that are already airborne at

the time of GDP initiation are exempt from delay allocation, in order to eliminate avoidable



Airline- Scheduled GDP Assigned
Flight Arrival Time Arrival Slot Ground Delay (min)

Al 11:00 11:00 0
BI 11:02 11:04 2
C1 11:04 11:08 4
A2 11:06 11:12 6
B2 11:08 11:16 8
A3 11:10 11:20 10

Table 1.2: Illustrative GDP example (5 flights from 1100-1110 hours).

airborne delays.

1.2.2 Collaborative Decision-Making (CDM)

Another aspect of the current GDP framework is the philosophy of collaborative decision-

making (CDM). This paradigm seeks to encourage airline participation in the delay allocation

process, by providing two mechanisms through which airlines can respond to the GDP slot

allocation determined by the airport. The first mechanism, called intra-airline slot substitu-

tion, allows an airline to swap GDP-assigned slots between its flights, and thereby rearrange

its schedule in accordance with flight-specific delay costs [18]. Revisiting the GDP exam-

ple from Table 1.2, and focusing on airline A's flights alone, consider a situation in which

flight A3 is considered more delay-sensitive than flight A2. Through the CDM mechanism

of intra-airline substitution, airline A can swap assigned slots for flights A2 and A3 after the

original GDP allocation, as shown in Table 1.3. Such information on flight-specific delay

cost need not be revealed to the system operator, which treats all flights equally in the orig-

inal RBS-driven allocation. Intra-airline substitution therefore helps airline further reduce

internal schedule costs.

The second mechanism managed under CDM is that of Compression [18]. Through this

mechanism, an airline can voluntarily release an assigned GDP slot if no flight amongst its

fleet can feasibly occupy it. The system handles the newly-vacated slot by advancing flights

from later slots to fill up the gap, thereby "compressing" the schedule, and allots the first

feasible slot to the airline that released the slot. In this manner, this mechanism incentivizes

truthful airline participation in the compression process, which in turn helps restore efficiency



(a) Original GDP allocation

Airline- Scheduled GDP Ground
Flight Arrival Time Arrival Slot Delay (min)

Al 11:00 11:00 0
BI 11:02 11:04 2
C1 11:04 11:08 4
A2 11:06 11:12 6
B2 11:08 11:16 8
A3 11:10 11:20 10

(b) After airline A's slot swap

Airline- Scheduled GDP Ground
Flight Arrival Time Arrival Slot Delay (min)

Al 11:00 11:00 0
BI 11:02 11:04 2
C1 11:04 11:08 4
A3 11:10 11:12 2
B2 11:08 11:16 8
A2 11:06 11:20 14

Table 1.3: Intra-airline slot substitution example.

in slot utilization. In the GDP example from Table 1.2, consider a situation in which flight

B1 is now expected to suffer 10 mins of mechanical delay beyond its original schedule, and

can only arrive at the earliest by 11:12 a.m. instead of 11:02 a.m, and hence cannot feasibly

use its assigned arrival slot at 11:04 a.m. Since B2 cannot be feasibly advanced to occupy

this slot either (since its earliest arrival time is 11:08 a.m.), airline B forfeits the 11:04 a.m.

slot. Through Compression, the subsequent flights Cl and A2 are moved up in sequence to

occupy the vacated slot, and to open up the slot at 11:12 a.m. for B1, as shown in Table

1.4.

Recently, the Compression process has been increasingly replaced by its upgraded equiv-

alent, the Slot Credit Substitution (SCS) [3]. SCS is a real-time, dynamic version of Com-

pression that is executed in an event-driven manner in response to the most recent slot

forfeiture, while the earlier version was a batch process that was executed periodically, and

handled multiple forfeitures simultaneously.

The flow-chart in Figure 6-1 illustrates the GDP/CDM operational framework, compris-

ing of three main modules executed in sequence. The first module pertains to the develop-

ment of capacity forecasts for the short-term horizon over which the GDP is declared. This



(a) Original GDP allocation

Airline- Scheduled GDP Ground
Flight Arrival Time Arrival Slot Delay (min)

Al 11:00 11:00 0
BI 11:02 11:04 2
Cl 11:04 11:08 4
A2 11:06 11:12 6
B2 11:08 11:16 8
A3 11:10 11:20 10

(b) After Compression

Airline- Scheduled GDP Ground
Flight Arrival Time Arrival Slot Delay (min)

Al 11:00 11:00 0
C1 11:04 11:04 0
A2 11:06 11:08 2
B1 11:12 11:12 0
B2 11:08 11:16 8
A3 11:10 11:20 10

Table 1.4: Compression example.

is followed by the second (GDP) module which determines ground-holds and slot allocations

based on the capacity forecasts, and the third module, which contains the CDM mechanisms

implemented in response to the slot allocation.

Airport Capacity Forecasts

GDP slot allocation (RBS)

CDM mechanisms
Intra-airline slot substitution

Compression

Figure 1-2: Framework for GDPs in the CDM paradigm.

The introduction of CDM mechanisms is considered a resounding success, and has re-

sulted in significant delay cost reductions for airlines [18]. Given its prominence and widespread



acceptance as an effective congestion mitigation measure, the GDP framework has prompted

an extensive body of literature that seeks to address any drawbacks, and to propose further

refinements. The next section highlights the key limitations of the current GDP framework

that motivate the research presented in this thesis.

1.2.3 Limitations of current GDP designs

1.2.3.1 Arrival-centric approach

The current design for GDP caters only to arrival operations at the congested airport, as

shown in Figure 1-2. The prediction of capacity, its allocation as well as CDM-based revision

of this allocation is performed on the arrival elements alone. Departures are not systemat-

ically managed by a GDP, but are instead accommodated on an ad hoc basis. In other

words, since simultaneous departure and arrival capacities at an airport are interdependent

[21], scheduled take-offs from the congested airport during a GDP are serviced in each time

interval contingent on allotted arrival slots and available airport capacity. Such an explicit

prioritization of arrivals stems from the goal of avoiding arrival airborne delays at the expense

of departure ground delays at the congested airport. However, this prioritization might not

be beneficial for the entire system during periods with comparable arrival and departure

demands. During GDPs recorded in the year 2006, there was an average of 0.7 departures

scheduled per arrival at the affected airports [24]. This observation suggests that there is

significant scope for realizing systemic delay benefits through the integrated management of

arrival and departure operations during GDPs.

1.2.3.2 Deterministic approach

Current GDP processes of slot allocation and CDM mechanisms rely on deterministic ca-

pacity forecasts. This feature is not supported by empirical evidence, in which the actual

airport capacity profile experienced during a GDP is seldom predicted accurately at its on-

set. In practice, the entire sequence of GDP processes are revisited with every update in

capacity forecasts. Each new iteration is constrained by irreversible decisions regarding slot

utilization made by airports and airlines based on earlier forecasts, meaning there is a loss



in delay mitigation efficiency with every GDP revision. Each initiated GDP in 2006 was

revised 2.5 times on average before its termination [23], implying that capacity uncertainty

is a serious problem.

Models for jointly allocating arrival and departure capacity have been studied for single-

airport [31, 32] and multi-airport [74, 13] settings; these approaches have been limited to a

deterministic capacity framework. Studies in literature have considered stochastic capacity

forecasts comprising of multiple capacity scenarios and associated probabilities at the outset

of a GDP. This results in a stochastic programming formulation that derives a ground-hold

allocation that explicitly plans for uncertainty in future capacity. Depending on the nature

of the resulting ground-hold allocation, there are static stochastic models, proposed first by

Richetta and Odoni (1993) [67], that determine a fixed solution across all capacity scenarios,

and dynamic stochastic models, proposed by Richetta and Odoni (1994) [68] and enhanced

by Mukherjee and Hansen (2007) [551, that allow for ground-hold revisions contingent on

scenario materialization.

These stochastic ground holding models, however, retain the arrival-centric focus of GDP

design, and exclude departures from the ground-holding framework. Another aspect that

has not been previously researched in detail is the design of CDM mechanisms under un-

certainty, that is, the extension of current deterministic frameworks for intra-airline slot

substitution and compression to deal with stochastic ground-holding solutions. To the best

of our knowledge, Mukherjee (2007) [57] is the only study that has considered this question.

1.3 Thesis Objectives

The thesis aims to integrate arrival and departure considerations, and explicitly handle un-

certainty within the existing GDP framework, and to study potential system delay benefits

attainable through these enhancements. In particular, the dissertation addresses the follow-

ing challenges related to the GDP processes shown in Figure 1-2:

1. Characterization of airport capacity, including the estimation of airport capacity dy-

namics.



2. Allocation of airport capacity in the presence of uncertainty.

3. Development of CDM mechanisms that can accommodate uncertainty.

1.3.1 Airport capacity characterization

Given that the first step in a GDP is to generate reliable capacity forecasts, this research

looks to characterize key aspects pertaining to an airport's arrival and departure capacities,

and thereby construct a comprehensive model for airport capacity. The focus is on developing

statistical models that can utilize empirical data on airport operations to estimate airport

capacity tradeoffs, and to predict the evolution of capacity in the near future.

1.3.2 Airport capacity allocation under uncertainty

This research considers the integrated management of arrival and departure operations within

a stochastic capacity framework for a GDP. This represents a simultaneous rectification of

the two previously mentioned drawbacks in the current GDP process of capacity allocation,

which have previously only been addressed separately. The significant volumes of scheduled

departures relative to scheduled arrivals during recorded GDPs, along with the unexplored

topic of airport capacity sharing under uncertainty, provide motivation for the investigation

of system delay benefits from integrated capacity management.

1.3.3 CDM mechanisms under uncertainty

The final objective of this thesis is to extend CDM mechanism designs to a stochastic GDP

framework. Given the benefits of stochastic models over deterministic designs for determining

ground-holds, the design of CDM mechanisms compatible with stochastic ground-holding so-

lutions is important. Any new proposed models as well as existing stochastic ground-holding

models [67, 55] need to be studied and compared in conjunction with CDM mechanisms, in

terms of the ultimate system delay benefits.



1.4 Thesis Contributions

This dissertation develops modeling frameworks to address the objectives described above,

and applies them to representative case studies.

1.4.1 Airport capacity modeling

1.4.1.1 Quantile regression models for capacity envelope estimation

This thesis proposes a quantile regression-based approach to estimate airport capacity en-

velopes using observed throughputs and other operational factors at an airport. The ad-

vantages of the proposed approach over existing techniques is demonstrated. Along with

tradeoffs between arrival and departure capacities at an airport, this statistical model can

also estimate interdependencies between operational capacities at neighboring airports. The

latter relationship is a widely acknowledged phenomenon in metroplexes, that is, a cluster

of closely located airports that interact through shared terminal airspace. The proposed

methodology has been applied to the three main airports in the NY metroplex: EWR, JFK

and LGA, and the influence of underlying factors like runway configurations, visibility, etc.

on capacity envelopes are statistically quantified.

1.4.1.2 Discrete choice models for runway configuration selection

The key factors driving the capacity tradeoffs at an airport are the visibility and the choice of

runway configuration. While the visibility is related to weather conditions, the processes that

determine the choice of runway configuration have received little attention. In this thesis,

empirical models are developed to study runway configuration dynamics. The process of

configuration selection is modeled using a discrete choice framework. The estimated model

is applied to EWR and LGA airports to uncover the effect of several factors, including

weather, demand, etc. on configuration selection.



1.4.1.3 Two-stage regression for configuration switch effects

This thesis also features the first effort to systematically estimate the impact of configuration

changes on the operational capacity of an airport, a phenomenon that has been assumed in

a number of past studies. A two-stage linear regression framework is designed for this task,

and applied to EWR and DFW airports to extract relevant details on configuration switch

effects.

The combination of models for estimating capacity envelopes and configuration selec-

tion decisions constitute a comprehensive framework for modeling the dynamics of airport

capacity.

1.4.2 Integrated airport capacity allocation under uncertainty

Models for simultaneously allocating arrival and departure capacity under stochastic capacity

forecasts are developed by incorporating departure considerations into arrival-centric stochas-

tic ground-holding models. Integrated versions are also developed for existing "Static" and

"Dynamic" models, and applied to representative case studies featuring hypothetical as well

as real-world data of scheduled demand and airport capacity profiles during GDP. Delay

benefits over the existing arrival-centric approaches are demonstrated and analyzed. The

results indicate that typical real-world GDPs stand to gain substantially by adopting an

integrated approach to capacity allocation.

1.4.3 CDM mechanisms under uncertainty

1.4.3.1 Stochastic designs for CDM mechanisms

Extensions are designed for the CDM mechanisms of "Intra-airline slot substitution" and

"Compression" in the form of integer formulations that render them compatible with stochas-

tic slot allocations, while retaining the original principles of their deterministic counterparts.

A detailed overview of the slot-specific information exchanged between the airports and

airlines to facilitate the execution of CDM mechanisms in a stochastic framework is also

provided.



1.4.3.2 A new stochastic ground-holding model suited to CDM

The amenability of the solutions from the "Static" and the "Dynamic" stochastic models

to CDM mechanisms is explored, and an interesting trade-off between the dynamic models

ground-hold efficiency and the static models flexibility for slot substitution is established.

This trade-off critically influences the relative performances of the two stochastic models in

a complete GDP framework combining slot allocation and CDM mechanisms. A "Hybrid"

stochastic model that combines the favorable properties of both models is developed, and

its ability to achieve an effective compromise in the final system delay costs is demonstrated

using both hypothetical and real-world case studies. The results underline the value of the

hybrid model as a robust option for ground-hold allocation within a stochastic GDP frame-

work. The properties of the stochastic integer formulation for the hybrid stochastic model

are also analyzed, and some significant results concerning its computational tractability are

derived.

1.5 Organization of the Thesis

The organization of this dissertation is as follows. Chapter 2 discusses the problem of airport

capacity estimation and the quantile regression-based methodology proposed for the same.

The material presented in this chapter previously appeared in Ramanujam and Balakrish-

nan (2009) [65]. Chapter 3 presents the statistical models for configuration selection and

switch effect estimation, and was contains material that was presented in Ramanujam and

Balakrishnan (2011) [66]. Having completed the study of capacity estimation, Chapter 4

proceeds to analyze the problem of allocating integrated airport capacity under uncertainty

and the associated delay benefits through relevant case studies. Chapter 5 examines the

amenability of the static and dynamic stochastic ground-holding models to CDM mecha-

nisms, and describes the formulation of the hybrid stochastic model and the related results

on its computational tractability. Chapter 6 continues the discussion by developing the

stochastic designs for the CDM mechanisms and evaluating the performances of the three

ground-holding models in a stochastic GDP framework through appropriate case studies.

The final chapter summarizes the thesis contributions and outlines promising directions for



future research.



Chapter 2

Estimation of Airport Capacity

Envelopes

2.1 Introduction

As noted in Chapter 1, airports and terminal airspace regions are usually the capacity-

limiting components during periods of air traffic congestion in the US. The accurate esti-

mation of airport capacity is therefore vital not only for efficient planning of landing and

takeoff operations, but also for mitigation of congestion-induced delays. This is particularly

significant given the predicted increase in demand in the NextGen system. The effects of

congestion are beginning to be seen even in today's system: in the United States, between

2006 and 2007, there was a 30% rise in delays due to terminal-area volume, while there was

only a 1% increase in traffic [17, 24]. A critical means of tackling the expected growth in

demand is through improved utilization of airport capacity, especially in congested terminal-

areas. With the emergence of secondary and even tertiary airports in the most congested

regions of the country (for example, the New York area, the San Francisco Bay area, the Los

Angeles area, Boston and Chicago [16]), the problem of coordinating operations in multi-

airport systems to use. terminal-area capacity more efficiently has also become increasingly

important.

The operating capacity of an airport is given by its arrival capacity (the number of aircraft

landings per hour) and its departure capacity (the number of departures per hour). The



arrival or departure capacity is primarily limited due to the temporal separation requirements

imposed by FAA guidelines between successive operations. The inter-operational separations

are meant to avert potential physical conflicts when using airport resources. Due to the

shared nature of ground resources such as runways and taxiways, there is a tradeoff between

the simultaneous arrival and departure capacity at an airport. This phenomenon arises due

to the need to observe the above-mentioned separations between successive pairs of arrivals

and departures that operate on interacting runways. The conceptual basis of this tradeoff

has been widely acknowledged in literature, including studies of Blumstein (1959) [15] and

Janic and Tosic (1982) [43].

The tradeoff between an airport's arrival and departure capacity is quantified using the

concept of capacity envelope. An airport capacity envelope is the boundary (generally ap-

proximated as a convex polygon on the plane with the arrival and departure rates as axes)

that defines the envelope of the maximum capacities that can be achieved under specified

operating conditions, and captures the tradeoff between the maximum arrival and departure

rates [21]. The operating conditions influencing the tradeoff encompass factors such as the

relative alignment of arrival and departure runways (defined as the runway configuration),

meteorological factors like wind and visibility, the aircraft fleet mix, etc. Each of these

factors dictate the required inter-operational separations that in turn determines the opera-

tional capacities. Figure 2-1 illustrates the representative capacity envelopes for an airport

for an arbitrary runway configuration split between two visibility categories typically defined

for operations.

In the case of an isolated airport, the arrival departure capacity tradeoffs would be suffi-

cient to describe its operational characteristics under any given set of exogenous conditions.

However, this is not the only form of operational tradeoff that defines airport capacity in

many contemporary settings. The emergence of several clusters of core, secondary and re-

gional airports (known collectively as a metroplex [44]) results in the complex interaction of

traffic flows within an already congested airspace, as shown in Figure 2-2. These interac-

tions between arrival and departure operations at proximate airports could potentially make

it infeasible to simultaneously operate all the airports at their individual optimal runway

configurations or the corresponding operational capacities. While simultaneous arrivals and
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Figure 2-1: Illustration of capacity envelope for an airport, under a particular runway configuration,
for different meteorological conditions: (1) Visual Flight Rules (VFR), and (2) Instrument Flight
Rules (IFR). The shaded regions represent the feasible operating points.

departures at a given airport conflict due to shared ground resources, simultaneous opera-

tions from neighboring airports conflict due to shared airspace. This implies that the process

of allocating the capacity of an airport at a given time would have to not only be mindful

of the arrival-departure tradeoffs for that airport, but also the tradeoffs with arrival and

departure capacities at the other airports within the multi-airport system. Given the nature

of the tradeoffs, the concept of capacity envelope can be extended to represent the inter-

relationships between simultaneous operational capacities at neighboring airports. While

there is anecdotal and descriptive evidence of such interactions between air traffic flows into

and out of neighboring airports, there have been no attempts to quantify these interactions

and their impact on capacity using operational data.

A detailed understanding of airport capacity tradeoffs and their dependence on external

factors such as operating conditions and airport layout, both in the single- and multi-airport

settings, is necessary for the efficient utilization of airport capacity. Within the context of this

thesis, such an understanding is a prerequisite for optimal capacity allocation during GDPs.

While operational tradeoffs have not been studied so far in the multi-airport setting, the

estimation of single-airport capacity envelopes has traditionally been restricted to theoretical

approaches that rely upon an abstracted model of airport operations as decribed in [15, 37,



Figure 2-2: The New York airspace, showing the intertwined arrival and departure routes into the
core airports. Figure courtesy of the Port Authority of New York and New Jersey (PANYNJ).

40]. Empirical methods that use operational data have only been employed in recent times,

but have generally been ad hoc approaches like the one proposed by Gilbo (1993) [31]. This

approach serves as the precursor for that proposed in this research, and is discussed in the

following sections of this chapter.

This chapter develops a systematic statistical technique, based on quantile regression,

to estimate piecewise-linear, convex capacity envelopes using observed throughput data,

for both individual airports as well as the corresponding inter-airport dependencies in a

multi-airport system. The problem of estimating the capacity envelopes as quantiles (or

percentiles) of the empirical data is formulated as a linear program. The proposed technique

is illustrated using reported data on arrivals and departures at the three major New York

area airports, namely John F. Kennedy (JFK), Newark (EWR) and LaGuardia (LGA), for

the years 2006 and 2007. The analysis identifies the key factors that influence the intra- and

inter-airport capacity tradeoffs, and determines the associated capacity envelopes.

The output of the capacity estimation process studied here serves as a key input for the

models of capacity allocation discussed in later chapters.



2.2 Related Literature

Airport capacity is affected by various external factors such as air traffic controller procedures

and pilot behavior, approach and departure speeds, runway and taxiway occupancy times,

weather, etc. Theoretical approaches to capacity estimation have traditionally modeled

these factors through simplified models of aircraft behavior, and derived the capacity using

the mandated separation time between successive aircraft operations [15, 37, 40, 71, 50,

73]. These theoretical models construct the capacity envelope through linear interpolation

between capacity values computed at specific arrival/departure mix ratios. Newell (1979)

[58] and Odoni et al. (1997) [60] provide comprehensive reviews of contemporary analytical

and simulation methods that adopt the above approach.

Empirical estimation approaches have the potential to reflect the practical operating

thresholds achieved by controllers at airports, in contrast to idealized models of capacity

tradeoffs. Recognizing this, Gilbo (1993) [31] proposed a quasi-statistical procedure for

estimating the capacity envelope of a single airport under specific runway configurations. 15-

min arrival and departure counts were used to estimate the capacity envelope as the convex

hull (polygon) of the planar scatter of the counts. Frequency-based filtering was employed on

the outer perimeter of the data to eliminate outliers, that is, data points that were deemed

to be an unreliable representation of airport capacity. Alternative outlier rejection criteria

such as proximity to neighboring observations and rank order statistics were also mentioned.

Figure 2-3 schematically illustrates the functioning of Gilbo's (1993) method for estimating

capacity envelopes.

In contrast, this paper proposes a systematic statistical approach based on the principle

of quantile regression for estimation of intra- and inter-airport capacity envelopes from ob-

served data. On the statistical estimation front, quantile regression attempts to determine

statistics such as the median or a general percentile of the dependent variable as a function

of independent variables from a given sample of observations [46]. This differs from the

regular least-squares regression which estimates the mean of the dependent variable instead.

Koenker (2001) provides an elaborate description of the mathematical framework underly-

ing quantile regression, while also highlighting some significant applications from literature.
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Figure 2-3: Gilbo's methodology for capacity envelope estimation

Amongst these, there exist some precedents that attempt to model capacity functions as

quantiles. For example, Bernini et al. (2004) modeled the production frontier in classi-

cal economics as a higher-order quantile (90-100%ile), and studied the interaction between

underlying determinants at intermediate quantiles [11].

This research extends the quantile regression technique to the case of airport capacity

envelope estimation. The capacity envelope, which represents the inter-relationship between

arrival and departure capacity, is examined as a departure capacity function conditioned

on arrival counts. This capacity function is estimated as a higher-order quantile, with the

chosen order of quantile serving as a replacement for the frequency filter adopted in Gilbo

(1993) [31]. The formulated approach looks to estimate piecewise-linear, concave quantile

functions of departure capacity to generate the capacity envelope. The use of quantile

regression enables, through hypothesis testing, explicit study of the influence of exogenous

attributes on the capacity curve. These attributes may include geometric details of runway

configurations, weather conditions like visibility and wind, etc. In this manner, the quantile

regression approach helps obtain a comprehensive estimate for airport capacity.

The next sections of this chapter outline the methodological framework of the quantile



regression approach and its application to estimate the intra- and inter-airport capacity

tradeoffs in the NY multi-airport system.

2.3 Problem Statement

Given the counts of arrival and departure throughputs at an airport per time interval (say,

15 minutes), the task is to determine the capacity envelope enclosing the set of observations

by suitably excluding outliers. A related goal is to identify key factors that affect the shape

of the capacity envelope and estimate their influence.

The proposed approach to solving this problem draws from the field of quantile regres-

sion. A data point is said to be at the Tth quantile if it is larger than a proportion T/100 Of

the data points, and less than a proportion (1 - r/100) [46]. Similar to least-square regres-

sion techniques that estimate the mean of a response variable given values of the predictor

variables, quantile regression techniques estimate other statistics, such as the median or a

quantile [46]. Since the airport capacity envelopes represent the upper limits of operating

capacity, quantile regression techniques, with T sufficiently large, are suitable mechanisms

for estimating them. In other words, by setting T = 99.5, one could look to construct the

capacity envelope such that 99.5% of all reported operating points fall within the feasible

region. The remaining 0.5% would constitute the list of outliers. Thus, the order of quantile

(value of T) chosen to represent the airport capacity is conceptually similar to the frequency-

based filter adopted by Gilbo (1993) [31] to discard spurious data (for example, reporting

errors).

Unlike least squares regression, the estimation of parameters of a quantile regression

function is conducted by solving a linear program which attempts to minimize sum of asym-

metrically weighted absolute deviations [46, 47]. While quantile regression has traditionally

been used to determine linear quantile functions, in the case of airport capacity envelopes the

focus is on determining a piecewise-linear, concave, continuous function that represents the

quantile. The concavity assumption is in accordance to the accepted notion in literature that

capacity envelopes are always convex, that is, increasing the number of arrivals impacts the

departure capacity with monotonically steeper magnitude. Appendix II describes how this



convexity assumption can be tested for its statistical validity over a given set of observations

using the quantile regression-based estimation framework.

In this chapter, convexity of capacity envelope is assumed. The standard linear pro-

gramming formulation for quantile regression estimation is extended to include constraints

enforcing continuity and concavity across the linear pieces. In addition to airport-specific

capacity envelopes, the proposed approach is used to study the presence and magnitude of

tradeoffs between operations at neighboring airports, and the results are documented in a

later section of this chapter.

2.4 Modeling Framework

This section describes the modeling of capacity envelopes, and the formulation of the linear

programs to estimate them.

2.4.1 Capacity envelope representation

The capacity envelope representation is decomposed into two parts as depicted in Figure 2-4:

an arrival rate threshold (highlighted in green) and a departure capacity function (highlighted

in red).

Dep. capacity
function

Depa -ures Unhindered
arr. capacity

Arrival counts

Figure 2-4: Decomposed representation of capacity envelope.

For the departure capacity function, the arrival rate is treated as the independent variable,

and the departure capacity for any time interval is estimated as a function of the arrival



rate using quantile regression. This decision to model departure capacity as the dependent

variable is based on the observation that arrivals are generally given priority at airports over

departures. It is therefore reasonable to assume that while the arrival rate depends on the

demand, departure capacity is traded off to accommodate arrivals. In other words,

Departure capacity = f(arrival rate). (2.1)

As shown in the figure 2-4, the arrival rate threshold is defined as the maximum number of

arrivals that can be accommodated in a time period for a given set of runway configuration

and weather conditions. It is also called the unhindered arrival capacity since it spans

operating points at which the presence of departures do not reduce the arrival rate, i.e., the

number of departures are within the "free departure" rate. It corresponds to the arrivals-

only point on the capacity envelope [21], and is estimated independently of the departure

capacity.

Because arrival and departure counts are reported for 15-minute intervals, the counts are

used as measures of the arrival and departure rates. Since the capacity envelope is assumed

to form a convex polygon, the departure capacity needs to be estimated as a piecewise-

linear, concave quantile function of the arrival rate for the range of observed arrival rates.

Recent research on piecewise quantile regression models, like Kim (2007) [45] and Furno

(2007) [28], have assumed no knowledge of the potential locations of the breakpoints where

the slope of the quantile function changes. In this study, one can leverage upon knowledge

of the structure of the capacity envelope to estimate the piecewise linear function. There

is a finite number of potential breakpoints on the capacity envelope due to the fact that

the arrival count (in a 15-minute interval) is a nonnegative integer, and is bounded to be

within a manageable threshold (typically less than 20). This allows the estimation of the

linear segments of departure capacity over all unit intervals of arrival count with minimal

computational effort. The piecewise-linear representation for the departure capacity function

then has the following form:

Qde(y x) -= a + (I: #.)x, for (k - 1) < x < k, Vk (2.2)
i i



where

y is the departure count,

X E {, 1, ... , Xmax} is the arrival count,

QdeP(ylX) is the T-quantile function of y with respect to x, which represents the departure

capacity function,

k c {1, ...Xmax} denotes the kth interval of the arrival count,

0' C 0 are the factors influencing the departure capacity function (for example, VFR/IFR

conditions or runway alignment), and

c and #k are the intercept and slope contributions of the factor 0, for the kth linear segment.

The unhindered arrival capacity is a scalar value, and is estimated as a high-order quantile

of the observed arrival counts x in the dataset. This quantile measure can be represented as

a function of influencing factors similar to the above expression for the departure capacity

function.

Q -r ()o (2.3)

Here, yZ serves as the coefficient of the factor #', where the set of factors # is the counterpart

of 0 in the quantile specification for the departure capacity function. As mentioned earlier,

the estimation for the unhindered arrival capacity is independent of that for the departure

capacity function. The formulations for these estimation tasks are described below.

2.4.2 Formulation of estimation problem

Given a data set of N operating observations involving y, x and 0 at a given airport, the

process of estimating the piecewise coefficients (ack, #A) for a chosen quantile T for the

departure capacity function Qdep involves solving the following linear optimization problem:



N

Minimize E Z. (2.4)
n=1

subject to:

Zn 2 yn - [ ac 6O +'- (Z#/%OX)Xn ifk-1 n < k Vn (2.5)

Z~> W [ZcQ~i+(Z/3Oni)n -Ynj f- < k,Vn (2.6)

Fi /k1~(o0) < Z FiF(0), Vk Xmax, -m11,

VFi(.) E {max(.), min(-)}, Vi (2.7)n n

Z/3Fi () < 0, VF(-) E {max(.), min(.)}, Vi (2.8)

Za'Fi(') + [Z#3 Fi(O')]k = Za4,+Fi(O) + [{Z#3+IFi(OX)]k,
1 i 1

Vk c {1, 2, ..., Xmax - 1}, VF(.) E {max(.), min(.)}, Vi (2.9)n TI

In the above formulation, constraints (B.2)-(B.3) define the absolute deviation of the

estimated quantile function for departure capacity from the observed value for departure

count y. Constraints (2.7)-(2.8) help ensure concavity and non-positivity of the piecewise

slope estimates for all values of 0' E 0 in the range [in''", Qi,nmax]. As mentioned earlier, these

constraints are motivated by the accepted notion that the magnitude of arrival-departure

tradeoff monotonically increases with arrival rate. Constraints (B.5) ensure continuity of

adjacent segments. W, = (100 - T)/T is the asymmetric weight applied upon the negative

deviations (constraint (B.3)), where T denotes the order of the quantile estimated. This

feature of asymmetric weighting of deviations is the central estimation principle of quantile

regression [47].

The size of the above formulation depends on the number of observations in the data set

(N), the maximum arrival count in a 15-minute interval (xmax) and the number of factors

considered in the representation of departure capacity function (that is, the size of vector 0).

The unhindered arrival (or arrivals-only) capacity can be estimated using a simplified

version of the above formulation. The data set is restricted to observations where the arrival



rate is not impeded by departures. That is, for observations where the departure count is

within the free departure rate obtained from the departure capacity estimation above. The

free departure rate, as depicted in Figure 2-4, is the lowest departure capacity across the

range of arrival counts. The unhindered arrival capacity is estimated by solving the following

linear program:

N

Minimize E Zn (2.10)
n=1

subject to:

cap = aO +(Z#380)Xmax (2.11)

Zn, > - 1
, f a<;yap (2.12)

Zn > U), j~ 5 l Xn]J

Zn 2 0, otherwise Vn (2.13)

Note that the lowest value of the departure capacity (yraf) is realized at the highest

observed arrival count (Xmax) owing to the assumption of concavity for the departure capacity

function.

The choice of quantile T for the unhindered arrival capacity estimate is independent of

its counterpart for the departure capacity function. The principle governing this choice

in both cases is effective outlier elimination [31]. The choice is determined by iterating

over a progression of quantiles descending from 100 percentile at chosen step sizes (set at

0.25 percentile in this study), until stable functional parameter estimates are obtained. In

other words, the choice of T was such that the quantile functions, be it the departure capacity

function (QdeP(yX)) or the unhindered arrival capacity (Qa"r(x)), did not change significantly

for a small change in the respective T. This procedure is elaborated in Appendix II.

The statistical significance of each incremental vector of influencing factor (0 and #) was

ascertained through a hypothesis testing framework based upon the quantile likelihood ratio

tests described in [47]. The details of this hypothesis testing framework are outlined in



Appendix I.

Lastly, the above formulation for the estimation of the departure capacity function in-

herently assumes concavity, complying with the a priori notion of convexity for capacity

envelopes. Appendix III describes how the proposed estimation framework can be further

adapted to statistically validate this convexity assumption. The key idea here is to relax the

concavity constraint (2.7) in the above estimation formulation, and measure the improve-

ment in the statistical fit of the quantile function. The details of this statistical testing

framework are provided in Appendix III.

2.4.3 Comparison to prior approaches

As pointed out earlier, the chosen quantile (T) for representing the capacity envelope com-

ponents in the proposed methodology is a notional equivalent of the frequency filter in

the method proposed by Gilbo [31]. However, in contrast to frequency-based filtering, a

regression-based approach has the ability to quantify underlying factors that influence the

capacity curve. This is done through the process of hypothesis testing where different func-

tional specifications are compared using statistical metrics. The log-likelihood tests, as

described in Koenker (2001) [46], were used for performing the hypothesis testing, and are

elaborated in Appendix I. Each functional specification varies based on the set of factors

considered in 0 or -y. This means that, in addition to estimating capacity envelopes for each

runway configuration, the proposed approach can potentially identify specific characteristics

of the configuration (such as, the angle between the active arrival runways) that impact the

capacity envelope in a statistically significant way.

Also, when it comes to assessing whether a given throughput observation is an outlier,

the LP-based estimation framework will intrinsically incorporate the proximity of the obser-

vation to the estimated capacity envelope in addition to its observed frequency. This feature

is enabled by the concavity constraints (2.7)-(2.8) enforced in the estimation formulation,

and ensures that two of the candidate outlier rejection criteria suggested by Gilbo [31] are

simultaneously accounted for. The beneficial effect of this feature is illustrated in Figure 2-5

below.

As demonstrated above, Gilbo's method [31] of frequency-based filtering would eliminate
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Figure 2-5: Outlier elimination: Proposed methodology vs Gilbo's methodology

observed throughput points A and B owing to their low frequency, while the quantile re-

gression methodology would retain point B because of its conformity to the concave shape

of the capacity envelope as dictated by the neighboring high-frequency observations C and

D. The latter outcome is conceivably more desirable, as the credibility of point B is higher

than that of A in this example due to the above-mentioned reasons.

We note that both the method proposed in this chapter and the approach proposed by

Gilbo estimate the best-case capacity envelopes, that is, the capacity tradeoffs when the

airport is at peak performance, with a favorable fleet mix, etc. However, airport (departure)

capacity can alternatively be defined as the average number of departures under sustained

demand [21]. Under this definition, the estimates of capacity envelopes can be quite different

from the ones we obtain [70].

2.5 Case Study: New York Metroplex

The proposed formulations were applied to obtain capacity envelope estimates for the multi-

airport system in NY consisting of three major airports: JFK, LGA and EWR. In the case

of the NY system of airports, capacity tradeoffs exist between operations within each airport

as well as across the airports due to the metroplex phenomenon discussed earlier. The focus



of the case study was to analyze all capacity tradeoffs within the NY airport system.

2.5.1 NY airport system overview

The three airports EWR, JFK and LGA are located in close proximity, and serve a consider-

able volume of operations simultaneously. The use of the shared airspace encompassing the

three airports is coordinated by the TRACON operations in tandem with the local air traf-

fic control (ATC) towers of the airports. The TRACON oversees the allocation of airspace

to the arrivals and departures at the three NY airports, while the individual ATCs allo-

cate runways and terminal airspace to the arrivals and departures serviced at the respective

airports.

The three airports are equipped with 4, 3 and 2 runways respectively, and their relative

alignments are shown in Figure 2-6. Note that the principal runways at the three airports

are aligned with each other.

V~7Ih~II~A

Figure 2-6: A map of the New York area, showing the approximate locations of the three core
airports and their relative layouts. Note that the airport layouts are not to scale with the map.
@ Google. Image @ 2009 DigitalGlobe. Image @ 2009 Sanborn.



2.5.2 Capacity envelope estimation

The interaction between operations at different airports within the system was investigated

using pairwise inter-airport capacity envelopes (for example, JFK arrivals vs. LGA depar-

tures, JFK departures vs. EWR departures, etc.). This is in addition to the intra-airport

capacity envelopes relating arrival and departure capacities for each airport. Under this

framework, the relationships among operational capacities at the three NY airports can be

represented through 15 capacity envelopes: 3 intra-airport, and 3 x 4 inter-airport pairs.

It is assumed that for any given observation, the operational capacity of arrivals or

departures at an airport was constrained by at most one of the remaining 5 operation types in

the 3-airport Metroplex (departure or arrival at the same airport, and arrivals and departures

at the other two). That is, at a given time, at most one of the 15 capacity envelopes is binding

for a given operation type from a given airport in the NY Metroplex, be it LGA arrival, JFK

departure or any other. This assumption implies that the intra-airport and inter-airport

capacity envelopes can be estimated independently. The capacity for an operation type

in the metroplex at any time would then be determined by the most restrictive pairwise

envelope featuring it for that time interval.

The choice of the dependent and independent variable in each pairwise capacity envelope

is determined by the relative congestion experienced at the airports, combined with the ear-

lier observation that arrivals have greater priority than departures. When arrival operations

from one NY airport are paired with departure operations from the same or another NY

airport (e.g. LGA arrivals vs. JFK departures, EWR arrivals vs. EWR departures, etc.)

the arrival is treated as the independent variable based on the above argument of operational

prioritization. For inter-airport pairs featuring purely departure or arrival operations (e.g.

LGA departures vs. JFK departures, EWR arrivals vs. JFK arrivals, etc.), the operation at

the airport with traditionally higher congestion is chosen as the independent variable. The

rationale behind this choice is that the traditionally busier airport is accorded preference by

TRACON during conflicts in airspace usage.

From observed airport operational data for years 2005 and 2006 as well as historical

anecdotes, it was inferred that JFK was the busiest of the NY airports, followed by LGA and



EWR in that order. This inference sets up the following precedence order among operations

in the NY metroplex: JFK arrivals - LGA arrivals - EWR arrivals > JFK departures S

LGA departures > EWR departures. For a capacity envelope involving a pair of operational

types from the provided sequence, the operational type with higher precedence will serve as

the independent variable.

2.5.3 Data sources for capacity estimation

The FAA's Aviation System Performance Metrics (ASPM) database provides records of

flight activity at 77 of the major airports in the United States [25]. For each airport, for

every 15-min interval, the database includes reports of the number of arrivals, the number of

departures, prevailing weather conditions (Visual or Instrument Flight Rules, wind speed and

direction), and the runway configuration used. The archived data for the three New York area

airports were procured for this study. Overnight periods of operation (midnight-6AM) and

the 15 minute intervals before and after runway configuration changes were filtered out from

the analysis, due to the increased tendency for reporting errors during these periods. The

estimation data set covered the years 2005 and 2006 for JFK and EWR, but was restricted

to the year 2006 for LGA due to inconsistencies in the throughput reports during 2005. The

linear programs for estimating the capacity envelopes were coded in AMPL [26], and solved

using CPLEX [42] with the default primal-dual simplex method.

The following section describes the estimation results for the pairwise capacity profiles

at the New York area airports, and discusses their implications. The presented capacity

envelopes for each pairwise combination were finalized after statistically testing different

explanatory factors using the hypothesis testing framework described in Appendix I.

2.6 Results

2.6.1 Intra-airport capacity tradeoffs

The influencing factors considered for the capacity tradeoffs within each airport include

visibility (VFR or IFR), alignment of the arrival and departure runways (parallel or cross-



ing), and the number of additional runways for arrival or departure operations (beyond

the primary runway). To provide insight into how these factors were incorporated into the

estimation process in the form of 0 and # from Section 2.4.2, the finalized quantile specifica-

tions for the departure capacity function as well as unhindered arrival capacity at JFK are

presented below.

Departure capacity function:

ep(F J) = + arimoprim + aex-dep ex-dep + ex-arrgexarr + ex-paroex-par +

( primgprim + ex-dep0 ex-dep + ex-arrgex-arr + Oex-par0ex-par)XJFK,

for (k - 1) XJFK< k, Vk 1, --, 201.

Unhindered arrival capacity:

Q arrJ 7 visvis ex-paroex-par _ ,ex-convoex-conv

Variable definition

0 prim Alignment of primary arrival and departure runways

= { 1, for crossing runways

2, for converging runways

3, for parallel runways}

0ex-dep Alignment of extra departure runway with arrival runway

= { 0, if no extra departure runway, or if extra departure runway is

the same as the arrival runway

1, if extra departure runway crosses arrival runway

2, if extra departure runway converges towards arrival runway

without crossing

3, if extra departure runway parallel to arrival runway}

gex-arr Alignment of extra arrival runway with departure runway

= { 0, if no extra arrival runway or if extra arrival runway same as

departure runway

1, if extra arrival runway crosses departure runway



2, if extra arrival runway converges onto departure runway without

crossing

3, if extra arrival runway parallel to departure runway}

0 ex-par Incremental advantage of parallel runways pairings 13R | 13L or 31L

31R over 22R I 22L or 4L | 4R

{ 1, if primary arrivalIdeparture runways are 13RI13L or 31L|31R

0, otherwise }
Ovis Visibility status

{1, if VFR; 0, if IFR}

- :par Additional parallel arrival runway

{ 1, if additional arrival runway parallel to primary arrival runway

0, otherwise }
Sex-conv Additional converging arrival runway

{ 1, if extra arrival runway converges onto primary arrival runway

0, otherwise }

The order of quantile (T) yielding robust estimates for the departure capacity functions

were found to be 99%ile, 99%ile and 99.5%ile for JFK, EWR and LGA respectively, while

the equivalents for the unhindered arrival capacities were found to be 99.75%ile, 99.5%ile

and 99.75%ile.

Figures 2-7, 2-8 and 2-9 illustrate the effect of the estimated influences on the capacity

envelopes, under VFR and IFR conditions, for the three airports.

As shown in Figures 2-7, 2-8 and 2-9, visibility has a significant influence on the un-

hindered arrival capacities, but does not appear to have a noticable effect on departure

capacities. The relative alignment of the primary runways used for arrivals and depar-

tures plays a critical role in determining the capacity envelope shapes. Figures 2-7 and 2-8

show that the area under the capacity envelope progressively increases as we go from mixed

arrival/departure operations on a single runway, through separate arrival and departure run-

ways that intersect or converge, to additional parallel runways, demonstrating the benefit

of independent operations on runways. The use of an additional departure runway at JFK
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Figure 2-7: JFK capacity envelopes A 99 %ile

and EWR provides the most benefit in terms of departure capacity at low values of arrival

rate. Figure 2-7 also shows that the use of an additional arrival runway at JFK flattens

the slope of the tradeoff curve, indicating the effective redistribution of operations across

the two runways, while also increasing the unhindered arrival capacity. It is also observed

that the use of the parallel runway configurations (for example, 22RI22L or 4R4L) at JFK

results in a lower capacity as compared to their perpendicular counterparts (for example,

31R131L or 13R113L). This is possibly explained by the smaller distance between the former

pair, resulting in a greater coupling of operations.
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Figure 2-8: LGA capacity envelopes @ 99.5 %ile

2.6.2 Inter-airport capacity tradeoffs

Since inter-airport interactions are expected to involve the airspace rather than the airport

surface, the overlap between approach or departure paths is considered instead of the runway

alignment attribute used for intra-airport capacity envelopes in Section 2.6.1. The approach

and departure paths were approximated by two-dimensional conics with vertex angle of 30

deg extrapolated from the runway in the direction of operation, and binary terms were used

to signify the intersection of these 2D conics. An example of the functional representation

for inter-airport capacity envelopes is provided below for the pairing of JFK departures

* I

* I
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Figure 2-9: EWR capacity envelopes @ 99 %ile

and EWR departures. Given the order of precedence for metroplex operations described in

Section 2.5, JFK departure is chosen as the independent variable for this pairing.

Departure capacity function:

Q dep (E R J ) ~ a ± GiisEvis + ex-depEex.dep + inteint +

p + visEvis + ex_depEex_dep _ +3ntEint)yJFK,

for (k-l1) <yJFK<k, VkE {1, ..., 16}

15

10o

Variable definition

(2.14)

C



ex-dep Extra departure runway at EWR

1, if extra departure runway,

0, otherwise
it Intersection of projected takeoff paths for primary dep. runways at

JFK and EWR

1, if takeoff paths intersect

0, otherwise

Representative inter-airport capacity envelopes for pairs of airports and arrival-departure

operations, under different flight conditions are shown in Figures 2-10, 2-11 and 2-12.

From the inter-airport capacity envelopes, it is observed that capacity tradeoffs are promi-

nent at higher throughput values than those seen in the intra-airport envelopes. This obser-

vation suggests that airport (ground) capacity is a more binding operational constraint than

the capacity of the surrounding airspace. This system characteristic could be responsible

for the negligible inter-airport tradeoffs estimated under IFR conditions and single runway

configurations, since the airport throughputs are lower under these conditions. Figures 2-10,

2-11 and 2-12 illustrate this phenomenon for selected inter-airport operational pairs that ex-

hibited tradeoffs close to the limits of their respective operational capacities. The approach

path overlap attribute was not found to be statistically significant for any of these pairwise

envelopes, possibly due to the limited operational range over which the tradeoff effects were

found to be prominent.

2.6.3 Limitations of approach

This chapter developed a statistical framework for quantifying arrival-departure tradeoffs in

a multi-airport system, and applied the framework to estimate airport capacity envelopes

using 15-min throughput records in ASPM database. This section examines the estimated

results in detail and highlights potential limitations of the approach that could be addressed

in future extensions.
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Figure 2-10: JFK departure vs. EWR arrival capacity envelopes ( 99 %ile

2.6.3.1 ASPM data resolution

First, we consider the intra-airport envelopes for LGA (Figure 2-8 for T=99.5%ile), and

explore estimated results for different quantiles (T). We focus on the single runway (mixed

operations) case, since the estimated capacity envelope appears to be significantly large

compared to the FAA Capacity Benchmark report's optimal runway configuration capacity

estimate of 85 operations (41 arrivals, 44 departures) per hour [54].

Figure 2-13 depicts the capacity estimates for the single runway configuration for quantiles

ranging from 99%ile to 50%ile. We notice that while the 99 %ile envelope is larger than the
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Figure 2-11: LGA arrival vs. JFK arrival capacity envelopes A 99.5 %ile

benchmark capacity for the optimal configuration, several of the other quantile estimates

(as low as 75 %ile) have estimated capacities of 72-80 operations/hour for the single runway

configuration. While this may seem surprising, Table 2.3 describes the frequencies of the

fringe observations (points on and above the estimated envelope) in the arrival-departure

trade-off region (arrival counts > 10) for each of these estimates. We note that even after

filtering out overnight observations, operating counts as high or higher were observed more

than 160 times over two years. The selection of the right quantile is also a question of

practical importance, and one that warrants further research.

As seen in Table 2.3, the fringe observations in the trade-off region for the estimated

16 18
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Figure 2-12: EWR departure vs. LGA departure capacity envelopes @ 99.5 %ile

capacity envelopes at higher quantiles appear rather infrequently. However, due to the

relatively limited number of total observations in this region (317), these points fall within

the respective quantile range and are thus included within the respective envelope estimates.

We note that the sparseness of total observations in this region limits the reliability of the

estimates for the single runway configuration at LGA. Further investigation of this issue

would require higher fidelity data sets, such as flight-specific records or surface surveillance

data.

* I

* I
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10 12 14

Capacity envelope estimates for various quantiles for single runway configuration at

T No. of observations lying No. of observations above
%ile on capacity envelope capacity envelope (Outliers)

99 13 5
95 37 22
90 37 22
85 45 54
80 44 54
75 75 89
50 54 192

Table 2.3: Frequency
in this region = 317.

of fringe observations in trade-off region (Arrivals > 10). Total observations

2.6.3.2 Pairwise inter-airport tradeoffs

In addition to the above limitations of the estimation dataset and their impact on capacity

envelope estimates, we also need to be mindful of the assumptions underlying the inter-

airport capacity estimation while interpreting the corresponding estimates. As described

in Section 2.5.2, the pair-wise inter-airport envelopes for the NY metroplex were estimated

independently based on the assumption that no more than one inter-operational capacity

constraint was binding for any given 15-min observation. In the estimation dataset for inter-

airport envelopes, we do not explicitly separate observations for which the intra-airport

envelopes were active. Hence, the resulting estimates could possibly be an underestimate of
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the stand-alone inter-airport tradeoffs. In spite of this caveat, we notice in our final estimates

that inter-airport tradeoffs come into effect at higher operational throughputs compared to

the intra-airport tradeoffs.

2.6.3.3 Choice of dependent and independent variables

The choice of the dependent and independent variable for each inter-airport operational pair

critically influences the obtained capacity envelope estimate. As mentioned in Section 2.5.2,

after considering data from 2005 and 2006, JFK was assumed to be the busiest of the NY

airports, followed by LGA and EWR. This assumption resulted in the following precedence

order: JFK arrivals - LGA arrivals - EWR arrivals - JFK departures S LGA departures S

EWR departures. We recognize, however, that this ordering of operations may change from

year to year. It would therefore need to be revised depending upon the prevailing congestion

patterns at the three NY airports for the chosen year of estimation.

In continuation of this chapter's theme of accurately estimating airport capacity, Chapter

3 focuses on airport operational dynamics including the processes of configuration selection

and switching that have a direct bearing on the realized airport capacity. Together, the

proposed models for characterizing and quantifying airport capacity supply the primary

inputs for models of capacity allocation discussed in the later chapters.



Chapter 3

Characterization of Runway

Configuration Dynamics

3.1 Introduction

The runway configuration is the subset of the runways at an airport used for arrivals and

departures at any time. The focus is primarily on the process of runway configuration

selection, a choice periodically made by airport authorities and driven by operational and

regulatory considerations. As seen in Chapter 2, an airport's arrival and departure capacity

at any time depend on the active runway configuration. Therefore, this chapter investigates

the key airport operational processes that influence the attainable capacity.

Another important aspect of airport capacity dynamics is the transitional impact of

configuration switching on airport capacity, given that the task of reconfiguring an airport

is not instantaneous, and can cause disruptions to regular operations. This chapter develops

statistical models to characterize configuration selection and configuration switch effects and

uncover insightful trends on airport operations using recorded observations. Since the runway

system is a critical bottleneck in airport operations, improved understanding of runway

configuration dynamics can facilitate performance improvements and lead to system-wide

benefits. Within the context of this research, models for configuration dynamics can help

develop accurate forecasts for airport capacity that are subsequently used in the capacity

allocation process. The rest of this chapter is divided into two parts: the first part presents a



model to describe the configuration selection process, while the second outlines an approach

to estimate the duration and capacity impact of configuration switches.

3.2 Configuration Selection Model

Most major airports are equipped with multiple runways, but at any time, only a subset of

these runways (and associated traffic directions) are selected to handle arrivals and depar-

tures. Authorities in the Air Traffic Control Tower (ATCT) consider many factors including

weather (wind and visibility), predicted arrival and departure demand, environmental con-

siderations such as noise abatement procedures, and coordination of flows with neighboring

airports, in selecting the runway configuration at any time.

Figure 3-1 is a sketch of the airfield layout at LGA airport, which has two crossing

runways aligned at 900 to each other and four operable runway orientations labelled 4, 13,

22 and 31 respectively. Some standard runway configurations utilized at LGA include 22113,

22
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Figure 3-1: LGA runway layout

22131, 3114 etc., where the runway label on either side of the vertical bar identifies that

arrival and departure runway respectively. While LGA authorities could choose to operate

arrivals and departures on both runways, such an option might not always be required,

possible or preferable under typical considerations. For example, the wind direction and

speed at a given time might rule out the feasibility of operations on a particular runway

from a safety standpoint. Concerns over noise mitigation could render a particular runway



orientation inoperable during specific hours of the day. Air traffic controllers thus adopt an

ad hoc decision rule guided by above-mentioned considerations to select the configuration at

a given time, and this rule could vary across airports.

Several past works have acknowledged the role of runway configuration selection in air-

port congestion management [29, 31, 35], and interest has thereby grown in the problem of

configuration planning. Recent research has focused on the development of decision support

systems that prescribe the optimal sequencing of runway configurations, assuming knowledge

of their respective capacities, expected airport demand, and prevailing operating conditions

influencing configuration feasibility [27, 51]. This research takes a complementary approach

to the problem of configuration selection and addresses the task of describing how controllers

select configurations as opposed to determining how they should be. The configuration se-

lection processed is modeled using a discrete choice framework [10]. The relative significance

of the factors governing configuration selection are captured within configuration utility

functions and estimated using archived observations through the likelihood maximization

method. The discrete-choice framework enables the estimation of the relationship between

attributes of alternatives and their favorability as evaluated by a choice-maker. This mod-

eling approach has been successfully applied to several applications involving choice-making

among a set of discrete alternatives, such as consumer purchases [10], driver lane-changing

behavior [1, 2], etc. In this application, the airport traffic controllers serve as the choice-

maker and the various feasible configurations constitute the discrete alternatives at each time

step. The discrete choice model can be estimated using observed configuration choices under

recorded conditions, and the estimated model can be used to predict future configuration

choices made by controllers in response to evolving weather and demand conditions.

The next section provides an overview of a typical discrete-choice model application,

starting with the model framework and encompassing the tasks of model estimation and

validation. This discussion is tailored to the specific problem of configuration selection.

Results from the application of this modeling approach to LaGuardia (LGA) and Newark

(EWR) airports are used to demonstrate its ability to predict the runway configuration,

given the state of the system in terms of wind, visibility, demand, etc.



3.3 Discrete Choice Methodology

3.3.1 Conceptual framework

Discrete-choice analysis [10] considers problems in which a decision-maker needs to select

one option from a finite set of alternatives. It is assumed that the decision-maker chooses the

solution that maximizes a utility function that depends on several influencing factors (known

as attributes, and denoted X). The utility function for each alternative is modeled as the

sum of an observed component V (which is a linear combination of the influencing factors)

and an unobserved component E represented through error terms. Consider a particular

choice observation from a sample set, arbitarily labeled the n th observation. Suppose C' is

the set of alternatives available for the choice maker in this observation. Then, the utility of

alternative ci E Ca, for this choice process is given by

Vin = a'+ # - Xin (3.1)

Uin = Vin + ein,, (3.2)

Equation (3.1) provides the expression for the observed utility component, and reflects

the assumption that the utilities are linear functions of the attributes Xin. Equation (3.2)

acknowledges the presence of errors in the utility perceived by the choice maker. These errors

represent factors that are not explicitly observed or included amongst Xi,. The choice-maker

is assumed to make a rationale choice and select the alternative cj E C., with maximum utility

Uin.

j = argmax Uj.. (3.3)
i:c2 -CE

The unobserved error term ei, is assumed to follow a probabilistic distribution, thereby ren-

dering the choice process a stochastic event with each alternative having a specific selection

probability. The probabilistic distribution assumed for the error terms Ei, determines the

analytical relation between alternative selection probabilities and the observed component of

the utility functions, and hence the type of discrete choice model. When one assumes com-

plete independence in error terms across all alternatives and choice observations, and that



the error terms are identically Gumbel distributed, the multinomial logit (MNL) model [101

is obtained. The MNL model is a popular choice in many applications due to its analytical

tractability, and yields the alternative selection probability expression given by

P(ciC.) = - . (3.4)
cj: c, e-"

In other words, equation (3.4) provides the probability that the selection for the nth choice

process was alternative ci, given that the set of feasible alternatives for this process was C'.

Note that as the observed component of the utility for alternative ci (given by Vi,) increases

relative to the equivalent values of the other alternatives, so does the probability of selecting

ci.

The assumption of independent error terms across all alternatives, as adopted in the

MNL model, is potentially too restrictive in the context of runway configuration selection.

For instance, consider two feasible configurations that contain a common arrival (or depar-

ture) runway. This common runway might contribute identical unobserved effects to the

configuration utilities, rendering their error terms correlated. To mitigate this shortcoming,

advanced versions like the Nested Logit (NL) and Cross-Nested Logit (CNL) models [10] are

considered for this discrete choice application. These model structures permit error correla-

tion within specified subsets of alternatives as illustrated in the nested frameworks shown in

Figure 3-2. The illustration pertains to a choice example featuring four alternatives {altl,

alt2, alt3 and alt4}. The alternatives are grouped into two nests in (a) an exclusive manner

(NL representation), and b) an overlapping manner (CNL representation) with alt2 shared

between the two nests in the later structure. Note that some nests can be singletons. In

the NL structure, alternatives alt1 and alt2 would have a common component in their error

terms, and likewise for alternatives alt3 and alt4, but alternatives across nests, like alt2 and

alt 3, would have independent errors. In the CNL structure, alt2 would have a common

component of error with alt1, as well as with alt3 and alt4.

The expressions for alternative probabilities for the NL and CNL models, and their com-

parisons with the MNL model are described in [10]. For example, the selection probability



It2 Nt N t4

Figure 3-2: (a) NL model framework; (b) CNL model framework.

for alternative alt1 in the NL model (Figure 3-2 (a)) is given by

P(alt1|{alt1, alt2, alt3, alt4}) = P(alt1|N1)P(N1|{N1, N2}), (3.5)

where P(alt1|N1) = eP*aitalt N P(N1I{N1, N2}) = eVN1

Yj:cjG Ealt 1, alt2} "cVN~ V

VN1 = j *lOg jCa1t1a1t2 eIN1*Vi, and similarly for VN2-

Here, the scale parameters PN1 and pN2 provide a measure of the magnitude of error

correlation among alternatives within nests N1 and N2 respectively. For the airport configu-

ration choice problem, all three models (MNL, NL and CNL) were applied and investigated

through appropriate statistical tests.

3.3.2 Estimation framework

The parameters of a discrete choice model are the coefficients of the observed influenc-

ing factors Xin on the alternative utilities Ui, (a, # in Equation (3.2)), along with the

scale parameters like p for NL and CNL model structures. These are estimated using the

maximum-likelihood approach. The likelihood of a given choice observation is simply the

probability of selecting the observed choice given the values of the model parameters (a,

#, p) and influencing factors (Xi,). The likelihood function for an entire dataset of choice

observations (say, over N choice instances) is the joint probability of observing the sequence

of choice decisions recorded, or in other words

L(a, #, yi)= P((c1 |C1 ) o .... n(CN CN) a, /, P , X) (3.6)



where ci is the selected alternative, and C, is the set of available alternatives for ith obser-

vation, i c 1, 2, .., N. In the configuration selection setting, a choice process is assumed to

occur every recorded time step. In the estimation data set discussed for the case studies,

each record spans a 15 minute time interval.

A typical assumption made in the estimation step is that the choice observations (at each

time) are conditionally independent given the values of the explanatory factors Xi,. This

allows the likelihood function to be expressed as the product of the likelihood of individual

choice observations from Equation (3.6).

N

E(a, 4 pP(cil Ci) (3.7)
i=1

where P(cil C) is given by Equation (3.4) for the MNL model or Equation (3.5) for the NL

model.

The parameter estimates (a /, p) are those that maximize this likelihood:

(oz3,jp) = argmaxL(ca, #, p). (3.8)

Note that the scale parameter p is only estimated for NL and CNL models.

Likelihood-maximization is a nonlinear optimization problem. This study uses BIOGEME

([14]), a freeware package that specializes in estimating discrete-choice models through cus-

tomized in-built algorithms.

3.3.3 Model specification and structure development

Model specification refers to the exact functional form of the systematic utility compo-

nent Vi, comprising of the observed influencing factors Xi,. The specification is developed

through iterative investigation of candidate factors affecting the choice behavior. Standard

hypothesis testing procedures help assess the statistical significance of every new factor con-

sidered. Likelihood-ratio test for nested hypothesis testing [10], and Cox composite model

test for non-nested hypothesis testing [22, 19] are the two test designs used in this study to

develop configuration utility specifications. The structure of a discrete choice logit model



refers to the particular correlation structure adopted for the alternative error terms Ei'. As

mentioned earlier, MNL, NL and CNL models were all considered in this study. Established

hypotheses tests (Hausman-McFadden test [38]) that help ascertain the statistical validity

of structural enhancements offered by the NL or CNL model over the MNL model were used

in this study.

3.4 Model Validation

The final step in any empirical model-building process is the evaluation of its predictive

capabilities in comparison to a different, typically simpler, model that serves as the baseline

framework. Both the proposed and baseline models are applied upon a validation dataset,

using parameters estimated from a common training dataset, and their predicted probabil-

ities are assessed, through well-defined metrics, for their proximity to the actual observed

choices in the validation dataset. The definition of the baseline model is critical to the out-

come of the validation task. This study adopts a probabilistic model depicting configuration

selection as a Markovian transition process to be the baseline model. Such a model was

proposed in [61], and differs from the discrete choice framework in the crucial sense that it

does not explicitly model influencing factors Xj, driving configuration selection.

The following section presents the details of the application of the proposed technique

to the configuration selection process at LGA and EWR airports, as well as the associated

results and inferences.

3.5 Case Study: LGA and EWR Airports

3.5.1 Training data set

The training data set consisted of the 15-minute aggregate ASPM records for the year 2006,

which provide for each 15 minute interval, the chosen configuration as well as other prevailing

airport conditions such as weather, wind speed and direction, demand, etc. Configuration

selection is assumed to occur at every 15-min interval. Operational data for hours from

12 midnight to 6 am were excluded from the data set, since reporting during these periods



is more prone to errors. Feasible configurations for each time period were determined by

the set of runways that did not exceed the FAA-specified safety thresholds for tail-winds

(5 kn) and cross-winds (20 kn) [21]. Observations featuring operation of infeasible runway

configurations (most likely reporting errors) were also excluded from the data set.

3.5.2 Candidate influencing factors

There are several factors that potentially influence the choice of configuration (from among

the feasible options) in any time period. Presented below are those that are explicitly

included in the utility functions of the discrete choice model.

Inertia: Configuration changes are a fairly involved procedure, require extensive coordina-

tion among the different airport stakeholders, and are thought to cause a loss in airport

throughput [27, 51]. The latter aspect is exclusively studied in the second part of this

chapter. For these reasons, the configuration from the previous time interval is likely

to be favored pending other considerations, and its utility is therefore expected to be

higher on account of this inertial factor relative to other alternatives.

Head-wind speeds: It is hypothesized that higher head-wind speeds are favorable for both

arrival and departure operations, and therefore increase the utilities of the respective

configurations. In this study, a combination of current and forecasted wind conditions

are used as the measure of this influencing factor, given that controllers are likely to

consider future conditions when planning configuration changes. In the absence of

information on the actual forecast used by airport planners, the observed wind speeds

over the immediate future of every time period is used as a proxy.

Arrival/departure demand: During periods of significantly high total (arrival + depar-

ture) demand, a high-capacity configuration is likely to be favored. The configuration-

specific capacity envelopes obtained in the previous chapter are used to define this

factor in the utility function.

Noise abatement procedures: In accordance to FAA procedures, certain runway config-

urations are to be avoided during applicable time periods. The Standard Operating



Procedures (SOPs) for the NY airports identify the overnight hours (10pm-7am) for

activating the noise mitigation measures, and time-specific variables are accordingly

defined for the configuration utilities in this study.

Configuration switch proximity: Configuration changes require increased coordination

among airport elements, and disrupt the flow of aircraft on the surface. Authorities

might therefore be inclined to minimize the level of effort involved. For example, a

configuration change that only requires the addition of a departure or arrival runway

may be easier to implement than a change that needs to change the direction of ar-

rival flows entirely. In this study, the type and magnitude of the change is equated to

the incident angles between the respective arrival and departure runways of the pre-

ceding and succeeding configurations. Using this representation, six distinct possible

switch types are defined and their relative preferability is studied through appropriate

categorical variables. For example, the configuration change which results in a 900

reorientation of the arrival runway and a 1800 reorientation of the departure runway is

denoted as switch category (90,180) and applied to all configurations that will require

such a change from the configuration used in the previous time interval.

Inter-airport coordination: In multi-airport terminal-areas such as New York, arrival

and departure flows into the different airports must be coordinated. This coordination

is handled by the NY TRACON in conjunction with the local ATCs of the airports,

and can occasionally dictate configuration choices. Given this understanding, the ef-

fect of JFK's configuration on the concurrent choices for LGA/EWR is investigated.

The nature of inter-airport configuration coordination depends upon the interactions

between the respective runway orientations. Categorical variables representing these

interactions between distinct pairs of runways at JFK and at LGA/EWR are defined

for each configuration at LGA/EWR. Since airport authorities follow runway-specific

airspace routes for landing and takeoff operations, the existing interactions among the

routes from every pair of runways from the two neighboring airports can be estimated

through this set of variables.



3.5.3 Estimation of discrete-choice models and utility functions

As explained in the methodological overview, the utility specifications and error structures

were developed and statistically verified through a sequence of tests. The details of the

finalized models are discussed below.

3.5.3.1 LGA results

The training data set had a total of 17,455 choice observations post-filtering (i.e., data from

17,455 15-min time periods), featuring a total of 10 distinct configuration alternatives. The

final model has a NL structure with two alternative nests, grouping configurations with

arrival runways 4 and 13 respectively as illustrated in Figure 3-3. The other configurations

are modeled as singleton nests. For an understanding of the geometric alignment of the

labels configurations, refer the LGA runway layout in Figure 3-1.

414 4113 4131 1314 13113

Figure 3-3: Estimated NL structure for LGA configuration selection (for year 2006).

The finalized configuration utility functions for LGA is as provided below.

Vt = a + #i3isvist + #inertia(choicet_= i)
5

+ #Ii/3 fdwindi + # with(switch(i, choicet_1) = k)
kE{arr,dep} k=1

+ (LGA _runa" k)timek
kC {mor,eve} pE{4,13,22,31}

+#crossdem_ind t (type = "cross")

+ )7# p,(LGA-run = k)(JFK-run' = p)
lC{arr,dep} pE{4,13,22,31} kE{4,13,22,31}

71

(3.9)



Notation for utility variables:

choicet

vist

winds

switch(i, j)

LGA-runrr

LGArun dep

JFK runrr

deJFK-run" e

timek

type

dem-indt

Configuration observed at time t

1, if VFR at time t,

0, otherwise
Headwind speed along kth runway (arr or dep) of configuration i at

time t

Switch category between configurations i and j, defined based on

angular reorientation between respective arrival and departure run-

ways

1, if (0, 90) or (90, 0)

2, if (90, 90)

- 3, if (0, 180) or (180, 0)

4, if (90, 180) or (180, 90)

5, if (180,180)

Arrival runway of configuration i

Departure runway of configuration i

Arrival runway operated at JFK for time t

Departure runway operated at JFK for time t

S1, if (hr(t) C [6,8])&(k = morn) or (hr(t) E [22, 24])&(k = eve)

0, otherwise

Capacity class configuration i belongs to. "Mixed" or "Crossing"

arrival/departure runways

Demand indicator variable

1, if arrival + departure demand > 10

0, otherwise

The estimated results for the coefficients of the utility variables are tabulated in Ta-

ble 3.2, along with the corresponding t-statistic in parenthesis. When the absolute value



1. Inertial
Oinertia +5.1 (68.8)

2. Visibility

# 1 +1.53 (2.72)

+1.83 (2.79)

31 +1.71 (2.2)

+1.15 (3.42)

134 +0.83 (1.47)
213 +0.8 (2.1)

Ovis3

#1 +1.35 (2.71)

+1.54 (4.3)

3. Headwind speed

3wind 0.044 (8.2)
3nd 0.029 (5.0)

4. Demand
#dr' 1 s 1.68 (8.9)

Table 3.2: Estimation results for

5. Noise abatement
3"or 1.32 (7.4)

#eve 0.93 (3.8)

#3eve -0.29 (-1.3)

6. Switch proximity

switch -1.78 (-753)
swic -2.2 (-4.4)

7. Coordination with JFK
#f 0.44 (1.75)
#333 -0.404 (-1.37)
#e _02 -. 588 (-1.69)

#13,'1 -1.05 (-3.55)
#3 -1.14 (-5.83)
#/ 4 -0.4 (-1.7)

#312 0.959 (4.1)
8. Nest scale parameters
arr 1.1 (1.8)

pgr 1.65 (1.75)

configuration selection at LGA.

of the t-statistic exceeds 1.96, the estimate of that parameter can be deemed statistically

significant. As can be observed, the a priori hypotheses made in Section 3.5.2 are corrob-

orated by the estimation results in the case of inertial effects and headwind speeds. While

the estimates for the switch category and the JFK configuration coordination variables are

hard to interpret due to less a priori understanding, a comparison with the corresponding

estimates from an independent data set exhibits consistency in the configuration preferences.

3.5.3.2 Illustration of implied configuration selection probabilities using hypo-

thetical values for utility variables

The bar plots in Figure 3-4 depict how the estimated coefficients translate to configuration

selection probabilities given hypothetical values for the utility variables. The discussion is

restricted to prominent runway configurations: 414, 31131, 4113, 22|13, 22131 and 3114. Hy-

pothetical scenarios are created for illustrating the tradeoffs between switch proximity, wind

favorability and operational capacity as influencing factors for configuration selection. VFR



operating conditions are assumed, and the simultaneous configuration at JFK is assumed

to be its most prominent (31R31L). It is also assumed that noise abatement regulations

do not apply. Within this set of conditions, two demand scenarios are considered, low

(dem-ind' = 0) and high (dem-ind' = 1). Assuming that the current runway configuration

at LGA is 31131, the relative selection probabilities of all the prominent configurations are

examined for 20 kn wind speeds, with directions such that there are headwinds along runways

31, 22 and 13 respectively. Note that the probabilities presented for non-incumbent config-

Headwind for 22

(a) Low Demand Scenario

04113
022|13
022131

33114

M31131 (Incumbent)

Headwind for 22
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urations are measured relative to each other (i.e, conditioned on a change in configuration)

to facilitate comparison. The absolute selection probability for the incumbent is also shown

next to these relative probabilities. For the low demand scenario (Fig. 3-4 (a)), it is observed

that configurations with headwinds are typically favored among the non-incumbents, with

the exception occurring when the wind blows along runway 13. In this scenario, although

the non-incumbent configurations 4113 and 22113 have headwinds for departures, they would

both require a less favorable switch (type 4) from the incumbent configuration 31|31, which

reduces their desirability. In addition, the inertia effects ensure that the incumbent configu-

ration (31131) has a high probability of being retained for all three wind directions, although

this probability progressively reduces as wind directions become less favorable.

For the high demand scenario (Figure 3-4 (b)), configurations with crossing runways

(4|13, 22113, 22131 and 3114) dominate among the non-incumbents, while the retention prob-

ability for the incumbent also comparatively reduces, highlighting the increased importance

of higher configuration capacity over other considerations such as switch proximity.

3.5.3.3 EWR results

The training dataset had a total of 22,792 choice observations post filtering, featuring a total

of 20 distinct configuration alternatives. The final model has a nested logit structure with

one nest for a well-defined subset of alternatives as depicted in Figure 3-5. The nest gathers

all EWR configuration alternatives with an additional arrival runway. The implication of

this nesting is that configurations with an additional arrival runway share commonalities in

terms of the unobserved factors influencing their preferences.
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Figure 3-5: Layout of EWR, along with the estimated NL structure for EWR configuration selection
(for year 2006).

The finalized configuration utility function for EWR is as shown below.

Vit = i + i svist + #inertia(choicet1 = i)

Wiind it + E #S'Witch(switch(i, choicet_ 1) = k)
jE{prim,ex} kE{arr,dep}

k C{mor,eve} pE{4,11,22,29}

+ 5 oden
ke

k E- fpar,ex-arr,ex-dep}

k=1

fk (EWR-run " = k)timek

dem-indktype k)

lE{arr,dep} pE{4,13,22,31} kE{4,11,22,29}

(3.10)

0kp(EWR-run' = k)(JFK-run' = p)



Extended Notation (in addition to that described for LGA):

prim

ex

typei

dein-ind'

dem-ind'dem inldxparr

dem-inde dep

dem-ind'ex-de

Shorthand for primary runway (for arrival or departure) of a

configuration

Shorthand for extra runway (for arrival or departure) of a con-

figuration

Capacity class configuration that i belongs to.

" par" : Parallel arr/dep runways

"ex_arr": Extra arrival runway

"ex-dep" Extra departure runway

Demand indicator variable implying need for capacity class k

1, if arrival + departure demand > capacity of crossing

runway configuration

0, otherwise

1, if arrival demand > unhindered arrival capacity

without additional runway

0, otherwise

1, if arrival + departure demand > capacity of parallel

runway configuration without additional runway

0, otherwise

The estimated results for utility coefficients are tabulated in Table 3.4, along with the

corresponding t-statistics in parenthesis. It can be noted once again that most parameters

are statistically significant.

Once again, the stated a priori hypotheses for inertia and wind effects are largely sub-

stantiated by the estimation results. Additional wind speed coefficients are introduced to

capture effects on the supplementary (extra) runways independent of the primary runways

for configurations with more than one arrival or departure runway. Also, the estimates for

the switch category and the JFK configuration coordination variables were cross verified with

those obtained for year 2007 to assess their credibility. The estimates for these variable types



1. Inertial
Oinertia +4.82 (66.6)

2. Visibility
#4R|4R4R14R -0.021 (-1.6)
# 2 -0.027 (-2.12)

#292 29 -0.014 (-1.96)
S4R,1114L -0.0 13 (-2.67)

4L oV4R'29|4L -. 0 -. 7

#4Ll4R -0.025 (-2.73)
22L,ii22R -0.025 (-4.96)
22L,29122R -0.03 (-2.2)

-vis#22L,22RI22R 0.009 (-3.1)
#22R,29|22L -0.018 (-1.89)

3. Headwind speed
3rim arr 0.033 (3.0)
prim,dep 0.054 (4.24)'wind

/#exarr 0.027 (3.93)

4. Demand
#den 1.09 (8.33)

#em 0.76 (5.9)
#e' 1.78 (7.15)

5. Noise abatement

# " 1r -1.67 (-7.35)

#9f9 -1.86 (-6.6)

6. Switch type

Oswitch -098 (-3.73)
/3Swic -0.62 (-1.8)

Oswitch - -/3wth -1.7 (-6.74)
#,witch-/3Swi4 -2.23 (-3.23)
#switch -

-3wth 0.42 (-3.97)
7. Coordination with JFK

#431 0.826 (2.35)
# 2,4 -0.615 (-1.32)
# p3 -1.14 (-2.35)
/#29J3 -0.694 (-2.73)
4,22  -1.25 (-3.07)
# 3 0.437 (2.57)
#__f_31 0.576 (2.84)

1.2 (2.95)
#22,22 -0.94 (-2.63)
/39,13 1.13 (4.08)
/3arr 0.449 (1.66)

,31arr 1.22 (4.17)
8. Nest scale parameter

Pex-arr 1 1.45 (3.23)

Table 3.4: Estimation results for configuration selection at EWR.

exhibit reasonable consistency across the two years, thereby corroborating their validity.

3.5.3.4 Illustration of implied configuration selection probabilities using hypo-

thetical values for utility variables

For EWR, Figure 3-6 demonstrates the tradeoffs between switch proximity, demand-capacity

inter-relationship and coordination with JFK in configuration selection, as implied by the

parameter estimates. As with LGA, hypothetical scenarios are constructed controlling for

other factors such as wind speed and direction (20 kn headwind for runway 11), visibility con-

ditions (VFR), and noise abatement restrictions (not present). The focus is restricted to the

prominent configurations (4R4L; 4R,11|4L; 4R,29|4L; 22L|22R; 22L,11|22R; 22Ll22R,29),

and 4R4L is assumed to be the incumbent configuration. Three demand scenarios are



considered (when demand exceeds crossing runway configuration capacity, when demand

exceeds unhindered (or free) arrival capacity, and when demand exceeds parallel runway

configuration capacity), each in conjunction with the two most prominent JFK runway con-

figurations: 31R131L and 13L|13R. As with LGA, the relative selection probabilities for the

non-incumbent configurations are measured conditioned on a change in configuration.

1 __

0.8

- 0.6
0

0.
0)

.20.4
0

0.2

0
=1 demind_exdep = 1

(a) JFK configuration:31RI31L

1 4R,1114L
*4R,294L

0.8 U22LI22R
0122L,l11|22R

L 6 '22L122R,29
Cz 0.6
0

. 4R4L (Incumb)
CD

0

02

02
dem-ind par =1 demnd_exarr = 1 dem.ind-ex-dep = 1

(b) JFK configuration:13L|13R

Figure 3-6: Relative configuration selection probabilities at EWR for described hypothetical sce-
narios.

When JFK is operating 31R131L (Figure 3-6 (a)), it is noted that configuration 4R,1114L

dominates among the non-incumbents across all demand scenarios. This is due to its switch-

ing proximity relative to the incumbent, as well as favorableness given the JFK configura-



tion (note the positive values of coefficients for 11,31 and 3 Configuration 22L,11|22R

is second-best due to the low utility associated with switch category 5: (180,180). Configu-

rations featuring runway 29 are least preferred due to the adverse wind direction. Configu-

rations with an additional arrival runway (like 4R,11|4L) are more preferable when demand

exceeds unhindered arrival capacity (dem-ind'a =1), while configurations with additional

departure runway (like 22L|22R,29) are more preferable when demand exceeds parallel run-

way configuration capacity (dem-ind'xdep=1). When JFK operates in 13LI13R (Figure 3-6

(b)), the dominant non-incumbent is 22L,11|22R, which is now favored by the JFK con-

figuration (note that the coefficients #ar and #1a13 are both positive), overriding switch

proximity considerations. Also, the preference for the configuration with additional depar-

ture runway (22L|22R,29) remains suppressed even when demand exceeds parallel runway

configuration capacity, since the JFK configuration strongly inhibits it (negative signs of

coefficients ,3)-

3.5.4 Model validation

This section describes the validation of the proposed discrete choice model for configuration

selection and its parameter estimates. The validation analysis uses a test data set to compare

the quality of configuration selection predictions between the estimated discrete choice model

and a simpler model (termed the baseline model). The test set consisted of ASPM data

records from 2007 for the study airports, refined using same filters applied for the training

data set (2006 ASPM records). The baseline model structure is described in the next section,

followed by a brief discussion of the validation results.

3.5.4.1 Baseline model

The use of the discrete choice modeling framework enables the incorporation of relevant

influencing attributes like weather conditions, demand, etc. in determination of configu-

ration selection probability. A simpler approach is to compute explicitly, using empirical

observations, the probability of a particular configuration being chosen conditioned on the

configuration used in the previous time interval. Such an approach effectively generates a



transition probability matrix A, where an element A1 ,j represents the estimated probability

of configuration j being chosen for any time interval t, given that configuration i was ac-

tive in time interval t - 1. Peterson (1992) [61] describes such a model of airport capacity

dynamics based on a Markovian premise and featuring a finite number of capacity states,

where each state represents a specific configuration. His empirical estimation procedure is

used here to develop parameter estimates for the baseline model.

Given Ct Vt = {1, 2, ...T}; Ct e {1, ... , NJ, where T is the total number of time intervals,

Nc is the total number of possible configurations, and Ct is the selected configuration at time

zT( O(Ci=)A/\(Ci ==i)
Z= - -t Vi, j e {1, .. , Nc. (3.11)
E_1 Ct_1 ==iZ

It can be shown that the above estimation framework is equivalent to a MNL discrete choice

model where the configuration utilities are defined as the summation of Nc - 1 time-invariant

categorical variables as expressed below.

Vit - > /,(choicet 1 j) (3.12)

Each categorical variable serves as an indicator of a specific runway configuration in the

previous time-step, and the corresponding coefficient is specific to each configuration's util-

ity. The key difference from the discrete-choice model proposed in this study is that other

explanatory factors like weather, demand, etc. are not considered in the baseline model.

3.5.4.2 Baseline model estimates for LGA and EWR

Tables 3.5 and 3.6 present the estimated transition probability matrices (A) for LGA and

EWR using the same dataset (2006 ASPM) as the discrete choice models. The tables only

consider the most prominent configurations in both airports.

3.5.4.3 Validation results

In this study, prediction accuracy is assessed using aggregated configuration probabilities

over the validation dataset. Since typical airport configuration planning horizons are of the

order of 3 hours, the predicted probabilities are computed conditioned on the configura-



Aij 414 31|31 4113 22|13 [22|31 3114
414 0.941 0 0.021 0.011 0.002 0.018

31131 0.001 0.957 0 0.002 0.019 0.019
4|13 0.004 0 0.974 0.013 0 0.004

22|13 0.001 0 0.005 0.980 0.007 0.003
22|31 0 0.005 0.001 0.008 0.972 0.009
31|4 0.003 0.003 0.007 0.003 0.008 0.977

Table 3.5: Baseline model estimates for LGA.

], 4R|4L [ 4R,1114L 4R,2914L 22LI22R 22L,11122R 22L 22R,29
4R|4L 0.983 0.006 0.003 0.006 0.001 0

4R,11 4L 0.019 0.972 0 0.005 0.003 0
4R,2914L 0.019 0 0.973 0.007 0 0
22LI22R 0.004 0 0.001 0.987 0.003 0.004

22L,11|22R 0.004 0 0 0.016 0.976 0.003
22L 22R,29 0.001 0 0.001 0.040 0.013 0.941

Table 3.6: Baseline model estimates for EWR.

tion observed 3 hours before, and not the previous 15-min time period as modeled in the

estimation process.

Suppose obs-conft denotes the observed configuration for time-step t. The aggregate

predicted probability (agg-pri) for configuration i using a 3-hr (that is, twelve 15-min periods)

look-ahead is calculated as:

aggpri =
t:obsconft =iP(conft = i conft-12 = obs-conft-1 2)

Zt:obsconft=i (3.13)

In (3.13), the 3-hr look-ahead prediction probability P(conft = ilconft-12= k) is computed

recursively in the following manner:

P(conft = jconft-1 2 = k)

P(conft_1 = ilconft-1 2 = k)

Nc

= P(conft = j~conft_1 = i) * P(conft-I = ilconft-1 2 = k)
i=1

N,

= P(conft-I = ilconft-2 = m) * P(conft- 2 = mconft-12 = k)
m=1

and so on.

The absolute prediction quality would naturally deteriorate as we increase the length

of the look-ahead duration. However, it should not influence the relative comparison of



the models' prediction qualities. The validation results are presented below (Table 3.7 for

LGA, and Table 3.8 for EWR). The results are partitioned for two disjoint data segments,

the first comprising of observations from time periods that are not within 3 hours of the

nearest observed configuration switch, and the second set comprising of the remainder of

the dataset (i.e., within 3 hours before or after a switch). The results are presented for the

most frequently used configurations at each airport, as listed in Tables 3.5 and 3.6. The

validation tables show the aggregate probability of a runway configuration being correctly

predicted, both near and away from configuration switches. The aggregate probabilities in

the vicinity of a switch are conditioned on the event of a switch occurring. We note that a

perfect prediction mechanism would deliver an aggregate probability equal to 1.

Outside temporal vicinity of switches
Correct prediction

Configuration Frequency Baseline Discrete-Choice
22|13 4403 0.81 0.95
22|31 3725 0.73 0.92
311 4 2989 0.77 0.90
4113 2339 0.74 0.91

31131 1211 0.61 0.70
4|4 599 0.50 0.69

Within temporal vicinity of switches
Configuration Frequency Baseline Discrete-Choice

3114 1103 0.48 0.71
22|31 1043 0.50 0.74
22113 1024 0.55 0.76
4|13 569 0.47 0.58
31|31 403 0.31 0.57

4|4 135 0.31 0.44

Table 3.7: Validation results for LGA (aggregate probabilities of correct configuration prediction
for 2007 dataset). Number of parameters in baseline model = 100; number of parameters in
discrete-choice model = 36.

The validation results show that the predictions generated by the discrete-choice model

are significantly better than those of the baseline model, in spite of the considerably smaller

number of parameters required by the discrete-choice model. This result highlights the

richer use of empirical information achieved by the discrete choice model. The fact that the

improvement in prediction accuracy is consistent across the two disjoint sets of observations



Outside temporal vicinity of switches
Correct prediction

Configuration Frequency Baseline Discrete-Choice
22LI22R 6583 0.88 0.87
4R4L 4173 0.84 0.87

22L,11|22R 1686 0.77 0.94
4R,114L 1087 0.74 0.88
4R,29|4L 715 0.74 0.81

22L 22R,29 211 0.52 0.16

Within temporal vicinity of switches
Configuration Frequency Baseline Discrete-Choice

22L 22R 2073 0.70 0.73
4R4L 1303 0.65 0.73

22L,11|22R 799 0.32 0.76
22L|22R,29 573 0.24 0.21
4R,11 4L 505 0.40 0.74
4R,2914L 336 0.29 0.70

Table 3.8: Validation results for EWR (aggregate probabilities of correct configuration prediction
for 2007 dataset). Number of parameters in baseline model = 400; number of parameters in
discrete-choice model = 57.

(near and away from configuration switches) demonstrates the superiority of the discrete-

choice model in predicting both the timing of configuration switch as well as the retention of

the incumbent configuration if the prevailing conditions don't motivate a switch. In general,

the quality of prediction is lower in the vicinity of configuration switches due to the inertia

term biasing predictions towards incumbent configurations. Similarly, it is noted that the

model performs relatively poorly in predicting configurations that are used more infrequently.

3.6 Impact of Configuration Changes on Capacity

As seen in Section 3.2, airport authorities routinely revise active configurations guided by

considerations such as wind, operational demand, noise mitigation, etc. Every configuration

switch requires a reallocation of resources, as well as significant coordination and confor-

mance monitoring. This effort can vary in magnitude and duration depending upon the

nature of the switch and can interfere with operational efficiency, as briefly discussed earlier

in this chapter. For instance, a configuration switch involving the addition of an extra arrival



or departure runway to boost current capacity would conceivably cause less disruption than

a switch involving a complete turnaround of runway directions. The decrease in efficiency

can be particularly detrimental when the switch coincides with a high-demand period. Past

studies involving configuration planning have acknowledged the adverse impact of switches,

and have implicitly accounted for it by assuming zero capacity for an arbitrarily fixed du-

ration representing the switch, regardless of its type [27, 35, 53]. However, the duration of

this impact has not previously been estimated in practice. The estimated impact of a con-

figuration switch may be particularly inaccurate during high-demand periods, during which

the errors in the underlying assumptions can get amplified.

This thesis proposes a systematic approach for estimating operational impacts of con-

figuration switches that can improve understanding of airport operations and thereby the

quality of capacity predictions. The objective is to derive estimates on both duration as well

as capacity impacts of switches using ASPM data on airport throughput observations. The

methodology explicitly distinguishes between switch types, as classified in Section 3.5.3.1,

based on angular reorientation of respective runways. The approach is applied to three air-

ports: EWR, JFK and DFW, using ASPM 15-min records for the year 2006, and the results

and their implications for the operational characteristics of these airports are discussed.

3.6.1 Estimation methodology

The operational impact of configuration switch type k is described by two coupled attributes:

sw-durk : Duration for which switch effect lasts, and

sw-redk : Percentage reduction in airport capacity during switch

Empirical evidence of these attributes will be found in the temporal vicinity of recorded

configuration switches. The principal objective of the estimation process is to differenti-

ate observations affected by switches from regular ones. The following considerations are

important for the design of the estimation framework presented here.

Coupling of sw-redk and sw-durk : In this study, the observed airport throughput serves

as the common indicator for both switch duration and the switch-induced capacity re-

duction. The empirical manifestations of these two attributes are therefore coupled,

and estimation methods would require fixing the values for one of them. A two-stage



framework is developed in this study. The first stage looks to detect the presence of op-

erational inefficiency (sw-redk) in the neighborhood of switches, while fixing the switch

duration (sw-durk) to a reasonable constant. The second stage focuses on those switch

types that exhibit statistically significant inefficiencies in the first stage, and replicates

the first stage estimation procedure to compute capacity reduction magnitude for dif-

ferent values of switch duration, thereby generating a comprehensive measure of switch

impact.

Potential reporting errors: ASPM data on airport operations is subject to reporting

errors concerning the exact time of configuration switches. This issue implies that

observations in the vicinity of recorded switches need not always provide a reliable

indicator of associated operational inefficiencies. Hence, in addition to a localized

analysis for switch effects, a global estimation approach that does not rely upon the

actual reported switch instants is also used in first stage of the estimation framework.

The local and global estimates are together used to derive a robust inference on the

presence of switch-induced inefficiencies.

In this study, airport operational efficiency is assessed using arrival throughputs alone,

given that it is the prioritized mode of operation over departures. The quantities used in

the discussion, along with their definitions, are presented first.

k 1, if switch type k recorded at time t for day n in dataset,

0, otherwise.

where t E {1, .. , Tn} (total number of time steps in nth day),

n {1, .. , N} (total number of days in dataset),

k E {1, .. , K} (total number of switch types for the given airport)

opn,: Observed arrival throughput for time t for day n

demn,t Recorded arrival demand for time t for day n

capnt Estimated arrival capacity (from Chapter 2) for time t for day n

target,,: min(demn,t, capnt), Operational target for airport for time t on

day n



op-effn,,:

target-perc,:

pk:

A:

Measure of operational efficiency achieved by airport at

time t on day n

target Measure of operational load faced by airport at time t on

day n

U f nt - sw-urk n - s-durk+I .,+ swdurk} set of time
n,tlsw,,t=1

instances in local neighborhood of all recorded instances of switch

type k assuming fixed switch duration sw-durk.

U{nt}, set of all recorded instances
n,t

Given the definition of the quantities, the estimation framework looks to quantify the

trends in op-eff,, with respect to the influencing entity sw k, Vk.

3.6.1.1 First stage

As mentioned earlier, the first stage of the estimation fixes sw-durk, and uses local and global

trends in opeffs,, with respect to swk to ascertain the presence of tangible impacts of switch

type k on operational efficiency.

3.6.1.1.1 Local Estimation: The local estimation attempts to statistically compare the

mean operational efficiency op-effnt observed within the switch neighborhood (Fk) to that

observed outside it. This can be achieved by running a simple linear regression model of the

following form.

op-eff ,, - 'ocai + l #1ocalind, t + ent
kE{1,..,K}

where indicator variable indk - {1, if n, t E Fk; 0, otherwise}. Here, the estimate for

regression parameter #1local gives a measure of reduction in mean operational efficiency within

the neighborhood of switch type k in the dataset, and its statistical significance is easily

verified using its t-statistic.

Vnt E A (3.14)



3.6.1.1.2 Global estimation The global estimation attempts to obtain a similar mea-

sure of switch-induced mean operational inefficiency, but without a priori identification of

switch neighborhood, thereby rendering the estimate impervious to potential inaccuracies in

reported timing of switch instances. This is achieved through the following day-based linear

regression model.

yn O'gobal - (3.15)globalX -n n +
kE{1,..,K}

S op-eff ,t

Here, the dependent variable Y = tE1"T"" (average observed operational efficiency

for the nth day), and the independent variable X swkt (the total number of
tGJi,..,rs}

switches of type k recorded on the nth day). The regression parameter kio.ai measures

switch impacts on an aggregated scale, and can also be verified for its statistical significance.

3.6.1.1.3 Inference rule: The following inference matrix (Table 3.10) describes how

the local and global estimates of operational inefficiency, measured for fixed switch duration

sw-durk, are jointly utilized to draw conclusions on the nature of operational impacts for each

switch type k. Consistently significant measures from local and global analyses is inferred

#kgiobai is significantly nega- -kiobai is not significantly
tive negative

#ikcal is significantly Confirmed presence of Implies insignificance of
negative switch impacts; warrants switch impacts on daily

second stage estimation aggregates; little value in
further investigation

#kcal is not signifi- Suggests possible errors in Confirmed absence of
cantly negative reporting of switch times; switch effect; no need for

confounds further investiga- further investigation
tion

Table 3.10: Inference matrix for first-stage analysis on configuration switch effects.

as providing conclusive evidence for the presence of switch effects, which are then further

analyzed in the second stage of estimation.

Vn E { 1, .. N}J



3.6.1.2 Second stage

For a switch type k deemed to impose significant operational inefficiencies in the first stage

analysis, the second stage looks to explicitly estimate the parameter sw-redk for different

values of sw-durk by executing a detailed version of the day-based regression developed for

the global analysis in the first stage. While the local and global regression models in the

first stage provide approximate measures of switch-induced mean operational inefficiency,

the second stage focuses on estimating the percentage reduction in airport capacity per unit

time during switches. The latter is a more instructive metric that can be readily used in

models for configuration planning [27, 53]. The following linear regression model is adopted

for the second stage estimation of sw-redk for each assumed value of sw-durk.

sw dur kXk
S= all + z # Tu " + E Vn E {1,.., N} (3.16)

kE{1,..,K}

where variables Yn and Xk, are as defined in 3.15 for global regression model from first stage.

Given the choice of the independent variable s' W which captures the fraction of the

nth day's observations affected by switches, the regression coefficient #k provides a direct

measure of switch parameter sw-redk.

The above regression model is used to enumerate the estimates for sw-redk for different

fixed values of sw-durk, to obtain insight into the measured switch effects. It is noted here

that the regression models in (3.15) and (3.16) define dependent and independent variables

based on daily averages of varying sample sizes T, Vn E {1, .., N}. Given this feature,

weighted least-squares estimation (WLS) is adopted to restore homoskedasticity amongst

the error terms, En, and ensure efficient estimates for regression coefficients, as detailed in

[62].

3.6.1.2.1 Controlling for operational loading parameter, target-perCn,t: Finally,

it is noted that the estimated measures for switch effects from the first and second stages

can be further refined by controlling for parameter target-peret in the estimation dataset.

The reasoning here is that switch effects are expected to manifest more visibly during times

of high load, that is, values of target-percet close to 1. The estimation datasets for all the



above-discussed regression models (3.14), (3.15) and (3.16) are thus filtered based on varying

thresholds of the parameter targetpercn, and focus is mainly devoted to the higher ranges

of this parameter during each of the respective analysis in the two estimation stages.

3.6.2 Case studies: EWR, JFK and DFW

The two-stage estimation framework was applied to study configuration switch impacts at

EWR, JFK and DFW using ASPM 15-min records from year 2006. Along with reported data

on airport configuration, arrival throughput as well as demand for every 15-min observation,

the unhindered arrival capacity estimate obtained using the quantile regression method from

Chapter 2 is used for the analysis. Overnight hours are excluded from the estimation dataset

as they are not representative of regular airport operations.

While the runway layout for EWR was depicted in Figure 3-5, the equivalent sketches

for JFK and DFW are provided in Figure 3-7 and 3-8 respectively. There were a total of

20 and 24 distinct configurations observed at EWR and JFK respectively, while two distinct

configurations involving opposite runway orientations (along the 18s and along the 36s) ap-

peared in 85% of observations at DFW.

The switch categories defined in Section 3.5.3.1 of the configuration selection model,

based on the angle of runway reorientation, are invoked for EWR and JFK in this analysis.

Due to limited instances of individual categories in the dataset, switch classes 1 - 4 (i.e.,

all switches not involving a complete airport turn-around) are consolidated and termed the

"base" switch class. The "non-base" switch class is one that requires a 180 eorientation of

both arrival and departure runways. For DFW, this is the only form of configuration switch

analyzed due to the predominance of two configurations in the dataset.

3.6.2.1 First stage analysis

The following tables display the local and global analysis results for the EWR (table 3.11),

JFK (table 3.12) and DFW (table 3.13) airports respectively. Each table provides the respec-

tive estimates for switch effects (and the t-statistic in paranthesis) for all analyzed switch



Figure 3-7: JFK runway layout

Figure 3-8: DFW runway layout



types across different ranges of the operational loading parameter target perce,. The switch

duration sw-durk is set at five 15-min time periods (i.e. 1.25 hours) for all switch types

assessed in the first stage.

target-percg ;> 0.1 0.4 0.7 1.0

alocal 84.1 (724.23) 82.2 (666.1) 76.7 (549.2) 70.6 (478.1)
# base -0.34 (-0.67) -1.23 (-2.15) -2.81 (-4.21) -7.34 (-9.51)

/n n -base 2.86 (8.17) 3.15 (8.31) 3.13 (6.98) -0.52 (-0.94)

aglobal 83.9 (102.7) 82.5 (99.8) 78.9 (99.22) 75.55 (126.5)
obase -3.72 (-5.97) -3.99 (-5.92) -4.49 (-6.19) -5.27 (-6.46)

"gi base 1.97 (3.96) 2.02 (3.89) 1.86 (3.35) 0.36 (0.55)
No. of base switches 199 189 169 93

No. of non-base switches 454 441 385 195

Table 3.11: First stage estimation results for EWR using 2006 ASPM data.

target-perca, ;> 0.1 0.4 0.7 1 1.0

alocal 91.4 (796.7) 85.8 (469.4) 70.6 (199.3) 59.7 (136)
#base -2.58 (-9.31) 0.11 (0.29) 4.48 (5.99) 2.18 (2.1)

"non- base -0.51 (-1.35) 1.4 (2.44) 7.82 (7.38) 6.63 (4.40)Mlocal/
aglobal 86 (61.6) 86.0 (54.4) 89.1 (69.7) 80.1 (57.12)
#base 1.66 (3.00) 0.59 (0.87) -5.33 (-6.13) -7.34 (-4.98)

/:?non-base 2.2 (3.68) 1.30 (1.62) -3.71 (-3.00) -5.89 (-2.91)
No. of base switches 654 602 347 136

No. of non-base switches 324 275 146 53

Table 3.12: First stage estimation results for JFK using 2006 ASPM data.

target perceg ;> 0.1 0.4 0.7 1.0
alocal 98.2 (1898.7) 98.4 (1774.1) 97.1 (675.8) 81.1 (64.6)

a"non- base -4.26 (-15.9) -6.39 (-19.55) -9.64 (-12.9) -9.73 (-2.43)
aglobal 98.2 (360.9) 98.3 (331.2) 97.6 (229.4) 95.8 (100.7)
non-base
global -0.97 (-2.68) -1.49 (-3.24) -2.15 (-2.70) -12.65 (-4.38)

No. of non-base switches 135 101 73 18

Table 3.13: First stage estimation results for DFW using 2006 ASPM data.

It is noted that the switch types that register consistent measures of operational in-

efficiency on the local and global assessments also demonstrate a marked increase in the

estimated inefficiency for higher ranges of target-percs. This is worth noting, as the ab-

sence of such a trend with respect to target-percn, could be another indication for the lack

of operational impacts for a given switch type.



The corresponding inferences derived from the first-stage estimation results, based on the

guidelines described in Section 3.6.1.1.3, are summarized in Tables 3.14, 3.15 and 3.16.

Table 3.14: Inferences from first stage results for EWR.

Switch type # ocal giobal Inference
(k)

Base Not significantly Significantly negative Possible errors in re-
negative (for higher ranges of ported switch times, no

target-perc,,) further investigation
Non-base Not significantly Significantly negative Possible errors in re-

negative (for higher ranges of ported switch times, no
target-percnt) further investigation

Table 3.15: Inferences from first stage results for JFK.

Switch #3 ocal 3 giobai Inference

type (k)

Non-base Significantly Significantly negative Warrants second stage
negative estimation

Table 3.16: Inferences from first stage results for DFW.

As highlighted in the inference tables, the "base" switch type at EWR and the "non-

base" switch type at DFW were the only ones that justified further exploration through

second stage estimation. For both "base" as well as "non-base" switch types at JFK, the

local estimates of switch effects conflicted with the global estimates, suggesting that there

were considerable errors in the reported switch times. This shortcoming in the dataset would

undermine the reliability of the second stage estimation.

For EWR, it appears counter-intuitive that the "base" switch type exhibits significant

operational impact while the "non-base" switch type, which one would expect to be more

disruptive, does not. A plausible explanation for this observation is that the EWR authorities

try to avoid severe operational disruptions during peak demand periods by planning their



"non-base" switches during hours of low airport demand, thereby mitigating the realized

impacts.

3.6.2.2 Second stage analysis

The results for the estimated values of the switch parameter sw-redk for different values of

sw-durk, as obtained from the regression model in Equation 3.16, are presented in the form

of line graphs for EWR "base" (Figure 3-9) and DFW "non-base" (Figure 3-10) switch types.

The estimates are plotted for different ranges of operational loading parameter target perces,

to study the sensitivity to demand levels. The estimated values of the capacity reduction

due to the switch are rounded off to a minimum value of -100 %, which corresponds to a

complete loss of capacity.
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Figure 3-9: Second stage results for EWR "base" switches.

The plotted estimates of sw-redk as a function of sw-durk are not very sensitive to vari-

ations in the value of target perca,, especially in the case of DFW. This suggests that the

extent of the capacity reduction does not depend strongly on the level of demand. The

estimated percentage capacity reduction exhibits an inverse relation with assumed switch

duration, which is a natural artifact of the coupling between these two attributes in the

empirical observations. In other words, if one assumes a higher duration for switches, the

estimated mean reduction in operational efficiency is likely to be lower when fitted to the
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Figure 3-10: Second stage results for DFW "non-base" switches.

same empirical dataset.

3.6.2.3 Discussion of results

A couple of noteworthy deductions from the plots are highlighted below.

" The x-intercept of the line graphs gives an indication of the minimum duration of total

capacity loss required for the respective switches. As shown in the figures, this value

is relatively higher for the EWR "base" switches (between 15 and 30 min) compared

to DFW "non-base" switches (within 15 min). This suggests a greater disruption due

to a configuration change to operations at EWR, as compared to DFW.

However, for EWR "base" switches, the t-stats for plotted estimates of parameter

sw-redk were between 3 and 4 across the range of values for targetperc", and sw-durk,

while the equivalent range for the DFW "non-base" switches was between 5 and 7.5.

These values imply a lower statistical confidence in the switch impact estimates for

EWR, potentially due to the presence of reporting errors and other noise in the ASPM

data. This feature has to be remembered when assessing the plotted estimates for

switch-induced capacity reduction sw-redk for EWR "base" switches.

" The line graphs seem to taper out at values lower than 0% for high values of sw-durk,



suggesting that there is some residual, possibly spurious, operational inefficiencies

within the reported ASPM throughput counts at both airports, that cannot be at-

tributed to switch effects alone.

In summary, it is noted that any reliable pair of corresponding estimates for sw-redk

and sw-durk selected from the plotted line graphs will serve as a useful proxy for repre-

senting switch effects in applications involving configuration sequence modeling [27, 53]. In

conjunction with the airport capacity estimation models from Chapter 2, these models of

configuration dynamics help complete the modeling framework for airport operations that

can now be used to generate realistic capacity forecasts. The following chapters address the

problem of optimally allocating airport arrival and departure capacity under uncertainty.



Chapter 4

Integrated Stochastic Ground-Holding

Problem

4.1 Introduction

Ground-holding is the practice of delaying a flight pre-departure at its origin airport to re-

lieve congestion at its destination airport, thereby avoiding more expensive airborne delays.

Airports initiate a ground delay program (GDP) when their capacity is expected to deterio-

rate in the near future, and assign delayed slots based on ground-holds for scheduled flights

to ensure capacity is not exceeded.

As described in the introduction chapter, GDPs in practice are executed using deter-

ministic capacity forecasts, and cater exclusively to arrivals only. Airports deal with the

inherent uncertainty in future capacity by revising their slot allocation with every forecast

update. Each GDP revision brings about a change in ground delays for scheduled slots,

prompting a response from operating airlines through the CDM (Collaborative Decision-

Making) mechanisms [18]. Airlines reconsider their flight schedules and perform slot swaps

and cancellations to optimize their internal costs. Thus, a new iteration of intra-airline slot

substitution and compression is executed for every GDP revision. This iterative framework

is reactive in nature and contains inefficiencies that can be resolved by explicitly accounting

for uncertainty. A stochastic model for ground-holding is based on the principle of repre-

senting capacity uncertainty through a discrete set of possible scenarios. The solution to this



model supplies airlines with advance information on the uncertainty in slot delays that they

can use to proactively swap and cancel slots. Therefore, if reliable probabilistic capacity

forecasts are available, stochastic models for ground-holding allocation can help deal with

capacity uncertainty.

Another potential drawback of current GDP practice is the arrival-centric approach.

Every GDP revision determines arrival slots over the declared duration, following which

departures are handled in an ad-hoc manner. In other words, while arrival schedules are

planned systematically during GDPs, departures are serviced based on the remaining airport

capacity following arrival slot allocation. While such preferential treatment to arrivals during

periods of capacity shortage is motivated by the desire to minimize airborne delays, it may

cause excessive departure delays as a result of the capacity tradeoffs studied in Chapter 2.

This chapter describes integrated formulations for stochastic ground-holding models that

address the above issues with existing GDP designs, and uses case studies involving real-

world data to assess the potential benefits. The next section discusses related efforts that

serve as the building blocks for this research.

4.2 Related Literature

The problem of optimally allocating ground delays to minimize system congestion costs has

been extensively studied in literature [59, 74, 13]. While the single-airport ground-holding

problem (SAGHP) has received the most attention, a few previous efforts [74, 13] have

addressed aircraft flows over a network of airports, in which arrivals and departures from

each airport are controlled in an integrated fashion. Bertsimas and Patterson (1998) used

airport capacity envelopes to constrain simultaneous capacities for arrivals and departures

[13]. In addition, Gilbo (1993) considered the problem of optimally allocating a single

airport's capacity between arrival and departure demands [31]. However, these past studies

on integrated capacity allocation all assumed deterministic capacity forecasts [31, 13].

A stochastic ground-holding approach is adopted when the magnitude or duration of

capacity deterioration is not known with certainty at the start of a GDP. This problem has

been formulated in literature as a stochastic integer program, where optimal ground-holds



are determined for future airport capacity that is predicted to materialize from a set of finite

scenarios with associated probabilities [67, 4, 55, 361. Most studies on stochastic ground-

holding focus on single airports and typically assume that the airport operates at maximum

arrival capacity at all time intervals. The underlying rationale is that the stochastic ground-

holding problem, unlike its deterministic variant, yields airborne delays under some capacity

scenarios. Since airborne delays are costlier than ground delays, these approaches reduce

arrival (airborne) delays at the expense of departure (ground) delays. To the best of our

knowledge, the simultaneous allocation of arrival and departure capacities within a stochastic

framework has not been previously considered.

This chapter develops and assesses an integrated framework for stochastic ground-holding,

thereby evaluating traditional arrival prioritization policy. This analysis is therefore a natural

application for the airport capacity envelopes estimated in Chapter 2. Section 4.3 discusses

capacity sharing in a deterministic setting to help explain why prioritizing arrivals might not

be always be optimal under capacity uncertainty. Section 4.4 develops integrated versions

of two prominent stochastic ground-holding models from literature, the Static, developed

in Richetta and Odoni (1993) [67], and the Dynamic, proposed by Mukherjee and Hansen

(2007) [55]. While the static model determines a single ground-holding solution for arrivals

that is applicable across all capacity scenarios, the dynamic model revises ground holds at

each time-step based on available information on capacity materialization. Section 4.4.3

describes how the use of non-dominated operating points to represent the airport capacity

envelope in the integrated stochastic formulations enables customized, deeper branching cuts

for the branch and bound solution algorithm. Section 4.6 presents case studies comparing

the performances of the integrated and arrivals-based approaches, when applied to hypo-

thetical and real-world GDP data. The influences of key GDP parameters such as demand

magnitude and capacity forecasts are also investigated.

A key practical challenge in implementing the integrated stochastic models is the need

to account for potential aircraft and passenger connections between arrivals and departures

at the affected airport. Currently, GDPs are implemented within a CDM paradigm that

provides mechanisms for airlines to participate in the slot allocation process and further

reduce their delay costs in accordance to flight-specific preferences [18]. As information



on aircraft and passenger connections between scheduled flights is typically airline-specific,

potential extensions could be designed within the CDM mechanisms that allow airlines to

recover lost connections in the original integrated slot allocation. Related approaches have

been proposed by Gilbo (2000) and Hall (1999) [30, 35].

4.3 Capacity Sharing with Deterministic Forecasts

Let us consider an idealized, single time-step example involving arrival demand Ad and

departure demand Dd, at an airport with an operational capacity envelope as depicted in

Figure 4-1. The capacity envelope is represented as a convex, piecewise-linear function

[13, 31].

Departures (Amin,Dmax) (Amed,Dmed)

(Amax,Dmin)

Arrivals

Figure 4-1: Capacity envelope for idealized example.

Let us denote the unit ground delay cost (for both arrivals and departures) and the unit

airborne delay cost (only relevant for arrivals) as Cg and Ca respectively, with Ca > Cg. Let

the linear pieces of the capacity envelope be such that:

si < 1, s 2 >1, Ad > Amax and Dd > Dmed. (4.1)

Now, assuming that the arrivals are all airborne and awaiting landing clearance at the

airport, the optimization formulation for minimizing system delay costs over a single time-
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step is as described below:

Minimize CgD g + CaA Aq (4.2)

subject to: DE ;> D'-D cap (4.3)

Aaq > Ad - ACaP (4.4)

A ap < Aiax (4.5)

siAcap + Dap < s1Amin + Dmax (4.6)

s 2 Acap + Dcap < S2Amed + Dmed (4.7)

Dcap < Dmax (4.8)

Aaq , Dgq , AcaP , Dcap ;> 0 (4.9)

where AcaP, DcaP are the capacities allotted to arrivals and departures respectively, and

Aaq, Dg are the unserved arrivals and departures at the end of the time-step, that enter

the respective airborne and ground-held queues.

If > s2, it can be shown that the optimal solution for the above formulation will yield

the capacity mix Acap = Amax, Dcap = Dmin. In other words, if the ratio of the airborne delay

cost to ground delay cost is higher than the steepest slope of the convex capacity envelope,

the optimal operating policy of the airport for a given time-step is to serve as many arrivals

as possible.

We note, however, that the above result is only applicable to a single time-step situation

in which the arrival demand cannot be ground-held. In a more realistic example where

capacity forecast and GDP planning extends to multiple time steps {1, .., T} into the future,

arrival demand can be ground-held at origin airports in response to the optimal capacity mix

determined for future time steps. Assuming a deterministic capacity forecast, and the same

capacity and demand for each time-step t E {1, .. , T} as before, the extended formulation
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for minimizing system delay costs over multiple time-steps is as follows:

T

Minimize Y(Cg(A gq + D gq) + CaA7 )
t=1

subject to: Df' D d + Dili - Dap, vt E {1, .. , T}

Afq > A d + A - A", Vt E {, .. , T}

At - At" At1 - Atap, Vt E { 1, . }

Aap < Amax

s1Acap + Dcap < s1Amin + Dmax

s 2AtaP + Dtao S2Amed + Dmed

DaP < Dmax, Vt E {1, .. , T}

A, A a, D g, Aarr, Acap Dcap > 0

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

where, Arr is the number of aircraft arriving at time t, A g is the number of aircraft scheduled

to land at or before time t that are kept in the ground-held queue at their origin, At' is

the number of arrival aircraft in the airborne queue at time t, and D ' is the number of

departures in ground-held queue at time t.

Assuming that arrivals scheduled over future time steps { 1, .. , T} can all be subject to

ground-holding and given condition (4.1), it can be shown that the optimal solution for

the multiple time-step formulation will yield the capacity mix Acap = Amed, Dcap Dmed

Vt C {1,..,T}, and contain no airborne queue (that is, At = 0 Vt E {1,..,T}). The

magnitude of the cost ratio a is irrelevant in this example. In other words, in a deterministic

setting spanning a future time horizon for which scheduled arrivals are yet to take-off, the

optimal operating policy for the airport is to maintain maximum total number of ground

operations. This operating point corresponds to Acap = Amed Dcap = Dmed-

We now consider a setting in which the capacity forecast is uncertain over future time

steps, and scheduled arrivals are all yet to takeoff at their origin. In this setting, arrival

airborne delays can occur in some time-steps due to an unexpected deterioration in capacity.

Neither of the operating policies from the previously discussed single- or multi-time-step

examples can be consistently adopted in a stochastic framework for minimizing system delay
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costs. The optimal capacity mix in a stochastic framework can only be derived contingent

on demand and capacity forecast data, and will generate lower system delay costs compared

to any approach relying upon a pre-determined policy for the capacity mix. It is, however,

important to note that the availability of accurate capacity and demand forecasts during a

GDP would be instrumental in realizing these delay benefits.

The above conceptual argument serves to motivate the study of the integrated stochastic

ground-holding problem, and the magnitude of delay benefits generated by it. The research

seeks to understand the dependence of these delay benefits on key influencing factors in a

GDP pertaining to demand and capacity forecasts, and to do so through experimental case

studies simulating typical GDPs. Hypothetical GDPs with high arrival demand and airborne

delay costs are designed that are most likely to favor the arrival prioritization policy derived

for the single time-step example. Such a setting would offer a validation of the hypothesized

benefit of capacity sharing in an integrated stochastic framework. In the next section, the

formulations for integrated versions of the static and the dynamic stochastic ground-holding

problems are presented. The computational advantages of using non-dominated operating

points to represent the capacity envelope in these formulations are also discussed.

4.4 Integrated Stochastic Ground-Holding Models

Stochastic ground-holding models developed in literature allocate arrival slots while explicitly

planning for uncertainty in capacity forecasts [67, 55]. In these models, arrival capacity

is predicted to materialize as one out of a finite number of scenarios, with corresponding

probabilities. A scenario tree depicts the time-steps at which each capacity scenario becomes

distinguishable from others, as shown in Figure 4-2. The minimized objective function is the

expected sum of ground and airborne delay costs across all scenarios, computed by assuming

homogeneous unit costs for ground and airborne delays across all flights. In Sections 4.4.1

and 4.4.2, we discuss the integrated versions of two stochastic ground-holding models: Static

[67] and Dynamic [55].
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Figure 4-2: Sample capacity scenario tree.

4.4.1 Integrated Static model

As described in Richetta and Odoni (1993) [67], the arrivals-only static model is formulated

as a single-stage stochastic integer program. The reader is referred to Wagner (1975) for

a fundamental treatment of single-stage stochastic programs [39]. The first-stage decision

variables are the ground delays allocated in aggregate form to arrivals scheduled within the

GDP time horizon. In the static model, these decisions are fixed for the entire horizon at the

start of the GDP, and are implemented regardless of the capacity scenario that eventually

materializes.

The arrivals-only and the integrated versions of the static stochastic formulation are

presented below, with the key additions in the integrated version highlighted.

Arrivals-only Static Formulation:

K T-n T

Minimize (n - 1)E Cg( Aq+n) + A (Ca Aq) (4.18)
n=O t=1 sES t=1

subject to:
t+K

S A = At, Vt E {, .., T} (4.19)
j=t

t
A ;> E A + Aa 1 - A c, Vt {1,.., T},s G S (4.20)

j=t-K

Aq, A q E Z+ , Vt, j{, .., T}, s C S (4.21)

104



Integrated Static Formulation:

K T-n ' T K T-n~
Minimize 13 C9 ,nE Ati+n + ( Ps Ca ASt + E Cg,n( Dttn

n=O t=1 sES t=1 n=O t=1

t+K

subject to: A = A/, Vt E {1, .., T}
j=t

t

Aa ;> (: A gq+ Aaq_ - Acap, Vt E {l,.. T}, s ES

j=t-K
t+K

D D s = D d, Vt E {l, ..,T}, S
j t

E D < D8cal, Vt E {, .., T}
j=max(1,t-K)

o A cap + D ca < yj Vi c E ,,,t E {, .. , T},Vs c S

ca = Acap V 1, 2 E G(t, k), Vt E {, .. , T}, k E Staget
jIt j2,t *7

Dqs = D gq.2IVs 1Is2 E G(t, k), Vj (E {l,.., t},

Vt E {, .. , T}, k E Stage

Agq, Aa, D A ap ca E Z+, Vt, j E {1, .. , T}, Vs E S

Notation
Input

C,
Cg,n

K

Ca

A d

D d

Staget

G(t, k)

Ground-delay cost incurred by an arrival or departure aircraft over n

time-steps

Maximum number of time-steps for which any aircraft can be ground-

held.

Linear unit airborne delay cost

Aggregate arrival demand at time t

Aggregate departure demand at t (used only in Integrated version)

List of indices for distinct stages at time t in capacity scenario tree,

with stage as described below (used only in Integrated version)

Subset of scenarios still possible at stage k E Staget (used only in

Integrated version)
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(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)



List of indices for linear pieces of capacity envelope under scenario

s at time t (used only in Integrated version)

Coefficients of linear piece i E Es,,t of capacity envelope at scenario

s and time t (used only in Integrated version)

Probability of occurrence for scenario s

List of possible capacity scenarios

Decision Variables

At : q Number of arrivals rescheduled from arrival time t to arrival time

t + n through ground-holding

AG :q Length of arrival queue at time t for scenario s

D~~gqs :Number of departures reschedule from departure time t to depar-

ture time t + n under scenario s (used only in Integrated version)

A? :ap Airport capacity allotted to arrivals under scenario s at time t (set

to maximum possible airport capacity for arrivals-only version)

Dt :ap Airport capacity allotted to departures under scenario s at time

t (used only in Integrated version)

Objective

(4.18)

(4.22)

function

Expected system delay cost for Arrivals-only version Arrival

ground delay cost + airborne delay cost

Expected system delay cost for Integrated version Arrival

ground delay cost + airborne delay cost + Departure ground

delay cost
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Constraints

(4.19), (4.23)

(4.20), (4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Arrival demand balance

Arrival capacity-queue balance

Departure demand balance (used only in Integrated version)

Depature capacity balance (used only in Integrated version)

Airport capacity envelope (used only in Integrated version)

Non-anticipativity constraint for allotted arrival capacity (used

only in Integrated version)

Non-anticipativity constraint for allotted departure ground-

holding (used only in Integrated version)

The integrated static stochastic model is formulated as a multi-stage stochastic integer

program with the arrival ground delays (A~tt) as the first-stage decision variables, and

with the capacity mix ) and departure ground-delays (Dg 6) allocated in a stage-

specific manner. In a capacity scenario tree, a stage is jointly defined by a time step t and the

set of scenarios possible given past sequence of capacity values. A stage k E Stage uniquely

identifies the set of possible future capacity scenarios that are indistinguishable based on

the observed sequence of capacity values (G(t, k)). For instance, there are two distinct

stages at time-step 2 for the example in Figure 4-2, with the stage S2 comprising of S1, S2

and stage S2 comprising of S3 as possible future scenarios, respectively. Non-anticipativity

constraints (4.28) and (4.29) are enforced to ensure the stage-specific decisions on capacity

mix and departure ground-delays are identical across all scenarios possible at a given stage.

Among the other constraints are the standard demand and capacity balance constraints for

arrivals and departures. Finally, (4.27) ensures the capacities allotted to arrivals (A"P) and

departures (Dcp ) adhere to the available capacity envelope under scenario s at time t (that

is, ESt).

Note that the constraints (4.29) require departures that are rescheduled from time j to

time t to satisfy non-anticipativity for stages at time t instead of at time j, because the

departure ground-hold decision D ,s is only determined at time t.
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4.4.2 Integrated Dynamic model

In contrast to the static model, the dynamic model as developed in Mukherjee and Hansen

(2007) [55] is a multi-stage stochastic mixed-integer program that determines stage-specific

ground delay decisions for arrival flights that are still on the ground. The reader is referred

to Kall (1976) for a comprehensive treatment of multi-stage stochastic programs [63]. The

dynamic model thereby allows for scenario-specific determination of ground-holds, improv-

ing upon the optimal expected delay cost achieved by the static model. It also focuses

separately on each individual flight, in contrast to the aggregate approach adopted in the

static formulation, and makes explicit use of the flight's duration in allotting its scenario-

specific ground-holds. The arrivals-only and integrated versions of the dynamic stochastic

formulation are presented below.

Arrivals-only Dynamic Formulation:

arrf+K T

Minimize EPs[E( E C,, arrfX f,t) + (Ca( A")]
sES fEF t=arrf t=1

arrf+K

subject to: ( Xj,t = 1, Vs C S,Vf E F
t=arrf

A aq > cp X,t + Aa't_ 1 - AS Vt {1, .., T}, s ES
fGF

X = Xj , Vs1, s2 c G(t - durf)

Xj,-E {0, 1}, Aa E Z+, Vt C {1, .., T}, Vs E S, Vf c F

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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Integrated Dynamic Formulation:

arrf +K

Minimize Zps [ 3 Cg,t-arrX +
sES feE t=arr5

arrf+K

subject to:

T

Ca (
t=1

K T-n

Ali + z Cg,n(( Dtj$,)]
n=O t=1

SX,, = 1, Vs E S, Vf c F
t=arrf

A2 ;q> ( S,

f E F

t+K

Y D 's = D, Vt {l, ..,T, s ES
j=t

D ,s < D cap Vt E (1,..,T}

t

j=max(1,t-K)

A p + Dap < Vi c Es,t, t E {l, .. , T}, s E S

A aA Vs S2 E G(t, k), Vt E {1,..,T}, k E State,
s

1,'t S
2

,t' T1,k ( Stt

D -D ',t E G(t,k), Vj E {l,.., t}, t C {,.., T},

k E Statet

X Xj, Vs', s2 E G(t - durf, k), Vt c {l,.., T},

Vk E Statet-durf

Xf E {0, 1}, As, D, ', A D E vt E (1, .. , T}

Vs E S, Vf E F

Extended notation (in addition to that of the Static formulation)

Input

F : Set of flights scheduled to arrive at subject airport during the GDP

horizon

arrf

durf

Originally scheduled arrival time interval for flight f C F

Duration for flight f E F

Decision Variables

XS,, :1, if arrival flight f is rescheduled to arrive at time t for scenario s;

0, otherwise
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(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

Aql_ - A cap, Vt E (1,l.., T}, s E S



Objective function

(4.31) Expected system delay cost for Arrivals-only version Arrival

ground delay cost + arrival airborne delay cost

(4.36) Expected system delay cost for Integrated version = Arrival

ground delay cost + arrival airborne delay cost + departure

ground delay cost

Constraints

(4.32), (4.37)

(4.33), (4.38)

(4.44)

Arrival demand balance

Arrival queue balance

Non-anticipativity constraints for arrival ground-holding

As shown above, the only difference between the formulations of the dynamic model

and the static model is the structure for the arrival ground-holding decisions. Since the

dynamic model determines stage-specific ground-hold for arrivals (X>t), an additional set of

non-anticipativity constraints (4.44) is needed for these decision variables, along with that

for capacity mix and departure ground-holds for the integrated version. Note that unlike the

capacity mix ) and departure ground-hold (Dg ) decisions, the arrival ground-

hold decision Xj, is determined at time t - durj and not t. This distinction is accordingly

reflected in the non-anticipativity constraint (4.44), where the stages for XS' are selected

from Staget-durf and not Staget.

The explicit use of the flight duration durf for ground-hold allocation in the dynamic

model is also responsible for an inherent schedule rearrangement, as elaborated in Mukherjee

and Hansen (2007) [55]. The final solution tends to favor long-haul arrivals over short-haul

arrivals since the ground-hold decision on a lower duration flight is determined at a later

time, when more specific information on capacity materialization is available. The shorter

flights therefore receive a disproportionate share of the ground delayss under scenarios with

prolonged low capacity. This schedule rearrangement poses equity concerns, as noted in

Mukherjee and Hansen (2007) [55]. In the experimental case studies discussed later, the

inequity in arrival ground-holds generated by the integrated dynamic model is compared
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with the equivalent measure for the arrivals-only dynamic model.

4.4.3 Formulation properties

In recent work, Kotnyek and Richetta (2006) [48] proved the arrivals-only version of the

static stochastic model ((4.18)-(4.21)) is guaranteed to have an integral optimum if the unit

ground-hold delay costs C,,,, are marginally non-decreasing (i.e., Cg,,n+ - C, ;> Cg, -

Cg,,-I1 Vn). The premise of this result was that the under the given cost conditions, at least

one optimal arrival ground-hold solution exhibited a non-crossing structure (i.e., if for some

i,j {1, .. , T} A j > 0, then A ' = 0, Vi < l < k <j).

For the given ground delay costs, it can be shown that the non-anticipativity constraints

(4.29) for the departure ground-hold decisions D are redundant in both the static and

dynamic formulations.

An implication of the above result, combined with the original result from Kotnyek

and Richetta (2006) [48], is that under marginally non-decreasing ground delay costs, the

integrality requirement in the integrated static formulation can be limited to the capacity

mix variables Af, a . This simplification is possible because the determination of the

capacity mix variables decouples the arrival and departure ground-holding sub-problems

of the integrated model formulation. Using the above arguments, both sub-problems can

be shown to yield integral optima under integral capacities and marginally non-decreasing

ground delay costs. For the integrated dynamic formulation, we would additionally need to

impose binary values on the arrival ground-holding decision Xj, as well.

4.5 Use of Non-Dominated Operating Points

In the formulations presented above for integrated versions of static and dynamic models,

the capacity envelope was represented using a set of linear segments. Alternatively, it can be

represented as the convex combination of its extreme points. Specifically, given the nature

of the ground-holding formulations, such a representation can be restricted to the set of non-

dominated points within the capacity envelope. A non-dominated operating point AcP, DcP

is defined such that there does not exist another feasible operating point a, d within the
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capacity envelope with either a > A ap, d > D ap or a > Acap, d > DcaP. Figure 4-3 below

illustrates the non-dominated operating points within a typical capacity envelope, estimated

for operations over a 15 min interval. We note that the list of indices for non-dominated

points, i c ND, can be arranged in increasing order of the underlying arrival (or departure)

capacity A ap,i (or Dcap,i), Vi E ND. For example, in Figure 4-3, there are five non-dominated

integral operating points {Acapd, D cap } {(8, 14), (13, 13), (14, 10), (15, 8), (16, 3)} indexed

as ND {1, 2, 3, 4, 5}.

20-

E
LO 15) (13 )U13

10.5)
10 -

cc0 (14,10)
(1 8)

D5-

(16,3)CU

0 2 4 6 8 10 12 14 16
Arrival Capacity (per 15 min)

Figure 4-3: Example of a capacity envelope with the non-dominated operating points denoted by
solid red circles.

For the stochastic ground-holding formulations discussed earlier, there exists at least one

optimal solution that features a non-dominated operating point as the capacity mix solution

a a D cap for every scenario s E S and time t E {1, .., T}. If there is an optimal solution

with a dominated operating point at any stage of the scenario tree, replacing it with a non-

dominated operating point that dominates it will not affect either the feasibility or the cost

of the solution. Therefore, the capacity envelope can be represented as a convex combination

of the set of non-dominated operating points ND for the integrated stochastic formulations,
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as presented below.

iENDst

D Dap"<,ap' #

iEND,,t

0 - 1, Vt {1,..,T}, s E S (4.46)
iENn8 ,t

The constraint set (4.46) replaces (4.27) and (4.41), respectively, in the integrated static

and dynamic formulations. #E, E 0, 1, Vi E NID, ,t are the binary coefficients of the non-

dominated operating points in the convex combination.

The presented forms of the integrated static and dynamic models in Section 4.4 are both

integer formulations, with the capacity mix variables Acap, D cap being the primary source

of integrality. For the integrated dynamic model, the arrival ground-hold decision variables

XS, also need explicit binary enforcement. For the alternative formulation using the non-

dominated points, it is sufficient to enforce binary conditions for the variables #S,, Vi E

ND,,t, to ensure integrality for the capacity mix variables, A cap D cap

Branch-and-bound is the most common solution algorithm used by commercial optimiza-

tion packages for integer formulations [20]. Starting with the linear relaxation of the integer

formulation, this algorithm employs the principle of iteratively sub-dividing the solution

domain (known as branching), eliminating non-integral solutions and narrowing the search

space, to help obtain integral optima for the sub-problems, which are then used to bound

the optimal objective value of the original problem. The computational efficiency of the

branch-and-bound algorithm is largely determined by the number of non-integral solutions

eliminated in the branching step. Conventional branching schemes focus on a randomly

chosen non-integer variable X = X* ( Z+ in the optimal solution for a given sub-problem,

and enforce partitioning constraints X < LX*] and X > [X*1 to further sub-divide the

sub-problem.

The use of non-dominated operating points facilitates customized, stronger branching

schemes. Consider, for example, the capacity envelope presented in Figure 4-3 and an optimal

capacity mix of Acap,* = 14, Dcap,* = 10.5 obtained by linear relaxation, for some given see-
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nario and time step. For the original piecewise-linear representation of the capacity envelope,

conventional schemes would branch on the variable D cap,*, and produce sub-problems through

partitioning constraints DaP < 10 and D ap ; 11 respectively. For the non-dominated points

representation, adopting the above-described indexing for set ND, the values for the rele-

vant binary variables would be #2  0.5, #4  0.5 and #52  0, Vi - {1,3,5}. A potential

branching scheme could use partitioning constraints E #1,2 , = 1, andEi g #, = 1

for generating the sub-problems. Note that this branching scheme makes explicit use of the

ordering of the non-dominated points.

The solution domains for the sub-problems produced by the conventional branching on

the piecewise-linear representation, and the customized branching on the non-dominated

points representation are graphically sketched in Figure 4-4. The black lines denote the

partitioning enforced by the conventional branching scheme, while the red lines denote the

partitioning enforced by the customized branching scheme. The associated arrows indicate

the direction of feasibility for the respective sub-problems, and the yellow regions depict the

additional non-integral operating points eliminated by the customized branching as compared

to the conventional branching.

16-

14

12

Z. X (14,10 5O_

4-
- - -- - - (16,3)

2-

0

0 2 4 6 8 10 12 14 16
Arrival Capacity

Figure 4-4: Branching schemes on sample capacity envelope.
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A general description for the customized branching scheme, based on the proposed order-

ing of the non-dominated operating points, is also proposed here. Consider a non-integral

capacity mix #1 Vi E ND,, for some scenario s and time t in the solution for the integrated

stochastic formulation (either static or dynamic). Let L C NDS,, be the set of non-dominated

points with non-zero values such that #' > 0 Vi C L. Select index L_ min = miniEL i, and im-

pose disjunctive branching constraints #i<L i = 1 and Ei>L i = 1. The presence of

binary variables for the non-dominated points permits further improvization to the branch-

ing schemes that are not delved into here. Note that the customized branching schemes are

particularly effective when the non-dominated points do not all lie on the boundary of the

capacity envelope, such as the point {14, 10} in Figure 4-3.

We believe that these non-dominated operating points provide a more natural way of

modeling the capacity envelope in integrated stochastic formulations, and in conjunction

with the customized branching scheme, are guaranteed to produce some improvement in

solution times compared to the piecewise-linear representation of capacity envelope. The

magnitude of this run-time improvement is likely to grow with the size of the stochastic

ground-holding problem.

Section 4.6 describes experimental case studies that compare ground delay allocations

between the integrated stochastic and the arrival-prioritizing frameworks.

4.6 Case Studies

The goal of this section is to quantify and characterize the improvements generated by the

integrated stochastic framework for two features of ground-hold allocation: the expected cost

and equity. Trends in the magnitude of improvements, in relation to key GDP inputs like

arrival/departure demand and capacity forecasts, are assessed for both static and dynamic

models.

In the first set of case studies (Section 4.6.1), the GDP demand and capacity inputs

are hypothetical, while in Section 4.6.2, demand is based on airline schedules during ob-

served GDPs at LGA, and the capacity envelope measure is as estimated in Chapter 2 using

historical ASPM data.
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4.6.1 Hypothetical case studies

The experimental design for the hypothetical studies, including the base data and the test

parameter that is varied to generate the GDP cases, is presented here. Described next are

the chosen performance measures and the corresponding results across all GDP cases for

each of the two attributes of ground-holding allocation mentioned above.

4.6.1.1 Baseline data

The key inputs for the stochastic ground-holding models comprise of capacity forecasts,

scheduled demand and unit costs for ground and airborne delay. The capacity forecast is

represented using a scenario tree. In all the GDP cases considered in this study, the airport

capacity envelope is assumed to take one of two forms: a regular form during good weather,

and a diminished form during poor weather. The magnitude of capacity decrease during

poor weather is quantified using the parameter 0 in the following manner:

Given the linear pieces constituting the regular capacity envelope are Acap +# OD cap <

, Vi C E, the corresponding linear pieces for the diminished capacity envelope would be:

0&Acap + zD cap < 7z, Vi E E. The parameter 0 is termed the capacity decrease ratio.

For the hypothetical case studies, the capacity envelope presented in Figure 4-3 was used

as the regular capacity envelope, and the capacity decrease ratio was taken to be 0.5. The

diminished capacity envelope is shown in Figure 4-5.

47,4)
cc

(8,1)

1 2 3 4 5 6 7 8
Arrival Capacity (per 15 min)

Figure 4-5: Hypothetical diminished capacity envelope (0 = 0.5).

All scenarios begin with capacity at the diminished state, and differ from each other

based on the time interval after which capacity improves to the regular state. Accordingly,
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in the scenario tree, a scenario diverges out from the main branch at the time interval when

the capacity improves. The GDP planning horizon is set at 10 time intervals, and the

corresponding scenario tree is depicted in Figure 4-6. The diminished capacity states are

highlighted in red, and the regular capacity states in green. The scenarios are labelled as

s C { 1, .. , 10}, where s represents the duration of diminished capacity.

Time

10

9

8

7

6.0

50

4

3

2

1

Figure 4-6: Scenario tree format for hypothetical case studies.
capacity states (0 = 0.5) and the green nodes denote regular

The red nodes de
capacity (0 = 1).

note the diminished

The following vector of arrival and departure demands was assumed for the 10 time in-

tervals: (16, 3),(16, 3),(15, 7),(16, 3),(15, 7),(16, 3),(16, 3),(15, 7),(8, 12),(5, 5). The flight du-

rations for the arrivals ranged from 2 to 5 time intervals in length. The demand has a high

proportion of arrivals, and is feasible for the regular capacity envelope in every time interval.

The unit ground and airborne delay costs are set as 0.5 and 2.5 respectively, implying that

the ratio of the unit airborne delay cost to unit ground delay cost is greater than the steepest

slope of the assumed capacity envelopes. Together with the large fraction of arrivals in the

scheduled demand, these GDP inputs are most likely to justify a pre-determined arrival pri-

oritization policy in capacity allocation. If arrival prioritization is suboptimal in this setting,

it would offer strong evidence for the benefits of the integrated stochastic framework.
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4.6.1.2 Test parameters

The probability distribution across the scenarios shown in Figure 4-6 is varied to generated

different GDP cases. We produce a continuum of "expected duration of diminished capacity"

values through the following scenario probability distributions, p8 across each of the 10

capacity scenarios:

(1-0.01(10-t)) Vs E {1, ..t}
Vt C 1*,.., 10: P- (4.47)

0.01, Vs {t + 1,.., 10}

V[1 9 = 0.01, Vs E {1, ..t} (4.48)
S= 1-9 P (1-0.01L) Vs C {t + 1, .. ,10}

S (lo-t)'711

Note that across these 19 scenario probability distributions, the expected duration of dimin-

ished capacity approximately follows the arithmetic sequence {1, 1.5, 2.0, ..., 10}.

4.6.1.2.1 Delay costs: This segment details the experimental study of delay costs gen-

erated by the integrated stochastic models in comparison to the arrival-prioritizing stochastic

models for the above range of GDP cases.

4.6.1.2.2 Performance Measures: The performance measures chosen for this compar-

ative analysis are the expected system delay cost (CSYS), and its individual components:

the expected arrival ground (Cag), expected arrival airborne (Caa) and expected departure

ground delay costs (Cdg). The focus is on the percentage improvements generated in the

above delay cost values by the integrated stochastic approach over the arrival-prioritization

approach, and the trends exhibited with respect to the expected duration of diminished ca-

pacity. In the arrival-prioritization approach, the optimal arrival delay cost (Cag + Caa) is

first obtained from the stochastic model assuming availability of maximum arrival capacity,

and the departure ground-holding cost (Cdg) is then computed using the residual airport

capacity.
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4.6.1.3 Results:

We first focus on instances of optimal capacity mixes for selected GDP cases to demonstrate

the principles of capacity sharing discussed in Section 4.3. Consider two GDP cases with

expected duration of diminished capacity of 2 and 9 time-steps, respectively. The first

corresponds to a GDP with a high capacity forecast (expected early improvement), while

the second corresponds to one with a low capacity forecast (expected late improvement).

Figures 4-7 and 4-8 plot the optimal capacity mix patterns over the entire scenario tree

for the integrated static and arrival-prioritizing static models when applied to these two GDP

cases. The labels on each node provide the allocated arrival capacity for that scenario and

time-step. The green nodes denote regular capacity states, while the red ones correspond to

diminished capacity states. Note that for the diminished capacity envelope (Figure 4-5), the

non-dominated operating point with maximum arrival capacity is (8, 1), while the operating

points with maximum number of operations are (6, 6) and (7, 5). The equivalent points for

the regular capacity envelope (Figure 4-3) are (16, 3) and (13,13).

Time 1 2 3 4 5 6 7 8 9 10 Time 1 2 3 4 5 6 7 8 9 10

10 10

9 9

8 8

7 7

5 5W

4 4

3 3

2 2

(a) Arrival-prioritizing static (b) Integrated static

Figure 4-7: Optimal capacity mix for arrival-prioritized and integrated static models with expected
duration of diminished capacity of 2 time-steps. The labels on the nodes refer to the allocated
arrival capacity of the optimal solution.
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(a) Arrival-prioritizing static (b) Integrated static

Figure 4-8: Optimal capacity mix for arrival-prioritized and integrated static models, with expected
duration of diminished capacity of 9 time-steps. The labels on the nodes refer to the allocated arrival
capacity of the optimal solution.

For the GDP case with high capacity forecast (expected duration of diminished capacity

= 2), the diminished capacity states are typically operated at maximum arrival capacity

(i.e., 8) for both the integrated and arrival-prioritized solutions. However, for the normal

capacity states, there is a noticeable shift from the maximum arrival capacity (i.e., 16) in

the arrival-prioritized solution towards the maximum operational capacity (13, 13) in the

integrated solution. Due to the relatively lower magnitude of departure demand, most of the

regular capacity states are not required to operate at (13, 13) to serve the departure demand

fully.

For the GDP case with low capacity forecast (expected duration of diminished capacity

= 9), we notice that the shift towards the maximum operational capacity occurs in the

diminished capacity states as well (from an allocated arrival capacity of 8 for the arrival-

prioritized solution to 7 for the integrated solution). Unlike the GDP case with high capacity

forecast, the arrival ground-hold allocation for this GDP case is more conservative in an

attempt to prevent airborne queues during the more likely low capacity scenarios. This
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results in under-utilization of arrival capacity during the regular capacity states.

The results for these two GDP cases indicate that it can be beneficial to incorporate

departures into the ground-holding problem, thereby supporting the conceptual arguments

presented in Section 4.3.

Figures 4-9 and 4-10 present the percentage changes in delay cost components produced

by the integrated approach relative to the arrival-prioritizing approach across the range of

generated GDP cases for the static and the dynamic models respectively. The percentage

changes in the expected system delay costs (CSYS) is plotted in these figures, along with its

three components: arrival ground delay (Cag), arrival airborne delay (Caa), and departure

ground delay (Cdg). As shown in the figures, the integrated versions of both static and

dynamic models deliver consistent improvements in system delay costs across the entire

range of GDP cases. These improvements come at the expense of arrival ground delay

costs, indicating some arrival capacity is transferred to departures in the integrated model

solutions.

0.35 -
*System delay cost

0.30 Arrival ground delay cost
EArrival airborne delay cost

-1 0.25 ODeparture ground delay cost

0.20 -

0.15 -

0.10 -

0.05 -

U 0.00

-0.10
Expected duration of diminished capacity (time-steps)

-0.15

Figure 4-9: Delay cost improvements for integrated framework over arrivals-prioritizing framework
(Static stochastic model). Negative values indicate an increase in cost.

An interesting trend observed in the system delay cost improvements for both static

and dynamic models is its convexity with respect to the expected duration of diminished
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Figure 4-10: Delay cost improvements for integrated framework over arrivals-prioritizing framework
(Dynamic stochastic model). Negative values indicate an increase in cost.

capacity. The percentage improvement is high at the extremes, and low for medium values

of this parameter, and is consistent with the percentage improvement in departure ground

delay costs. This trend can be explained using the results for optimal capacity mix presented

in Figures 4-7 and 4-8. This explanation applies to both static and dynamic model results.

For GDP cases with a short expected duration of diminished capacity (Figure 4-7), ca-

pacity sharing is limited to regular capacity states in the solution to the integrated approach.

There is greater improvement in departure ground delay costs for the scenarios with lower

number of diminished capacity states, thereby resulting in higher expected departure cost

improvements when such scenarios are more likely. On the other hand, for GDP cases with

a long expected duration of diminished capacity (Figure 4-8), capacity sharing in the inte-

grated model solution is observed for diminished capacity states as well. Due to conservative

nature of arrival delay allocation for such GDP cases, high departure capacity is available

during the regular capacity states even in the arrival-prioritizing solution. The departure

delay cost improvements produced by the integrated solution are concentrated in scenar-

ios with prolonged diminished capacity, thereby resulting in higher expected departure cost

improvements when such scenarios are more likely. The above-described convexity in delay
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cost improvements is specific to the idealized format of the GDP inputs, particularly the

predominance of arrival demand.

Lastly, the percentage improvements in system delay costs are typically higher for the

dynamic model (Figure 4-10) than for the static model (Figure 4-9). This reflects the ability

of the dynamic model to better utilize available airport capacity through dynamic revisions

of ground delay allocation for both arrivals and departures, which results in a lower increase

in arrival delay costs for the integrated dynamic model compared to the integrated static

model.

4.6.1.4 Equity

In this section, the equity of the ground-holding allocation generated by the integrated

stochastic models is examined in comparison to the arrival-prioritizing stochastic models for

the above range of GDP cases.

4.6.1.4.1 Performance Measures: The concept of equity of delay allocation in air

traffic management has grown in significance following the advent of Collaborative Decision-

Making (CDM). Standard interpretation of equity in literature relates to the preservation

of original order of flight schedule following delay allocation [18, 75, 5]. This principle is

explicitly enforced in the Ration-by-schedule allocation (RBS) scheme adopted for arrival

slot allocation in modern GDPs, which ensures the original arrival schedule is preserved

following delay allocation. Metrics proposed in recent work to quantify the inequity of delay

allocation schemes typically represent a measure of the deviation from original schedule

[12, 8]. In case of the stochastic ground-holding models, the original departure schedule is

always preserved in the final solution. Hence, we focus on inequity in arrival delay allocation.

Bertsimas and Gupta (2009) [12] suggest measuring the number of pair-wise reversals in

the delayed arrival schedule relative to the original schedule. Barnhart et. al. [8] proposes

measuring the incremental delay experienced by each arrival in the delayed schedule, in

excess of that experienced by the flight landing in its original position in the scheduled

arrival order, and aggregating this measure across all arrivals. Let us denote these metrics

as EGupta and EBarnhart. While both metrics are defined for deterministic capacity settings,
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they can be easily adapted to a stochastic setting by computing their expected measure

across all scenarios: EGupta - sES PsEupta, EBarnhart sES PsEBarnhart'

As described in Section 4.4, the dynamic stochastic model inherently gives rise to inequity

in the arrival ground-hold allocation by favoring long-haul over short-haul flights. The above

metrics are used to evaluate the differences in arrival delay inequity between the integrated

dynamic solution and the arrival-prioritizing dynamic solution.

4.6.1.5 Results

Figures 4-11 and 4-12 respectively plot the computed values for the metrics proposed by

Bertsimas and Gupta (2009) [12] and Barnhart et. al. (2009) [8] across the spectrum of

GDP cases for the integrated and arrival-prioritizing models.
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Figure 4-11: Inequity in arrival delay allocation for integrated and arrival-prioritizing dynamic
models, measured using the Bertsimas and Gupta (2009) metric [12].

Given that a lower value for each metric implies an improvement in allocation equity,

both these figures demonstrate the more equitable behavior of the integrated dynamic model

for most GDP cases. This observation can be explained by the basic principles driving the

inequity of the dynamic model. Since the dynamic model revises ground-hold decisions at

every time-step, the decision for a short-haul arrival can take place at a later time, when com-
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Figure 4-12: Inequity in arrival delay allocation for integrated and arrival-prioritizing dynamic
models, measured using the Barnhart et al. (2009) metric [8].

pared to a long-haul arrival scheduled to land at the same time. Therefore, there is greater

amount of information available on capacity scenario materialization when rescheduling a

short-haul flight. A short-haul flight is also more responsive to evolving capacity information,

as it can make quicker use of additional capacity whenever it materializes. These factors

are responsible for short-haul arrivals absorbing most of the capacity uncertainties in the

dynamic model allocation, be it larger delays for scenarios with prolonged low capacity or

quick departures to utilize a sudden capacity increase. This feature results in the disparity

between short-haul and long-haul arrival allocations. In an integrated framework, departures

are potentially best suited to absorb the capacity uncertainties, thereby mitigating some of

the variability in the short-haul arrivals' allocations and the resulting disparity with the

long-haul arrivals. In this manner, an integrated framework for dynamic delay allocation

can potentially help reduce the inequity between the long-haul and short-haul arrivals, as

evidenced in Figures 4-11 and 4-12 for the hypothetical case studies.
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4.6.2 Real-world case studies

In this section, the findings from the hypothetical case studies are validated using real-world

data from recorded GDPs at LGA airport.

4.6.2.1 Input data

Details on timing and operational throughputs of every initiated GDP at LGA are available in

GDP summary files. By matching these times with those in the ASPM database, information

on scheduled arrivals and departures during recorded GDPs can be extracted. The GDP

recorded on Feb 17, 2006 from 7 am to midnight was selected for this study, and concurrent

arrival and departure schedules from ASPM were extracted. Given below are the hourly

aggregate arrival and departure demand for the first 10 hours of this GDP. The aggregate

arrival schedule matrix (Table 4.2) breaks down the hourly aggregate into different flight

duration categories. Flight durations were rounded up to the nearest integer hour.

Hour 1 2 3 4 5 6 7 8 9 10
Demand 13 39 48 39 29 30 35 33 38 37

Table 4.1: Hourly aggregate scheduled departures (0700-1700 on Feb 17, 2006).

Hour 1-hr 2-hr 3-hr 4-hr 5-hr Total
1 3 1 0 0 0 4
2 5 30 0 0 0 35
3 7 24 5 0 0 36
4 6 15 7 1 0 29
5 5 15 6 3 2 31
6 7 21 8 3 0 39
7 7 17 4 3 2 33
8 6 16 10 2 2 36
9 6 23 10 1 0 40
10 5 13 7 3 4 32

Table 4.2: Hourly aggregate scheduled arrivals (0700-1700 hours on Feb 17, 2006).

Unlike the demand inputs to the hypothetical case studies, there is no significant disparity

between arrival and departure demands over the 10-hr time horizon. Due to the lack of

reliable data on actual capacity forecasts used during GDPs, we use idealized scenario trees

126



characterized by shrinkage ratio 0 as designed for the hypothetical case studies (Figure 4-6).

However, in place of the idealized capacity envelope sketched in Figure 4-4, the good-weather

(VFR) capacity envelope for LGA as estimated in Chapter 2 using historical ASPM data on

airport throughputs was used. As was seen in the hypothetical case studies, a set of scenario

probability distributions spanning a range of values for the expected duration of diminished

capacity was generated, with the capacity decrease ratio 0 set to 0.5 again. The unit costs

for ground and airborne delays are also assumed to be 0.5 and 2.5. Figure 4-13 depicts the

good-weather and diminished capacity envelopes, along with the operational demand points

over the 10-hr time horizon. Note that the envelopes are scaled up to 1-hour counts for the

purpose of this case study.
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Figure 4-13: Capacity envelopes and demand points for LGA case study.

The performance measures on system delay costs and equity were computed for the GDP

cases with the real-world inputs of scheduled demand, and the regular capacity envelope at

LGA.

4.6.2.2 Results

Figures 4-14 and 4-15 present the percentage changes in delay cost components produced

by the integrated approach relative to the arrival-prioritizing approach across the range of

GDP cases involving real-world inputs, for the static and dynamic models respectively.
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Figure 4-14: Delay cost improvements for integrated framework over arrivals-prioritizing framework
on real-world case studies (Static stochastic model). Negative values indicate an increase in cost.
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Figure 4-15: Delay cost improvements for integrated framework over arrivals-prioritizing framework
on real-world case studies (Dynamic stochastic model). Negative values indicate an increase in cost.

The trends observed in these results are consistent with those observed for the hypothet-

ical case studies in Figures 4-9 and 4-10. The improvements in system delay costs come at

the expense of an increase in arrival ground delay costs, and are reasonable in magnitude
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for every GDP case. Also, the integrated dynamic model typically generates greater system

delay improvements than its static counterpart. A key contrast to the hypothetical case

study is the absence of a convex relationship between the system delay cost improvements

and the expected duration of diminished capacity. This observation can be attributed to the

lack of arrival predominance in the scheduled demand in the real-world case studies.

Figures 4-16 and 4-17 depict the computed values of the Bertsimas and Gupta (2009), and

Barnhart et al. (2009) equity metrics for the optimal arrival ground delay allocations, from

the integrated and arrival-prioritizing dynamic stochastic models. The integrated dynamic

model produces an improvement in both equity metrics through almost the entire spectrum

of real-world GDP cases. These results further support the hypothesis that an integrated

framework for stochastic ground-holding typically facilitates a more equitable allocation of

delays across scheduled arrivals, by virtue of balanced capacity sharing between arrivals and

departures.
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Figure 4-16: Inequity in arrival delay allocation for integrated and arrival-prioritizing dynamic
models, measured using the Bertsimas and Gupta (2009) metric [12] for real-world GDP cases.

A key objective of this thesis is to study the implementation of CDM mechanisms in

conjunction with the stochastic ground-holding models discussed in this chapter. This goal

requires the development of stochastic equivalents of the incumbent CDM mechanisms that
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Figure 4-17: Inequity in arrival delay allocation for integrated and arrival-prioritizing dynamic
models, measured using the Barnhart et al. (2009) metric [8] for real-world GDP cases.

can be applied to the slot allocation solutions obtained from stochastic ground-holding mod-

els. Before delving into such an investigation, the issue of compatibility of the solutions

of various stochastic ground-holding models with CDM mechanisms needs to be addressed.

The amount of flexibility offered to the airlines for substituting and canceling slots depends

on whether a static or a dynamic stochastic model is used to determine the slot alloca-

tion. This factor is a driver of the tradeoffs between static and dynamic stochastic models,

as discussed in the following chapter. These tradeoffs motivate the design of a hybridized

stochastic model that combines the favorable features of static and dynamic models. The

development of such a hybrid stochastic formulation is the focus of the next chapter.
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Chapter 5

Hybrid Stochastic Ground-Holding

Model

5.1 Introduction

This chapter focuses on the relative advantages and disadvantages of static and dynamic

stochastic ground-holding models within the context of Collaborative Decision-Making (CDM).

Both approaches are single-airport models that allocate ground delays to scheduled arrivals

when future capacity is uncertain. They are formulated as integer stochastic programs that

minimize the expected sum of ground and airborne delay costs across a finite set of possi-

ble capacity scenarios with specified probabilities. As seen in Chapter 4, the static model

of Richetta and Odoni (1993) [67] is a single-stage integer stochastic program, while the

dynamic model of Mukherjee and Hansen (2007) [55] is a multi-stage integer stochastic

program.

During present-day GDPs, arrival slots allocated by the ground-holding model are ad-

justed further with direct participation from the airlines. The two CDM mechanisms that

enable these adjustments are designed to enhance system efficiency (Chang et. al., 2001)

[18]. The first one, intra-airline slot substitution, allows airlines to swap slots allotted to

them in order to to satisfy flight-specific delay preferences. Through the second mechanism,

compression, airlines can exchange an assigned earlier slot in the event of mechanical delays

or a cancellation, for a later slot.
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Deterministic and stochastic ground-holding models both assume homogeneous unit costs

for ground and airborne delay across all flights. It is this assumption that motivates the de-

sign of intra-airline slot substitution mechanism as means of improving system efficiency.

Since flight-specific delay costs are usually private to the airlines, the slot substitution mech-

anism allows airlines to improve their internal delay costs by reassigning their flights among

their own slots. Airlines are not required to reveal their delay costs, thereby alleviating con-

cerns of incentive-compatibility (the guarantee of truthful revelation), as well as real-time

tractability.

By nature of their respective formulations, the static stochastic model determines ground-

holding for all flights in the GDP at the outset, while the dynamic stochastic model permits

revision of ground-holding decisions based on the latest information on scenario material-

ization. The dynamic model will therefore always achieve lower optimal system delay costs,

assuming homogeneous unit costs. However, dynamic stochastic ground-holding formula-

tion relies upon the travel durations of individual flights. Section 5.2 illustrates how this

property of the dynamic solution limits slot substitution, as slots assigned to a short-haul

flight may be incompatible for longer flights over the set of possible capacity scenarios. This

feature produces a trade-off between potentially greater pre-CDM delay cost reduction and

potentially lower CDM-induced reduction in airline delay costs for the dynamic model, when

compared to the static model.

This chapter integrates the favorable features of the static and dynamic models into a

hybrid stochastic ground-holding model. Similar to the dynamic model, the hybrid model

uses the latest information on capacity scenario materialization, and yet eliminates the de-

pendence of its ground-holding solution on flight duration. This chapter also establishes two

useful results on the tractability of the integer stochastic formulation of the hybrid model,

when reasonably realistic conditions are satisfied by its input parameters. The first result

is applicable for marginally non-decreasing ground-hold cost functions, under which condi-

tion the linear relaxation of static model formulation was recently shown to yield integral

solutions by Kotnyek and Richetta (2006) [49]. Given the same condition, we prove that

integrality of the hybrid formulation can be guaranteed by imposing integrality requirements

on a subset of the decision variables. We also prove that an added condition on the structure
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of the capacity scenario tree establishes a stronger version of the first result.

This chapter uses the original arrivals-based formulations of stochastic ground-holding

models, as opposed to the integrated versions presented in the Chapter 4. This restriction

is for clarity, and the central motivation behind the development of the hybrid stochastic

model will be retained in an integrated framework as well.

5.2 Comparison of Static and Dynamic Stochastic Mod-

els

The static model ((4.18)-(4.21)) is formulated as a single-stage stochastic integer program,

and the first-stage decision variables are the ground-holding values for flights scheduled to

arrive within the GDP time window Xtte. By design, these ground-holds are the same for

every capacity scenario s E S that can potentially materialize.

The dynamic model ((4.31)-(4.35)), on the other hand, is a multi-stage stochastic integer

program with disaggregated flight-specific decision variables X>t. This variable represents

the ground-holding decision for flight f at a stage jointly defined by time-step t and capacity

scenario s, and can be subjected to dynamic recourse while satisfying the non-anticipativity

constraints (4.34).

As seen in Chapter 4, a multi-stage dynamic stochastic model makes better use of evolving

information on capacity scenario materialization, as compared a single-stage static model. It

would therefore yield a lower optimal system delay cost for the original (pre-CDM) stochas-

tic ground-holding allocation. The above statement is only valid under the assumption of

homogeneous delay costs across flights. In actual GDP settings, delay cost functions may

vary among flights for operating airlines, but we expect that the dynamic model will still

have lower pre-CDM delay costs.

While it has lower pre-CDM delay costs, the dynamic model differentiates between flights

based on their durations, thereby limiting slot substitution options under CDM. This mech-

anism, termed intra-airline slot substitution, allows an airline to redistribute arrival times

amongst its flights to prioritize critical flights. The slot assigned to a flight by the dynamic
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model could feature different arrival times under different scenarios depending on its du-

ration. As a consequence, slots allotted to flights of different durations cannot always be

feasible swapped across all scenarios, as demonstrated in the following example.

5.2.1 Static and dynamic stochastic ground-holding problem ex-

amples

Consider a GDP with a 6 time-step capacity scenario tree as given in Figure 5-1, and arrival

demand schedule featuring two flights A and B, as given in Table 5.1.

Time 1 2 3 4 5 6

S5 pr=0.01

S4 pr=0.02 0 unit of capacity

S3 pr=0.48 * 1 unit of capacity

2 units of capacity

S2 pr=0.48

S1 pr=0.01

Figure 5-1: Capacity scenario tree for illustrative example

Flight ID Departure time Arrival time Flight duration
A 1 3 2
B 3 4 1

Table 5.1: Arrival demand schedule for a hypothetical example.

Assuming the homogeneous unit ground and airborne delay costs for both flights to be 0.5

and 2.5 respectively, the ground-holding solutions to the static and dynamic models applied

upon this example are provided in Tables 5.2 and 5.3 respectively. As expected, the delay

cost amount for the dynamic solution is lower, illustrating the dynamic model's pre-CDM

advantage.
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Flight ID S1 I S2 I S3 S4 I S5
Ground-hold 1 1 1 1 1

A Departure time 2 2 2 2 2
Arrival time 4 4 4 4 4

Ground-hold 1 1 1 1 1
B Departure time 4 4 4 4 4

Arrival time 5 5 5 5 5

Table 5.2: Solution to static stochastic ground-holding problem. Optimal (pre-CDM) delay cost
1.2.

Flight ID S1I S2 S3 S4 S5

Ground-hold 1 1 1 1 1
A Departure time 2 2 2 2 2

Arrival time 4 4 4 4 4

Ground-hold 0 1 1 2 3
B Departure time 3 4 4 5 6

Arrival time 4 5 5 6 7

Table 5.3: Solution to dynamic stochastic ground-holding problem. Optimal (pre-CDM) delay cost
= 1.065.

If the same airline operates flights A and B, it is possible that the airline would like to

swap the scenario-based arrival slots allotted to these two flights. Such a situation might

arise if the airline considers flight B to be more delay-sensitive than flight A, perhaps owing

to aircraft or passenger connectivity.

Flight ID S1I S2 S3 S4 S5

A Departure time 3 3 3 3 3
Arrival time 5 5 5 5 5

B Departure time 3 3 3 3 3
Arrival time 4 4 4 4 4

Table 5.4: Solution to static stochastic ground-holding, post-slot substitution.

Flight ID S1I S2 S3 S4 S5

A Departure time 2 3 3 4 5
Arrival time 4 5 5 6 7

B Departure time 3 3 3 3 3
Arrival time 4 4 4 4 4

Table 5.5: Solution to dynamic stochastic ground-holding, post-slot substitution.
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We observe, using Tables 5.4 and 5.5, that the desired slot substitution is feasible for the

static model, but not so for the dynamic model. In Table 5.5, flight A cannot depart on the

3 rd hour under scenario S3 and on the 4th hour under scenario S4, since scenarios S3 and

S4 are not distinguishable at start of the 3 rd hour. This incompatibility arises because A, a

2-hr long flight, cannot feasibly occupy a scenario-based slot originally allotted to B, a 1-hr

long flight.

This example supports our earlier hypothesis that the dynamic model might limit the

feasibility of slot substitution among flights of different durations. Consequently, the in-

cremental gains in delay costs for airlines through CDM mechanisms is likely to be lower

when using the dynamic model. Like the pre-CDM superiority of the dynamic model, the

conceptual CDM-related deficiency of the dynamic model solution need not always translate

to lower incremental gains compared to the static model (e.g. if airline operates flights of

identical duration), but is expected to do so for typical conditions.

Table 5.6 summarizes the above-described trade-offs between the static and the dynamic

model with respect to pre-CDM and CDM allocations.

Static Dynamic
Pre-CDM optimal system delay cost Higher Lower

CDM-induced delay cost decrease Larger Smaller

Table 5.6: Typical tradeoffs between Static and Dynamic Stochastic models for pre-CDM and CDM
performances.

5.3 Hybrid Stochastic Ground-Holding Model

Section 5.2 described the relative advantages of the static and dynamic stochastic models

with respect to pre-CDM and CDM allocations under typical conditions. In particular,

the multi-stage stochastic formulation of the dynamic model results in better pre-CDM

allocations, while the flight duration-independent allocations of the static model lead to more

slot substitution options. This section develops a new model, called the hybrid stochastic

model that combines these two favorable features. The formulation of the hybrid stochastic

model is presented below.
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K

Minimize Ps((
sGS n1=0

subject to:

T-n

Cg,n((
t=1

Xtt+n) + Ca > ASj)

t+K

(XZ = Ad Vt {1,.., T}, s c S
j=t

t

Aq4 ;> Xst + Aqt_1 - A c, Vt E

J=t--K

XtJ = Xi, Vsi, s2 c G(t - max-dur) (5.4)

X E Z+, Vtj E {1, .. , T}, s E S

Extended notation (in addition to that of the static and dynamic stochastic

formulations)

Input

max-dur : Maximum flight duration among all flights considered for rescheduling

under GDP

Decision Variables

XI :Number of arrivals with original arrival time t rescheduled to arrival

time t + n for scenario s

Objective function

(5.1)

Constraints

(5.2)

(5.3)

(5.4)

Expected sum of arrival ground delay cost and airborne delay cost

: Arrival demand balance

: Arrival queue balance

Non-anticipativity on arrival ground-holding

The hybrid model is a multi-stage stochastic mixed-integer program like the dynamic

model, and permits scenario-specific revision of the ground-holding solution, ensuring a lower

optimal pre-CDM delay cost compared to static model (assuming homogeneous costs). At

any time-step t under capacity scenario s, while the dynamic model assigns ground-holding
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{1,.., T}, s E S

(5.2)

(5.3)



for flights held on ground at that time-step using the variable Xs,' the hybrid model assigns

ground-holding for flights originally scheduled to land at time-step t + max-dur using the

variable XtFfl, Vn E 0, .. , K. This feature ensures that slots assigned to two flights of

different durations under the hybrid solution can be feasibly exchanged, as demonstrated in

the following example.

5.3.1 Hybrid stochastic ground-holding problem example

Table 5.8 presents the ground-holding solution of the hybrid stochastic model for the example

in Section 5.2.1. Note that the homogeneously computed delay cost amount for the hybrid

solution is lower than that of the static solution, but higher than that of the dynamic solution.

Table 5.9 shows the result of swapping the slots assigned to flights A and B under the hybrid

solution. This is a feasible slot substitution: Flight A can depart on the 2 nd hour for scenario

S1 and on the 3rd hour for other scenarios, since S1 would be distinguishable from the other

scenarios by the 2 nd hour according to the scenario tree in Figure 5-1.

In light of these properties of the hybrid stochastic model, Table 5.10 summarizes the

tradeoffs between the three stochastic models, for typical cost structures.

S1 S2 S3 S4 5
Ground-hold 1 1 1 1 1

A Departure time 2 2 2 2 2
Arrival time 4 4 4 4 4

Ground-hold 0 1 1 1 1
B Departure time 3 4 4 4 4

Arrival time 4 5 5 5 5

Table 5.8: Solution to hybrid stochastic ground-holding problem. Optimal (pre-CDM) delay cost
= 1.195.

Table 5.9: Solution
flight B are swappec

S1 S2 S3 S4 S5
Departure time 2 3 3 3 3

A Arrival time 4 5 5 5 5

Departure time 3 3 3 3 3
B Arrival time 4 4 4 4 4

to hybrid stochastic ground-holding problem, after the
1.

slots for flight A and
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Static I Hybrid | Dynamic
Pre-CDM optimal system delay cost Highest Moderate Lowest

CDM-induced delay cost decrease Largest Moderate Smallest

Table 5.10: Typical tradeoffs between Static, Hybrid and Dynamic Stochastic models for pre-CDM
and CDM performances.

5.3.2 Equity of hybrid stochastic model

Like the dynamic stochastic model, the hybrid stochastic formulation may rearrange the

original arrival schedule for some capacity scenarios. As noted in Mukherjee and Hansen

(2007) [55], this rearrangement is an undesirable source of inequity in ground-hold allocation.

However, the key difference between the dynamic and hybrid solution is that the latter is not

biased based on flight duration. The dynamic model can potentially delay short-haul arrivals

under low capacity scenarios, as these arrivals are more responsive to evolving capacity

information. By contrast, the hybrid model would simply favor arrivals scheduled for later

time-steps in the GDP, since they could potentially be advanced in the event of an early

increase in airport capacity. Since the length of a GDP is known just prior to its initiation,

the nature of inequity imposed by the hybrid solution is unsystematic in comparison to the

dynamic model, and therefore preferable.

5.4 Properties of Hybrid Stochastic Formulation

This section develops two key results concerning the tractability of the hybrid stochastic

model formulation under a fairly general set of conditions. The proofs assume integer de-

mands (A' E Z+, Vt E {1, .. , T}) and capacities (Aca E Z+, Vs E S, Vt C {1,.., T}). The

proofs rely upon perturbation analysis as a device to establish properties of the optimal so-

lutions. The brief description of perturbation analysis is as follows: We consider a possibly

nonconforming optimal solution (i.e., an optimal solution that does not maintain the flight

ordering the original schedule), and perturb it by an infinitesimal amount in the direction of

a conforming solution, while ensuring no increase to the objective function value or violation

of constraints. We thereby construct a feasible, conforming optimal solution that can be

obtained by employing a continuous sequence of optimality-preserving perturbations to the
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non-conforming solution.

5.4.1 Case 1: Integer queue lengths

Given marginally non-decreasing ground-holding cost coefficients (Cg,n+1 - Cg,n ;> Cg,n -

Cg,n_1 Vn), the hybrid stochastic formulation is guaranteed to have an integral optimum

solution if the queue length variables (Aa, Vs E S, t E {1, .. , T}) are constrained to have

integer values.

5.4.1.1 Proof

Assume an optimal solution X (with optimal cost Z) for the hybrid formulation satisfying

the specified conditions on Cg,,, and with Aaj E Z Vs ES, t E {1, .. , T}, but with fractional

solution values Xs' for some s {1, .. ,S; a, bE {1, .. , T}. We now describe an algorithm

that converts this solution into a fully integral solution, through a sequence of perturbations

that do not increase the optimal cost value.

5.4.1.1.1 Algorithm

1. Amongst the fractional values, let i min a, and j - min b. By
a:Xgz+s VsES : z+ VsE{1,..,S}

manner of selection of indices i and j, there does not exist p < i such that Xs, ( Z+

for any s E S.

i+K

2. Since ZXb= A d and A dE Z+, we know that if X s Z and i is selected as
b=i

described in Step 1, there exists b > j such that Xb V Z+. The above is true because

the reallocations of arrival demand originally scheduled at time i need to add up to an

integer value. Let k min b.
XbVZ+andX' gZ+

3. We know, by the non-anticipativity constraints (5.4), that Xis Vb E i, .., i + K are the

same for all s E G(i - max-dur). Recall that G(t) is the subset of scenarios still possible

at time-step t. Let oj = 1 - frac(Xfy), 6 = frac(Xik) for any s E G(i - maxdur).

4. Since Aa c Z+ Vs, t, we can partition the scenario set G(i - max-dur) into two

exclusive subsets S , SF as described below.
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i. Vs' E S, there exists time index p, s.t. i < P, <j and X'' Z+.
3

ii. Vs' E SP, there exists no such time index p,. This means Xj/ ( Z+ (from
1=j-K

queue balance constraint (5.3) for time j and scenario s'). Since A'q E Z+ Vs E S,

it is necessary that A 0. This implies that there exists spare capacity at time
3

j for scenario s', A "e As - E X1 , and this spare capacity A,7-
=j-K

1 - frac(X ' ):::= 64,j.

5. Vs' E S , select time index p', -

41,, = frac(X, )
PS, j)

min pS/, and compute

6. Compute omin = min(i,j, 61 ,min op,,,j).

s fdSA7. Perturb solution X to X-new as follows. For all s c G(i - max-dur), s' i

X _news.

X _news

X _news,

X news,
PS1,k

X min

X -
6

min

-X + 6min

(5.5)

Feasibility of perturbed solution: We verify the feasibility of perturbed solution

X-new.

Case i. Vs' C S: The perturbation was a balanced swap of 6 min units of flow

between time indices j and k, and therefore no change was made to the reallocated
t

arrival demand X"' in queue balance constraint (5.3), and airborne queue A.,,
l=t-K

Vt E {1, .. , T}. Hence, the perturbed solution is feasible.

Case ii. Vs' E SP: The perturbation transferred 6 min units of flow from time index

k to j (Recall j < k). However, since there was spare capacity at time index j for

all scenarios s' E SB- A c-rem > 6 ,j, a flow transfer of 6
min would be fully absorbed

by this spare capacity and result in no incremental airborne queue. In addition, the

queue lengths for time steps k and beyond (A2I Vt > k) might be reduced through

141



this transfer. In any case, the perturbed solution is feasible.

Objective function value for perturbed solution: We recognize that the total

airborne delay cost component of objective function (5.1) for perturbed solution X-new

cannot be higher than that for original solution X. Therefore, the incremental ground

delay cost for X-new compared to X (termed Zg(X-new) - Zg(X)) represents an upper

bound in terms of the total incremental cost Zg(X-new) - Zg(X). The incremental

ground delay cost for X-new, namely, Z (X-new) - Z9 (X), is given by:

(C,,_i - Cg,k-i + Cg,k p - Cgjp)6min, Vs' S (5.6)

(Cg,ji - Cg,k-i)6min, Vs' C S 3  (5.7)

0, Vs' ( G(i - max-dur) (5.8)

Since we have marginally non-decreasing ground-delay costs, and time indices i, p, j, k
such that i < p < j < k,

Cg,ki - C,, _> Cg,-_ - CJp >_ 0 (5.9)

-Zg(X-new) - Z(X) < 0 (5.10)

= Z(X-new) - Z(X) < 0, (5.11)

implying that Xne, preserves optimality.

8. Adopting the above perturbation principle, Steps 1-7 can be repeated until there are

no fractional values in the optimal solution. This algorithm will eventually terminate,

since after every perturbation, no new fractional solution is created among Xb" Va, b e

{1, .., T}, Vs E S, and at least one fractional solution among Xas aVa, b c {1, .. , T}, Vs c

S is rounded off.

Lemma 1 The hybrid stochastic formulation yields an optimal solution with integer values

for all variables Xa, (Vs E S; a, b C {1, .. , T}) when the queue length variables (A" Vs C

S, t {1, .. , T}) are constrained to have integer values, and the ground-holding costs are

marqinally non-decreasing.
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In the original integer formulation of the hybrid stochastic model, the number of integer

variables was:
Ground-holding allocation, Xe Vij E {1, ., T}, s c S: 0(T x T x |S|) = 0(T 3 )

Airborne queue lengths, Aq Vt E {1,..,T},s E S: O(T x IS|) = O(T2 ).

The total number of variables in the original formulation that need to be integral is

O(T 3). Lemma 1 proves that total integrality can be guaranteed by restricting the integrality

requirement to O(T 2 ) variables in the formulation.

5.4.2 Case 2: Capacity scenario tree with special structure

We consider a capacity scenario tree with a special structure, namely, one that comprises

of sequentially non-decreasing capacity scenarios, with the sole element of uncertainty being

the time instance when a capacity scenario branches from lowest capacity state to a higher

capacity state. The scenario tree in Figure 5-2 with three capacity states (i.e., low (L),

medium (M) and high (H), L<M<H) illustrates this template.

Figure 5-2: A sketch of a capacity scenario tree conforming to the special structure.

Note that every capacity scenario in the above tree follows the same deterministic trend

once the capacity transitions from state (L) to state (M). That is, regardless of the time
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step when capacity first increases from low state (L) to medium state (M), there are two

successive medium capacity states (M) before the capacity rises to the high state (H). In the

discussion that follows, we use the notation dur, Vs E S to represent the duration for which

lowest capacity (L) lasts for given scenario s.

Given the above template for the scenario tree, without loss of generality, we can label

the scenarios numerically in the increasing order of dur,, i.e., S = 1,.., S| where |S| = T

and dur, = s Vs C {1, ..,I S}. Under this notation, the lowest capacity state lasts through

the first time-step for scenario 1 and the entire length of the GDP planning horizon (i.e, T

intervals) for scenario T.

Now, the statement of our result is as follows:

Lemma 2 Given

1. Marginally non-decreasing ground-holding cost coefficients

Cg,n+1 - Cg,n ;>Cg,n - Cg,n1, Vn, and

2. Capacity scenario tree with sequentially non-decreasing capacity scenarios, and sole

element of uncertainty being time of improvement from lowest capacity state,

the hybrid stochastic formulation is guaranteed to have an integral optimum solution if queue

length variables for scenario T (i.e., A aq Vt E {1, .. ,T}) are constrained to have integer

values.

5.4.2.1 Proof of Lemma 2

We provide a two-part proof of Lemma 2.

Part 1: We prove that, given specified conditions on the input parameters, the optimal so-

lution has a special structure in terms of flight ordering with respect to the original schedule.

Part 2: We prove that, for the given special structure of optimal solution, the stated result

on integrality of the optimal solution holds true.

We first develop some key notation and highlight specific properties of the hybrid formu-

lation under the conditions mentioned in Lemma 2, that will be useful for the proof.

Notation
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max-dur

A cap-rmixAa"'(X)

A~ -""(X)

Longest duration among all flights handled in the model.

Residual capacity for scenario s at time-step b given solution X

Residual capacity for scenario s at time-step b given solution X

if only flows X Vi < a - 1, Vj were considered instead of the

complete set Xfj Vi, Vj.

Note: A cap-remn r (X) = A .a""'(X

Properties of capacity scenario tree: Given the proposed scenario labeling scheme,

(Al) G(s) = {s, s+ 1,.., S|} Vs E (1, .., Sl} and G(s)\G(s+l) = {s} is a solitary scenario.

(A2) Af ;ap> A cpVS E {1 l.., |Sl}, Vt E (1,. T}.

durs=s

L

H

G(s+1)
G(s)

scenario s f

Figure 5-3: Illustration of relationship between G(s) and G(s+1) for given scenario tree.

Compact representation for ground-holding solution given scenario tree struc-

ture: The special scenario tree structure enables a compact representation of the hybrid

ground-holding solution. We denote a partial solution XS(i : j) as the ground-holding allo-

cation under scenario s for flights scheduled to arrive between time-steps i and j. As per

the principle of the hybrid model, arrivals scheduled for time-step t + max-dur are allo-

cated ground delays at time-step t based on observed capacity values up to t. Accounting

for the relevant non-anticipativity constraints, we can represent the ground-holding solu-

tion for a given scenario s as the union of two partial solutions: X'(1 : T) = [XT(1 :

s+max-dur) Xs(s+max-dur+1I : T)]. In this expression, the component XT(1 : s+max-dur)

captures the portion of ground-holding decisions taken upto time-step s and is common to all

scenarios indistinguishable until this time-step (i.e., G(s)). The subsequent decisions from
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time-step s + 1 onwards (XS(s + max-dur + 1 : T)) are taken independently for scenario s

following its divergence from scenario cluster G(s).

To further assist in the proof development, we introduce the following two sub-problems

at time-step t that determine partial ground-holding solutions X"(t+max-dur : T) Vs C G(t)

and Xt--1(t+max-dur : T), given partial solution XT(1 : t +max-dur - 1). Note that scenario

labeled t - 1 corresponds to G(t - 1)\G(t).

Figure 5-4 illustrates the two sub-problems at time t: The first (shown in green) cor-

responds to a deterministic ground-holding problem that is solved for the branch of the

scenario tree that becomes certain at time t, while the second corresponds to the portion of

the scenario tree that is still uncertain at time t.

t-1 t

S t(X)

Dt(X)

Figure 5-4: Illustration of the two sub-problems at time t for given scenario tree.
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Deterministic ground-holding sub-problem (D-subt(Xo)): Given a partial solution

XO'(1 : t + max-dur - 1), the partial solution X,- 1(t + max-dur : T) is the solution to the

following deterministic ground-holding problem:

K T-n T

Minimize C,I( X>3, ) + Ca A3qD~ub (5.12)
n=o i=t+maxdur i=t+maxdur

subject to:
i+K

X1> = Ad, Vi E {t + max-dur, .., T} (5.13)
ji

Aaq,D-sub t > X>3i + Aaq,D-subt
3, i-1

j=max(t+maxdur,i-K)

-A cap_rem,t+max-aur (X) Vi E {t + max-dur, .. , T} (5.14)

XS E Z+, Vi, j E {t + max-dur,,.., T} (5.15)

Note that, due to the inherent property of deterministic ground-holding, flight ordering

in partial solution XO-'(t + max-dur : T) for scenario t - 1 in any solution X0 will always

be same as in original schedule. We denote the arrival queue length in this sub-problem for

time interval i as A q,D-subt
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Stochastic ground-holding sub-problem (S-subt(Xo)): Given a partial solution X0 '(1 :

t + max-dur - 1), the partial solutions Xe(t + max-dur : T) Vs E G(t) can be given as the

solution for the following stochastic ground-holding problem:

K

Minimize ( C ,n
sCG(t) 2: Ps n=O

sEG(t)

subject to:

X8i+n + Ca

T-n

i=t+max_dur

i+K

X y = A', Vi E {t + max-dur,..,
ji

T}, s E G(t)

Aaq,s-sub t >s,1 -
j=max(t+max_dur,i-K)

X ±. + Aaq,S-subt - Acap_rem,t+maxdur
32 s,i-1 s,z 0XO ,

Vi E {t+ max-dur,.., T}, s c G(t) (5.18)

X 1 = X ,,xs.xs i V81, S2 E G(i - max-dur), Vi C {t + max-dur, .. , T}

Xj E Z+-, Vi, j E {t + max-dur, .., T}

(5.19)

(5.20)

We denote the arrival queue length in this sub-problem for time interval i by Aaq,s-subt Vs E

G(t).
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5.4.2.2 Proof of Lemma 2, Part 1

We prove the claim that there exists an optimal solution X for the hybrid formulation such

that X7'(1 : T), the ground-holding allocation for scenario T (longest duration of lowest

capacity state), has the same ordering of flights as in original schedule. The proof is based

on perturbation analysis.

1. Non-conforming solution: Assume an optimal solution X to the hybrid model for

which XT(1 : T) violates the flight ordering in the original schedule. Then, there exist

time intervals i < I < k s.t. XT kX+ 1 , > 0. Let's consider the lowest index i amongst

all such schedule rearrangements, and the lowest corresponding indices k and I for this

i. Note that ground-hold decisions for arrivals originally scheduled at i are made at

i - max-dur.

Now, we know that scenario labeled i - max-dur = G(i - max-dur)\G(i + 1 - max-dur)

is a solitary scenario (from (Al)) and A aaxdur,t > Aa Vs E G(i - max-dur), t E

{1, .. , T} (from (A2)). For scenario i - max-dur and solution X, only one of the

following four cases is possible.

Case (a): A aaur,(X) > 0 that can accommodate additional 3 units of flow with-

out producing any queue.

Case (b): A capxdurl(X) =0, but -p > i- +l,p < 1 s.t. X 7 max-dur > 0.
0 mxmur(XxA-Pdeurl X)

Case (c): X -max-dur Vp > + 1 and Apcapxrem (X) 0, but A - r(iX> 0.
,I- -m xdur,l (X -0 nd A xdur,I+(X ) > 0

Case (d): X 1 maxdur = 0 Vp > i + 1 and Acapxrem (X) =0 and A " (-r X = 0.

2. Perturbation: Consider a new solution X-new obtained by swapping infinitisemal

(3) units of ground-hold allocation between X'[ and X+1 ,,, as described below.

Xnew T = X - , Xnew = XT +6

,k i+1,k
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Note that this would amount to a balanced swap for all scenarios except i - max-dur.

For case (b) alone, consider an additional perturbation involving a balancing transfer

of 6 units from Ximax-dur to Xi- -max-dur for scenario i - max-dur.ofuisfo p,1 p,k

Xnewi-max-dur - Xi-max-dur - 6

Xnew imax-dur - X max-dur
p,k Xpkaxdu ±

3. Feasibility of perturbation: Since the perturbation is essentially a rearrangement

of ground-holding allocation for arrivals scheduled for time indices i and i + 1 (and p

in case (b)), its feasibility is not affected in any way.

4. Cost of Perturbation: Note that the perturbations only affect scenario set G(i -

max-dur), as it features changes to arrivals scheduled at and beyond time index i for

scenario T. We compute the net cost of perturbation specific to each scenario within

this affected set across each of the above-described cases (a)-(d).

1. Vs E G(i + 1 - max-dur):

The perturbation is effectively a balanced swap of ground-hold allocations (between

Xi and Xjij1 ). Therefore, the airborne queue length variables (Ar, Vs C G(i +

1 - max-dur)) are not altered, and the net cost of this perturbation is restricted to

ground-hold cost coefficients.

Cost of perturbation = (Cg_,i - Cg,k-i + Cg,k-(i+1) - Cg,-(i+1))6 < 0 given marginally

non-decreasing ground-delay costs and k > / > i + 1.

2. For s = i - max-dur:

Case a): The unbalanced 6 units of ground-hold re-allocation to time index I (from

X' ) are absorbed by the available spare capacity (since A axraur, (X) > 0)

without producing any queue. Therefore, the perturbation causes no increase to

airborne delay costs.

Highest cost of perturbation = (Cg9i - Cg,k-i)6 < 0 (corresponds to situation

where the perturbation causes no decrease to airborne delay costs (i.e. A2max dur,k(
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0)).

Case b): The perturbation is effectively a balanced swap of ground-hold allocations

(between X T and X+i-axdur). Recall the compact representation for ground-

holding solution Xt -max-aur(1 : T) = [XT(1 i) Xi-max-dur(i + 1 : T)]. Therefore,

the airborne queue length variables (A max durt) are not altered, and the net cost

of this perturbation is restricted to ground-hold cost coefficients.

Cost of perturbation = (C,,zi - Cg,k-i + Cg,k-p - C9,1_p) 6 < 0 for marginally

non-decreasing ground-delay costs.

Case c): Since there is no available spare capacity at time I (Aap-,eamxdur (X) = 0), we

know the unbalanced 6 units of ground-hold re-allocation will produce an incre-

mental queue (i.e. A max dur will increase by 6). In the worst-case, when there

is no spare capacity at any of time indices I < t < k for scenario i - maxdur, the

incremental queue will last through to time k (i.e. A maxaur,t Vl < t < k will all

increase by 6).

Therefore, highest cost of perturbation = (C,l i - C,k-i + Ca(k l))6.

We will now show that this worst-case cost of perturbation is non-positive.

From our description of the deterministic sub-problem D-sub t , we know that

xi-max-dur(i +1 : T) can be obtained as solution to sub-problem D-sub+ 1 -max-dur(X)

For this case, it is also known that A ap-em j (X) > 0 (there is spare capacity

at I if we ignore all arrivals originally scheduled beyond i). Since for this case,

Acap iaxdur,(X) = 0 and X-maxdur 0 Vp > i + 1, we can conclude that, in
max dur,1 pul

sub-problem D-subi+ -max-aur(X), AqD-subi+1 maxdur 01-1

In other words, we know there are some arrivals originally scheduled to land at

time r > i +1 that are re-allocated to a time h < / under scenario i - max-dur that

result in incremental airborne queues and utilize the spare capacity A 7",;"' (X).

Lets denote the latest such time instance by h, and latest corresponding scheduled

arrival time by r.

Let us consider an alternate feasible solution X-alt to the sub-problem D-subi+1 -maxdur(X)
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where a small portion a of the arrivals scheduled for time r (a < A cap-rei±X1a F i-max dur,1 V'))

are now reallotted, through ground-hold, to time I instead of h.

X-alt i-max-dur __ max-dur - a (5.21)

X-alt, max-dur - X -max-dur + a, (5.22)

all else being equal. In this alternate solution, the airborne delays from time-step

h to I for the reallotted a units are replaced by ground-delays. Therefore, change

in objective function value for D-subi+1-max-dur(X) is given by Z(X-alt)-Z(X)=

(Cg,i r - Cg,hr - Ca(l - h))a.

Since the original solution Xi-maxdur(i + 1 : T) was optimal for the sub-problem

D-sub+ 1 -max-dur(X), Z(X-alt)-Z(X) > 0, that is, Ca(l - h) < (Cg,ir - Cg,hr).

Given marginally non-decreasing ground delay costs and r > i, we have Ca(l-h) <

Cg,i_,r - Cg,hr _< Cg,i i - Cg,,-i.

Also, given h < 1 < k, we have Ca(k - 1) < Cg,k-i - Cg,, i.

Therefore, the highest cost of perturbation = (C,i-j - Cg,ki + Ca(k - 1))6 < 0.

Case d): The nature of perturbation is the same as in case (c). Therefore, the highest

cost of perturbation = (C,ii - Cg,k-i + Ca(k - l))6. We need to once again show

that this worst-case cost of perturbation is non-positive.

From our description of the stochastic sub-problem S-subt, we know that Xs(i +

1 : T), Vs E G(i + 1 - max-dur) can be obtained as solution to sub-problem

S-sub'+1-max-dur(X)

For this case, it is given that A x"dur) (X) = 0. Coupling this with property (A2)

of the scenario tree, we can conclude that A p-rn,i+1 (X) = 0 Vs E G(i-max-dur).

We are also given that X,+1, > 0. This implies that, in sub-problem S-subi+1-max-dur(X)

Aqssub'+1-maxdur > 0 Vs E G(i + 1 - max-dur) (since there is no spare capacity

at time step I for any scenario in set G(i + 1 - max-dur) even before servicing

arrivals scheduled beyond time i).

Consider an alternate feasible solution X-alt"(i+1 : T) to sub-problem S-subi+1 maxdur(X)
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obtained by reallotting, through ground-holds, a portion a of the arrivals scheduled

for time i + 1 to time 1 + 1 instead of / for scenario T. That is, consider

X alt i+1 = X~ i 1 + a (5.23)

X alt>1  = - a, (5.24)

all else being equal. For this alternate solution, the airborne delays from time step

I to / + 1 for the reallotted a units are replaced by ground-delays for all scenarios

s c G(i + 1 - max dur). Therefore, the change in objective function value for

S-subt+1-maxdur(X): Z(X-alt) - Z(X) = (Cg,i+1-(i+1) - Cg,i-(i+1) - Ca)af.

Since Xs(i+1 : T) Vs e G(i+1-max-dur) is an optimal solution to S-sub+ 1 -maxdur(X)

we know that

Z(X-alt)>Z(X) -> C,i - C, i_1 > Ca.

Given k > I > i and marginally non-decreasing ground delay costs, we have

C9 ,k _ - C,i ;> Ca(k - 1).

Therefore, the highest cost of perturbation,

(Coi1 - Cg,k-i + Ca(k - 1))6 < 0.

The above cases prove that Z(X-new)<Z(X). We can repeat the above-described form of

perturbation till we have an optimal solution such that the ground-holding allocation for

scenario T (longest duration of lowest capacity state), XT(1 : T), has the same ordering of

flights as in original schedule.

5.4.2.3 Proof of Lemma 2, Part 2

We now have to prove that an optimal solution X is integral under the additional condition

that A E Z+ Vt E {1,.., T}.

The proof in Part 1 concerning the structure for the optimal solution X holds for any

general value of A Vs Vt. Therefore, the structure holds true for specific case of integral

Aaq , Vt.

We again adopt a perturbation analysis for this proof.
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1. Non-conforming solution: Assume we have a non-integral optimal solution X such

that for scenario T (longest duration of lowest capacity state) there exist time instances

p C {1, ..T}, j E {p,p + 1,.. min(p + K, T)} such that XT ( Z+. Let us select the

earliest such time instance p, and corresponding earliest time instance j for which

XT V Z+. In accordance to the structure for X as derived in Part 1, the ordering for

flights in X for scenario T is the same as in original schedule.

Since, for a given p, j is the lowest time index for which XT Z+, E time instance
min(p+K,T)

q > js.t. X > 0, since XT = A where Ad C Z+. Let q be the lowest such
t=p

time instance.

Given the order preserving structure of the solution for scenario T, we can infer that

no arrival originally scheduled beyond time p is allotted to any time at or before j. i.e.

X,4 = 0 Vk > p,t < j.

Also, since p is the lowest time index for which XT Z+, we have

XjE Z+ Vk < p, I E {k, k + 1,.. min(k + K, j)}. Therefore,
p-1 p-1

(W ) = Z (XT) + XT. V Z+, since (XT) E Z+
t=max(1,j-K) t=max(1,j-K) t=max(1,j-K)

3

We know that Aa min(0, XT. + Ara 1 - A cap)
t-max(1,j -K)

where A ap and Aa_1 E Z+.

Therefore,if Aa E , the only possibility is that A = 0. This implies that capacity

is not exceeded at time j for scenario T, that is,

A p _1m,pl (X) = - A a (XT§) > 0 and V Z+.
t=rnax(1,j-K)

The above, in turn, implies A arernPA(X) > 0.

From property (A2) of scenario tree, we can conclude

A carem,p+l > 0 Vs E {1, .. , T}.

As per the hybrid stochastic model's working principle, the ground-holding decision

XT. is taken at time p - maxdur, and affects scenarios in set G(p - max-dur). There

are three possible categories of scenarios within G(p - max-dur):
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Type 1. s E G(p - max dur) such that Aa,-"e" (X) > 0

Type 2. s E G(p - max-dur) such that Acp-r m (X) = 0, but 3m such that p < n <

j and Xs,, , > 0

Type 3. s E G(p - max-dur) such that Aa-re'"(X) = 0, and im such that p < m <

j and X",' > 0

Note that scenario T falls into Type 1.

2. Perturbation: Consider a new solution X-new obtained by advancing 6 units of

ground-hold allocation XT[ to X in the following manner.

Xnew T

X-newT,Piq

- XT +6p,J (5.25)

(5.26)

all else being equal. For scenario s E G(p max-dur) belonging to Type 2, we consider

additional perturbation involving a balancing transfer of 6 units from X" y to X, .

= X" +6,

(5.27)

(5.28)X newmq

all else being equal.

3. Feasibility of perturbation: Given the perturbation is essentially a rearrangement

of ground-holding allocation for arrivals scheduled for time indices p under scenario T

(and m for scenario s belonging to Type 2), its feasibility is not affected in any way.

4. Cost of perturbation: We now consider cost of perturbation specific to scenarios

from each of the above three categories.

Type 1 Identical reasoning to case (a) from proof in Part 1. We can thereby show

highest cost of perturbation = Z,(X-new) - Z,(X) = (Cg,jp - Cg,q_) 6 < 0.

Type 2 Identical reasoning to case (b) from proof in Part 1. We can thereby show cost
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of perturbation = Z,(X-new) - Z,(X) = (C,,j_, - Cg,q-p + Cg,q-m - Cg,j-m) 6 
< 0

for marginally non-decreasing ground delay costs.

Type 3 Identical reasoning to case (c) from proof in Part 1. We can thereby show

Z,(X new) - Z,(X) = (Cp,4_, - Cg,q-p + Ca(q - j))6 0.

Therefore, Z(X-new) Z(X).

We can repeat the above-described form of perturbation till we have an optimal solution

that bears only integral values for X,1 Vp E {1, .. ,T}, j E {p, p + 1, .. ,min(p + K, T)}.

As shown earlier, the compact representation for ground-holding solution for any scenario

s E {1, .., |Sl} is Xs(1 : T) = [XT (1 s + max-dur) Xs(s + max-dur + 1 : T)], where the

partial solution Xs(s + max-dur + 1 T) can be obtained as solution to the deterministic

sub-problem D-subs+1(X).

Given integral values for XT(1 : T), we know that A ap-rem,s+1+max-dur(X) c + vt > S + 1 +

max-dur. Therefore, the solution to the deterministic sub-problem D-subs+1 (X) will also be

integral for all s, ensuring that the overall ground-holding solution XS(1 : T) will be integral

for all s.

In summary, we have shown using Parts 1 and 2 of this proof that, if the queue length

variables for scenario T (longest duration of lowest capacity state) are restricted to be inte-

gral, the hybrid stochastic ground-holding model will yield an integral optimum under

1. Marginally non-decreasing ground-holding cost coefficients, and

2. Capacity scenario tree with sequentially non-decreasing capacity scenarios, with the

sole element of uncertainty being the time of improvement from the lowest capacity

state.

Therefore, total integrality under these conditions can be guaranteed by restricting the

integrality requirement to O(T) variables in the formulation, instead of O(T 3 ) variables in

the original formulation.

A key motivation for developing the hybrid stochastic model was the notional tradeoff

in pre-CDM vs. CDM performances of the static and dynamic models, which the hybrid

model seeks to balance. We conjecture that the hybrid stochastic model inherits some of the
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favorable properties of both static and dynamic models, and may therefore produce better

post-CDM performance. The next chapter studies this conjecture and the factors influencing

it in greater detail.
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Chapter 6

Application of CDM to Stochastic

Ground-Holding Models

6.1 Introduction

The objective of this chapter is to study the application of Collaborative Decision-Making

(CDM) mechanisms to the stochastic ground-holding models discussed in the previous chap-

ter, and analyze the pros and cons of each model through representative case studies.

CDM mechanisms are integral features of a modern Ground Delay Program (GDP) that

allow airlines to participate in the slot allocation process. The concept of CDM within

a GDP has developed rapidly in recent years and has been unanimously acknowledged to

have benefited airport capacity users [18]. Through the mechanism of intra-airline slot

substitution, an airline can unilaterally redistribute slots allotted to its flights in accordance

to flight-specific delay preferences. Through the mechanism of compression (and its real-

time version Slot Credit Substitution (SCS)), airlines can trade slots allotted to delayed or

cancelled flights in exchange for a later slot. Both CDM mechanisms help airlines further

reduce their delay costs by allowing them to incorporate privately-held information on flight-

specific delay costs that are not available to the airports for the ground-hold allocation

process [18].

As seen in Chapter 4, static [67] and dynamic [55 stochastic ground-holding models are

the current state-of-the-art from literature, while the hybrid stochastic model was developed
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in the Chapter 5 as a compromise between these two. These models allocate ground de-

lays under capacity uncertainty with the objective of minimizing expected total delay costs

assuming homogeneous unit delay costs for all flights. The key differences in the solution

properties of the three models and the consequent tradeoffs with respect to CDM mecha-

nisms were highlighted in the previous chapter. The dynamic model, unlike the static model,

is a multi-stage formulation that allocates scenario-specific ground delays, but it does so by

differentiating between flights based on individual flight durations. Hence, while it guaran-

teed to achieve lower system delay costs given the same homogeneous unit delay costs, the

dynamic solution offers limited flexibility for the operating airlines to swap slots between

flights of differing durations. The hybrid model was developed with the purpose of bridging

this tradeoff by combining the pre-CDM efficiency of the dynamic model and CDM-flexibility

of the static model.

This chapter looks to assess the theorized advantages of the hybrid model by compar-

ing its performance with the static and the dynamic models when applied to GDP case

studies spanning a range of input data. In the currently practiced GDP framework, the

CDM mechanisms are designed for deterministic settings. In order to construct a complete

GDP case study involving stochastic ground-holding models, variants of CDM mechanisms

compatible with static, dynamic and hybrid stochastic ground-holding solutions are devel-

oped. Appropriate metrics that capture system-wide delay benefits generated by the CDM

mechanisms are used to evaluate the post-CDM performances of the three stochastic ground-

holding models, and to determine their relative merits. The hybrid stochastic model is rarely

observed to be the worst-performing of the three models across the range of GDP cases stud-

ied, emphasizing its ability to present a robust compromise between the static and dynamic

models.

Section 6.2 of this chapter describes the proposed GDP framework involving stochastic

ground-holding models, along with details of information sharing between airport and airlines

regarding the stochastic ground-holding solutions. Sections 6.3 and 6.4 discuss the mecha-

nisms of intra-airline slot substitution and SCS/Compression respectively, starting with the

formulations for their stochastic versions followed by details of the associated case studies

comparing the performances of three stochastic models when combined with the respective
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mechanisms.

6.2 GDP Framework within the CDM Paradigm

As illustrated in Figure 6-1 below, a GDP can be viewed as an interaction between an

airport and the airlines whose flights are rescheduled by the GDP. The airport enforcing a

ground delay program uses inputs on scheduled arrival demand and forecasted capacity over

a future time horizon to determine the controlled slot allocation through ground-holding. A

Ration-By-Schedule (RBS) principle is followed in assigning slots to individual flights. Given

this allocation, airlines operating the delayed flights are allowed to engage in intra-airline

slot substitutions and report changes to the airport. SCS is a real-time, dynamic version of

Compression, and is an event-driven process executed whenever an airline expresses the desire

to forfeit an earlier slot in exchange for a later slot. The airport authorities accommodate

this request by feasibly advancing flights occupying the intervening slots.

Updated capacity Original flight
forecasts schedule

Airport Airline

Ground-holding Slot Intra-airline slot
model - allocation to substitution

Compression/SCS SC equest

Figure 6-1: Operational framework for a GDP in the CDM paradigm.

In current GDP practice, uncertainty in capacity is handled by rerunning the ground-

holding model and generating a renewed slot allocation whenever there is an update in the

forecasted future capacity (which is assumed to be deterministic following every update).

Any alteration to the slot allocation, triggered either by a capacity forecast update, intra-

airline slot substitution or SCS event, is communicated between the airport and the operating

airlines.
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A few past studies featuring capacity uncertainty have adopted such an iterative frame-

work [6, 56]. The present study, however, looks to develop a GDP framework in which

stochastic ground-holding models are used for generating the initial slot allocation to which

the CDM mechanisms are then applied. To the best of our knowledge, only Mukherjee and

Hansen (2007) [55] have pursued this area of research and proposed stochastic equivalents for

intra-airline slot substitution and compression. The formulations for the CDM mechanisms

presented here are similar to those developed in Mukherjee and Hansen (2007) [55].

6.2.1 Stochastic ground-holding models in the GDP framework

As described in Chapters 4 and 5, stochastic ground-holding models allocate arrival slots

while explicitly planning for uncertainty in capacity forecasts. Like their deterministic coun-

terparts, these models assume homogeneous unit delay costs across all flights, and minimize

the expected sum of ground and airborne delay costs across all capacity scenarios. They

generate a slot allocation that applies to all the capacity scenarios considered in the original

forecast. The use of such allocations at the start of the GDP would therefore reduce the

number of allocation revisions triggered by capacity forecast updates. Indeed, if the original

set of capacity scenarios and their occurrence probabilities are accurately forecasted, there

would be no further need for revising the initial slot allocation except for airline responses.

This study focuses on three stochastic ground-holding models described in the previous

chapter: the static [67], the dynamic [55], and the hybrid (developed in the Chapter 5). In a

key simplification, the unit delay costs are assumed to be linear. This assumption reduces the

volume of information pertaining to the slot allocation that needs to be exchanged between

airport and airlines in the stochastic GDP framework, as described in the following section.

6.2.2 Communication of slot allocation information

In the deterministic GDP framework, the slot allocation is conveyed in terms of fixed slot

timings. Stochastic ground-holding solutions however embed information regarding the un-

derlying uncertainty. While the slot allocation from the static stochastic model has the same

structure as a deterministic allocation, it in fact contains underlying information on airborne
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delays that varies by scenario. The slot timings from the dynamic and hybrid models them-

selves vary by scenario. These aspects mean a greater amount of information needs to be

communicated between the airport and airlines when stochastic ground-holding models are

used for slot allocation. To keep the volume of this communication manageable, the relevant

information regarding each slot slotf allotted for flight f E F in the original schedule are

condensed into the following five attributes.

(a) Earliest allotted arrival time across all scenarios: EAT(slotf)

(b) Expected incremental ground delay beyond EAT(slotf) across all scenarios: grd(slotf)

(c) Expected airborne delay across all scenarios (assuming first-come first-serve policy for

servicing airborne queues): air(slotf)

(d) Duration of assigned flight: dur(slotf)

(e) Earliest time of arrival for assigned flight: ETA(slotj)

Assuming linear ground and airborne delay costs for all flights, the first four attributes are

sufficient information for an airline to execute intra-airline slot substitution on any of the

three stochastic model allocations, as described below. The last attribute is required by the

airport to determine feasible slot advancements in the SCS process, as described in Section

6.4.

6.3 Intra-Airline Slot Substitution

As mentioned earlier, the intra-airline slot substitution is a process through which each airline

redistributes its flights amongst the slots allotted to it. This helps the airline advance flights

for which delays are prohibitive at the expense of flights for which delays are less critical. A

practical instance of such a disparity in flight delay costs could be found with an airline that

operates a flight with predominantly connecting passengers along with another carrying a

majority of local passengers. In this case, the airline could potentially favor delay reduction

for the first flight in exchange for corresponding delay increase to the second flight.
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The intra-airline slot substitution can be viewed as an assignment problem solved by

each airline (labelled a) to assign flights operated by it (Fa C F) to the slots allotted to it

(slotf Vf C Fa), given its knowledge of flight-specific unit delay costs (Cf, C/, Vf C Fa) and

swapping feasibility (feasf, Vf, k c Fa) determined by the slot allocation.

In the context of a stochastic slot allocation, swapping feasibility feasf,k is governed

by whether a flight f can feasibly occupy a slot slotks timings across all scenarios. The

determination of this operational feasibility depends upon the type of stochastic ground-

holding model used for obtaining the slot allocation, as is described below:

Static : feasf,k = 1, if arrf < ETA(slotk)

Hybrid : feasf,k = 1, if arrf < ETA(slotk)

Dynamic : feasf,k = 1, if arrf < ETA(slotk) and durf = durk

The definitions for the feasibility parameter feasf,k highlight the reduced amenability of the

dynamic model for slot substitution compared to the static and hybrid models. Since the

slot allocation of the dynamic model depends upon individual flight durations, two flights of

different durations cannot always have their slots swapped. This phenomenon was elaborated

upon in the previous chapter.

The cost of assigning a flight f C Fa to slot SlOtk, k C F, denoted by Cf,k, can be

computed as follows:

Cf,k= Cf (grd(slotk) + ETA(slotk) - arrf) + Clair(slotk) (6.1)
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The assignment formulation for the intra-airline substitution follows as described below.

Minimize E Cf,Xf, (6.2)
fEFa kEFa

subject to:

Z Xf, = 1, Vk E F, (6.3)
f CFa

Z Xf,k =1, Vf E F, (6.4)
kE F

Xf,k < feasfk, Vf, k c F (6.5)

Xf,k E 0, 1 Vf, k c Fa

where Xf,k is a binary indicator variable signifying the assignment of flight f to slOtk.

This assignment formulation is simpler to the one presented in Mukherjee and Hansen

(2007) [55) for intra-airline slot substitution, in that airlines are not permitted to swap slots

in a scenario-specific manner in the above formulation. This simplification was adopted to

facilitate the compact structure for the slot allocation information described in Section 6.2.2.

In order to support scenario-specific swapping of slots in intra-airline substitution, scenario-

specific arrival times for each slot slotj would need to be communicated to the airlines.

The above formulation does not explicitly model flight cancellation decisions alongside slot

substitutions, as was done in Mukherjee and Hansen (2007) [55]. While the formulation

can be easily extended to include cancellation decisions, this aspect is not analyzed in the

following case studies. Lastly, given the formulation design, intra-airline substitution would

only effect changes to attributes (d) and (e) of the slot allocation information described in

Section 6.2.2.

For the same GDP input, the static, hybrid and dynamic models typically provide differ-

ent slot allocation inputs and permit varying levels of flexibility for intra-airline slot substitu-

tion. The next two sub-sections consider different GDP cases constructed from hypothetical

and real-world inputs, and compare the final delay costs realized for the three models from

the combination of ground-hold allocation and intra-airline slot substitution for these cases.
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6.3.1 Hypothetical case studies

The following sub-sections present the base data, experimental design as well as results of

hypothetical case studies, where sample input data are generated in a controlled manner to

help analyze specific trends.

6.3.1.1 Base data

The key inputs for a GDP comprise of capacity forecasts, arrival schedule and flight delay

costs. The capacity forecast is represented using a scenario tree. In the hypothetical case

studies, arrival capacity is assumed to take one of two values: a normal value (16), and a

deteriorated value (8). All scenarios begin with capacity at the deteriorated state, and differ

based on the time interval after which capacity improves to the normal state. Accordingly,

in the scenario tree, a scenario diverges out from the main branch at the time interval

when the capacity improves. A GDP planning horizon of 10 time intervals (with each

interval measuring an arbitary time unit) is created, which produces a total of 10 possible

capacity scenarios with the capacity improvement happening after the 1 ", 2 nd 1 10h interval

respectively. The corresponding scenario tree is depicted in Figure 6-2. A scenario is labelled

as s E {1, .., 10}, where s represents the duration of deteriorated capacity.

t=1 2 3 t=10
S=10

8 S=9

8 .......-----.

8 16

16
16

s=1

Figure 6-2: Scenario tree format for hypothetical case studies

The following arrival demand is set for the 10 time intervals: 16,16,15,16,15,16,16,15,8,5

with flight durations ranging from 2 to 5 time intervals in length. The total of 138 flights
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are arbitrarily split across 5 different airlines. Airline 1 having a fleet of 25 arrivals out of

138 is the focus of our analysis. For simplicity of analysis, the average unit ground (C4) and

airborne (CI) delay costs amongst flights operated by each of the 5 airlines are uniformly

set at 0.5 and 2.5 respectively.

6.3.1.2 Experimental design

The objective behind these hypothetical case studies is to assess the influence of various GDP

input parameters on the comparative performances of the three stochastic models. Those

pertinent input parameters are:

P1 Expected duration of deteriorated capacity (as determined by the probability distri-

bution of the capacity scenarios).

P2 Coefficient of variation in unit delay costs across flights (given mean ground delay

cost=0.5; airborne delay cost=2.5).

For representing the range of the parameter P1, three GDP cases with differing proba-

bility distributions pVs E {1, .. , 10} are generated.

Case 1: Short duration for deteriorated capacity, p, 0.4 Vs E {1, 2},

0.025 Vs c {3, .., 10}

Case 2: Medium duration for deteriorated capacity, p, = 0.1 Vs E {1, .., 10}.

Case 3: Long duration for deteriorated capacity, p, 0.025 Vs E {1, 8}

0.4 Vs c {9, 10}

First, the focus is on the parameter P1: the slot allocation results from the three stochas-

tic ground-holding models when applied to each of the three capacity cases are determined.

The focus is then centered on airline 1, and for every slot allocation obtained in the previous

step, the improvement to its total delay costs through intra-airline substitution is studied,

while varying parameter P2 (coefficient of variation in unit delay costs) from 0% to 30%.

6.3.1.3 Results

Before intra-airline substitution: Adopting the given mean ground and airborne unit

delay costs along with the specified demand schedule, Tables 6.1, 6.2 and 6.3 present the
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delay costs for the optimal slot allocations from the three stochastic models for each capacity

case.

Static Hybrid Dynamic
Total ground-delay costs 69 88 91
Total airborne-delay costs 86 51.5 15

Table 6.1: Static, hybrid and dynamic stochastic ground-holding results for GDP Case 1 (Low
duration of capacity deterioration).

Static Hybrid Dynamic
Total ground-delay costs 210 211 185

Total airborne-delay costs 6.75 1.25 0

Table 6.2: Static, hybrid and dynamic stochastic ground-holding results for GDP
duration of capacity deterioration).

Static Hybrid Dynamic
Total ground-delay costs 222.75 220.85 213.7

Total airborne-delay costs 0 0 0

Table 6.3: Static, hybrid and dynamic stochastic ground-holding results for GI
duration of capacity deterioration).

Case 2 (Medium

DP Case 3 (High

As expected, the dynamic model solution achieves the lowest total delay costs across all

three cases, followed by hybrid and static models in that order. The disparity in the optimal

costs is larger for case 1 (shortest expected duration of deteriorated capacity) and smaller

for case 3 (longest expected duration of deteriorated capacity), respectively. This trend in

the pre-CDM gains of the dynamic model is consistent with the observations in Mukherjee

and Hansen (2007) [55].

6.3.1.3.1 Post Intra-airline substitution The above-presented delay costs for slot

allocation results assume cost homogeneity across all flights. Through parameter P2 listed

above, variability is introduced in the unit delay costs across flights. The airlines would

then employ intra-airline slot substitution to further reduce total delay costs beyond that

of the slot allocation. Figures 6-3, 6-4 and 6-5 below present the total delay costs before

and after intra-airline substitution for airline 1 for the three capacity cases. Each graph
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provides separately the results for each stochastic model for different percentage coefficients

of variation in unit delay costs (parameter P2), across the 25 flights operated by airline

1. Each cost value plotted in the graph is an average measure computed from a randomly

generated sample set of 100 realizations of unit delay costs across the 25 flights, assuming that

the unit delay costs are uniformly distributed about the mean with the specified variance.

The same sample set of cost realizations is used for computing all three model results for a

given variance measure.

26.00 -

24.00 -

0)
.r 22.00-

20.00

u 18.00
0" -*-Static slot allocation

16.00 - - Hybrid slot allocation

14.00 -- Dynamic slot allocation
-- Static final

C 12.00 - -Hybrid final
S-U-Dynamic final

10.00 -

0 5 10 15 20 25 30

Coefficient of variation in unit delay cost (%)

Figure 6-3: Delay costs for airline 1 pre- and post- intra-airline substitution (Case 1 - Low expected
duration of deteriorated capacity).

The results illustrate the previously mentioned tradeoff in delay cost reduction between

the three stochastic models within the CDM framework. In all three capacity cases, the

dynamic slot allocation has the lowest delay costs before the intra-airline slot substitution

process. However, the superiority of the dynamic model after intra-airline slot substitution

progressively decreases with increasing variability in flight delay costs, as the hybrid and

static solutions experience higher gains through the slot substitution process. The crossover

in terms of final delay costs (around 15-20 % variation for capacity cases 1 and 2) occurs at

measures of cost heterogeneity that can be realistically expected for actual airline operations.
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Figure 6-4: Delay costs for airline 1 pre- and post- intra-airline substitution (Case 2 - Medium
expected duration of deteriorated capacity).

Building upon the trend in pre-CDM gains of the dynamic model discussed in the previous

section, it is observed that capacity cases 1 and 3 are most and least favorable, respectively,

for the dynamic model performance in terms of final delay costs.

Section 6.3.2 seeks to validate the inferences drawn from hypothetical case studies using

real-world data for airline schedules and delay costs.

6.3.2 Real-world case studies

The comparative study of the stochastic ground-holding models is now extended to data

from a GDP recorded on Feb 17, 2006 at LGA.

6.3.2.1 Base data

The GDP was in effect for 17 hrs from 7 am to midnight, during which a total of 542

arrivals, operated by 27 airlines, were scheduled. This tally excludes foreign arrivals, which

are typically exempt from GDPs. The original arrival schedule prior to the issuance of the
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Figure 6-5: Delay costs for airline 1 pre- and post- intra-airline substitution (Case 3 - High expected
duration of deteriorated capacity).

GDP was obtained from the ASPM 15-min dataset.

In this analysis, a discrete time interval is taken to be 1 hr long, and accordingly the

duration of every flight is rounded up to the nearest hourly measure. The maximum flight

duration among the domestic arrivals scheduled within the GDP time horizon was 5 hrs.

Tables 6.4 and 6.5 give the hourly aggregate scheduled demand and a break-up of this

demand by flight duration, for each airline.

Hour 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17
Demand 4 35 36 29 31 39 33 36 40 32 34 37 40 30 44 32 10

Table 6.4: Hourly aggregate scheduled demand (0700-2400 on Feb 17, 2006).

The 15-min arrival capacity estimated in Chapter 2 for LGA is scaled up to an hourly

measure of 56 operations. Due to the lack of reliable data on capacity forecasts used during

this GDP, synthetic scenario trees similar to that in the hypothetical case studies (Figure

6-2) are generated, with the capacity halved (28 arrivals/hr) under the deteriorated state.

Representative estimates for unit ground and airborne delay costs for each flight were

obtained using a combination of publicly available sources on reported airline operating costs,
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Airline (IATA code) 1-hr 2-hr 3-hr 4-hr 5-hr
AAL 0 3 37 11 12
DAL 28 8 24 2 0
EGF 3 51 2 3 0
CHQ 5 46 1 0 0
USA 31 12 3 0 0
CJC 10 29 0 0 0

COM 0 25 10 4 0
PDT 5 26 1 0 0
NWA 0 9 0 10 0
UAL 1 0 7 6 0
ACA 0 16 0 0 0
NKS 0 5 9 0 0
TRS 1 9 4 0 0
COA 0 4 0 0 9
AMT 0 0 9 0 0
AWI 1 6 0 0 0
MEP 0 0 4 3 0
JBU 0 0 6 0 0
ASH 1 4 0 0 0
JIA 1 4 0 0 0
LOF 0 5 0 0 0
BTA 0 4 0 0 0
EJA 1 0 1 2 0
CAA 0 3 0 0 0
JZA 0 3 0 0 0
CJA 0 1 0 0 0
EFG 0 1 0 0 0

Table 6.5: Number of flights per flight duration, by operating airline.

including T-100 schedules and P-52 files from the BTS website. The delay costs for a flight

were assumed to comprise of three additive components: fuel, crew and passenger delay

costs. The sources mentioned above were used to compute each of these cost components

for each flight in the case study dataset. Details of the methodology used for flight-specific

delay cost computation are provided in Appendix III.

Table 6.6 provides summary statistics for the computed unit delay costs by each operating

airline, and for the entire dataset.
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Airline Unit ground delay cost ($/hr) Unit airborne delay cost ($/hr)

(IATA code) Mean (x10 3 ) Coeff. of Var.(%) Mean (x10 3 ) Coeff. of Var.(%)

AAL 4.1 16.7 8.82 11.4
DAL 4.17 24.2 9.66 14.2
EGF 1.45 6.8 3.78 2.6
CHQ 1.45 11.8 3.73 4.6
USA 2.87 13.9 7.19 5.5
CJC 2.24 56.1 5.24 59.8
COM 2.26 28.5 6.3 34.8
PDT 1.17 27.6 2.74 12.8
NWA 4.0 18.9 8.84 19.5
UAL 3.87 9.7 8.6 8.5
ACA 3.35 9.9 7.96 6.7
NKS 4.39 16.2 9.48 7.3
TRS 3.07 10.4 6.99 5.0
COA 3.43 18.6 7.87 9.2
AMT 4.34 2.3 9.74 5.2
AWI 1.31 12.7 3.82 4.3
MEP 3.06 0.8 8.02 2.2
JBU 4.61 0.8 8.56 0.5
ASH 2.93 35.9 7.00 34.4
JIA 1.25 10.5 2.23 6.1
LOF 1.47 5.7 3.96 2.1
BTA 1.36 8.6 2.82 3.8
EJA 3.82 24.2 9.36 7.1
CAA 1.6 0 3.7 0
JZA 3.0 0 8.7 0
CJA 3.2 0 7.3 0
EFG 1.3 0 3.16 0

Aggregate 2.81 47 6.6 41.2

Table 6.6: Summary statistics for unit delay costs for airlines at LGA.

6.3.2.2 Experimental design

The goal here is to validate the results from the hypothetical case studies using real-world

data on demand and unit flight delay costs. To this effect, the influence of the following

capacity-related parameters on the comparative performances of the three stochastic models

on real-world data are studied.

P1 Expected duration of deteriorated capacity.

P3 Total length of GDP planning horizon (maximum of 17 hrs).

Here, parameter P3 is a newly introduced parameter, while P1 is as described for the hypo-

thetical case studies in Section 6.3.1.
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In order to generate a range of values for expected low capacity duration (P1) for a

given GDP horizon length L (P3), a sequence of (2L-1) scenario probability distributions

are generated in the following manner:

1-0.01(L -t) VS EC1 .t
(L distributions) Vt C {1,.. L} : p = t

0.01, Vs E {t + 1,.., L}

f0.01 Vs E {1, ..t},6
(L - 1 distributions) Vt E {1, .. , L - 1} :pt = (6.6)

1-.Oit Vs E {t + 1, .., L}

The following sub-section presents the delay costs after intra-airline substitution for each

stochastic model across this sequence of scenario tree cases, for GDP horizon lengths of 7,

10 and 15 hrs. For each GDP horizon length L, the relevant arrival schedule and unit delay

costs data from 0700 hrs to (0700+L) hrs are extracted from the LGA dataset, and are

applied to the sequence of capacity scenario trees described above.

6.3.2.3 Results

Figures 6-6, 6-7 and 6-8 summarize the final delay costs, aggregated over all airlines, for each

stochastic model across the previously described range of values for test parameters (i.e., P1

and P3). The figures present the net % improvement achieved by each model over the worst

stochastic model (as measured by the final aggregated delay costs).

For each GDP horizon length, the static model progressively takes over from the dy-

namic model as the model producing the lowest final delay costs as the expected duration

of deteriorated capacity increases. Also, for the range where the dynamic model performs

best, its percentage improvement over the worst model (typically static) is greater for higher

GDP horizon lengths. Both these trends can be attributed to greater pre-CDM gains for the

dynamic model under the specified ranges for the two parameters. As mentioned in the hy-

pothetical case studies, the dynamic model's ability to produce superior pre-CDM gains for

lower expected durations of deteriorated capacity was highlighted in Mukherjee and Hansen

(2007) [55]. The pre-CDM gains for the dynamic model also grow with the length of GDP

planning horizon, as a longer planning horizon implies more dynamic information on capacity

scenario can be acquired and utilized by the dynamic model.
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Figure 6-6: Percentage improvement in final system delay costs post intra-airline substitution (GDP
horizon length = 7 hrs). The missing bar corresponds to the worst model.

It is also worth noting that the hybrid model is rarely the worst-performing model across

the explored ranges of the two test parameters. This validates the underlying principle of

the hybrid model, which is to combine the dynamic model's superior pre-CDM performance

and the static model's greater amenability to intra-airline substitution.

Lastly, the influence of parameter P2 (variability in unit delay costs) on relative perfor-

mance of the stochastic models is validated by focusing on individual airlines. From Table

6.6, airlines 'DAL' (coefficient of variation = 19%) and 'AAL' (coefficient of variation =

14%) are selected because of their traffic volumes. Figures 6-9 and 6-10 present the final,

post- intra-airline substitution costs for these two airlines when GDP horizon length was set

to 10 hrs.

The dynamic model produces the best results in case of AAL across all values of expected

low capacity duration, while there is a cross-over point for DAL following which the static and

the hybrid perform better. This is also in agreement with the results from the hypothetical

case studies, where it was demonstrated that higher variability in unit delay costs (19% for

DAL vs 14% for AAL) tended to favor the static and hybrid models over the dynamic model.
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Figure 6-7: Percentage improvement in final system delay costs post intra-airline substitution (GDP
horizon length = 10 hrs). The missing bar corresponds to the worst model.

The intra-airline slot substitution analysis shows that the hybrid model is seldom the

worst-performing among the three stochastic models, across the range of GDP cases studied

using hypothetical and real-world data. This conclusion supports the objective behind the

hybrid model, which was to effectively reconcile the tradeoffs between the static and dynamic

stochastic models in a CDM environment. The next section extends this comparative analysis

to the SCS/Compression mechanism.

6.4 Slot Credit Substitution (SCS)

SCS is a real-time, adaptive form of Compression, and is currently viewed as its long-term

replacement. The traditional compression mechanism is a batch process executed at periodic

intervals during a GDP, simultaneously handling multiple slot forfeitures from airlines by

advancing flights to occupy vacated slots. SCS is an asynchronous, event-driven version of

compression triggered by a single forfeiture request from an airline. The dynamic respon-

siveness of the SCS helps it further improve GDP efficiency compared to compression.
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Figure 6-8: Percentage improvement in final system delay costs post intra-airline substitution (GDP
horizon length = 15 hrs). The missing bar corresponds to the worst model.

A detailed account on the SCS mechanism is provided in Howard (2002) [41], and its poten-

tial advantages are highlighted in Ball et. al. (2005) [3]. In our study, the SCS mechanism

is considered instead of Compression due to its ever-growing prominence.

Chapter 1 presented an illustrative example of SCS/Compression in its current determin-

istic design. The reader is directed to Chang et. al. (2001) [18] for more details regarding

the same. Listed below are three features that summarize the functioning of a SCS within

the context of a stochastic slot allocation.

1. Slot forfeiture compensation: An airline wishes to forfeit slot slotc (originally as-

signed to the delayed/cancelled flight c) while seeking a compensatory slot with a later

arrival time k across all scenarios. This later arrival time might either correspond to

the earliest arrival time for flight c following mechanical delays, or the earliest arrival

time for another flight operated by the given airline.

2. Pareto delay improvement to other flights: When executing SCS or Compression

on a deterministic slot allocation, all flights except the delayed/cancelled flight c are
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Figure 6-9: Final delay costs for DAL (GDP horizon length = 10 hrs).

either advanced or retained at their assigned slot timings. With respect to a stochastic

slot allocation, an equivalent feature would be to ensure these other flights are either

advanced or retained at their current slot timings for every scenario. This "pareto

delay improvement" feature was also adopted by Mukherjee and Hansen (2007) [55]

in their formulation of the compression mechanism, which was applied to dynamic

stochastic slot allocation.

3. Equitable distribution of delay improvements Apart from pareto improvements to

other flights, SCS or Compression also ensures that these improvements are distributed

uniformly among all candidate flights. For a simple illustration of this feature in a

deterministic setting, consider the following 3-flight example with their respective slot

allotments and earliest times of arrival as given in Table 6.7.

Now suppose flight A experiences a mechanical delay of 1 hr (changing its ETA to

0800 hrs), and the airline operating it is willing to forfeit its current slot (at 0720 hrs)

in exchange for one at 0800 hrs. There are two possible rearrangements to the current

slot allocation that would achieve this, as given below in tables 6.8 and 6.9.
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Figure 6-10: Final delay costs for AAL (GDP horizon length = 10 hrs).

Flight ID ETA Allotted slot timing
A 0700 0720
B 0710 0740
C 0720 0800

Table 6.7: GDP slot allocation for 3-flight schedule.

Between these two candidate solutions, the principles of compression or SCS dictate

that solution 2, involving slot advancements to flights B and C, be chosen over solution

1, involving slot advancement to flight C alone. This feature, when translated to the

context of a stochastic slot allocation, would imply that the number of flights advanced

for every scenario when accommodating a slot forfeiture needs to be maximized.

A formulation for executing SCS on stochastic slot allocations is developed that incorpo-

rates all of the above three features. The input for this SCS formulation comprises of two

components:

1. Scenario-specific stochastic slot allocation solution (in richer detail than that communi-
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Flight ID ETA Allotted slot timing
C 0720 0720
B 0710 0740
A 0800 0800

Table 6.8: Candidate SCS solution 1.

Flight ID ETA Allotted slot timing
B 0710 0720
C 0720 0740
A 0800 0800

Table 6.9: Candidate SCS solution 2.

cated to airlines as described in section 6.2.2).

arr-ti(slotf) : allotted arrival time under scenario s for slotf assigned to flight f

q,7 :arrival queue lengths under scenario s for time t

dur(slotf) : duration of flight assigned to slotf

ETA(slotf) : earliest time of arrival for flight assigned to slotf.

As mentioned earlier, the first two attributes do not change through the intra-airline

slot substitution process, assuming no cancellations have occurred apart from the SCS

triggering request.

2. SCS triggering request: Airline forfeiting slot slotc, currently occupied by flight c, in

exchange for a later slot at or beyond time k.

The formulation for the SCS mechanism given above inputs is presented below.
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Maximize Zp[( ( savngYj,) - Mds] (6.7)
SCS fJF\c r=1

subject to:
ETA(slotf)+K

( Xt = 1, Vs E S,Vf F (6.8)
t=ETA(slotf)

> ( + Aqs,t_1 - A cap, Vt Efl.T},S S (6.9)
f (EF

X =X s, s2 E G(t - dur(slotf)), (6.10)
T

d- = tX - k, Vs c S (6.11)
t=1

T

(tX>, < arr-t8 (slotf), Vs E S, f E F\c (6.12)

Aq8,, < Aq rig I VS C eS~tc{ 1T} (6.13)

Yr - Xarr ts(sotf) Er+' Vs E S, f F\c, r c 11, T} (6.14)

X E{0, 1}, d > 0, Vt E {1, .. , TVs c S,Vf c F

Notations (in addition to that previously described):

Decision Variables

Y;, : 1 if flight assigned to slot sif is advanced by r time units under scenario

s, 0 otherwise

d : Ground delay beyond k for delayed/cancelled flight c under scenario s

Objective function coefficients

savng, : Measure of benefit for advancing a flight by r time units

M : A very large number (around 10000).

Constraints

(6.8) : Arrival demand balance

(6.9) : Arrival queue balance

(6.10) : Non-anticipativity on arrival ground-holding
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(6.11) Constraint ensuring flight c is allotted a compensatory slot at or beyond

time step k

(6.12) Constraint ensuring every flight apart from c is either advanced or

retained in its current arrival time across all scenarios

(6.13) Constraint ensuring arrival queue length is not increased for any time

interval across any scenario

(6.14) Constraint measuring the advancement in time units for any flight

apart from c

Note that constraint (6.11), in conjunction with the second component of the objective

function (6.7) (involving the parameter M), enforces the first feature of SCS pertaining to

slot forfeiture compensation. The airline operating flight c is allotted a compensatory slot

as close to, but not earlier than the specified time interval k across all scenarios.

Next, the combination of the two constraints (6.12) and (6.13) serve as proxies for the

second SCS feature pertaining to pareto improvement of other flights. This approach is

similar to the one adopted in Mukherjee and Hansen (2007) [55], and designed to ensure

that no flight is worse off in terms of ground delay (via constraint (6.12)) or airborne delay

(via constraint (6.13)) for any scenario compared to its original allocation.

Finally, the first component of the objective function (6.7) featuring the variable Y' as

defined by constraint (6.14), coupled with the "benefits" function savng, being increasing

but strictly concave, will enforce the third feature of SCS pertaining to equitable distribution

of delay benefits. To understand how this works, reconsider the 3-flight illustrative example

given above. Assuming the allotted slots occupy time intervals 1,2 and 3, the first component

of the objective function (6.7) would measure savng 2 for candidate SCS solution 1 (6.8), and

2 x savngi for candidate SCS solution 2 (6.9) respectively. Given savng, is concave, we know

that 2 x savngi > savng 2, which renders candidate solution 2 preferable.

The above formulation has been customized for dynamic stochastic model through the

non-anticipativity constraint (6.10). The equivalent constraints when SCS is executed on
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the static and hybrid stochastic solution, respectively, are:

XjI = XS 2 Vs 1 , s2 C S for Static model (6.15)f't - P~t

X8 = Xj2, Vs1, s2 C G(ETA(slotf) - max-dur) for Hybrid model (6.16)

This customization ensures the key properties of the slot allocation from a given stochastic

ground-holding model are preserved following the execution of SCS. Thereby, the format of

intra-airline slot substitutions, which depends upon the properties of the slot allocation as

discussed in the previous section, is not altered post-SCS.

Section 6.4.1 discusses the application of the above-described SCS formulations to the

slot allocations from the three stochastic models for the hypothetical cases, and compares

the results across the three models using relevant metrics. Since SCS does not require flight-

specific information beyond that available to the airport (i.e, dur(slotj), ETA(slotf), etc.),

real-world data is not required to validate the findings from the hypothetical case studies.

6.4.1 Hypothetical case studies

6.4.1.1 Base Data

The same base data from the hypothetical analysis of intra-airline slot substitutions, namely,

the capacity scenario tree, arrival demand and unit delay cost coefficients, are adopted here.

6.4.1.2 Experimental Design

The GDP planning horizon is set to 10 intervals. A sequence of scenario tree probability

distributions as described in expression (6.6) is generated. For each scenario tree case, a

random sample of 100 SCS requests is generated out of the 138 scheduled flights. Each SCS

request specifies a pair of forfeited slot slotc and compensatory slot at time k. These SCS

requests are processed for the slot allocation solution from each stochastic model using the

corresponding SCS formulation ((6.15) for static, (6.16) for hybrid and (6.10) for dynamic).

The objective here is to compare the benefits from the SCS mechanism between the three

stochastic models. To this end, two classes of performance metrics are defined.
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1. Delay costs for delayed/cancelled flight c: The expected ground (Gc) and airborne

(Ac) delay costs experienced by flight c across all scenarios following its reallocation

based on its new earliest time of arrival k. Lower values for Gc and Ac are preferable,

and thus equate to higher benefits from the SCS mechanism.

2. Delay benefits for other flights (Bo): The total expected reduction in delay (ground

+ airborne) costs across all scenarios for all other flights. High value for Bo indicates

higher benefits from the SCS mechanism.

These two metrics together add up to the system delay benefits (B,) obtained from SCS, as

described below:

Bs = Bo - Ge - Ac. (6.17)

Note that all three metrics Gc, Ac and BO are computed after obtaining the post-SCS

slot allocation. Given that the flexibility for swapping slots between successive flights varies

between the static, hybrid and dynamic solutions, not all intervening flights between the

forfeited and compensatory slots need be feasibly advanced across all scenarios for a given

SCS request. This means that the same SCS request might generate different values for

the metric Bo (delay benefits for other flights) for the three stochastic models. This feature

also implies that a compensatory slot need not be available at the specified later time slot

k across all scenarios, resulting in different values for the metric Gc for the three stochastic

models. It is the nature of these potential discrepancies in SCS benefits between the static,

hybrid and dynamic models that is of interest in the following results.

6.4.1.3 Results

The figures presented below plot the average values for the above-defined metrics computed

over the respective sample of SCS requests for each scenario tree case. Figures 6-11, 6-12,

6-13 and 6-14 depict the results for metrics Gc, Ac, BO and B8, respectively. For interpreting

the delay cost values presented, recall that the unit ground and airborne delay costs used in

the stochastic ground-holding model formulations were 0.5 and 2.5 respectively.

Discussed below are the notable trends pertaining to each performance metric inferred

from the results.
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Figure 6-11: Average ground delay costs for cancelled/postponed flight, Ge (GDP horizon length
- 10).

Gc: Across all GDP cases, no SCS request results in any incremental ground delay for the

delayed/cancelled flight when applied to the static or hybrid model (figure 6-11). This

implies that, for these two models, a compensatory slot is always found at the specified

later time by advancing other flights in the slot allocation solution. The same is not

true for the dynamic model, especially at low values for expected duration of diminished

capacity. Therefore, for the slot allocation from the dynamic model, a compensatory

slot cannot always be provided at the specified later time of a SCS request. This is due

to the reduced flexibility for swapping slots between successive flights in the dynamic

model's slot allocation, as previously mentioned.

Ac: Another consistent trend across all GDP cases is that the incremental airborne delay

for the delayed/cancelled flight is greater for static and hybrid models (figure 6-12).

This is due to the fact that the static and hybrid models' slot allocations inherently

suffer greater airborne delays compared to that of the dynamic model (refer tables 6.1,

6.2 and 6.3). This translates to greater airborne delays for individual slots. Therefore,
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Figure 6-12: Average airborne delay costs for cancelled/postponed flight, Ac (GDP horizon length
10).

the compensatory slot for the SCS request, while alloted at the specified later time

without further ground delay, can be subject to greater airborne delay under the static

and hybrid's slot allocations.

BO: In terms of the delay benefits generated for the other flights, the observed trend across

the GDP cases is largely driven by two counteracting effects. Firstly, the dynamic

model, by virtue of its superior pre-CDM allocation, can potentially assign earlier ar-

rival times for most flights in the original slot allocation, including the delayed/cancelled

flight c. This would typically imply a greater number of intervening slots between the

forfeited slot and the specified later time, enabling greater aggregate delay benefits

from advancing the flights in these intervening slots, as observed for some of the GDP

cases in Figure 6-13.

However, these benefits cannot always be realized for the dynamic slot allocation due

to the above-mentioned limitation in the flexibility for advancing these intervening

slots. As described above, this limitation also results in incremental ground delay De
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Figure 6-13: Average total delay benefits for other flights, Bo (GDP horizon length 10).

to the delayed/cancelled flight upon reallocation. As observed in the plotted figures,

the GDP cases where the dynamic model realizes markedly lower delay benefits for

the other flights (BO in Figure 6-13) are the same as those where the dynamic model

realizes the most significant incremental ground delays for the delayed/cancelled flight

(Gc in Figure 6-11).

B,: The total system delay benefits Bs, as observed in figure 6-14, follows a similar trend

to the metric BO, and is a compact illustration of the underlying tradeoff between the

static, hybrid and dynamic models. The dynamic model performs comparably or better

than the static and hybrid models at higher values for expected duration of diminished

capacity, while it seems to perform significantly worse for GDP cases with low expected

duration of diminished capacity. The performances of the static and hybrid models are

almost identical across the entire range of GDP cases.

In summary, it is noted that, across a range of GDP input cases, there is tangible evidence

of tradeoff between the static, hybrid and dynamic models' performances in terms of the

realized benefits from the SCS mechanism. Neither model consistently outperforms the

187



2.00

1.50 -

EaD

o 0.50

*~0.00

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

-0.50 -

-1.00
Exp. duration of low capacity

Figure 6-14: Average total delay benefits for all flights, B, (GDP horizon length = 10).

others across the range of GDP cases studied. This inference corresponds with the one

derived from the intra-airline substitution analysis regarding the ability of the hybrid model

to be better than the worst-performing model across the studied range of GDP inputs.

This chapter focused on three single-airport stochastic ground-holding models discussed

in the previous chapter: Static, Hybrid and Dynamic. These three models were examined

within the context of contemporary ground delay programs (GDP) which involve collabora-

tive decision making (CDM). The CDM paradigm implements two mechanisms that allow

airlines to participate in the GDP: intra-airline substitution and compression. Recently, the

mechanism of Slot Credit Substitution (SCS) has been adopted as a more efficient version

of Compression. The hybrid stochastic model was developed as an attempt to blend the

pre-CDM efficiency of the dynamic model and the CDM amenability of the static model.

The objective of this chapter was to examine the effectiveness of this blending achieved by

the hybrid model through case studies combining the stochastic ground-holding models with

the CDM mechanisms.

A conceptual extension to the GDP framework to support slot allocation solutions from
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stochastic ground-holding models was designed first. Stochastic equivalents for intra-airline

substitution and SCS mechanisms as applicable to the stochastic slot allocations were for-

mulated. The performances of the three stochastic models with respect to the two CDM

mechanisms were compared through GDP cases constructed using both hypothetical and

real-world data. Appropriate performance metrics were defined with respect to each CDM

mechanism to facilitate this comparison. With respect to intra-airline substitution, it was

demonstrated how the hybrid model effectively bridges the disparity in performances be-

tween the static and dynamic models over a range of GDP input cases. Over a similar range

of GDP cases, the tradeoff between the three models in terms of system delay benefits from

the SCS mechanism were also illustrated.
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Chapter 7

Conclusions

7.1 Thesis Summary

This thesis addressed the problem of efficiently allocating airport arrival and departure ca-

pacity in the presence of uncertainty. In particular, it addressed limitations in the current

design of the Ground Delay Program (GDP), a prominent congestion management scheme

at airports facing short-term capacity reduction. Present-day GDPs are executed within a

collaborative decision-making (CDM) paradigm in which airlines use flight-specific costs to

revise the delay allocation. However, the airport capacity is assumed to be deterministic and

is allocated only among arrivals within the GDP framework. This necessitates the revised

execution of GDPs with every updated capacity forecast, while departures are handled in

an ad hoc manner. Historical data on GDPs suggest there exists significant potential for

system-wide delay benefits that can be realized by correcting these limitations. While prior

studies in literature examine the two issues separately, this thesis considered them in tandem

by proposing refinements of the GDP algorithms.

First, a comprehensive modeling framework was developed for characterizing key airport

operational elements and their influence on arrival and departure capacities, which are inter-

dependent quantities. An approach based on quantile regression was designed for empirically

estimating airport capacity envelopes using observed throughputs. This novel approach ex-

plicitly quantified impacts of exogenous factors like configuration, visibility, etc. on airport

capacity, and used two effective criteria to identify and eliminate outliers from the observa-
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tion dataset. The proposed methodology was applied to the NY airspace system comprising

of LGA, EWR and JFK airports, and was used to estimate intra- and inter-airport capacity

envelopes and their dependence on influencing factors. The latter set of envelopes captured

the metroplex effects, that is, the inter-dependence of operational capacities across neighbor-

ing airports that share terminal airspace. The thesis also studied the dynamics of runway

configuration, which is a key determinant of airport capacity. The selection of active run-

way configuration at a given time step was modeled using a discrete choice framework, and

applied to EWR and LGA to extract the underlying drivers for this decision process, using

recorded airport observations. The same observations were also used to uncover the impacts

of configuration switches on airport efficiency through a two-stage regression approach.

Following the airport capacity estimation module, the thesis addressed capacity allocation

in GDPs by simultaneously accounting for forecast uncertainty, and the joint handling of

arrivals and departures. Arrivals-only stochastic ground-holding models from literature were

extended to include departure considerations. Integrated versions of two standard stochastic

models, static and dynamic, were applied to case studies featuring hypothetical and real-

world GDP data to highlight the advantages over respective arrivals-based approaches. The

results indicated that typical GDP instances can benefit considerably in terms of system

delay costs and equity by adopting an integrated approach to capacity allocation under

uncertainty.

Finally, the application of CDM mechanisms to stochastic ground-holding solutions was

analyzed. The relative amenability of the static and dynamic solutions to slot substitution,

and the resulting tradeoffs between pre-CDM and CDM-induced delay benefits of these two

models was established. A new hybrid stochastic ground-holding model was developed to

combine the favorable features of the static and dynamic models, and its ability to achieve

an effective compromise between the two was demonstrated through GDP case studies. To

conduct the case studies, integer formulations were designed that extended the principles

of Intra-airline slot substitution and Compression to the three stochastic ground-holding

models. The results of the case studies highlighted the robustness of the hybrid stochastic

model in terms of post-CDM delay metrics across a range of GDP inputs. In addition, the

properties of the integer formulation for the hybrid stochastic ground-holding model was
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studied, and two interesting results concerning its computational tractability were derived.

The following section highlights some of the compelling research directions that can help

build upon the work presented in this thesis.

7.2 Future Research Directions

e Incorporation of fleet mix and demand into capacity estimation: Fleet mix

and operational demand are two elements that were not explicitly considered in ca-

pacity estimation methodology proposed in Chapter 2. Given that the mandated

separations between successive aircraft operations, be it arrivals or departures, are a

direct function of the aircraft types, the composition of the aircraft fleet being served

by an airport at a given time determines its throughput capacity. The accuracy of the

parameter estimates obtained in Chapter 2 can be improved by designing an enhanced

model specification that accounts for fleet size mix effects.

In addition, empirical approaches for capacity estimation, including Gilbo (1993) [31],

deal with an unfiltered dataset of airport observations that include instances where

the operational demand was much less than capacity. The bias induced by such low

throughput points can only be eliminated by identifying the set of observations when

airport capacity was exceeded by demand. Recent efforts have been successful in ex-

tending the quantile regression approach to address this shortcoming through modeling

advancements [70].

e Uncertainty in capacity estimation: The methods discussed in this thesis focus

on deriving a deterministic measure of airport capacity. However, the realized airport

capacity is the output of an interplay between various operational elements that inher-

ently contain uncertainties, such as controller decisions, aircraft arrival and departure

processes, etc. Some of these uncertainties are addressed by the models for config-

uration dynamics discussed in the Chapter 3. However, methodological refinements

that directly model uncertainties in airport parameters within the capacity estimation

framework can extract information from empirical data in a more reliable fashion.
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" Integrated modeling framework for configuration selection and switch im-

pacts: The models in Chapter 3 characterized runway configuration selection and con-

figuration switch impacts in two independent steps. An interesting extension to this

body of work would be to pursue an integrated statistical framework that estimates

both operational elements. A conceivable option is a two-level decision framework,

with the first level modeling configuration choice and second capturing the duration

and operational impact of a configuration switch if determined at the first level. A

similar modeling framework has been successfully adopted for the case of driver be-

havior modeling by Ahmed et. al. (1996) [2]. Such an integrated framework would

extract richer information from available data during estimation since it considers the

relation between configuration choice and switch effects.

" Passenger and aircraft connectivity within integrated ground-holding: The

integrated stochastic ground-holding models presented in Chapter 4 did not consider

passenger or aircraft connections between arrivals and departures. Since such infor-

mation is not typically available to the system operator in advance, they cannot be

enforced in the form of explicit constraints during ground-hold allocation. Given that

the operating carriers may have alternative means of reallocating passengers or aircraft,

the CDM framework offers the ideal setting to exercise such airline-specific decisions.

Existing designs for CDM mechanisms of Intra-airline substitution and Compression

only consider arrival slots. Future research should therefore explore integrated CDM

mechanisms that would allow airlines to manage their arrival and departure slots si-

multaneously.

Some preliminary analysis has already been conducted on the topic of accommodating

scheduled connections during a GDP. Gilbo (2000) [30] proposed acquiring information

from airlines regarding priority flights amongst arrivals and departures for each time

period that would be granted preference during ground-hold allocation. This provides

airlines means of communicating their connectivity requirements. Hall (1999) [35] pro-

posed allocating airport capacity as an integrated bundle of arrival and departure slots

that would allow airlines to swap between arrival and departure slots without violating
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capacity envelope limits. Airlines can thereby delay connecting departures in exchange

for advancement in arrivals. The first method does not study potential incentives for

airline to be truthful, and the second method is applicable to deterministic settings

alone. Extensions to CDM mechanisms along the lines of that proposed in Hall (2009)

[35] represent a promising future direction for stochastic models.

* Revisions due to forecast updates for stochastic GDPs: The stochastic GDP

framework applied in the case studies of Chapters 4 and 6 inherently assumed that

the parameters of the scenario tree forecasts, in terms of capacity values and scenario

probabilities, were accurate. This might not always hold true, and subsequent forecast

updates might require revisions to slot allocation and CDM mechanisms, as currently

performed under the deterministic framework. This makes a case for comparing the

pros and cons of the two frameworks through realistic GDP simulations involving

forecast-driven revisions. While the deterministic framework permits scenario-specific

flexibility in slot swapping unlike the stochastic framework, the number of revisions

are likely to be fewer in the case of the latter, which ensures reliable information for

airlines to make slot substitution/cancellation decisions. The experimental studies will

essentially help answer the question of whether the airlines better off with a stochastic

framework that will cause fewer and less drastic revisions to slot allocations, or a

deterministic framework that will give rise to more significant revisions but allow them

to swap slots specific to an updated scenario.
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Appendix A

Hypothesis Testing in QR-based

Estimation

Hypothesis tests are conducted to assess the statistical significance of empirically estimated

values of model parameters, and is an important process for developing specifications of sta-

tistical models. Usually, every new explanatory factor appended to a model specification is

subjected to a Nested Hypothesis test following its estimation. The general Nested Hypoth-

esis test, in principle, attempts to evaluate the improvement in the statistical fit achieved

by a model specification (M) over a restricted (nested) version (RM) of itself obtained by

imposing a set of linear equality constraints !. I.l is regarded as the number of degrees

of freedom arrested in (M) to derive (RM). For the model with the new explanatory factor

(M), the restricted model (RM) is obtained by fixing the coefficient of new factor to zero.

For quantile regression models, Koenker (2001) [46] develops the Nested Hypothesis tests

based on likelihood ratios. The unrestricted model (M) is deemed statistically superior to

the restricted model (RM) if the difference in their estimated likelihood ratios Lm - LRM

exceeds a threshold value T(T, l2|) which is a function of the estimated order of quantile T

and the degrees of freedom separating (RM) from (M), namely, |2|. For the piecewise-linear

quantile function QdeP(ylx) defined for capacity envelopes in (2.2), the likelihood ratio test

can be applied to assess the statistical significance of a new factor ne, in the model if one

can define the appropriate set of linear equalities 2 to derive the restricted model (RM) that

has coefficients for ne* set to zero. The expression for the quantile function QdeP(ylx) from
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(2.2) is reproduced here to assist subsequent discussion.

QdeP(yIX) =Za O + (ZI3 0B)x, for (k - 1) x < k, Vk (A.1)
2 2

where y and x represent the departure and arrival counts respectively.

Given the piecewise-linear form for QdeP(ylX), each factor 0' in the model specification

has an intercept and a slope coefficient (Ci. and 03) for each linear piece k E {1, ... max},

making it a total of zmax * 2 coefficients per factor. Returning to the earlier discussion,

a straightforward way to set the coefficients of the new factor 0"e" to zero (and thereby

obtain the restricted model (RM) to perform the Nested Hypothesis test) is by defining

a total of Xmax * 2 linear equalities, explicitly restricting every coefficient. However, as the

following example illustrates, this might be an overestimation of the actual degrees of freedom

separating the restricted model (RM) from the unrestricted model (M) for typical estimates

for QdeP(y X).

Assume a model specification for QdeP(ylx) defined across 5 linear pieces (Xmax=5), with

one existing and one new explanatory factor 01 and new respectively and the following

estimated values for their coefficients. Now, there are a total of 10 coefficients estimated

k (Linear piece) ] G a new new]

1 14 0 1 0
2 15 -1 1 0
3 15 -1 2 -0.5
4 15 -1 2 -0.5
5 20 -2 1 -0.5

Table A.1: Coefficients estimates for piecewise linear quantile function QeP (y1 )

over 5 linear pieces for the factor one" in this example. However, there is equality between

coefficients of adjacent pieces in some cases (e.g. for k=1 and 2; k=3 and 4), which suggests

that not all 10 coefficients represent independent degrees of freedom.

Consider the following set of linear equalities that can be imposed upon the above spec-

ification for quantile function QdeP(y X) to restrict all 10 coefficients of factor onew to take
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value 0.

anew 0

"new = 0

new = ew Vi{ E 1, 2, 3, 4} (A.2)

It can be shown that adding these constraints to the linear programming formulation de-

scribed in equations (B.1) - (B.5) ensures only factor (01) has non-zero coefficients in the

estimated result. Now, consider relaxing the following subset of linear equalities from the

above-defined set (A.2).

anew 0al'"

#3new = new (A.3)

By imposing those linear equalities from the set (A.2) not in set (A.3) on the linear pro-

gramming formulation (B.1) - (B.5), one can recover the coefficient estimates given in Table

A.1, i.e., the estimation results for the unrestricted quantile function specification.

This shows that the four linear equalities in set (A.3) are the only constraints that need to

be imposed upon the unrestricted, 2-factor piecewise-linear model specification to obtain the

restricted, 1-factor specification. Hence, the actual number of degrees of freedom separating

the unrestricted and restricted models in the Nested Hypothesis test for the factor new in

the above example is 2 instead of 10.

This principle is adopted to compute the actual degrees of freedom when performing the

Nested Hypothesis test (using likelihood ratios) for each new factor estimated for the airport

capacity functions in Chapter 2.
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Appendix B

Hypothesis Testing for Convexity of

Capacity Envelope

Convexity of an airport capacity envelope has been implicitly assumed in most discussions

in literature [31, 58, 71]. In this section, we demonstrate how the estimation framework

described in Chapter 2 can be used to statistically verify this assumption.

A weaker but less arguable version of the convexity assumption is that of monotonic non-

increment for the capacity envelope. This means that, in Figure 2-4, the departure capacity

is a monotonically non-increasing function of arrival counts, i.e. the slope of this function

can never be positive. The corresponding LP formulation for estimating such a function
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using quantile regression is presented below.

N

Minimize E Zn (B.1)
n=1

subject to:

Zn > y- a 0 + ((i Oi )xn if k -1 < xn k,Vn (B.2)

>3/Fi (0') < 0, Vk C{,,Xmax},

VF(.) E {max(), min(-)}, Vi (B.4)
n n

a' Fi0) + [( #Fi(G)]k = (a +Fi(O) + [ /3+ 1 Fi(0)] k,

Vk e {1, 2, ... , £max - 1}, VFi(.) E {max(.), min(.)}, Vi (B.5)
n n

The above formulation simply replaces the convexity-enforcing constraints (2.7) in Chap-

ter 2 with the monotonic non-increments constraint (B.4).

Now, the goal is to compare the statistical fit achieved by the monotonic non-increment model

for capacity envelope (M) with the more restricted convex model for capacity envelope (RM)

using hypothesis testing. The task, similar to the discussion presented in Appendix I, re-

duces to identifying the degrees of freedom, in the form of linear equalities, that are arrested

in unrestricted model (M) (monotonic non-increment) to obtain the restricted model (RM)

(convex).

Given that the convexity constraint (2.7) is a restricted version of the monotonic non-

increment constraints (B.4), we can split every estimated slope coefficient #3 of the monotonic

non-increment model into two additive components , and s.t. #3 = 1, +

and the set of coefficient components #,cov satisfy the convexity constraint. Now, the

degrees of freedom separating the convex model estimates from the monotonic non-increment

model estimates can be equated to the minimum number of incremental components Ok,inc

that need to be released to have a non-zero value in the above split-representation for the
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monotonic non-increment estimates 1. This can be determined through the integer program

formulated below.

Ximax

Minimize zi (B.6)
EkE
k=1 i

subject to:

A1 =3klconv + #k,inc Vk E {l, .. , Xmax}, Vi (B.7)

#I,ic 0 + Mz4 Vi

01,inc 0 Mz4 Vi (B.8)

#14 ,inc 4 -+1,inc + Mz . Vk c 1, .. , inax - 1}, Vi

#1 ,inc > O ,in - M Vk E {l, .. , Xmax - l} Vi (B.9)

o k )conv Fi (), Vk E {,- ,Xmax-

VF(.) E {max(-),min(-)}, Vi (B.10)
n

cFi5(0) < 0, VFi(-) E{max(.), min(.)}, Vi (B.11)

SE {0, 1}, Vk E {l,..,Xmax}, Vi

Constraints (B.7), (B.10) and (B.11) enforce the above-described definition for the ad-

ditive coefficient components #0, and 1,inc Constraint (B.9) ensures incremental slope

components across adjacent linear pieces, 1 ,inc and /t+1,inc, are equal if dummy binary vari-

able z = 0, while constraint (B.8) ensures incremental component for the first linear piece

1, inc is 0 if z' = 0. Note that these are similar to the set of constraints (A.2) in appendix

I, which is used to identify the actual arrested degrees of freedom from (M) to (RM) in a

piecewise-linear model framework. Under the above formulation, the optimal value of objec-

tive function (B.6) measures the minimum number of linear equalities of the set (B.9) and

(B.8) that will have to be relaxed, by setting appropriate z = 1, to obtain the monotonic

non-increment model estimates #4 from the convex model estimates # This in turn

gives a measure of the linear degrees of freedom separating the convex and the monotonic

non-increment model for capacity envelopes, and can therefore be used when performing the
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Nested Hypothesis test (using likelihood ratios) for comparing the statistical fit of the above

two models. This statistical test verifies the validity of the convexity assumption for capacity

envelopes.
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Appendix C

Determining order of quantile T in

capacity envelope estimation

The order of quantile T in the capacity envelope functions expressed in (2.2) and (2.3) perform

the same function as the specified frequency threshold in Gilbo (1993) [31] during empirical

estimation of airport capacity. As depicted in Figure 2-3, this parameter eliminates outliers

amongst the observed airport throughputs, typically points in the top (1 - T/100)%ile of the

dataset, and ensures the resulting convex hull estimate is robust. Therefore, the choice of

this parameter critically determines the quality of airport capacity estimate obtained from

observed data. Gilbo (1993) [31] prescribes using frequency thresholds that correspond to

a desired level of confidence in the resulting estimates. In this study, we adopt a similar

principle related to the robustness of the estimates when choosing the order of quantile for

the capacity functions. The basic idea is to identify the order of quantile T for which the

obtained estimates for the capacity envelope, including coefficients c and #3, are stable.

This is done through a trial-and-error process where T is gradually lowered from 100%ile

through small perturbations, till a relatively broad range of values for T producing consistent

values for estimates at and #' is identified. Figure C-1 below, which presents the capacity

estimates for different r values on a sample dataset of throughputs, illustrates this process.

As observed in the figure, there is volatility in the capacity envelope estimates for T

values of 100 and 99.5 %ile, indicating the presence of outliers in this peripheral section of

the planar scatter of observed throuphputs. The estimates are however stable and consistent
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Figure C-1: Capacity envelope estimates for different values of r

for T values of 99, 98.5 and 98%ile, implying that this range of r delivers a reliable empirical

measure of the capacity envelope.
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Appendix D

Determining flight-specific delay costs

at LGA

This section describes the methodology used to obtain representative measures of unit ground

and airborne delay costs for individual flights in the LGA case study discussed in Section

6.3.2. The data for this case study was extracted from a real-world GDP recorded on Feb

17, 2006 from 7am to midnight. The arrival demand over this 17-hr period comprised of

542 arrivals distributed across 27 operating airlines. The computed flight-specific delay costs

were used for two purposes within the case study:

1. Calculate average unit ground and airborne delay costs (Cg and Ca) used in objective

functions of the stochastic ground-holding models.

2. As input to the intra-airline slot substitution mechanisms executed on behalf of each

airline in response to the stochastic ground-hold allocation.

Due to data limitations, the unit ground Cg,f and airborne Ca,f delay costs for flight f
were assumed to be linear and made up of three main additive components that varied by

aircraft type acf and operating airline arf: fuel, crew and passenger.

Cgf C'"f* + Cacrf Cassenger

Ca,= C ,,ar, + C*"r, +C, (D.1)
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Note that the fuel cost is the only component distinguishing the unit delay cost incurred on

the ground (Cq,) from that on air (Ca,j) for any flight f. The ratio between ground and air-

borne fuel costs per unit time (#ac) was computed for prominent aircraft types using aircraft

performance data reported in a study conducted under project GAES [69] on environmental

impacts of air delay. Quarterly operating expenses of major airlines, as archived in P-5.2

tables of BTS database [72], provide fuel and crew costs incurred per block hour of flight

operation for different aircraft types (i.e. Cuel and Ccar)- These are used as approximate

measures for fuel and crew components of unit delay costs of flights in the case study, with

the fuel component of the unit ground delay cost calculated as Ca'ar = #ac X C"ela

The passenger delay component for unit flight delay costs are calculated using the following

expression.

Cpasseger= 2 x passf x passvOT (D.2)

where passf is the passenger volume for flight f, and passvOT is the passenger value of time.

The multiplier of 2 is necessary to account for possibility of missed passenger connections

resulting from flight delays. Barnhart et.al. (2008) [9] estimate the amount of passenger

delays in NAS to be almost twice that of flight delays in their analysis, and this estimate is

used as an average approximation of the delay per passenger resulting from unit flight delay

in our cost computation.

The passenger volumes for flights pass1 in the case study are extracted from T-100 files in

the BTS database [72] that contain airline-reported data on average load factors served in

various domestic non-stop segments.

The official estimate of passenger value of time adopted by the FAA in their aviation policy

planning [33] is used in this study as passvOT.

Cost data for aircraft type, airline or flight segment that were missing from the above-

described sources were filled in using appropriate interpolation.
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