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Abstract

The Soil Moisture Active Passive (SMAP) satellite, to be launched in 2013, will use
both radiometer and radar data to estimate soil moisture. Improved soil moisture
knowledge has many applications in hydroclimatology, numerical weather prediction,
flood forecasting, and human health. In this thesis, an observing system simulation
experiment (OSSE) was used to study the error structure of radiometer measurements
using two different retrieval algorithms. In an OSSE, geophysical fields are used to
create a model of surface emission, which is coupled to an orbital sampling module
and proposed retrieval algorithms. Comparing output from the retrieval algorithm to
the starting soil moisture values demonstrates retrieval error. Significant uncertainty
remains about the optimal representation of the effect of dielectric mixing, soil rough-
ness, and vegetation opacity on radiometric emissions at a given soil moisture. The
effect of this uncertainty on retrieval algorithms is studied by using different represen-
tations for each term in the forward and retrieval modules of the OSSE. Uncertainty
due to roughness causes less error than errors in dielectric mixing and vegetation
opacity treatment. In both algorithms, the retrieval shows a spatially variable bias,
which is particularly large when using a single-polarization retrieval algorithm. The
spatial and temporal variation of the bias, and the implications for characterization
and removal of this bias as a possible error reduction strategy, are discussed.
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Chapter 1

Introduction

1.1 The Value of Soil Moisture Measurements

Soil moisture is one of the key variables in the earth's hydrologic cycle. It is a

strong control of land evaporation, particularly in water-limited regions. As such,

soil moisture determines the partitioning of land surface heat fluxes into sensible and

latent heat. Additionally, it acts as a limiting factor to infiltration during precipita-

tion events, thereby partitioning the rain into infiltrating and runoff fractions. By

controlling not only evaporative fluxes, but also recharge from the surface to the sub-

surface, soil moisture therefore links the surface and groundwater components of the

global hydrologic cycle.

The scientific and engineering applications of improved knowledge of soil mois-

ture are manifold. Among others, the use of soil moisture information can improve

forecasting ability of the rainfall-to-runoff ratio [1], allowing for significantly improved

flood forecasting [2]. The influence of soil moisture initialization on numerical weather

prediction models is well-studied, and ranges across several physical mechanisms (tem-

perature effects to maintain energy balance, height of planetary boundary layer as

influenced by buoyancy sensible heat-created turbulence [3]) and precipitation storm

types (mesoscale circulations, drylines [4]). Improved soil moisture initialization is

therefore a far more promising avenue to increasing weather prediction skill than in-

creasing model resolution, with its associated computational expense. On a larger



scale, hindcast experiments have shown that climate systems in several regions have

a long-term soil moisture memory, such that accurate soil moisture initialization can

significantly improve the skill of seasonal temperature and precipitation predictions

[5]. This may lead to improved summertime heat wave prediction, facilitating pre-

paredness to reduce the associated human health costs. Further human health appli-

cations for soil moisture information exist in epidemiology. For example, soil mois-

ture variability is the strongest landscape factor in predicting human-biting rates of

malaria-bearing mosquitos [6]. The wide range of applications for soil moisture mea-

surements led the National Aeronautics and Space Administration (NASA) to fund

the Soil Moisture Active Passive Satellite Mission (SMAP).

1.2 The Soil Moisture Active Passive Mission

Because of the high spatial variability of soil moisture, the information that can be

provided by in situ measurements is limited. Remote sensing measurements, however,

can provide a clear image of the overall spatial wetting and drying patterns of the soil.

SMAP is intended to provide global soil moisture measurements, and will also describe

the freeze/thaw state of the soil, which has a first order impact on the balancing of

carbon budgets and our understanding of the carbon cycle.

SMAP has grown out of the Hydros mission [7], which was canceled by NASA

in 2005 due to budget concerns. It will have two instruments, a radiometer making

passive (i.e. emissivity) measurements at 40 km and a synthetic aperture radar mak-

ing active (i.e. backscatter) measurements at 3 km. Both instruments will operate

at L-band frequencies (centered at 1.41 GHz and 1.26 GHz, respectively). L-band

is particularly suited to radiometric soil moisture measurements due to the greater

vegetation penetration and reduced atmospheric attenuation and radio frequency in-

terference at this frequency [8]. Although the radar measurements have a higher

resolution, this resolution comes at a price of significantly more noisy measurements.

Aside from the 40 km and 3 km datasets based on each of the two instruments, a

dataset with resolution of 10 km dataset will also be provided, based on combining



data from the radar and the radiometer.

SMAP will travel in a low-earth orbit, at an altitude of about 670 m. The radar

and radiometer will share a large (6 m diameter) reflector antenna and feedhorn,

which scan conically over a 1000 km wide swath. The incidence angle of the beam is

constant at 40'. The combination of the conical scan with movement of the satellite

along its nadir track allow the satellite to sample a given area by filling in several

footprints over time as the conical scan returns multiple times at a slightly offset

location. This is illustrated in Figure 1-1. The SAR processing is impossible in the

SWP 'acbmalrrAimIrw and HF13W

Figure 1-1: Sampling pattern dictated by conical scan. Image by Steven K. Chan,
JPL

middle of the swath, such that there is a 300 km radar data gap in the middle of the

swath (although radiometer observations are still made in these areas). As a result,

revisit times (the time between measurements over a given area) will be slightly larger

for radar than radiometer data. Although the exact revisit times depend on latitude

and the final satellite orbit altitude, they are intended to be about 3 days. This

design parameter is determined by the time between precipitation storms and surface

wetting/drying timescales [9].



1.3 Motivations

Soil type, topography, and vegetation all have a confounding influence on radiometric

soil moisture measurements. It is therefore critical that retrieval algorithms used by

SMAP are tested over a wide variety of regions. However, this effort is frustrated by

the limited availability of both radiometer measurements and verificiation data. Some

data may be obtained by field experiments and measurements from dedicated plane

flights (as in Njoku et al. [10], for example), but the expense and resource needs of

such campaigns limit their frequency and coverage. An alternative method of testing

retrieval algorithms is the use of an observing system simulation experiment (OSSE).

In an OSSE, the emission over a given area is simulated using soil moisture and other

ancillary fields that are taken to represent true data. After coupling this emission to

proposed retrieval algorithms, sometimes via an orbital sampling module, the error

associated with the retrieval is given by the difference between the input and output

soil moisture values.

Since the emission is explicitly simulated, the starting data merely need to be

realistic, rather than exactly equal to the truth. For example, soil moisture fields

predicted by land surface models are a valid data source. Due to the influence of soil

type, topography, and vegetation cover, ancillary variables are necessary to describe

these influences on surface emission. Care must be taken to ensure that errors in

these ancillary variables do not break down the realism of the OSSE; the variables

must be physically consistent with each other and with soil moisture fields. This can

be accomplished by limiting the number of data sources. Using an OSSE also has the

advantage that the influence of different factors on retrieval accuracy can be isolated

by changing the model for surface emission (the forward component of the OSSE).

Furthermore, errors due to subpixel heterogeneity can be studied easily using an

OSSE. The ancillary parameters used in retrieval errors often vary significantly within

a measurement pixel. Due to the non-linearity of the radiative transfer equation,

using a linear average for retrieval leads to error. Explicit control over the amount

of variation in the forward model of an OSSE allows for greater study of this nature,



including changes to the retrieval procedure to reduce error. Nevertheless, using a

synthetic experiment is no all-powerful solution. The accuracy of the inferences from

an OSSE is dependent not only on the realism of the datasets used, but also on the

realism of the emission model.

Crow et al. [11] carried out an OSSE for Hydros radiometer products in prepara-

tion for that mission. That OSSE covered the Red-Arkansas River Basin in the U.S.

Southern Great Plains over the course of about a month. As such, it was limited in

scope both in space and time, and did not encompass the full range of conditions ob-

served by the satellite. In addition, the forward and retrieval methods were based on

the same theoretical description of emission, despite the fact that uncertainty remains

about the exact parametric form of the influence of soil and vegetation parameters.

Errors in these retrieval models can easily lead to retrieval errors well above the 5%

volumetric error requirement for SMAP radiometer estimates. Holmes et al. [12] con-

ducted a global simulation of top of the atmosphere L-band brightness temperature

for several different soil effective temperature, dielectric constant, roughness and veg-

etation representations. However, the impact of the different representations on soil

moisture retrievability was not considered.

In this thesis, an OSSE is implemented for SMAP radiometer measurements at

the continguous United States (CONUS) scale, over the course of a full annual cy-

cle. In addition, different model representations are used in the forward and retrieval

parts of the OSSE to study the extent of the measurement errors due to imperfec-

tions in the emission models on which retrieval algorithms are based. Two different

retrieval channels are considered: a single-channel algorithm that uses H-polarization

measurements alone to retrieve soil moisture, and a dual-channel algorithm that uses

measurements at both H- and V-polarization to retrieve both soil moisture and veg-

etation water content, the mass of water in above-ground vegetation per area.



1.4 Bias Removal

Although numerous field campaigns have demonstrated the feasibility of estimating

soil moisture to within 5% volumetric using L-band radiometry data, these campaigns

generally rely on area-calibrated values of soil texture and roughness parameters and

of the vegetation water content models (e.g. [13, 14]). Such calibration is infeasible

on a global scale. Indeed, it may not even be feasible to pin down the optimal

functional form of some of the contributing effects before the SMAP launch date.

An alternative strategy is to try to characterize and remove the bias of retrieval

estimates. Such estimates may be provided by future field campaigns or by using

radiometric measurements from the ESA Soil Moisture and Ocean Salinity mission

(SMOS), which will provide L-band radiometric measurements at several incidence

angles. Bias removal has previously been demonstrated to have the potential for

significantly improving the use of remotely sensed soil moisture estimates for land

surface modeling, if a sufficiently long climatological history of estimates is available

[15]. However, as the authors of this study point out,using a more spatially extensive

area might reduce the necessary record length for data assimilation applications if

probability matching techniques are used [16]. This thesis also investigates the extent

to which errors due to uncertainty in the radiative transfer description, as well as land

surface heteorgeneity and measurement errors are removable by defining a static bias.

1.5 Outline

Chapter 2 of this thesis describes the radiative transfer model used, including the

three terms for which the effect of description uncertainty is investigated in the the-

sis. Alternative models are presented for each term. It also describes the data sources

and orbital module used and the overall configuration of the OSSE. Chapter 3 de-

scribes the two retrieval algorithms used (a single-polarization and a dual-polarization

one). It also provides results for the full OSSE with each algorithm and several dif-

ferent combinations of forward and retrieval emission descriptions. The analysis of



these results includes a study of the potential for bias-removal in both algorithms.

Conclusions and some recommendations for future work on L-band radiometric soil

moisture retrieval are provided in Chapter 4.
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Chapter 2

Simulation Design

This chapter describes the design of the OSSE system. The different models used to

describe emission are detailed in section 2.1-2.2. Section 2.3 describes the earth-fixed

grid and summarizes the data sources used. Section 2.4 describes the orbital module,

including its coupling with the rest of the OSSE. Assumptions about expected error

are explained in section 2.5.

The overall process is shown in Figure 2-1. The first line of the diagram illustrates

the forward model, which uses soil moisture fields with ancillary parameters and

an orbital model to create a vector of brightness temperature measurements. As

demonstrated in the second line, using knowledge of sensing location and (coarser,

aggregated) ancillary fields, the retrieval algorithms generate a vector of soil moisture

values. These are processed to a set of estimates on the 40-km earth-fixed grid, as

illustrated in the third line. Lastly, comparison of the retrieved values to the original

soil moisture field produces an estimate of the retrieval error.

2.1 Emission Models

2.1.1 T-W Model

Given knowledge of the greybody temperature, radiometer measurements are based

on the emissivity ep. The relation between the measured brightness temperature
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Tb, and e, can be described using the T-W model, which describes the scattering of

emission rays using a two-layer model of the land surface, with a single soil and a

single canopy layer.

Tb,=Tseexp( TP)+Tc(1 - wp)(1 - exp( - ))(1 + R exp( )). (2.1)
cos 0 cos0 cos0

T, is the effective soil temperature over the measured depth, T is the vegetation

opacity, 0 is the incidence angle of the measurement, and w, is the single scattering

albedo of the vegetation. The subscript p has a value of V or H and describes

vertical or horizontal polarization, respectively. R, is the effective reflectivity of the

soil, related to the emissivity (by conservation of energy) by

e, = 1 - Rp. (2.2)

Emission from the soil, as attenuated by the vegetation in the canopy layer, is rep-

resented by the first term in eq. 2.1, while the second term describes the scattering

effect of the canopy layer. Multiple scattering is neglected, as are contributions from

downwelling atmospheric radiation. At L-band frequencies, this model is sufficient to

adequately describe emission [17].

In this simulation, the dependence of albedo on polarization is neglected. As

in the Hydros radiometer study, we parameterize w based on land cover type. The

land cover data were classified at a spatial resolution of 1 km using a neural network

based on infrared remote sensing measurements aboard the MODIS satellite [18].

The class scheme used is the so-called 'University of Maryland' scheme, which has

the advantage of having similar classification types to those used to originally derive

the VWC parametrization (see also section 2.1.3). Although the land cover categories

used are slightly different than those in Crow et al. [11], classes were matched to be

as close as possible. The albedo values used for each land cover type are listed in

table 2.1.

In order to successfully capture the high temporal variability of T, Tc, and the

soil moisture in our simulation, we use model output from the North American Land



Land Cover Type bh [m2 /kg] b, [m2 /kg] ageo W s [m] h

Evergreen needleleaf forest 0.08 0.12 2/3 0.12 0.01 0.10
Evergreen broadleaf forest 0.096 0.144 2/3 0.12 0.01 0.10
Deciduous needleleaf forest 0.08 0.12 2/3 0.12 0.01 0.10
Deciduous broadleaf forest 0.096 0.144 2/3 0.12 0.01 0.10
Mixed forest 0.088 0.132 2/3 0.12 0.01 0.10
Closed shrubland 0.099 0.121 1/3 0.12 0.01 0.10
Open shrubland 0.099 0.121 1/3 0.12 0.01 0.10
Woody savanna 0.088 0.132 1/3 0.12 0.01 0.10
Savanna 0.094 0.127 1/3 0.08 0.01 0.10
Grassland 0.09 0.11 1/3 0.05 0.01 0.10
Cropland 0.117 0.143 1/3 0.05 0.015 0.15
Urban 0 0 0 0 0 0
Barren or sparsely vegetated 0.09 0.11 0 0 0.01 0.10
Water 0 0 0 0 0 0

Table 2.1: Soil roughness, albedo, and vegetation model parameters used based on
land cover type. Note that the T-LO model was not actually applied to areas with
cover type water or urban.

Data Assimilation System (NLDAS). NLDAS is a system of four land surface models

run with a common set of forcing and ancillary parameters [19]. We use the Noah

land surface model, which provides layer output at approximately the SMAP sensing

depth. Although NLDAS provides hourly output, all measurements are approximated

by assuming they occur within an hour of the 6:00 equator crossing time (see also

section 2.4), corresponding to a UMT time of 12:00. The canopy temperature is

taken to be equal to the 2 m air temperature (derived from NCEP's Eta-based Data

Assimilation System) used to force NLDAS. Radiative transfer theory describes the

effective (measured) soil temperature at depth z as

Teff = Tza(z) exp(f z (z')dz')dz (2.3)

where
47r C (z)

a(z) = A 2e'(z)0 5  (2.4)

where c' and E" are the real and imaginary components of the soil dielectric constant

[20]. Eq. 2.3 indicates Teff thus depends on the temperature profile of the soil (and,



via the large influence of soil moisture on the dielectric constant, the soil moisture

profile). To avoid the need for exact knowledge of soil profiles required by equation 2.3,

we follow the parametrization of Crow et al. [11]. Thus, T, is simplified to the average

of the skin temperature To and the temperature at 5 cm depth T5 . To is taken to

equal the 2 m air temperature, and T5 is the temperature in the top layer of the land

surface model (representing a depth from 0 to 10 cm). The measured soil moisture is

assumed to equal that in the top Noah layer (although the true sensing depth may

be somewhat lower than 10 cm).

T = 2 (2.5)
2

where T is the temperature at a depth of i cm. The skin temperature To is taken to

equal the 2 m air temperature, and T5 is the temperature in the top layer of the land

surface model (representing a depth from 0 to 10 cm). The exact depth of measured

soil moisture sensed is dependent on the moisture and soil roughness profiles. It is

generally lower than the temperature sensing depth. In the OSSE, we assume the

measured soil moisture equals that in the top Noah layer (although the true sensing

depth may be somewhat lower than the 10 cm this layer represents).

2.1.2 Bare Soil Emission

Several empirical and semi-empirical models exist to relate the soil dielectric constant

E to the soil moisture content. We use the model of Wang and Schmugge [21] in the

forward model, and the model of Dobson et al. [22] for retrieval. This model has

several empirical parameters based on regressions from the dataset of Hallikainen

et al. [23]. We use the slightly differing fitted parameters, based on the same dataset,

derived by Peplinski et al. [24]. Each model contains a different consideration of both

the mixing properties of the dielectric contributions from rock, ice, water, organic

matter, and air. Furthermore, the dielectric constants of each of the above are not

modeled in the same manner. To derive dielectric contributions from soil rock, each

model relies on (different) empirical relations based on bulk density (Pb), sand fraction



(sf) and clay fraction (cf) of the soil. The Wang and Schmugge [21] model further

considers porosity and the soil wilting point (also as an empirical function of the

above properties). The pure water component of the Dobson et al. [22] model, using

the full Debye equations, also has a small dependence on temperature. At L-band,

some limited experiments have shown a closer agreement with measurements of the

Wang and Schmugge model than the Dobson et al. model. The difference between

the two model predictions depends on moisture as well as soil type, and is generally

more pronounced for the (relatively larger) real than the imaginary component [25].

The soil properties used are from the CONUS-SOIL database, a reprocessing of

the State Soil Geographic Database (STATSGO) by the USDA. This reprocessing

dataset is intended specifically for hydrological modeling applications [26], and is also

used in the NLDAS land surface models. It has a spatial resolution of 30 arcseconds,

or a little less than 1 km. CONUS-SOIL discretizes each soil property in 11 depth

layers. The values used are averages of those in the top two layers of 0-5 cm and 5-10

cm, respectively. Missing values were filled by taking the mode of the surrounding 3

by 3 cells (or, if missing values occurred in a large block, the mode of an n by n cell,

where n is the smallest odd number usable).

For perfectly smooth soil, E can be related to the effective reflectivity (and by

eq. 2.2 to emissivity) by the Fresnel equations

cos 0 - -sin 2  2 (2.6)
cos 0 + ve - sin 2 0

ecos0 - Vc - sin2 g 2

E cos 0 + e- sin2 (2.7)

This formulation, however, does not account for scattering from soil particles them-

selves. Such soil roughness effects are particularly important over agricultural fields.

Models of soil roughness tend to take one of two approaches. Several theory-based

models start from the basic electromagnetic formulations and perform ray tracing

to calculate overall emission. Such models require assumptions about the statistical

distribution of soil roughness, including parameter values that are impossible to obtain



without field measurements. This virtually eliminates them from operational use or

use in synthetic experiment such as this one without making strong assumptions

about soil parameters. They also suffer the drawback of being very computationally

expensive. Furthermore, they are not invertible, preventing their use in soil moisture

retrieval algorithms. This approach is used in the forward component of the OSSE.

R, is first expanded into a noncoherent and coherent component

R,(O) = R,"""(0) + R~h(9) (2.8)

Using the Fresnel reflectivities of eqs. 2.6 and 2.7, the coherent term is defined as in

Shi et al. [27],

Roh (0) = r, exp(-4k282 cos2 0), (2.9)

where k is the angular wave number in free space and s is the standard deviation of

the surface height. The noncoherent term can be found by integrating the bistatic

scattering component over the hemisphere above the soil,

1 27r pi/ 2

R = 4[-cos,0 ]]i(0, Oj, #b3) + Upq(0, Oj, #j)]sin(0j)d6jd#j. (2.10)

In the above, 0j and #j are spherical coordinates of the scattering direction. RcOh

can calculated by the integral equation model (IEM) of Fung [28]. IEM assumes a

given random distribution of soil particles and perfectly conducting surface, and uses

Maxwell's equations to derive the scattering of a soil. An exponential correlation

function is assumed to describe the soil. Due to the difficulty of obtaining an approx-

imation for the correlation length 1, no wide-scale datasets exist. We therefore assume,

as in Holmes [29], that I is linearly related to the surface root-mean-square height

s, 2 = 2s. Although s is no more straightforward to obtain reliably, an attempt to

parametrize based on land cover has been made [11]. The parametrization used is

based on those values, and is listed in table 2.1. Since the dielectric mixing model

is used within the IEM, information about soil bulk density, sand fraction and clay

fraction is also required. The double integral in equation 2.10 is relatively expensive



to calculate. Using IEM for each footprint in this OSSE would require prohibitively

large computational resources. Furthermore, discretization efforts are hindered by

the sensitivity of the model to each of the 4 main input parameters (Pb, sf, cf, and

mv). Instead, the parameterization of IEM developed by Shi et al. [27] is used. It fits

IEM to equations of the form

R" " = A TBpP P p

where A, and B, are of the form

exp(a) + b log(ks) + c(ks) + dW

where W is the power spectrum and a, b, c, and d, are quadratic functions of 6

depending on polarization.

Alternatively, soil roughness can be described by semi-empirical parameteriza-

tions. The h-Q model is the predominant model of this type. In its original formula-

tion, the h-Q model is given by

rp = [(1 - Q)rp + Qr] exp(-h cosN0), (2.11)

where Q, h, and N are model parameters [301. q is the polarization orthogonal to

p; when p is H, q is V and vice versa. The Q parameter increases with frequency.

Although not all studies predict a Q value of exactly 0 at L-band, an extensive review

of the literature has nevertheless found that Q can generally be taken to equal 0 for

L-band studies [31]. Similarly, N is generally taken to equal 0 at L-band. Using those

values, eq. 2.11 reduces to

r, = r, exp(-h) (2.12)

Several parameterizations for h exist, including ones with dependence on s and

soil moisture [32, 33] and the ratio s/1 and soil moisture [34]. In this simulation, we

follow the Hydros radiometer OSSE and assume h=10s (where s is in meters and h is

dimensionless). Since s has been parametrized by land cover type, h is also a function

of land cover type. The very abundance of different parameterizations shows the



behavior of h is not fully understood. In addition, the h-Q model assumes the surface

roughness effect is independent of polarization, despite the fact that it significantly

influences the ratio R,/Rh [271.

Neither model is able to perfectly imitate true soil behavior. Nevertheless, a model

of soil roughness effects is a necessary component of a soil moisture retrieval algo-

rithm. We can obtain a glimpse of the effect of assuming an imperfect roughness

model by comparing the predictions of the different models for typical soil condi-

tions. Figure 2-2 compares the reflectivity variation with soil moisture as calculated

for two sets of typical soil physical properties (sf, cf, Pb). Since s is parametrized

as 0.01 m over the vast majority of land cover types, figures 2-2a and 2-2c assume

s=0.01m. Figures 2-2c and 2-2c, using the same physical properties as 2-2a and 2-2c,

respectively, take s = 0.015 m, the value assigned over cropland. It is immediately

obvious that for s = 0.015 m, the different models diverge more. The IEM param-

eterization underestimates the full IEM at both polarizations. At V-pol, however,

the IEM predictions are significantly lower than those from the h-Q model, such that

the parametrization and h-Q still match up particularly well. The error between

various models, for a given set of soil conditions and measurement polarization, also

shows moisture dependence, such that the bias in soil moisture retrievals will not be

time-independent. Figures 2-2a and 2-2c indicate that although predicted reflectivity

values change for different soil conditions, the difference between the two models used

is roughly the same, indicating that the error induced by the differences in rough-

ness model may not vary significantly space. Nevertheless, the moisture dependence

mentioned above, as well as the change in slope (and thus, different relative size of

the measurement noise), will cause spatial variations. Note that vegetation cover will

significantly affect these predictions.

2.1.3 Vegetation Opacity

Vegetation attenuates the soil emission. The amount of attenuation, represented by

T in Eq. 2.1, varies based on both the type of vegetation and its water content.

Effects due to vegetation can be parametrized based on land cover. Accounting for
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the influence of vegetation water content (VWC) requires knowledge of the amount

of VWC, defined as mass of water per area. Unfortunately, no methods for remotely

sensing VWC directly exist. Although empirical relationships between VWC and

NDVI have been found, these have only been tested over very limited cover type

conditions [35, 36]. An alternate approach which separates VWC into contributions

from the woody stems of the vegetation and contributions from the foliage, was used

here [37].

VWC + CWWW (2.13)
0.45 0.45

C, denotes the mass of carbon per area for the foliage component f or the woody

component w and W, denotes the fraction of the biomass component x composed

of water. The amount of biomass and the mass of carbon are related by assuming

the biomass is composed of 45% carbon. Variations in biomass over the growing

season are tracked by leaf area index (LAI) measurements. These are related to the

above-ground carbon mass by two empirical relations

C (LAI)(LAf) (2.14)
SLA

Cw fw(1.25LAImx) (2.15)

In equation 2.14, LAIf is the ratio of all-side LAI to 1-sided area and SLA is the

canopy specific leaf area. In equation 2.15, LAImx is the annual maximum LAI, and

fw is the fraction of the vegetation composed of woody biomass. Values for LAIf,

SLA, fe, Wf, and Ww are based on land cover type, and are derived from values in

the literature (see [38] for references). The values used are listed in table 2.2. LAI

measurements are derived, like the land cover dataset, from the MODIS satellite [39].

The dataset used is a mosaic of MODIS data at 1 km spatial resolution and monthly

temporal resolution, covering a full annual cycle from January 2002 to December

2002.

The resulting dataset ranges from a minimum of 0 to 21 kg/m 2 . The annual av-

erage VWC is shown in figure 2-3. The discretization in land cover classes causes



Land Cover Type (Source Land Cover) LAIf SLA ft W, Wf
Evergreen needleleaf forest 2.6 8.2 1.0 1.0 0.681
Evergreen broadleaf forest 2.0 32.0 1.0 1.0 2.34
Deciduous needleleaf forest 2.0 22.0 1.0 1.0 1.95
Deciduous broadleaf forest 2.0 32.0 1.0 1.0 1.95
Mixed forest 2.3 20.0 1.0 1.31 1.0
Closed shrubland 2.3 12.0 0.12 0.54 0.82
Open shrubland 2.3 12.0 0.06 0.54 0.82
Woody savanna (woodland) 2.0 40.0 0.5 1.0 1.86
Savanna (wooded grassland) 2.1 30.0 0.25 0.54 1.30
Grassland (grassland & cereal crops) 2.0 49.0 0 N/A 1.78
Cropland (broadleaf crops) 2.0 12.0 0 N/A 2.0
Barren or sparsely vegetated 2.3 12.0 0 N/A 0.82

Table 2.2: Parameters used to calculate VWC, based on land cover type

Figure 2-3: Annual mean derived vegetation water content, in kg/m 2

some areas to move from high to low VWC more abruptly than is likely to be realis-

tic. Nevertheless, the dataset adequately capture the larger-scale spatial variation of

VWC. In particular, it is preferable to models intended for a smaller variety of land

cover type. Figure 2-4 shows the annual range of VWC. Note that range and typical

amount are not correlated.

Again, we use different models in the forward and retrieval modules to reflect

uncertainty about these parameterizations. The forward vegetation opacity model is

I I
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Figure 2-4: Annual range of derived vegetation water content, in kg/m 2

based on a modification to the low-frequency model of Kirdyashev et al. [40].

27r W ,
T = agco- ,E8 .. (2.16)

A is the wavelength, Pw is the density of water (with a minor dependence on the

canopy temperature Tc), c is the imaginary component of the dielectric constant

of saline water, and W is the vegetation water content (VWC). ageo was originally a

theoretical parameter. However, it is far too difficult to calculate exactly for actual

surface covers. Some values for different vegetation types are given in Wegmuller

et al. [41] and Holmes [29]. The complete parametrization for each land cover type

is based on these values; ageo is 2/3 for forests and 1/3 otherwise (see also table 2.1).

To calculate ', the model by Swift and Klein [42] is used, assuming a salinity of 6

parts per thousand, as in Holmes [29]. Although this salinity is itself likely to vary

with vegetation type and soil conditions, the dependence of r on the salinity is small

enough that using a single representative value is acceptable.

Rather than starting from a theoretical formulation such as that in eq. 2.16, a



simple linear relationship between T and VWC is also commonly used [43].

T =b (2.17)

The b-parameter at polarization p depends on land cover type. Its parametrization

is based on that in Crow et al. [11]. The values are outlined in table 2.1.

In preparation for SMOS (a forthcoming radiometer-only soil moisture and ocean

salinity satellite by the European Space Agency), several studies were undertaken

to characterize the dependence of the b-parameter on incidence angle, polarization,

and time. Wigneron et al. [44] reviewed the findings of these studies, and found that

taking b to be constant in time is a fair assumption during all but the early stages of

the growing season. This review also suggests that at the SMAP incidence angle of

400, the vertical structures in vegetation canopy tend to cause b, to be greater than

bh. However, this observation is dependent on crop type. Since most studies were

over agricultural or grass land, it is not clear whether such a polarization dependence

exists for all land cover types. Note that b, > bh in the parameters in table 2.1, but

that the Kirdyashev model does not include any polarization dependence.

2.2 Areas Without Retrieval

Obviously, soil moisture measurements cannot be made over the ocean. Three ad-

ditional area types exist where no retrieval is attempted: snow-covered areas, urban

areas, and inland water bodies such as lakes or rivers. Snow itself has a large and

highly variable emission at L-band that dominates the soil moisture signal and makes

retrieval impossible. Any pixel with a fractional snow cover (as predicted by NLDAS)

greater than zero is removed from consideration. Indeed, as soon as any part of a

footprint contains snow cover, the entire footprint is considered flagged and removed

from the OSSE.

Unlike snow, the contribution of inland water bodies to a given sample's brightness

temperature can be simulated reasonably well. Rather than throwing away possible



data as soon as any part of a footprint has water cover, we merely remove it from

the observation. After calculating the fraction of the footprint with water cover f"

and the brightness temperature over the water areas Tbo, the brightness temperature

over land areas Tbj can be calculated as

T Tb f T (2.18)
1- fW

The dielectric model of Swift and Klein [42] is used to calculate T . A constant

salinity of 0.5 parts per thousand, a typical value for freshwater, is assumed. Since

water temperatures are not available from NLDAS, we assume the temperature of

the observed water is equal to the 2 m air temperature. This model is used for both

the forward and retrieval models.

Although soil moisture cannot be retrieved over urban areas, it is necessary to

model the contribution of sub-pixel scale urban areas to the pixel-wide brightness

temperature. No models for L-band emission from urban areas exist. Here, the

T-W model is adapted to represent emission from covered areas and modulated by

scattering from buildings, such that

Tbu = ruT, exp(-T) + Tc(1 - wo)(1 - exp(-T))(1 + ru exp(-r)), (2.19)

where exp(-r) = 0.95 and ru is the reflectivity assuming a dielectric constant c = 12.5

for concrete [45]. wu = 0.22, based on surface albedo data [46, 47]. Although this

model almost certainly does not provide an accurate description of urban emission,

it provides an adequate guess. Precise modeling of urban areas is not necessary for

this study, as the brightness contributions from these areas are removed in retrieval

much like they are removed for inland water bodies. Nevertheless, since the relative

influence of instrument error is dependent on the magnitude of removable urban

emission in the signal, it is useful to include an approximate estimate of emissions.

Knowing Tu, (2.18) is extended for urban areas:

T Tb = fwTb- fuTbu (2.20)
1- fW fu



where f, is the fraction of the pixel covered by urban areas. Pixels covered entirely

by water, urban areas, or a combination of both are also removed from the OSSE.

2.3 OSSE Grid

Each of the datasets used are converted to a single 3 km earth-fixed grid by repeating

values or averaging, depending on the initial resolution. The data used, including

their spatial and temporal resolution, are summarized in table 2.3. The low number

Source Variables Spatial Res. [km] Temporal Res.
NLDAS output sm, Ts, snow flag -11 hourly
NLDAS forcing sin, Te -11 hourly
MODIS LAI VWC 1 monthly
MODIS land cover VWC,Wh,s,1,bp, 1 monthly
CONUS-SOIL pb,sf,cf -0.7 static
GTOPO30 topography -0.7 static

Table 2.3: Summary of datasets used

of data sources reduces the chance of modelling physically unrealistic conditions due

to combination of error.

2.4 Orbital Model

To simulate measurements, the CONUS-wide models need to be linked to a model

of sampling locations with time. We use an orbital sampling model adapted from

code written at the NASA Jet Propulsion Laboratory. It uses standard atmospheric

flight equations to track the boresight sampling of a single orbit around the earth.

This orbit is then moved according to the earth's rotational velocity to follow the

nadir track as it shifts longitudinally around the globe. Trying to define a closed

form equation for the areal extent of each footprint and interpolating within would

be impossibly expensive computationally. Instead, each footprint is defined by a finite

number of points at a constant latitude-longitude spacing, each within a 3 dB power

contour. The precise incidence angle for each point is also tracked.



Every point is related to one of the OSSE's 3 km earth-fixed grid cells. In order to

sample each of the square OSSE grid cells covered by the footprint, we use a latitude

spacing of 0.0180, or 2 km. This, in turn, results in 3 km grid cells being sampled

multiple times. All points that do not sample a unique grid cell are discarded. As

a result, the number of point-based calculations per footprint is variable. Since all

processing is done on a daily basis, a given grid cell may still be visited multiple times

by overlapping footprints in consecutive scans. However, since the non-overlapping

part of the footprints are different, the two may not predict the exact same soil

moisture. Predictions of multiple passes are linearly averaged. SMAP's low-earth

orbit is such that the satellite track crosses the equator on its ascending (Northward)

pass at the same local time during each orbit. Although the exact time of this crossing

depends on the details of the final mission, we assume here that it is 18:00. This

implies that the satellite will cross the equator at 6:00 local time on its descending

passes. Morning passes are preferable for soil moisture retrieval, both because the

soil temperature and moisture profiles are most uniform, and because the atmospheric

ion content is at a minimum, so that the associated Faraday rotation of the signal is

also minimized. Therefore, SMAP will take measurements only on ascending passes.

Accordingly, samples taken while SMAP is moving southward are not included in the

OSSE.

2.5 Error Introduction

This OSSE neglects to seperately model individual expected sources of error to the

SMAP instrument measurements. These errors are included by adding a combined

Gaussian error with standard deviation of 1.5 K to the forward simulated brightness

temperatures at the footprint level. The magnitude of this noise is based on system

estimates by the SMAP science team and accounts for both expected instrument

noise (including radio frequency interference and precision and calibration errors)

and uncertainty in the ancillary parameters.
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Chapter 3

Retrieval Performance

3.1 Retrieval Algorithms

This OSSE design was tested with two different retrieval algorithms. The first al-

gorithm, referred to as single-polarization since it only uses measurements at one

polarization, is based on Jackson [48]. It assumes T, = Tc and uses aggregated values

of all the ancillary parameters to invert equation 2.1. The inversion is not directly

solvable due to the non-lineary of the dielectric model. However, by taking advantage

of the monotonicity of the soil moisture-reflectivity relationship, it is possible to use

an iterative bisection search algorithm, in which a soil moisture guess is repeatedly re-

fined until it predicts a reflectivity close to (within a certain tolerance) that predicted

by the inversion of equation 2.1 [49].

The non-linearities in the r-wmodel complicate determination of the optimal ag-

gregation method. The aggregation scheme of T of Zhan et al. [50] were used. It

neglects the influence of vegetation albedo, and attempts to invert the T-W model

such that (2.1) reduces to,

-2bW
Tb= T,(1 - r exp( )). (3.1)

cos 0

Assuming brightness temperatures average linearly and neglecting heterogeneity in



T, and r, (3.1) leads to

-2beffWeff 1 n -2biW
exp( ) = -n exp(- )o (3.2)

Even though the baseline error was actually somewhat lower for vertical polar-

ization than horizontal polarization, the single-polarization algorithm is tested at

H-polarization. The OSSE is run for 1 year to reflect variability over the course of a

growing season. For each day, every 3 km earth-fixed pixel, if visited, is assigned a

soil moisture value by averaging the estimates of each of the covering footprints. The

estimates are then spatially averaged to the 40 km earth-fixed grid to produce a daily

soil moisture estimate. Only 40 km pixels for which at least 50% of the associated

3 km pixels have a retrieval are assigned a soil moisture value. For each 40 km pixel,

the exact soil moisture knowledge is used to calculate an annually averaged bias. The

reported root mean square error (RMSE) values are calculated with bias-removed

estimates.

The dual-polarization algorithm, using both horizontally and vertically polarized

measurements, is that described in Crow et al. [11]. It assume no prior knowledge of

VWC is available, and attempts to retrieve both soil moisture and VWC by adjust-

ing both parameters to minimize the least-squares-sum difference between predicted

and measured brightness temperatures at both polarizations using a gradient descent

algorithm.

3.2 Single-polarization Retrieval

Without bias-correction, only 0.5% of the pixels meet the required SMAP error cri-

terion of 4% volumetric error. With perfect bias removal, 88% of all pixels have an

error smaller than the threshold. If areas with average annual VWC greater than 5

kg/m 2 are not considered (these pixels will be flagged in the SMAP product), this

number increases to more than 97%. To achieve this, however, bias characterization

is crucial. Figure 3-1 shows maps of annually averaged bias and RMSE. The bias is
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Figure 3-1: Maps of a) annual average bias (%vol), and b) RMSE (%vol) of the
single-polarization retrieval based on baseline model settings



generally higher than the random error; the spatial average of the absolute value of

the bias is 13%, while the CONUS average RMSE is only 5%.

3.2.1 Bias Identification and Removal

The success of bias removal is partially limited by the extent to which the errors

themselves, at any given location, are stable over time and do not have a seasonal

cycle or, more generally, is not dependent on any variable. Such bias is identifiable

during the mission calibration and validation phase. It is unrealistic to imagine that

biases can be estimated on a finer temporal scale than the annual case considered

above. Nevertheless, seasonal changes in vegetation, temperature and soil moisture

regimes cause significant seasonality in the bias. Figure 3-2 maps, for the baseline

case, the range of seasonal biases (bias calculated over MAM, JJA, SON, and DJF).

Over areas of lower vegetation (i.e. Montana plains), the temporal variation bias

depends largely on the variability of soil moisture across the year, since the difference

between both the different dielectric and the different roughness models increase with

soil moisture.

15

10

5

0

Figure 3-2: Range of soil moisture bias calculated per season (% vol).

Although errors are generally introduced at the brightness temperature level, this

study is limited to studying a bias at the soil moisture level since the true SMAP

measurements are not known. Future work, whether measurement or OSSE-based,



will have a similar constraint. Using bias removal to improve radiometric soil mois-

ture measurements requires that errors in brightness temperature can be expressed

as an equivalent error in soil moisture. Figure 3-3 displays the distribution of the

removability (difference between RMSE with and without bias removal, normalized

by the original RMSE) of the bias. Over 88% of pixels, more than 80% of the bias is

removable.
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Figure 3-3: Distribution of fraction of single-polarization RMSE removed by bias-
removal

The limited spatial extent of available field data requires some understanding of

the behavior of the bias' spatial variation will be necessary. The aggregate annual bias

varies predominantly with a region's annual mean soil moisture, annual mean VWC,

and soil sand fraction. Figure 3-4 plots the discretized mean bias against each of these

static variables. The trends are largely monotonic. Although the overall varation of

bias varies most over the dynamic range of VWC, it does not vary significantly with

VWC within the <5 kg/m 2 regime (where radiometric soil moisture retrieval is more

feasible). Similarly, once a threshold level of soil sand fraction has been reached

(about 0.6), the average bias stops increasing.
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3.2.2 Spatial Variation of Contributing Effects

To explore the changes in retrieval error structure if one or more of the sources of

parametric uncertainty is removed, the different sources of uncertainty were removed

one by one. In each case, the retrieval algorithm was modified to use the same model

as the forward simulation for the term considered. The models used in each run are

summarized in Table 3.1.

Forward Baseline Different Different Different
Dielectric Roughness Opacity
Only Only Only

E Wang & Dobson Wang & Dobson Dobson
Schmugge Schmugge

rs, IEM h-Q h-Q IEM h-Q
T Kirdyashev by bp by Kirdyashev

Table 3.1: Modular configuration of different OSSE runs

Figure 3-5 depicts the difference between the baseline RMSE and the relevant

retrieval case RMSE. Figure 3-6 depicts the difference between the bias in each case



and the baseline bias. Generally, the greatest change in RMSE is found by removing

uncertainty about vegetation opacity. Note that a positive difference in Figure 3-5

implies that RMSE is actually higher if the radiative transfer knowledge is increased.

This is possible due to compensating errors. Fluctuations in brightness temperature

lead to different magnitude changes in soil moisture depending on both the size of

the fluctuation and the model structure. As a result, if errors from different sources

cancel, changing the bias-removal for each run cannot fully remove those cancellation

effects and removing an error source (such as a specific radiative transfer term) may

therefore actually increase estimate RMSE.

When equalizing only the dielectric mixing model, the largest increase in bias and

decrease in relative error occur in pixels whose soils have a high clay content. The

largest decrease in bias occurs over areas with relatively high mean soil moisture.

Since the Wang and Schmugge dielectric model tends to estimate lower dielectric

constants, and therefore lower reflectivities, the difference in dielectric model will or-

dinarily cause an underestimation of soil moisture. Therefore removing the dielectric

model difference increases soil moisture estimates. As a result, over Southwestern

(dry) pixels with a relatively low negative bias, the variability-caused error (RMSE)

actually increases in the 'different dielectric only' case.

The results of removing roughness treatment uncertainty leads to bias changes

(and, to a lesser extent, changes in error) that are broadly similar to those of removing

the dielectric mixing model uncertainty. This occurs because both result in a change

in rs, in (2.1). However, the contribution is generally lower than the analogous

one for the dielectric mixing model and is not as sensitive to soil properties (except

insofar as they dictate the soil moisture behavior). This suggests further investigation

of roughness models may be relatively unfruitful. Indeed, for most of the Western

United States, removing roughness uncertainty would change the baseline error by

less than 5%.

The effect of vegetation model on retrieval bias and error is particularly intri-

cate. As in the dielectric case, reducing uncertainty in the vegetation model actually

increases both bias and RMSE in some locations. Single-polarization soil moisture re-
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Figure 3-5: Differences in single-polarization RMSE between alternative configuration
runs and baseline for the a)different dielectric only, b)different roughness only and
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trievals are positively biased over high vegetation cover. Since the Kirdyashev model

generally provides higher estimates of r than the b-parameterization, retrieval algo-

rithms using the latter model will tend to underestimate the effect of vegetation, and

therefore overestimate soil moisture. In doing so, they cancel the general underesti-

mation caused by using an 'incorrect' roughness and dielectric model. This occurs

even over certain areas of low vegetation. It should be noted, however, that the veg-

etation water content over these regions is far too high for soil moisture retrieval to

be possible operationally, and probably well beyond the regime of validity of the T-W

model employed in the OSSE. More relevantly to SMAP measurements, the contri-

bution to error can also be very high for areas such as the cropland near Iowa, with

high temporal variability of opacity relative to the mean opacity.
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Figure 3-7: Sum of differences in single-polarization RMSE between each of the al-
ternative configuration cases and the baseline, normalized by baseline error (%).

Normalizing the three components of Figure 3-5 by the pixel-based baseline RMSE

and summing them allows estimation of the total relative contribution of radiative

transfer uncertainty to the RMSE (as opposed to sub-pixel heterogeneity or measure-

ment error). The sum is shown in Figure 3-7. Areas for which the total relative effect

of radiative transfer uncertainty is the greatest tend to be dominated by a single type

of uncertainty (i.e. dielectric effects over high clay content soils, opacity over high

vegetation areas). Fifty-eight percent of pixels show a positive relative contribution of

radiative transfer treatment. That is, errors due to incorrect descriptions of dielectric

mixing and vegetation opacity (the positive roughness contributions are particularly



small) compensate for other errors. To the extent that these errors are consistently

biased, bias-removal can reduce the effect of error compensation on RMSE. Neverthe-

less, the non-linear structure of the T-W models prevents full removal of compensating

errors. Positive contributions of radiative transfer descriptions imply that a better

understanding of the behavior of the soil dielectric constant or vegetation opacity

may not actually improve retrieval. Instead, a coupled reduction in error sources is

necessary to improve SMAP radiometer-only errors.

3.3 Dual-polarization Retrieval

Using the single-polarization retrieval OSSE without explicitly accounting for un-

certainty in VWC is somewhat unrealistic, particularly given that current methods

of estimating VWC rely on indirect measurements. The dual-polarization retrieval

algorithm does not require an exact VWC estimate, as it simultaneously retrieves

soil moisture and VWC. Multi-polarization algorithms may also be developed for

retrieving ancillary parameters other than VWC, such as T, (e.g [51]).

An approximate range for VWC is still necessary for the optimization scheme.

Since brightness temperature is more sensitive to VWC than soil moisture for several

combinations of parameters, the algorithm often retrieves a very high VWC, causing

the soil moisture estimate to be too high. This OSSE is run with bounds depending

on the vegetation cover. The lower bound is 90% of the minimum VWC estimate of

the year, while the upper bound is 110% of the maximum observed VWC. Estimating

such bounds is mostly dependent on land cover, and may be done even without the

development of exact, well-tested methods for predicting VWC.

RMSE Bias

mean st. dev. mean st. dev
Single-pol (%vol) 2.8 1.6 -12.8 5.3
Dual-pol (%vol) 5.5 1.5 1.8 8.3
Dual-pol VWC (kg/m 2 ) 2.0 1.0 0.2 3.2

Table 3.2: Error statistics for each retrieval algorithm



Table 3.2 summarizes the error statistics of baseline runs with the two algorithms.

The dual-polarization algorithm minimizes VWC-related error by implicitly finding

the optimal aggregation of sub-footprint variations (which may not be the same as

that predicted by the single-polarization aggregation scheme) and, since it operates

on two measurements, should theoretically be better able to correct for measurement

error. Furthermore, it partially compensates for using an 'incorrect' (compared to the

synthetic truth) description of dielectric mixing, soil roughness, and vegetation. As

a result, the remaining error has a smaller (in absolute value) bias, and the RMSE is

actually higher than for the single-polarization algorithm. In addition, the bias is far

more spatially variable. As betrayed by the large standard deviation, the vegetation

bias statistics are very low because the bias happens to be about equally weighted

positively and negatively.
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Figure 3-8: Maps of a)annual average bias (%vol) and b)RMSE(%vol) for the soil
moisture retrieval of the dual-polarization algorithm. The baseline modular configu-
ration is used.

The bias and RMSE of the soil moisture estimates are displayed Figure 3-8. Fig-
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Figure 3-9: Maps of a)annual average bias (kg/m 2) and b)RMSE (kg/m 2 ) of VWC
estimate using the dual-polarization algorithm. The baseline modular configuration
is used.



ure 3-9 displays the bias and RMSE of the VWC estimates. Vegetation retrieval

RMSE varies approximately with mean annual VWC. The high errors in VWC esti-

mation, relative to its dynamic range, are notable. As Figure 3-10 demonstrates, the

Fraction of RMSE Removable

0.4 0.5 0.6
Fraction

Figure 3-10: Distribution of
removal

fraction of dual-polarization RMSE removed by bias-

removability (fractional decrease in RMSE upon bias-removal, as in section 3.2.1) is

generally far lower for the dual-polarization estimates than for the single-polarization

ones. This occurs in part because the errors in VWC estimation include a correction

for biases in the retrieval method. The distribution in Figure 3-10 is also much wider

than the equivalent single-polarization distribution shown in Figure 3-3; this occurs

because the VWC correction effect has considerable spatial variability.

The algorithm is also run using the decomposition configurations of Table 3.1.

Unlike with the single-polarization algorithm, removing uncertainty about vegetation

opacity decreases both estimate and bias-removed error. However, the contribution

of dielectricmodel uncertainty is still negative.



Chapter 4

Conclusions and Future Research

Significant uncertainty exists about the representation of dielectric mixing, soil rough-

ness effects and vegetation opacity in L-band radiative transfer. Understanding how

the ambiguity of existing models affects soil moisture estimates is particularly impor-

tant for the development of retrieval algorithms for the forthcoming SMAP satellite.

Using an observing system simulation experiment covering a wide temporal and spa-

tial range (one annual cycle over CONUS), the effect of this uncertainty on retrieval

error and bias is simulated by using different representations in the forward and re-

trieval models. Measurement error and error due to land surface heterogeneity are

also incorporated in the OSSE. The effects were tested using both a single-polarization

algorithm that inverts the radiative transfer model (2.1) with an ancillary parameter

aggregation scheme and a dual-polarization method (using data from both H and V

polarizations) that retrieves both soil moisture and vegetation water content. Use of

the single-polarization algorithm, even without accounting explicitly for uncertainty

in ancillary parameters, leads to more than 99% of pixels having an RMSE above the

SMAP 5% error criterion.

Using the single-polarization algorithm, retrieval errors are mitigated due to can-

cellation of errors. For example, whereas uncertainty in roughness models (in this

OSSE) tends to overestimate soil moisture, error in the structure of the vegetation

opacity treatment will underestimate soil moisture. Errors in the dielectric model and

errors in the roughness cause similar retrieval errors, although the dielectric model



causes a slightly greater error. The relative importance of each term for the total

error is studied by removing uncertainty due to each term one-by-one and comparing

the errors to those of a simulation with all terms retrieved with an 'incorrect' model.

The largest change in retrieval error occurs when the vegetation opacity and dielec-

tric mixing models are treated as functionally flawless. However, over several areas,

mean-removed RMSE actually increases due to error cancellation. It is therefore not

sufficient to make a single improvement to one of the sources of error contained in

this OSSE (radiative transfer uncertainty, measurement noise, parameter aggregation

to account for sub-pixel surface heterogeneity). Similar results occur for the dual-

polarization algorithm, although the vegetation opacity effect is more often negative

since the algorithm can adjust for errors in opacity by retrieving a higher estimate of

vegetation water content.

Due to the high retrieval errors, it is necessary to investigate opportunities for er-

ror removal. Meeting the SMAP error requirement will require both reduction of this

uncertainty and improved calibration of the spatial variation of ancillary parameters.

Doing both to the extent necessary may not be feasible before the SMAP launch date.

An alternative strategy is to characterize and remove the bias of the retrieval esti-

mates. Such a scenario may occur in the context of data assimilation for land surface

modeling, or if ancillary data are available to predict brightness temperatures (such as

from SMOS). The degree to which brightness temperature errors can be represented

by a constant bias in soil moisture was investigated. The brightness temperature bias

due to dielectric and roughness uncertainty effects is mathematically similar to that

induced by a constant bias in soil moisture. With (admittedly unrealistic) perfect bias

knowledge, over 88% of the pixels in the study area, the annually averaged RMSE of

the single-polarization retrievals can be reduced by more than 80% by removing the

bias. It is not as useful a strategy for retrievals for the dual-polarization algorithm,

although an error reduction of 30% or more can still be achieved in the vast majority

of cases. Annual mean VWC, annual mean soil moisture, and sand fraction each cor-

relate well with single-pol retrieval bias magnitude, suggesting it may be possible to

understand and predict the spatial variability of the bias based on exact knowledge



of the bias over limited areas. Thus, bias-removal is a potentially usefull strategy

for SMAP radiometer retrievals. Indeed, the mean absolute bias is higher than the

RMSE (bias deviations) for both algorithms.

Future work could include an expansion of this OSSE, such as a study of how er-

ror due to uncertainty about how ancillary parameter values interacts with radiative

transfer uncertainty errors. Additionally, more sophisticated dual polarization algo-

rithms should be developed to take full advantage of the retrieval estimation. In the

current algorithm, multiple views of the same location over a few days are done in-

dependently. Since error generally reduces with an increased amount of observations,

we expect combining such estimates to help constrain the VWC to a more optimal

value, and may allow for also constrain other ancillary variables, such as land surface

temperature.

Based on the results of this study, future field campaigns should focus on deter-

mining the optimal description of the vegetation opacity and dielectric mixing. The

error cancellation effects a renewed investigation of aggregation strategies, including

aggregation of soil texture properties. The extent of the polarization dependence of

the vegetation model, particularly over areas other than cropland or over measure-

ments measuring multiple crops, needs to be determined. Reducing dielectric mixing

uncertainty is particularly important for dry soils. Rather than using field data to

perfectly determine a given site's roughness and vegetation parameters, an investiga-

tion of the potential for bias characterization and removal should be done with real

data.
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