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Abstract

An approximate solution of Lamb's problem of vibrations in an elastic halfspace is presented. The
stiffness method of Kausel and Rossset (1981) is used to model a layered soil stratum. The layers
are represented by stiffness matrices that are algebraic in the frequency-wavenumber domain. The
global stiffness matrix for the soil system is obtained by overlapping the layer matrices at common
degrees of freedom. Once the stiffness matrix is inverted with a spectral decomposition,
displacements are computed by means of an inverse transform that exists in closed form. The
stiffness matrix for an elastic halfspace is derived by taking the Taylor series expansion of the true
stiffness about the horizontal wavenumber. The solution for static loads in layered halfspaces is
derived by examining the limit of the dynamic case when frequency goes to zero. Modifications of
the stiffness matrices for cross-anisotropic materials are presented. Anisotropy is found to cause
only changes to the stiffness matrices themselves and not to the underlying mathematics of the
displacement calculations.

Examples of displacements for dynamic and static loads are computed and compared to analytic
solutions (when they exist). Comparisons show that the discrete stiffness method gives very
accurate results with a relatively small ( - 10) number of sublayers in the overlying stratum. A
discussion of the limitations of this method and its application to future research topics is
presented.
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Mr Clevver he says to Eusa, 'Thats a guvner lot of knowing youre inputting in to that box

parbly theres knowing a nuff in there for any kynd of thing.'

Eusa says, 'Thats about it. I dont think theres many things you cudnt do with that

knowing. You cud do any thing at all you cud make boats in the air or you cud blow the worl a

part.'

Mr Clevver says, 'Scatter my datter that cernly is intersting. Eusa tel me some thing tho.

Whyd you input all that knowing out of your head in to that box? Whynt you keap it in your

head wunt it be safer there?'

Eusa says, 'Wel you see I cant jus keap this knowing in my head Ive got things to do with it

Ive got to work it a roun. Ive got to work the E qwations and the low cations Ive got to comb the

nations of it. Which I cant do all that oansome in my head thats why I nead this box its going to

do the hevvy head work for my new projeck.'

Riddley Walker, Russell Hoban (1980)
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Chapter 1

Introduction

The area of geodynamics concerning displacements in an elastic halfspace due to transient

loading is known as "Lamb's problem", after the classic work of Lamb (1904). Much work has

been done in this field, most of it by seismologists who were interested in describing the

propagation of seismic waves in the Earth's crust. These solutions are usually not applicable to

engineering problems because of restrictions on the geometry of the soil. The most well known

example is the solution of Lamb's problem developed by Cagniard (1962). This method obtains

time-dependent displacements due to a transient point source within a solid composed of two semi-

infinite homogeneous media in welded contact. When one of these media is assumed to be a

vacuum, the solution for a halfspace results.

An examination of the Cagniard method illustrates the features of the transient solution that

are important to the study of seismology. The application of this technique starts with the Laplace

transforms with respect to time of the wave equation, the boundary conditions and the source.

The homogeneous and particular solutions are derived in the transform domain and the boundary

conditions are applied. The inverse Laplace transform is not performed, as this would be

impossible to do in closed form for most cases. Rather, the variables of the solutions are changed

so that the solution takes the form of a Laplace transform, and the inverse transform can be

extracted by inspection. This change of variables usually requires several applications of conformal

mapping and contour integration, which render the mathematics of Cagniard's method formidable.

Dix (1954) presented a simple application of Cagniard's technique to the solution of the scalar wave

generated by a point source in an infinite medium. Dix also explained how the solution for a

general transient load can be obtained by applying the Duhamel integral to the solution for a step

load. deHoop (1962) modified the method of Cagniard by applying Fourier transforms to the
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spatial variables as well as a Laplace transform with respect to time. The inverse Fourier

transforms are then manipulated with changes of variables into a Laplace transform and the

solution is extracted by inspection. deHoop also applied his method to the solution of a scalar

wave in an infinite medium.

Johnson (1974) presented the full three-dimensional solution, derived with the Cagniard-

deHoop method, for displacements in a halfspace due to a unit pulse. In this work, the advantages

of this technique to the study of seismology become clear. The solution for displacements is given

as the sum of six wave forms: incident P and S waves and reflected PP, SS, PS, and SP waves.

Thus the progress of a particular wave can easily be examined by separating this wave from the

displacement solutions. Although the solution method tends to lose physical meaning during the

multiple integrals performed in the complex plane, the final result for displacements is expressed in

terms of normal modes of wave propagation that are easily understood. The references cited above

give examaples of displacement solutions that exist in closed form for special cases (e.g. at the

surface). The general solution given by Johnson contains an integral which must be evaluated

numerically. The fact that the Cagniard-deHoop method is restricted to a homogeneous halfspace

and requires numerical integration makes it less practical for engineering applications where

displacements in layered soils are desired.

Another solution for dynamic loads in a homogeneous halfspace was developed by Pinney

(1954). Integral solutions for layered halfspaces have been given by Bouchon (1981), Luco and

Apsel (1983) and Apsel and Luco (1983). Alekseyev and Mikhaylenko (1976/1977) developed a

procedure that can be used in a finite difference formulation and Whittaker and Christiano (1979)

employ the integral Green's function of the halfspace in a finite element method for flexible plates.

All of the above methods require numerical integrations of improper integrals. This is a difficult

problem, since the integrands involve transcendental functions which themselves must be evaluated

numerically and the kernels may be "wavy", leading to high computational effort for proper

resolution of the integrals.
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Transfer matrix techniques are another approach to the problem of displacements in layered

halfspaces subjected to dynamic loads. Thomson (1950) and Haskell (1953) developed a transfer

matrix that relates the state vector (the stresses and displacements on an interface) of a layer to

the state of the layer above it. The elements of the matrix are transcendental functions of the

frequency w, wavenumber k and layer properties. Since the matrix is written in the frequency-

wavenumber domain, integral transforms are required to obtain displacements in the space-time

domain. Applications of the transfer matrix method have been presented by Harkrider (1964),

Haskell (1964), Knopoff (1964) and Dunkin (1965). Although the matrix method simplifies the

problem of layering, numerical integration is still required to obtain displacements.

The starting point for the solution method described in this paper is a stiffness matrix

derived from the Haskell-Thomson transfer matrix by Kausel and Roisset (1981). Elements of the

transfer matrix are rearranged so that stresses on two adjacent interfaces are related to

displacements on the interfaces via the stiffness matrix. Then stiffness matrices of the individual

layers are overlapped to form a global stiffness matrix for the soil system. The stiffness method is

analagous to the matrix techniques applied to problems in structural dynamics. Displacements are

computed with numerical integration. Details of the method are presented in Chapter 2.

When the thicknesses of the layers in the soil are small compared to the wavelengths of

interest, the transcendental functions in the stiffness matrix can be simplified to algebraic functons

of the wavenumber k. This is accomplished by making the assumption that the displacements are

piecewise linear in the vertical direction. The algebraic stiffness matrices which result were first

presented by Lysmer and Waas (1972). Waas (1972) and Kausel (1974) also derived these matrices.

The matrices have been used to represent the behavior of semi-infinite boundaries in finite element

analyses by Drake (1972), Schlue (1979), and Tassoulas (1981).

The algebraic stiffness matrices have also been applied by Kausel and Peek (1982b) to obtain

Green's function solutions of layered soils resting on a rigid base and subjected to dynamic loads.

The method described here and in the above reference is a specialization of the one presented by
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Kausel (1981). The global stiffness matrix of the stratum is assembled and the harmonic applied

load is transformed into the wavenumber domain. The stiffness matrix is inverted with a spectral

decomposition in terms of the natural wavenumbers and propagation modes (the eigenvalues and

eigenvectors of the stiffness matrix). The inverse integral transform is then performed to yield

displacements. The principal advantage of this method is that the inverse transforms exist in

closed form, thus increasing the speed and accuracy of the procedure. This method was applied by

Kausel and Peek (1982a) to obtain Green's functions for use in a boundary integral method for

layered soils.

The technique described above has been limited to cases of a soil stratum resting on a rigid

base, since no thin layer approximation can be made to a halfspace. This paper describes an

extension of the method to dynamic problems of layered soils resting on a viscoelastic halfspace.

The algebraic expression of the halfspace stiffness is obtained by taking a Taylor series expansion

of the true transcendental stiffness. Then a solution for static loads in layered halfspaces is

obtained by evaluating the dynamic case in the limit when the frequency w goes to zero. Finally,

an extension of the method for anisotropic media with as many as five elastic constants is

presented.

This method for computing displacements due to dynamic loads in layered halfspaces is an

engineering solution to a well known problem. The accuracy and speed of the solution method

make it useful for a variety of engineering problems which are described in this paper.
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Chapter 2

Review of Previous Work

In this chapter the assumptions and the mathematics leading to the Green's function solution

of the stratum are presented. For more detailed theory on the propagation of waves in elastic

media, the reader is referred to Aki (1980), Bith (1979), Graff (1975), Love (1944), Love (1967),

Bullen (1963) and Pao (1983). Studies of the propagation of waves in layered media can be found

in Brekhovskih (1980), Ewing et. al. (1952) and Ro~sset and Kausel (1980). The essential

mathematics, distilled from the above references, are given below.

2.1 Geometry and Material Properties

The geometry of the halfspace is shown in Figure 2-1. The surface of the halfspace, where

z = 0, is the xy plane in Cartesian coordinates, or the p-6 plane in cylindrical coordinates. The

cross-section of the halfspace, in Figure 2-1 is the z-x or z-p plane. The stratum resting on the

halfspace has total depth H and is subdivided into N parallel layers. The layers are numbered

sequentially with layer 1 being at the surface and layer N being above the halfspace. The layers

are in "welded" contact such that displacements and stresses are continuous across the layer

interfaces. Figure 2-2 shows the geometry of an individual layer with loads and displacements at

the interfaces. Each layer i has depth hi and the interface elevations are z; and zi+1-

The individual layers are homogeneous. Each layer i has mass density denoted by pg. For

isotropic layers (see Chapter 5 for a discussion of anisotropic materials), each layer has Lam6

constants X; and G,, with the corresponding Poisson ratio v; and elastic modulus Eg. To model the

dissipative behavior of soils, we use the complex Lam4 moduli
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Figure 2-1: Geometry of a Layered Halfspace
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Figure 2-2: Geometry of a Layer

P1 U1

P2 U2

X= (1 + 2ip) X
Gc= ( 1 + 20) G

where # is the fraction of critical damping. For w > 0, # is also positive. Since the damping

coefficient is independent of frequency, damping is hysteretic in nature. For more details on

hysteretic damping, see Kausel (1974). Using complex moduli to represent a linearly viscoelastic

material does not alter the derivations presented for a linearly elastic material. Thus the complex

moduli can be substituted for X and G when dissipative behavior is required. The use of complex

moduli in cases of dynamic loading insures that no singular displacements (at resonance) are

obtained.

2-1

I

L
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2.2 The Stiffness Method

2.2.1 In-plane Motion

Consider a stratum in plane strain subjected to a harmonic load. The displacement vector in

Cartesian coordinates is

u(X,z)
0

w(x,z)
2-2

where w is the frequency of the forcing function. Motion is restricted to the x-z plane and is

independent of the y coordinate. In layer i, the wave equations are

(Xi + 2G;) T + Xi azaz + g92 +
8x(9z I+ pp2U = 0

(Xi + 2G;) Z2 + Ai X89z + Gi
82W 82U

iX2 + azaz + PW2 w = 0

The stresses are given by

eou e8w
ex= (Xi + 2G;) a + XA ;~

i (9w +ouT.z = 9 G(9z &

aw ou
or, (Xi + 2G;) 9 + XA

We look for solutions by separating the x and z dependence of the displacements

u(x, z) = U(z) f(x)
w(x,z) = W(z) f(x)

Substituting 2-5 into the differential equations 2-3 gives

dx2 + k2 f = 0

where k is a constant (the wavenumber). Thus the displacements are given by

2-3

2-4

2-5

2-6

(g2U
G; gI Z +
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u(x,z) = U(z) e-ikx

w(x,z) = W1z) e-ik.

Now write u and w as

U= az - 8z

a = z+ ax

where # and ?P are potential functions.

obtain

ax2 + 892 = -C #P

When 2-8 are substituted into the wave equation 2-3, we

2-9

ax2 + z2 = -C2 V
81

where C,; and C are the shear and pressure wave velocities, given by

G.

X.+ 2G.

We want to find solutions to 2-9 of the form

#(X,z) = O(z) e-ik

7P(X,z) = tp(z) e-ikz

Substituting 2-11 into 2-9 gives

dz 2

dz2

+ r 2= 0

+ S 2 = 0

where

2-7

2-8

2-10

2-11

2-12
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W2
r = -~~ - k2 2-13

PS

W2
Ce2= - k2

8z

Then the solution for the potential functions is

4P(z) = Ali cos (rgz) + A2 sin (riz) 2-14

I(z)= A3 ; cos (siz) + A4; sin (Ygz)

Substituting 2-14 into 2-11 and then applying 2-8, we obtain

d V
U = -ik - dz 2-15

dP
W = d - ikt

The amplitudes Alg, A2 , A3 g, A 4; for each layer i can be expressed as functions of

U(z.), WV'z;), U(zi+1 ), WVzi+1 ) and also as functions of uz(z;), rz(z;), az(zi+1), Tzz(zi+1). This is the

basis of the transfer matrix. The state vector, Zi+1 = { is

obtained in terms of the amplitudes A. Then the amplitudes are obtained in terms of the state

vector Z;. This amplitude vector is then substituted into the expression for Zi+1 to yield

Zi+1 = H; Z; 2-16

where Hi is the local transfer matrix. The elements of the transfer matrix can be found in Haskell

(1953).

2.2.2 Anti-plane Motion

Consider a stratum in anti-plane shear subjected to a harmonic load. The displacement

vector is

V(X'Z) eZ-'' 2-17
[ 00
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Motion is in the y direction and planar (independent of the y coordinate). The equation of motion

in layer i is

G; 5 + a] - p1{w
2V =0 2-18

The shear stresses are given by

av
T = G;&2-19

Separation of variables gives a solution of the form

v(x,z) = 1(z) e-ikz 2-20

From the differential equation 2-18, we obtain the function

1(z) = Ali cos (siz) + A2 sin (sgz) 2-21

where

2 2
8. 2 - k

at

Again, Ali and A2 i can be removed from the expressions for v(zi), v(zi+i), Ty'(zi), ry,(zi+1 ) so

that v and rzat zjlare linear functions of v and yat zi.

2.2.3 Development of the Stiffness Method

In this section, a summary of the technique developed by 1'ausel and Roi~sset (1981) is

presented. The reader is referred to that reference for more details. Adopting the notation of

Kausel and Roesset, we write the state vector as

2yz T - 2-22

r= C2
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in Cartesian coordinates and

Z = { 8, LUg , =pz [zv z - 2-23
[U

in cylindrical coordinates. The superscript bar indicates that these quantities are functions of z

only. In Cartesian coordinates, for a stratum in plane strain, the true state vector is

S e i(wt - kz) 
2-24

where w is the harmonic frequency of the forcing function and k is the horizontal wavenumber.

In cylindrical coordinates, the dependence of the displacements and stresses on the azimuthal

direction is given by multiplying , iz> Tpz, a2 by cos p6 and up, 7# by -sin p9 if the

displacements and stresses are symmetric with respect to the z axis, or by sin PO and cos p9 if they

are antisymmetric. The integer p is a Fourier index which is described below. The variation in the

radial direction is given by multiplying V and S by the matrix C,, which is the same for all

layers

[u]_ [22w [- 2J 2-5U CpU C,
SI C~ C, ~~ C, S [-25

where

[~)i j~ 0 ]2-26
d1 d

CP |kp Ip d(kp) Jp 0

0 0 -J, j
and J, are Bessel functions. Thus the displacements and stresses are decomposed into a Fourier

series in the 0 direction and into cylindrical functions in the p direction.

The transfer matrix for layer j relates the state vectors
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Zj+1 = H Z 2-27

where now the vectors contain all three displacements and continuous stresses. In plane strain, the

in-plane motions are uncoupled from the anti-plane motions, as described in the section above.

The transfer matrix for cylindrical symmetry is the same as that for plane strain. The transfer

matrix is not a function of the Fourier index yi.

Now we consider equilibrium of a single layer. The layer has load P = S I on the upper

interface and P 2 ~ 2 on the lower interface. Then, substituting in 2-27, we obtain

[1H][ H12 U-1 2-28
-P 2 ~ H21 H22 P-1

where Hg are submatrices of H, obtained by partitioning. Rearranging terms so that loads are on

the left hand side of the equation gives

-1-H H [ I11
S1 12 U 2 2-29

2H22H12H11-H21 -H22H -

or

P =KU

where K is the symmetric layer stiffness matrix, P is the load vector and U is the displacement

vector. The global stiffness matrix for a layered soil system is formed by overlapping the layer

matrices at common degrees of freedom. The global load vector consists of tractions applied at the

layer interfaces. The techniques applied to solve for displacements are analagous to those of

structural dynamics. The elements of the K matrix are complicated transcendental functions. The

K matrices for zero and non-zero values of k and w are given by Kausel and Roisset (1981).
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2.3 Green's Functions for a Layered Stratum

In this section, the algebraic stiffness matrix is presented and it is applied to the solutions of

displacements in layered stratum subjected to dynamic loads. The material in this section is taken

from Kausel and Peek (1982b).

2.3.1 Algebraic Stiffness Matrix

When the soil layers are thin compared to the significant wavelengths, the layer stiffness

matrix can be approximated as

K- = A-k 2 + B k + G -- w2 M. 2-30

These layer matrices are computed by assuming that displacements are piecewise linear in the z

direction and then applying finite element energy balance techniques. The displacements in layer j

are

__ zi+1 ~ z __ z - zg _
U = h U j+ h U j+1 2-31

Each layer is a one-dimensional finite element in the z direction. The layer stiffness matrices A;

and B1 are presented in Table 2-I, G. and M. are presented in Table 2-I. Note that the 2 nd and

5 th rows and columns of these matrices, corresponding to the anti-plane degrees of freedom, are

uncoupled from the in-plane degrees of freedom.

The global stiffness matrix is assembled by overlapping the layer stiffness matrices at

common degrees of freedom. For the stratum resting on a rigid base, the three degrees of freedom

at the interface of the rigid rock are set to zero and removed from the eigenproblem. Note that

when the wavenumber k is zero (no propagation in the x direction), the stiffness matrix G - w2A is

that of a vibrating shear beam modeled with finite elements and a consistent mass matrix. Thus

the layered stratum has the same resonant frequencies as a shear beam with a fixed base.
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Table 2-I: Algebraic Layer Stiffness Matrices A and B

2(X+2G)

X+2G

X+2G

2G

2G

2(X+2G)

2G

X-G

X+G

[-(X+G)

G
2G

-(X+G)

-(X-G)

-(X-G)

In principle, for a vector of prescribed extermal loadings P , we wish to obtain the

displacements U by inverting the stiffness matrix

U = K-1 P 2-32

This inversion is performed with a spectral decomposition of the stiffness matrix. In order to

obtain the wavenumbers and modes of propagation, we must solve the quadratic eigenvalue

problem

h
A.= 8

1
B. = 2 X-G
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Table 2-II: Algebraic Layer Stiffness Matrices G and M

G

-G

X+2G

-(X+2G)

2

-(X+2G)
X+2G

1
2 J

K g = 0 2-33

For a stratum of N layers, the solution of this problem yields 2N eigenvalues for the anti-plane case

and 4N eigenvalues for the in-plane case. The wavenumbers ki occur in pairs of *kg, which

correspond to waves that travel from the origin and decay towards infinity and waves that travel

from infinity and decay towards the origin. The details of the eigenvalue problem and physical

siginificance of the wavenumbers are explained in detail by Waas (1972). We select the 3N

eigenvalues kg with negative imaginary part for complex kg and positive real part for real ki. These

1
Gj= h
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correspond to waves that propagate away from the origin or decay towards the origin.

The quadratic eigenvalue problem can be expressed as a linear eigenvalue problem of double

dimension, which requires all 6N eigenmodes for decomposition. The special structure of the

matrices in this case allows the quadratic eigenvalue problem to be expressed as a linear problem of

the same dimension. Rearranging the rows and columns of the stiffness matrix by degree of

freedom, we obtain the eigenproblem with right and left vectors

K Z,=(A k2 +C ) Z =0 2-34

.K=Y ( A k + C )=0

where

AXA= B X Az 2-35
C, Bzz

CZ

and the submatrices are all tridiagonal. For a given frequency w, C= G - w2 M. The left and

right eigenvectors are

r rjxj 1~
Y. [ $j Z = k;4zij 2-36

Oyj Oyj

In matrix form, the eigenvalue problem is

A~ Z K2+ C Z=0 2-37

A T y K2 + i-TY= 0

where

[.KR]

Y Oz
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Z =[P:KR 2-38

K [KR "Rayleigh" modes

K] = "Love" modes

Kausel and Roosset (1981) derived the group velocities (velocities at which energy is transferred

into the medium) of the natural modes of propagation from the eigenvalue problem. The left and

right eigenvectors satisfy orthogonality with respect to A and C . The normalization is

yTIA Z= IKR] = J 2-39

YTC~Z=- KR 2 = JK2

From 2-39, we know that A and C can be inverted when no eigenvalues are zero. The results of

inverting A and C are given by Kausel and Peek (1982b). The equilibrium equation 2-29 in the

wavenumber domain is

={~k 2 + p )U~= 2-40

where

U ,P,
[ = /kU z P kPz 2-41

U Y P Y
We premultiply 2-4 by YT and postmultiply by Z Z-1 = I to obtain

yT( X k2 + 4 -) Z Z- 1 ~ =YT 2-42

Applying the orthogonality relations 2-39 to 2-42 yields

( Jk2 - JK 2 ) Z-1 U=YT 2-2-43
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Solving for displacements U in the wavenumber domain gives

U = Z J- 1 ( k2 I - K 2 )-1 yT7

Expanding 2-44 yields the flexibility (the inverse of the stiffness) matrix

T
IJ z k4izKRDR

iD~ =~ T#~~g
y '

kO K--lD 0 T

,,ZDR z 2-45
TyDL I PI

D =(k2I-K2 1-j

DR = (k2I-K2 )-1

It can be proven that this flexibility matrix is symmetric. We define the N X N submatrices

F,= {f ""}=D T m,n =1,..., N

F= { = { 1i z1 Di

kLxK RIDROmnz

=z X{ f= m } 1-DR
zz

Fzz = {f z}

FYY = {f 4n } = OyD Te

2-46

2-47

The elements of the flexibility matrix for displacements at the mth elevation due to loads at the n t

elevation are

[f mn ;cni
F""= 0 m" 0 2-48

mny mn.
fz 0 fz

The matrices of eigenvectors are

1= 1, . . . ,2N

2-44

where

# 4 } m = ,...,N
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2-49#2 = { #"" m = , .. . ,N 1= 1,.. .',2N

Su={i#t} m2=-,9. .d. ,2N l 1 .. . fN

Substituting 2-49 and 2-46 into 2-47 yields the individual elements of the flexibility matrix

2N
mn _ Onl Oni aR

1=1
2N 2N

f m = ( 4 n4 b = " $I cRR-

1=1 1=1
mn m Oni aR

z'z z z

1=1
N

= m 76n1 qMfll aL

1=1

where

1 1 k,

a, = k2 - k2 k, k2 - k 2) k ( k2 - k 2 ) 2-51

Now that we have obtained the inverse of the stiffness matrix, we can proceed to solve for

displacements.

2.3.2 Solution for Displacements

At this point, we

matrix, and therefore

cylindrical coordinates.

make a switch to cylindrical coordinates. As stated previously, the transfer

the stiffness and flexibility matrices, is the same for plane strain and

The stress and displacement vectors are

S =T ez U = Up

The Hankel transforms between the wavenumber and the spatial domains are

U= T k CIO U dk

p=o

2-52

2-53
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U = a, p C, f TP U dO dp 2-54

where p is the Fourier index, C. is the matrix of Equation 2-26 and T, is a diagonal matrix

containing the terms cos p and sin p0 according to the symmetry of the loading, as described in

Section 2.2.3. The orthogonalization factor a. is

1
(2i for p=0

ap= 2-55
for yy 0

The time dependence of the loads is the constant factor eiwt.

By applying the results of the previous section, we obtain the displacements at elevation m

due to a load applied at elevation n

U" = T k C, "n p dk 2-56
y=0

where P . is the load vector in the wavenumber domain,

oo 2P P= a j p CP T, P d dp 2-57

The advantage that the method presented above has over the ones cited in Chapter 1 is that

the transforms of Equation 2-56 are computed in closed form.

Consider a horizontal and a vertical disk load. The components in cylindrical coordinates of

uniform loads q over a disk of radius R are

r cos 0 r0 i
PH q -sin J0 PV=q 0 0 < p R 2-58

10 1

The transform of the horizontal load, from 2-57, is

P~= q 1 k J(R) 2-59
0
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P ,= 0 i =4 1

The transform of the vertical load is

~P = -q 0 k J,( kR) 2-60

0 RLL
1

P, 0 y -74 0

Substituting 2-59 into 2-56, we obtain the displacements due to a horizontal disk load

u"= qRd$"$ N (cos 0)

1=1 1=1

r 2N 1 N 1,i4  Omo . l ~ -i )26

1=1 1=1

u = -qR y + OR (c $"s$ 0)

1=1

Likewise, substituting 2-60 into 2-56, we obtain the displacements due to a vertical disk load
up qR O( O $" ,1$ kg Y d p 3

1=1

un "=0 2-62

u qR 0,$"n I k (Co

Kausel and Peek (1982b)). Note that stresses can be obtained from this solution for displacements.

Derivatives can be taken in the 2 direction once, and the solution is continuous in the p direction.

Thus stresses can be obtained at the center of each layer.

The computation of these Green's functions is a simple procedure: 1. Assemble the global

stiffness matrix. 2. Extract eigenvalues and eigenvectors. 3. Evaluate the formulas in 2-61 and

2-62.
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Table 2-III: Integrals Used to Compute Dynamic Displacements

oo Jo(kp)J(kR)dk
Igg = k2 - k2

fo I

- J(kp) Hd2)(kR) -2ik (k 1 RkI

oo kJ 1 (kp)J 1(kR)dk
1st=1 k2 - k 2

oo J1(kp)J 1 (kR)dk
I31 = k(k2 - k =

J1(R _(2) (ki p)

-ik J( I ) H 2{i )

J7(r R H2)(kip)

2ik J(kg ) H2)(k)

V 1

2ik I
7r 2 J, (k ) tL. (ip

R < p

0 < p < R

R < p

2
2Rk 2

R

-
22p1

Notes: Integrals valid for Im(kj) < 0

12 1 d p I =I 1 I3 + d p 13j

Displacements computed with this procedure are compared to those computed with numerical

integration of the transcendental stiffness in Kausel and Peek (1982b). Plots of displacement

versus frequency at different radii are presented. For the stratum, very accurate results are

obtained with a relatively small number of layers ( - 12). The resonant properties of the stratum

at its shear beam frequencies are well reproduced. It is also shown that the discrete solution

diverges when waves with wavelength X less than 4h dominate the motion. The discrete solution is

shown to save great computational effort over the continuum solution for situations where the

0 < p < R

0 < p < R

R < p
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stratum has many layers with different properties or when loads are applied at several elevations.
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Chapter 3

Dynamic Loads in Layered Halfspaces

Two approaches to the solution for dynamic displacements in layered media have been

discussed in this paper. The most widely employed techniques involve integral transforms which

must be evaluated numerically. In Chapter 2, a method developed by Kausel was described where

the transforms exist in closed form. However, this method is restricted to situations where the soil

layers rest on a rigid base. Davies and Banerjee (1983) presented a review of several of these

techniques applied to the solution of dynamic displacements in a halfspace. They used Kausel's

method to study a halfspace by modeling the soil deposit with a very large depth so that the rigid

base had little influence on the displacements near the surface. The relatively large depths of the

bottom layers introduced numerical inaccuracies in the solution. The accuracy of the solution

improved as the number of layers was increased.

An alternate approach is to derive algebraic approximations for the impedance of the

halfspace itself. The contribution of the halfspace stiffness to the bottom interface can then be

added directly to the global stiffness matrix of the layered soil system. Thereafter, the procedure

for calculating the Green's functions is exactly the same as for the rigid base case described in

Chapter 2. The procedure given below has been presented by Hull and Kausel (1984) in an

abbreviated form.

The approximation to the halfspace stiffness is called a "paraxial" approximation because it is

valid for paraxial waves, or waves that propagate within a cone of the z axis. A paraxial

approximation of the wave equation that is used as an absorbing boundary in a finite difference

scheme was presented by Clayton and Engquist (1977). They employed the approximation to

absorb the energy of incident waves on the boundary of the finite difference grid.
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3.1 Derivation of the Paraxial Approximation

A second-order paraxial approximation to the halfspace stiffness is obtained by calculating

the first three terms in the Taylor series expansion of the exact impedances:

1
K(k) ~ K(O) + k K'(O) + i k2 K"(O) 3-1

where the primes indicate derivatives with respect to the wavenumber k. The exact impedances are

given by Kausel and Ro~sset (1981). For the anti-plane case,

K = k s G 3-2

And for the in-plane case,

[K - s2 2(G 1 - s) [ r 1 01 3-3

where G is the shear modulus of the halfspace. The parameters r and s are defined as

r = '1 - (w/k C,)2  3-4

8= 1-(w/k C) 2

where w is the frequency of excitation. The mathematical details of obtaining derivatives and

evaluating them at k = 0 are presented in Appendix F. For the anti-plane case, the paraxial

approximation is

G w G C,
G8K (k)~.-i~ - i 2 k2 3-5

For the in-plane case, the paraxial approximation is

[1 + ( - 2a) 1  G C [-(2 - a) 1
K(k) I/ai pC 1  1/a]+G a ]+i2ak 2a [ (1 - 2a)/a2 3-6

CO
where a = ~c is the ratio of the s-wave speed to the p-wave speed.

p

These paraxial approximations to the stiffness of the halfspace are shown, in Appendix G, to
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be equivalent to the paraxial approximations to the wave equation developed by Clayton and

Engquist (1977) (actually, there is a sign error in the Clayton-Engquist approximation which is

discussed in Appendix G). In the approximation 3-6, the terms in k and k2 fall on the diagonal

and the terms in k1 fall on the off-diagonal. Thus, when these matrices are added to the global

stiffness, the structures of A, B and C remain the same as in the stratum case. All of the

techniques described by Waas (1972) can still be applied to solve the eigenvalue problem.

The stiffness matrix as a function of k = 0 represents the behavior of the halfspace when

displacements are functions of frequency only, i.e. during standing waves. The iw term indicates

that the halfspace acts as a dashpot, absorbing energy in the form of radiation damping. The

other terms in the paraxial approximation do not have straightforward physical interpretations.

The behavior of the approximation as a whole is investigated below.

3.2 Characteristics of the Paraxial Approximation

3.2.1 Anti-plane Case

Clayton and Engquist (1977) show that the range of acceptable wave velocities for the scalar

wave equation is C < C,. For wave velocities greater than the shear wave speed of the material,

evanescent waves are obtained. This dissipative property is not physically possible in the

undamped halfspace. We define the dimensionless parameter X

C, k C8
X = W = C 3-7

In terms of X, the exact halfspace stiffness is

K(X) = wpC, VX2 - 1 3-8

The paraxial approximation is

K(,\) c_- iopC, 1 - i X23-
[ 123-
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Expanding in Taylor series about small k has the same effect as expanding about small X, so

we expect the paraxial approximation to best represent the true stiffness when X is small. Figures

3-1 and 3-2 show the real and imaginary parts of the anti-plane stiffness. It is clear from 3-8 that

the true stiffness is real when X > 1, which is outside of the range of interest. The real

componenet for X > 1 is shown in Figure 3-1. From 3-9, we can see that the approximation of the

stiffness is always imaginary. The plot of the approximation and the imaginary part of 3-8 is

shown in Figure 3-2. For values of X less than 1, the agreement with the true stiffness is excellent.

Another test of the quality of the approximation is an investigation of the roots of the

stiffness matrix. By setting the determinant of the stiffness matrix to zero, we obtain the velocities

at which waves will propagate parallel to the traction-free surface of the medium. For the anti-

plane case, this reduces to setting K(X) to zero. From 3-8, we see that K(X) is zero when X = 1. In

other words, anti-plane shear waves propagate parallel to the surface of a halfspace at the shear

speed of the soil. The approximation 3-9, on the other hand, has one root at X = V2-. Thus, in the

algebraic model, shear waves propagate at approximately 1.41 times the material shear speed.

The energy absorbing characteristics of the approximation are important for deciding how

well it models a halfspace. Waas (1972) showed that the energy transmitted by propagating waves

in a layered soil is (in the most general case)

E = Im { u* K T } 3-10

where the * indicates the complex conjugate transpose of the displacement vector. This is a

quadratic Hermitic form involving a complex, symmetric matrix. Hence, its imaginary part, for

arbitrary complex u, is only a function of the imaginary part of K. In particular, the determinant

of the imaginary part of K should be greater than zero in order to insure positive definiteness of

the quadratic form, i.e., to guarantee a positive energy transmission for arbitrary displacements u.

In matrix form, this is

det { Im (K) } > 0 3-11
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For X < 1, the imaginary part of K(X) is

WpC, V1 - X2 3-12

which is always positive (frequencies are understood to be positive). The imaginary part of the

approximation is

wpC, 1[ X2 3-13

which is positive for X2 < V2. In the range of interest, X < 1, the imaginary part of the paraxial

approximation is indeed positive. Thus the paraxial approximation absorbs energy from the waves

as does the elastic halfspace.

The dispersion relation, obtained from the wave equation, for the anti-plane case is

2 
W2

k2X + k = 2 3-14

Clayton and Engquist (1977) show that the paraxial approximation best matches Equation 3-14 for

small values of k.. This means that for small values of k., the paraxial approximation behaves

most like the wave equation. The advantages of this attribute are not evident for the present

application.

3.2.2 In-plane Case

In terms of X, the exact stiffness matrix for the in-plane case is

K(X)= wpC, X 1 - r 1 ~ 2 ] 3-15
where

e X2 3-16

a2 Cak C,
r= 1-2 whereX= = C
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The paraxial approximation is

K(X) wpC441 ]+X (1 - 2a) [12 [ -(2 - a) a-
K(X =wp, ie X a i + 2a WpC, (1-2 2 a/2 3-17

The general form of these stiffness matrices is

[ k11(X) kis(X)1
K(X) = wpC' k12 (X) k22() J 3-18

Figures 3-3 through 3-8 show the elements of the stiffness matrix as a function of X for the

exact and the approximate cases. The elements are computed for a Poisson's modulus v equal to

0.25 (a - 0.57735). Figure 3-3 shows the real part of ki and Figure 3-7 shows the real part of

k22 . Figure 3-4 shows the imaginary part of k1l and Figure 3-8 shows the imaginary part of k22.

From Equation 3-14, we can see that the approximations of ki and k22 are always imaginary and

k12 is always real. For X < a, r and s are imaginary and the exact ki and k22 are purely

imaginary. When a < X < 1, r becomes real and s is imaginary. In this range, the exact ki

and k22 are complex. For X > 1, r and s are both real and the exact kjI and k2 2 are both real.

Thus in the range X < a, the paraxial approximation matches the exact k,1 and k2 2 very well.

For X > 1, the paraxial approximation does not match the exact terms at all.

Figure 3-5 shows the real part of k12 and Figure 3-6 shows the imaginary part of k12 . For

X < a, the exact k12 is purely real, In the range a < X < 1, k12 is complex. When X > 1, k12

is purely real again. The approximation is close to the exact stiffness in the real ranges (except

near X = a and X = 1). In the range where k12 is complex, the approximation remains real.

Again, we can investigate the roots of the characteristic equation of the stiffness matrix. The

exact stiffness has one real root X2 for each value of v, and this is the Rayleigh wave. The

characteristic equation of the paraxial approximation is

-(2 - a)(1 - 2a) X4 + 2a(1 - a)(1 - a - 8a 2 ) X2 + 4a 3 = 0 3-19

Since Equation 3-19 is a quadratic in X2, for every value of a there are two roots of X2. Thus the
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paraxial approximation introduces a spurious root (propagation mode) into the eigenvalue problem.

1 1
Another feature of 3-19 is that when a = (v= ), the coefficient of X4 vanishes and the second

root goes through infinity. For g(a) < 2 (v > 3), the coefficient of X4 is negative and the second

root is also negative. This has the effect of causing the halfspace to be too stiff. This phenomenon

is described in greater detail in Section 3.3 below.

For v < 0.110394 (a > 0.66178), the two roots of Equation 3-19 are complex, implying

evanescent wave modes. Therefore, the paraxial approximation should deteriorate for Poisson's

ratios below this limit. The true Rayleigh wave velocity and the approximate velocity obtained

from 3-19 are plotted as a function of Poisson's ratio in Figure 3-9 (for v > 0.125). For the lower

values of v, the approximation is better than for values close to the incompressible case of v = 0.5.

The spurious root is plotted in Figure 3-10.

To investigate the energy-absorbing characteristics of the paraxial approximation, we again

examine the determinant of the imaginary part of the stiffness matrix. The determinant of the

imaginary parts of the true and the approximate in-plane stiffnesses are plotted in Figure 3-11 for

V = 4, and in Figure 3-12 for v = 3. The behavior of these curves is similar to that of the anti-

plane case. The determinant of the true stiffness is positive until X2 = a 2, the value of X at which

the vertical wavenumber becomes imaginary, and is zero thereafter. The determinant of the

paraxial approximation is positive in this range (following the shape of the true curve) and remains

close to zero for X2 > a2.

Finally, Clayton and Engquist (1977) plot the dispersion relation for the paraxial

approximation along with the true dispersion relation. Again, the parabloic curves of the

approximation match the circles of the dispersion relation best when kX is small.
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3.3 Computation of Displacements

3.3.1 Examples

Dynamic displacements computed with the paraxial approximation are plotted in Figures 3-13

to 3-20. These plots show displacements at the surface in a homogeneous halfspace where

C, =X X= G = p = H = 1.0, # = 0.05 and H is the depth of the overlying layer. The radius of the

disk load is R = 0.25. Displacements are plotted versus dimensionless frequency fo = fH/C,,

beginning at f0 = 0.10. Since the expansion of the terms in the stiffness is valid for small X, it is

not valid for small frequencies w. Each plot has four curves, one is the true displacements of a

halfspace computed with numerical integration and the other three correspond to displacements

computed with the discrete method where the overlying layer is divided into 1, 4 and 12 sublayers.

Figures 3-13 and 3-14 show the real and imaginary parts of the vertical displacements at the

origin p = 0 due to a vertical disk load. As the number of layers is increased, the approximation

solution approches the true solution. The 12 layer case shows excellent agreement with the true

solution. Figures 3-15 and 3-16 show the real and imaginary parts of the vertical displacement at

p = 1.0 due to a vertical disk load. At this distance from the origin, the displacements oscillate

with frequency. The 12 layer case again shows excellent agreement with the true solution.

Figures 3-17 through 3-20 show the real and imaginary parts of the horizontal displacement

due to a horizontal disk load at p = 0 and p = 1.0. In all four plots, the 12 layer case is almost

identical to the true solution.

3.3.2 Variation of Physical Parameters

The examples above use standard physical properties. The influence of altering some of these

parameters is investigated in this section. For the purpose of comparison, Figure 3-21 presents the

true and the approximate solutions for vertical displacements in a halfspace at the origin due to a

vertical disk load. The physical properties are those used in the examples above, but the
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approximation is applied with no overlying layers. It is clear from Figure 3-21 that the paraxial

approximation by itself is not a good representation of the halfspace.

The addition of a single layer improves displacement calculations. Figure 3-22 shows the

vertical displacements at the origin for the true case and for the paraxial approximation of a

halfspace with one overlying layer. The three approximation curves correspond to three values for

the depth of the layer, H= 0.1, 0.25 and 1.0. The thin layer (H= 0.1) curve naturally resembles

the results obtained from the halfspace approximation alone. The thick layer (H= 1.0) curve has

the same shape as the true displacement curve but has a lower absolute value, indicating that this

approximation is too stiff. The best results are obtained when the depth of the layer is equal to the

radius of the disk load (H = R = 0.25). The displacement curve resembles that of the

1
approximation alone at lower frequencies where it falls off suddenly. This is the influence of the

term in the paraxial approximation which dominates at low frequencies.

The paraxial approximation is also somewhat sensitive to the value of Poisson's ratio. A plot

of vertical displacements at the origin due to a vertical disk load computed with the paraxial

approximation itself and various Poisson's ratios is shown in Figure 3-23. The four curves are for
1 1

Poisson's ratios v = 0.15, 0.25, 0.35 and 0.45. For v < 3, as v approaches 3, the waviness of the

1

displacements is more pronounced. For v > 3, the displacements are essentially zero, due to the

influence of the negative spurious root discussed above. The paraxial approximation presented in
1

this chapter gives poor results when v > 3. If displacements are desired for larger values of v, the

approximation itself should be altered. In particular, one would need to change the coefficients in

the matrices so that the second root of Equation 3-19 would be positive for the chosen value of v.

The functional form of the approximation may remain the same, but the coefficients themselves

must be altered. Of course, this alteration changes the behavior of the paraxial approximation as a

whole and one would have to experiment with the new coefficients to determine the frequency

range where the displacements are most accurate. In particular, the change of coefficient described

above may cause an exaggeration of the drop in displacements at low frequencies, so that more
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layers may be required for sufficiently accurate results in that range.

Experience with the paraxial approximation has shown that at low frequencies (and with low

Poisson's ratios), real values of the wavenumber k are obtained in the quadratic eigenvalue

problem. For the halfspace with damping, real wavenumbers are physically impossible since they

represent waves that do not attenuate with distance. Thus the occurrence of a real wavenumber

indicates that the paraxial approximation is poor in the region of low frequencies.

The real wavenumber occurs at a particular frequency w,. As w increases from zero towards

w,, the wavenumber k approaches the real axis from below (only wavenumbers with negative

imaginary parts are chosen). At a frequency just greater than wV, the wavenumber has crossed the

real axis and become k* (the sign of the imaginary part has changed). When this occurs, the

negative of k is chosen for the solution. Thus at w,, the contributing wavenumber k suddenly

becomes -k*. A wavenumber k approaching the real axis in the third quadrant moves to the

fourth quadrant for w > w, and a wavenumber in the fourth quadrant moves to the third

quadrant. This sudden jump in the wavenumber at w, induces a change in the shape of the

corresponding eigenvector. For every k, # pair, k and 0 (the adjoint) are also solutions of the

eigenvalue problem. However, for -k*, 0* is not a solution, since the stiffness matrix itself is

complex. Thus the eigenvector takes a different shape at w and this causes an abrupt change in

the computed displacements.

It is difficult to detect "bad" modes that occur before w,. The only way to locate wp itself is

by observing the sudden change in displacements at that frequency. The application of energy

propagation principles described by Waas (1972) allows the energy contribution for each mode to

be computed separately. There is the possibility that a "bad mode" would cause a negative energy

contribution. However, Equation 3-10 implies that the stiffness matrix K has certain characteristics

based on the physics of the problem. In particular, when damping is zero, the matrix A is positive

definite. In our case, A has complex elements from the paraxial approximation and is therefore not

positive definite. Thus we cannot select only those modes that have positive propagation energy.
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I
A general rule of thumb is that for the the physical properties used in this chapter (v < i,

normalized shear modulus G and density p - 1), there will be no real poles for dimensionless

frequency fo greater than 0.2.

Aki (1980) described a Rayleigh-Ritz method for obtaining approximate eigenvalues and

eigenvectors. Shape functions are chosen to model displacements in a layered halfspace. When

these functions are substituted into energy integrals and stationarity is applied, an algebraic matrix

equation results. The choice of a shape function that decays exponentially with depth yields a

matrix of coefficients that can reproduce the propagation of surface waves. This approach,

however, would not be suitable for the purposes described in this paper, where loads applied at the

surface generate waves that travel into the halfspace. Thus the ability of the halfspace

approximation to model the energy absorbed from incident waves is more important for the loading

case than its ability to model surface waves.

Many other variations of the paraxial approximation were tested in the course of this

research. Attempts were made to choose algebraic functions that better resembled the true

stiffness elements. Also, matrices were chosen that matched the properties of the layer matrices

(positive definiteness, etc.). In all cases, it was found that the matrices obtained with the Taylor

series expansion gave the best results for displacements for the most wide varieties of geometrical

configurations and material properties. Of course, any engineer who is interested in a particular

configuration could refine the paraxial approximation to best model that case.
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Chapter 4

The Limiting Case:
Static Loads in Layered Halfspaces

4.1 Introduction

The stiffness matrix method can be applied in the solution for displacements due to static

loads in a layered soil resting on an elastic halfspace. Solutions for displacements due to point

loads acting within, or on the surface of, a homogeneous semi-imfinite solid can be found in the

famous works of Kelvin (1843), Boussinesq (1878), Cerutti (1882) and Mindlin (1936). More

complicated situations, such as layered soils, require numerical integration; these solutions are

restricted to solids with a small number of layers. A solution for solids with up to three layers has

been presented by Burminster (1945) and investigated experimentally by Ueshita and Meyerhof

(1967). For a review of Integral Transform techniques, see Davies and Banerjee (1978). The

stiffness matrix method presented below is a new approach to these problems, in that the integral

transform is computed in closed form, thereby avoiding the difficulties inherent in numerical

integration. The dynamic stiffness matrix for a halfspace is approximated by the algebraic stiffness

matrix described in Chapter 3. The static stiffness matrix for a halfspace does not need to be

approximated, since the transcendental functions reduce to algebraic functions of the wavenumber

k when frequency w is zero.

To solve for static displacements, we follow the same procdure for the dynamic case, outlined

in Chapter 2; and we customize the stiffness method for w equal to zero. As in the dynamic case,

the anti-plane, or "Love", modes are uncoupled from the in-plane "Rayleigh" modes. In the static

case, the stiffness matrices are real, as the material properties do not include damping. Thus the

roots of the quadratic eigenvalue problem are either real numbers or complex conjugate pairs.
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There are also three rigid body modes, one corresponding to each cartesian direction. The

contribution of the rigid body modes to the flexibility of the layered soil profile is exactly the

halfspace flexibility. On the other hand, the real and complex eigenvalues and their corresponding

eigenvectors are mathematical artifacts and do not represent true deflection modes.

The addition of the halfspace stiffness to the global stiffness matrix destroys the special

structure of the in-plane quadratic eigenvalue problem that allowed reducing it to a linear

eigenvalue problem of the same dimension. Thus, the quadratic eigenvalue problem must be

expressed as a linear eigenvalue problem of double dimension, and all of the eigenvalues and

eigenvectors are required to invert the stiffness matrix.

4.2 Anti-plane Case

4.2.1 Elgenvalue Problem

From Kausel (1981), the anti-plane stiffness of a halfspace with zero frequency and non-zero

wavenumber is

K =I k |G, 4-1

where G. is the shear modulus of the halfspace. Since in the cylindrical formulation we work with

only non-negative wavenumbers k, we can drop the absolute value sign and write the stiffness as

K = kG,. 4-2

The eigenvalue problem for the anti-plane case of N- 1 layers resting on a halfspace becomes

( Ak j+ Bkg .+ C ) Xj-=-0 4-3

where A, B and C are of dimension N X N. The A matrix is the same as in the stratum case of

Chapter 2. In the stratum case, there is no B matrix, whereas for the halfspace case Equation 4-2

contributes one term to this matrix. Hence
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B= diag (0,0, . . . , G,) 4-4

C is the matrix G from Chapter 2, since w is zero. The G matrix by itself is singular, which leads

to an interesting characteristic of the static problem. Consider the case where k;= 0. The

eigenvalue problem reduces to

C XJ= 0 4-5

By inspection, we select a vector of dimension N, satisfying Equation 4-5, of the form

X = E ={1,1, . . . ,1}T 4-6

in which every element is 1. This vector of equal displacements is a rigid body mode of the layered

soil system. In this mode, no force is required to maintain a uniform displacement in the anti-plane

direction everywhere in the soil. The presence of the rigid body mode is not a surprise. In the

static problem, there are no constraints to prevent displacement of the system as a whole.

The quadratic eigenvalue problem can be written in the form of a linear eigenvalue problem

of dimension 2N as

0 A + [-A 0 rkJJ

ki A4 Xj 0 C X 0 A-

We define these 2"N X 2N matrices

A 0 = AB] C = 1C 4-8

Note that C is singular because the submatrix C is singular. A is positive definite and its inverse

is given by

A- A-1BA-1 A-1 4-9

We then define the eigenmatrix

Z = [X Z;=_ [Xjk 4-10
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where X is the N X 2N matrix of eigenvectors and K is the 2N X 2N diagonal matrix of

eigenvalues. The linear eigenvalue problem is written as

ki A Zj+ C Z.= 0 4-11

Since both A and C are symmetric, the eigenvectors must satisfy the standard

orthogonality conditions. The first condition is

T t0 if k; ?- k4Z. CZ=4-12
arbitrary constant if k;= ki

Expanding equation 4-12 gives

(k;XT XT) [A 0 kX - 4-13

-k-k XTAX.+ XTCX.

We choose the normalization

( 0 if i 

-j

jX A2k. if 

4=-In matrix form the normalization is

KXTAXK - XTCX = 2K 2

or

ZT 'CZ = -2K 4-15

This normalization is also satisfied by the rigid body mode where k =0. The procedure so far

parallels that of the rigid base case. Proof that this normalization reduces to that of the rigid base

case, when G. -+ oo, is given in Appendix A.

Now consider the orthogonality condition



-72-

__0
ZT AZ. =

I q

if i / i

if i = j
4-16

4-17

Expanding Equation 4-16 gives

(k; T XT) [0 A k

(kg + kj)XTAX; + XTBXj

We must determine the q . From the eigenvalue problem, Equation 4-11, we have

ZT~A~Zj + Z C Z = 0

Let i= jand apply the orthogonality conditions 4-14 and 4-16. Then 4-18 becomes

2kj qj--2kj = 0

4-18

4-19

k 1 (q 1- 2k1) = 0

If ki f- 0, then q = 2ki. When ki= 0, q; can have any value. Let the rigid body mode, for which

k1 = 0, have the index j= 1. Substituting the eigenvector E, from Equation 4-6, into Equation

4-17 gives

q, = 0-ETAE + ETBE = G, 4-20

Then the q are given by

4-21i= Gr

q= 2kj j i4 1

We define the modified spectral matrix K to be

K = diag iG,,,k 2 ka .. . k2N 4-22
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1
K + 2G,.J

where J= diag (1,0, . ,0). The second orthogonality condition in matrix form is

ZTAZ = 2 K

or

4-23

KXTAX + XT AXK + XTBX = 2 K

Since we know that A and K are not singular (from 4-9 and 4-22), it follows from Equation

4-23 that

det(Z). det( A ). det(Z) = det(2 ) : 0 4-24

Thus det(Z) / 0 and Z is not singular. Therefore, Z spans the full 2N space and can be inverted.

From Equation 4-23 we obtain

A = 2Z-T7K Z~1 4-25

We then can invert A

1
4-26

Expanding 4-26 gives

4-27

XK K -KXT XK -l XT
X K -l KXT X 7-XT]

These expressions can be simplified by noting that

( KXT XI) =A -1 = i -l
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KK - 1=M=-:I-J=diag(0,1,1, ,1) 4-28

and

K -1 K = K

Then

1 XKXT XMXT
A 2 XMUXT X K -lXT 4-29

Matching terms in 4-29 with terms in 4-9, we obtain

1
A- 1 = 2X MXT 4-30

1
A-1BA- 1 = -2XKXT

0 = X K -X'r

Proof that these expressions are consistent with the rigid base case is provided in Appendix A.

4.2.2 Elgenvalues

Eigenvalues in the static case are either real or complex conjugate pairs. For the anti-plane

case, there is a total of 2N eigenvalues: N- 1 complex conjugate pairs, one real and one zero.

Since static loads produce real displacements, the complex modes have no physical meaning and

must be regarded as mathematical artifacts. Furthermore, the single real mode is the mathematical

equivalent of a buckling mode, yet it is also devoid of physical significance as its associated

eigenvalue violates Equation 4-1. Although the modes may not be meaningful individually, their

aggregate contribution to displacements is indeed a real number (see Section 4.4), since the complex

conjugate parts cancel each other out.

A plot of eigenvalues k- for the homogeneous halfspace is presented in Figure 4-1. The

material properties are p = X = G = C, = 1 and the overlying layer has depth H =1. There are

12 curves for which eigenvalues are plotted, corresponding to subdivisions of the layer into 1 to 12
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sublayers. The plot shows only one branch of the complex conjugate pairs. The real parts of the

eigenvalues are always negative and decrease in absolute value as the imaginary parts increase.

The shape of the eigenvalue curve varies with changes in material properties and sublayer depths.

Kausel derived the analytical solution for eigenvalues in both the continuum and the discrete

anti-plane cases of a layer over a halfspace subjected to static loads. These solutions are presented

in Appendix B. Both solutions are restricted to the case of a homogeneous stratum overlying an

elastic halfspace. In the discrete case, the analytical solution would be difficult to solve

numerically.

Roots of the eigenvalue problem are computed with an algorithm that uses direct iteration to

find complex conjugate pairs of eigenvalues. The scheme is efficient in that it takes advantage of

the symmetric banded form of the matrices and performs no complex arithmetic. Details of the

algorithm are presented in Appendix C.

4.2.3 Loading

Consider the equilibrium equation in the wavenumber domain

(Ak 2 + Bk + C) U= P 4-31

In linear form, this is

k [0A B] +-A 0 [kU ][i 4-32

A k + C~)~=P
or

(WFk+ 7-)TT=P

Expand U in terms of the modes

2N

U = ZF= [ gZj. 4-33

j=1
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Figure 4-1: Eigenvalues of Anti-plane Modes for N= 1 to 12
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or

U= XF

where the - are the participation factors. Substituting 4-33 into 4-32 gives

( Ak + C )ZF = P

Multiply by ZT

ZT( Ak + C )ZF = ZT = XTP=Q

Now apply the orthogonality conditions 4-15 and 4-23

(2 K k - 2K 2 )F= Q

or

2K (kI - K)F = Q

Solving for F gives

1
T= (kI- K)-'K -Q

Substituting 4-37 into 4-33 yields

1
U=A XhkI - K)- Y_ -'AXTP

4-34

4-35

4-36

4-37

4-38

Again, this is consistent with the rigid base case, as is shown in Appendix A. Equation 4-38 can be

written as

U= FP 4-39

where F= {fmn} is the matrix of flexibility coefficients at the mth elevation due to unit loads at

the nth elevation (the inverse of the stiffness matrix). Changing to the notation of Chapter 2, the
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elements of this matrix are

4-40

1 2N Orln

y G,.k + $ 2kL(k - k )
1=2

where the subscript L stands for Love modes.

The term G arises because #mi = =1 (the mth and nth elements of E) and

1 2 1
2(k-0) X GT = Gk. This term is the contribution of the rigid body mode to the flexibility matrix of

the system. Note that it is the inverse of the halfspace stiffness 4-2. We define the coefficient

1
a, = 2k(k-k 1 ) 4-41

Then the flexibility becomes

1 2N
flmn = Gk + ( 4& aE 4-42

1=2

4.3 In-plane Case

4.3.1 Elgenvalue Problem

The procedure followed here parallels that of the anti-plane case. From Kausel (1981), the

stiffness of the halfspace with zero frequency and non-negative wavenumber is

2kGr ri-a 2

K= (1+ a 2) -a 2  k > 0 4-43

where a,. and G. are properties of the halfspace. The eigenvalue problem for the in-plane case is

(Ak+ Bk+ C)X=0 4-44

where A, B and C are of dimension 2N X 2N. Here the A matrix is the same as in Chapter 2 and

the C matrix is the G matrix of Chapter 2. The B matrix is now the sum of the halfspace and the

stratum contributions

B = Blayer, + Bhalfepace 4-45
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where Blayers is the B matrix from Chapter 2 and Bhalfi8 pace is

4-46
2Gr 1-a2

Bhalfepace (1+ 2) -

for the last two degrees of freedom. For the dynamic or stratum cases, we can rearrange the

degrees of freedom so that the stiffness matrices have these structures

A Bz] C=[C
A = B= B zz C= TC 4~47

Then the quadratic eigenvalue problem can be expressed as a linear eigenvalue problem of

dimension 2N (Kausel (1982b)). With the addition of the halfspace, the structure of B becomes

B BXB= B BZ 4-48

where

BX =Z B= diag 0 , 0 , . ., 4-4g
(1+a2)

It is now necessary to express the quadratic eigenvalue problem as a linear eigenvalue

problem of dimension 4N. As in the anti-plane case, the C matrix is singular. When we set kg to

zero we obtain

cz 4-50

Both C, and Cz are singular. Thus there are two solutions to 4-50

X [= and Xj= 4-51

There are two rigid body modes and ki = 0 is a repeated root. The actual rigid body modes

are linear combinations of the ones given by 4-51

X [0] + C2 [E 4-52
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where the coefficients c, and c2 must be determined from orthogonality conditions.

Using the same notation as in the anti-plane case, the linear eigenvalue problem is

(A kg+ C~)Z1 =0 4-53

where relationships 4-8, 4-9 and 4-10 are the same, but everything is twice the size

(K is 4N X 4N, X is 2N X 4N, Z is 4N X 4N). The orthogonality condition 4-15 is again the

same for this case, as is the normalization. The condition is satisfied by both rigid body modes

where kg = 0. The orthogonality condition is consistent with the rigid base case, which is shown in

Appendix A.

Let the rigid body modes have indices 1 and 2, i.e. they are the first two modes. Consider the

second orthogonality condition

(k,-+kg)XTAX + XTBX ={ if-544
q0 if i =j

For i= j this becomes

kg4q 1 - 2kj) = 0 4-55

For k7 4 0, q1 = 2k1 . For kg = 0, q1 must be determined. The rigid body modes must be chosen

so that the orthogonality condition 4-54 is satisfied

X1BX = 0 4-56

We choose X, = {E,E}T and X2 = {E,cE}T where c must be evaluated. Substitute X, and X2

into 4-54

(ET ET) Brz + zzh
zz E. ZZ h.. Z

=ETBE + cETBxz I.E + cETBxz h.0.E + ETBT .E + ETBT nE + cETBzE 4-57
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2G,(1 - a )
=(1i+ c) 1+2 =+0

Thus

c = -1

Then

X = and X 2 =[ E 4-58

In the first rigid body mode, the displacements in the z and z degrees of freedom are equal.

In the second rigid body mode, the displacements are equal in magnitude yet opposite in sign. In

the first mode the displacements are in phase, in the second mode they are out of phase. Now we

can solve for q, and q2.

4G,(1 - a )

q = X TBX= 1+& 2 4-59

q = X TBX 2 = 4G,

Then the qj are given by

4G,(1 - a 2 )- r

q1  1 + a2
r

q2 = 4G, 4-60

q = 2kg for j =4 1,2

We define the modified spectral matrix K

K diag [1G+ -2 , 2G, k 3 , ... k4N]= 4-61

K + diag , 2, 0 , . .,0 J
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where J= diag (1,1,0, . . . ,0).

Then the second orthogonality condition in matrix form is

ZTAZ = 2 K 4-62

Following the same logic as in the anti-plane case, we can prove that Z is not singular and therefore

can be inverted. The inverse of A is the same as for the anti-plane case

1
A- 1 = 2XMXT 4-63

1
A-1BA- 1 = -2XKX 1'

0 = X -1 XT

where here M= I- J= diag (0,0,1. . . ,1). If we rearrange A and B by degrees of freedom and let

X = {OZ , 0,}T then the following expressions are obtained

1
A~ 1 =21# M&iT

z X z

A1 = I Tz 2ZM z

0 = A, MTA z

1

A 1B.A-1 =- 2 4ZKlT
X z z

A_1 B A-1 T-2

K #I -10T

0 = K -14T
z z

Proof that these equations are consistent with the rigid base case is given in Appendix A.
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4.3.2 Elgenvalues

For the in-plane case, there are a total of 4N eigenvalues: two are zero, two are real, and

there are 2N- 2 complex conjugate pairs. Again, the real and complex modes are mathematical

artifacts and do not have physical meaning. Eigenvalues k. for the homogeneous halfspace of

Section 4.2.2, where the overlying layer is divided into 12 sublayers, are plotted in Figure 4-2. The

eigenvalues for the in-plane case are plotted as circles. The dotted line connects eigenvalues for the

12 layer anti-plane case. Note that the in-plane eigenvalues form two distinct groups. Half of the

eigenvalues fall on a curve not unlike that of the anti-plane case, except that the absolute values of

the ki are larger. The other half is clustered nearer to the smaller real root. Again, the real parts

are always negative. The anti-plane eigenvalues divide the quadrant between the two groups.

Although we have not proven it, our experience indicates that the anti-plane eigenvalues always

fall between these two groups of in-plane eigenvalues in the complex quadrant. The significance of

this observation is that the real anti-plane root lies between the two real in-plane roots. Thus the

real anti-plane root can be used as a starting point in a search for the real in-plane roots. Roots of

the eigenvalue problem for the in-plane case are computed with the algorithm described in

Appendix C.

4.3.3 Loading

Following the same procedure as for the anti-plane case (Equations 4-31 through 4-38), we

obtain the flexibility matrix

1
F = 2X(kI - K)- 1 K -lXT 4-65

where the matrices X, K, and K are those defined in Section 4.3.1. To obtain the flexibilties by

degree of freedom, we partition X

X [ [z] lz 02x 03 X - - - 4-66OZ #iz 02z 03z---
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Figure 4-2: Eigenvalues of In-Plane Modes for N= 12
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Then the submatricies are

-(1 + 2
F r? T T T

F, = 2 2kGr(1 - a 2)Oi 1X + 2kGrP2xf2.T + k3(k - k3 )O3x z + ... .

Fz= T k,( *x + 2G.2 + kz(k -k 3 )#3sz j
+a 2) 1+

= 2kG,(1 - a ) 1z + 2kG,2 + k(k - k 3)3z + ... 4-67

+ 21 TTT

Fzz =2i 2kG,.(1- - a 2 )#1z + 2kG,.2zO2 z + kT(k - kg)OUz.3, + .4. ]
The individual components of each flexibility matrix are given by

mn - - 1 4N

Fx 2kG,.(1 - )+ ( X# 4 a

1=3
2

a r 4N
F'" = 2)+ ( O" Oz a,

)z 2kG,( a zz
1=3

1 4N

Fz 2kGr(1 - 2) + ( # n a 1 4-68

1=3
2

F rnna T 4NmlnR

zx 2kGr(1 - 2+ ) + qnOz la,
1=3

where a is the coefficient defined in 4-41 for the Rayleigh modes. The contribution of the rigid

body modes to the flexibilities is the inverse of the halfspace stiffness 4-43. Proof that these

flexibilities reduce to the rigid base case is given in Appendix A.

4.4 Displacements due to Static Point Loads

Given the flexibilities 4-40 and 4-68, we can obtain displacements due to static loads. We use

the same procedure that Kausel (1982b) did for dynamic loads. The displacement vector in

cylindrical coordinates is
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no 4-69

where the superscript bar refers to the frequency-wave number domain. U is related to U, the

vector of displacements in the spatial domain, by the transforms 2-54 and 2-53 of Chapter 2. The

displacements at the mth elevation are given by Equation 2-56, where P , is the transform of the

loads applied at the nth interface given by Equation 2-57.

When the applied static load is a point load, the transforms of Equation 2-56 can be

computed analytically. A point load is a singularity in the spatial domain. To find the transform

of a point load, we begin with a uniform load q distributed over a disk of radius R. After

computing the transform of the disk load 2-57, we take the limit of P , as R -+ 0.

4.4.1 Horizontal Point Load

The components in cylindrical coordinates of a uniform load q distributed over a disk of

radius R are

P= q [-sin] 0 < p < R 4-70
0

Applying Equation 2-57, we obtain

P q = 1 J4-71
0

~ 0 y #1

For a disk load q with a total magnitude of 1,

1
q =r R 2  4-72

J1 (z) 1
From the series expansion for JI(x), we obtain lim 7 = 2. Then the limit of P1 as R -+ 0 is

z- 0
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The global flexibility matrix Pn" is given by Equation 2-48. The product P" P 1 is

Fin1 pFI"" P 2 =

f mn

f mnfflvz

f ZMl

Substituting 4-74 into the integral 2-56 yields the displacement vector

J1 (kp)f m'"dk + ~J

d00
J1 (kp)f ""dk +

Jl(kp)f Mndk

J1(kp)f M dk 4-75

The following integrals occur with the rigid body terms

/oo J1 (kp)

-0 k dk-1 
4-76

JI(kp)dk = P

j Jo(kp)dk = 1

Substituting the flexibilities 4-40 and 4-68 into 4-75 and applying the integrals 4-76 gives the

displacement vector

4N d 0a 2N

X X 7fp-~ f] a, J,(kp)dk +

1=3

$m 1 a J(kp)dk

1=2

1

2pG,(1 - a2)

4N jik +2N gJJ o1+ ( $,=2 a J (kp)dk + 1 $ $~ a

1=3 1=2

4-73

4-74

1

P 27r

inn -

u 0 27r

1

inn -
~z =2r

f 0p

kJ(kp)fzn"dk

1 1*

1
27r (kp)dk 4-77
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a 2

2pG( - a2) + 4"L#" 0aRkJl(kp)dk

1=3
We define these integrals (see Table 4-1).

I3i = f a, J(kp)dk

0/o

121 = j aikJ,(kp)dk

00

Ili= j aikJo(kp)dk

Then the expressions in 4-77 simplify to

1N 1 4N R 2N 1  L

U M % ~nI UsiG

u"=27r pG,.+ # I3Rl + (Cos 0)

0 r E-. Xzt~ 31]'31 P
1=3 =2

1 1 4N 1 2N
27"= r 2pG,(1 - a2 + X " #4 I3 + ( p3 -sin 0 )

1=3 1=2

1a 4N
2pG,(1 - 2 Z #"l# IaJ (cos 0)

1=3

The constant terms in the displacements are the Cerutti solutions for displacement

of a halfspace due to a horizontal point load on the surface. Thus our met

transforms for the point load is consistent in that we recover the Cerutti solution wi

layers resting on the halfspace.

4-79

s on the surface

hod of integral

hen there are no

4.4.2 Vertical Point Load

We follow the same procedure to obtain displacements due to a vertical point load as we did

for the horizontal point load. The components in cylindrical coordinate of a uniform vertical load q

distributed over a disk of radius R are

P=q[0] 0 < p < R
[I

4-78

4-80



-89-

Substituting 4-80 into Equation 2-57, we obtain the transformed load

4-81

P - -q [ 0 R1(0 Rj~H

IU =0 y 0

1
Again, we choose q= r so that the point load has a magnitude of 1. Then

1.0 J1 (kR)
Po ~ 0 kR

Taking the limit of P 0 as R - 0 yields

P 0 = -27 0

The product F"" p 0 is

1 z

Substituting 4-84 into the integral 2-56 yields the displacement vector

u n = -f0 dkp)okp)kf""dk

u" =0

U = k O(kp)fz "dkz Su2r [the f 4

Substituting the flexibilities 4-68 into 4-85 and applying the integrals 4-76 gives the vector

4-82

4-83

4-84

4-85

2r a r 4N

2pG,(1 - a2 +
1=3

$ n1f ofaRkJ(kp)dk

4-86
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2 2pG,(1- 2)+ ( # "rnllf aR kJo(kp)dk
1=3

Changing to the notation defined in Equation 4-78, we obtain

2
a 4N

"=12pG,(1 -2+ r Z 4 I J
P 27r pG,,( - a =3 Xz2

U " = 0 4-87

1 [ 1 4N1
U" " = ~-+ 4N 4"o#" IR

z 2 2pG,.(1 - a E Oz X 11

L=3

By comparing the term u " of 4-87 to U " of 4-79, we can see that these terms by definition

satisfy reciprocity. The displacement u. at elevation m due to a radial point load applied at

elevation n is identically equal in absolute value to the displacement u, at elevation n due to a

vertical point load at elevation m. The constant terms in the displacements are the Boussinesq

solutions for displacements on the surface of a halfspace due to a vertical point load on the surface.

Again, our solution is consistent with the known solution for a halfspace.

4.4.3 Examples

The closed-form solutions to the integrals 11g, 121 and 13 are given in Table 4-I. Notice that

when kg is a positive real number, the term a, in the integrands becomes singular and the integrals

are undefined. In the complex domain, the positive real axis is the branch cut. The branch cut

does not concern us since the real eigenvalues for both the in-plane and the anti-plane cases are

always negative. The derivation of the solutions to these integrals is in Appendix D. Algorithms for

the evaluation of the Struve and Neuman functions are presented in Appendix E.

The accuracy of this scheme was tested by computing displacements in a homogeneous

halfspace subjected to static point loads. The geometry of the discretization is shown in Figure 4-3.

The material properties are p= X = G = C, =1. The overlying layer has depth H= 1 and is
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Table 4-I: Integrals Used to Compute Static Displacements

S o kJO(kp)dk

I = 2k1 (k -k) =

1 oo kJ 1 (kp)dk
I21 = 2k] (k - k) =

1 f 0 J1 (kp)dk
Is k10 (k - k)

1 d 1
Note: I2, = k1131 + 2pki dpI 31 = I1, - pJ31

discretized into 8 sublayers. Elevations 1 through 5 correspond

z = 0.0, 0.25, 0.5, 0.75, and 1.0. Figures 4-4 through 4-9 show displacements versus distance p from

the point of application of the load.

2 + 2 ( Ho(-pki) -Yo(-pki))

|arg (-k)| < x

2 2 ( Hl(-pkg) - Yj(-pkg))

arg {kg)| < 7r

1[- - 7r ( H(-pk) - Y(-pkg))

1arg (-kg)|I < 7r

to depths
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Figure 4-3: Geometry of Homogeneous Halfspace Subjected to
Static Point Loads
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The solid lines are displacements computed with the approximation, the dashed lines are

displacements computed with the analytical solutions of Mindlin, Cerutti and Boussinesq which are

compiled by Poulos and Davis (1974). The plots all show displacements beginning at p = 0.1, since

both the analytical solutions and the approximations have a p singularity. Each pair of solid and

dashed lines is labeled with the number of the elevation where the displacements were computed.

Figures 4-4 and 4-5 show displacements u, and up at the five elevations due to a horizontal

(or radial) unit point load applied at the surface. Agreement with the analytical solution is

excellent everywhere. Figure 4-6 shows vertical displacements uz due to a vertical point load at the

surface. Again, agreement with the analytical solution is excellent everywhere. Figure 4-7 shows

the "cross term", the displacement u, due to a vertical point load at the surface. In the analytical

solution, the displacement u, goes to zero when p = 0 at every elevation beneath the surface. At

the surface, u, -- oo due to the singularity of the point load. The approximation has excellent

agreement with the analytical solution beneath the surface. At the surface, near the origin, the

cross term does not duplicate this singular behavior.

Figures 4-8 and 4-9 show displacements due to point loads applied at elevation 3. In Figure

4-8, u, due to a buried vertical point load is plotted. In Figure 4-9, u, due to a buried radial load

is plotted. Agreement with the analytical solution is excellent at all elevations.

Figures 4-4 through 4-9 are presented to demonstrate the accuracy of this method by

comparing approximate displacements to those for which the analytical solution is known. Of

course, the advantage of the approximation is that it can be applied to solve for displacements

when the analytical solution is not known. As an example of an irregular geometry, the

approximation was used to obtain displacements in a Gibson solid. A Gibson solid (see Gibson

(1967)) is an elastic half space in which the shear modulus G increases linearly with depth

according to G(z) = G(0) + mz. (The behavior of a Gibson solid subjected to dynamic loads has

been described by Awojobi (1972,1974) and Gazetas (1980).) The layer overlying the halfspace has
1

depth H =1 and is discretized into 10 sublayers. The poisson modulus v'= 3 is constant



-94-

F
ig

u
re 4-4: 

R
adial D

isplacem
ents 

due to R
adial

P
oint L

oad at the S
urface

*- 
a

o 
a

I 
-O

C
~

 
C

r.

x n

innIL
L

0
to-

*- 
aO

x
C

r--



TANGENTL DISPL DUE TO RADIAL POINT LOAD

DISPLACEMENT

1.2

1.0

0.9

0.6

0.4
2:

0.2 3.
4.
57

0.0
0.2 0.6

APPRX -MO EX

8 LAYERS

1.0 1.2 1.4 1.6

DISTANCE R

C~T~

0.8

"I

c.



VERTICAL DISPL DUE TO VERT POINT LOAD

DISPLACEMENT

0.4 0.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.9 1.0 1.2 1.4 1.6

DISTANCE R

0.2

APPRX AND EX

8 LAYERS

,



HORIZNTL DISPL DUE TO VERT POINT LOAD
DISPLACEMENT

0.4 -

2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1

APPRX AM) EX

8 LAYERS

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4
.6

DISTANCE R



VERTL DISP DUE TO VERTL BURIED PNT LOAD

DISPLACEMENT

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

DISTANCE R

0.7

0.6

0.5

0.4

0.3 1

0.2

0.1

0.0

APPRX AN) EX

8 LAYERS

, , ,

, , , , ,



HORIZ DISP DUE TO HORIZ BURIED PNT LOAD
DISPLACEMENT

1.0 -

0.8

0.6

0.4

0.2

0.2 0.4 0.6

APPRX AND EX

8 LAYERS

0.8 1.0 1.2 1.4 1.6

DISTANCE R



-100-

throughout the halfspace. The shear modulus in the top layer is G1 = 1.0, the shear modulus in

each subsequent layer is 0.1 larger than that of the previous layer, and the shear modulus of the

halfspace is Gr = 2.0.

Figure 4-10 shows displacements u, and uz at the surface due to a vertical point load at the

surface of the Gibson solid. Figure 4-11 shows displacements u,, u# and u,, at the surface due to a

radial point load at the surface. The magnitudes of the displacements are less than for the

homogeneous halfspace, and the diplacements drop off more quickly. This is as expected, due to

the increased stiffness of the underlying layers.

Another solid of interest to engineers is an "upside-down" Gibson solid, where the upper

layers have greater shear moduli than the underlying halfspace. An example of this type is a

layered pavement. The approximation was used to obtain displacements in an "upside-down"

Gibson solid. The layer overlying the halfspace has depth H= 1 and is discretized into 10

sublayers. The poisson modulus v = 3 is constant throughout the halfspace. The shear modulus in

the top layer is G, = 2.0, the shear modulus in each subsequent layer is 0.1 smaller than that of

the previous layer, and the shear modulus of the halfspace is G, = 1.0

Figure 4-12 shows displacements u, and uz at the surface due to a vertical point load at the

surface of the solid. Figure 4-13 shows displacements u,, uO and u, at the surface due to a radial

point load at the surface. Comparison with Figures 4-10 and 4-11 shows that the displacements at

the surface are smaller in magnitude than for the regular Gibson solid. This is as expected, since

the increased stiffness is concentrated near the surface.

4.5 Displacements due to Static Disk Loads

The application of a static disk load eliminates the singularity at the origin induced by a

point load. The transforms of the disk loads are given by 4-71 and 4-81. When these load vectors

are applied in the transform 2-56 to obtain displacements, the integrals of 4-78 become
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00 J(kp)J1 (kR)
Ia1 a, k dk

4-88

121 = a, J(kp)J,(kR) dk

ill f a, JO(kp)J(kR) dk

Unfortunately, these integrals do not exist in closed form. Approximate solutions are

presented in Appendix D. In the limit when p -+ 0, the integrals in 4-88 have the same form as

4-78, except that the argument of the Bessel functions is kR rather than kp. Thus we can obtain

displacements along p = 0 due to static disk loads. The displacement vector at the origin due to a

horizontal disk load is

1 2 - a 4N 2N
u'" = 27r 2G,(1 - a2 + z #X X I (kgR) + Z # # I ](kR)

1=3 1=2

'mn = "mn 4-89
0 p

mn

The displacement vector at the origin due to a vertical disk load is

n" = 0
P

U m = 0 4-90

[2G,(1- c2) + 4N 4rni# I R(kiR)

1=3

The integral 13, is given in Table 4-I, the argument k1p is replaced by k1R.

Vertical displacements along p = 0 were computed for the homogeneous halfspace of Section

4.4.3. The halfspace was subjected to a vertical disk load of radius R = 0.25. Figure 4-14 shows

displacements versus depth. The continuous line is the analytical solution found in Poulos and
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Davis (1974). The displacements at the layer interfaces are marked with x's. Again, we see that

this method yields very accurate displacements with a relatively small number of layers.

4.6 Conclusions

The method presented above for the calculation of displacements in layered soils is a

significant improvement upon existing methods. The technique is efficient in that the stiffness

matrices are relatively small, symmetric and banded. We have shown that with a discretization of

few layers, the results are very accurate. Since discretization occurs in only the vertical direction

and the stiffness of the halfspace is added directly to the system of equations, there is no need to

apply artificial boundary conditions to the directions of infinite extent such as would be required

for a finite element model of a halfspace.

The Green's functions obtained here have applications to several areas of engineering. In

particular, they would be used for the Boundary Element Method, which requires displacements

due to point loads on the boundary of a solid. The Green's functions can also be applied to

problems in geophysics where earthquake rupture is modeled as the sudden slip of a crack. The

slip distribution, or diplacement along the crack induced by tractions applied to its face, is used to

obtain stresses in the material surrounding the crack. Stresses within the layers can be obtained by

differentiating the displacements. Differentiating once with respect to z yields a constant within

the layer, since the displacements are piecewise linear in the z direction. Point loads can be added

to form double couple sources, the displacement solutions of the individual point loads are then

added together. The static diplacements may be applied to problems in geotechnical engineering,

such as the calculation of equivalent material properties for a layered soil deposit. The integral of

point loads applied over a surface area can be used to represent the pressure load of a footing on a

layered soil.

An outstanding feature of the method described in this Chapter is its simplicity. Integral
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Figure 4-14: Vertical Displacements versus Depth
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Transform techniques require the use of conformal mapping, elaborate contour integration and

numerical integration. The stiffness method has three steps:

1) Assemble global stiffness matrices 4-3 and 4-44.

2) Extract eigenvalues and eigenvectors.

3) Compute displacements 4-79 and 4-87.

In essence, displacements are computed with a linear combination of the natural modes of

propagation, a concept which is familiar from structural dynamics.
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Chapter 5

Dynamic Loads in Cross-Anisotropic
Layered Halfspaces

5.1 Introduction

The analyses described in this paper have been limited to the loading of isotropic halfspaces.

Isotropic materials are the simplest to handle analytically since the stress-strain relations are

described by only two elastic constants. However, many materials are not isotropic, in that they do

not exhibit elastic symmetry about every reference plane. Materials that are not isotropic are

referred to as anisotropic. The number of elastic constants required to describe an anisotropic

material is determined by the symmetry of the material. Love (1944) classified anisotropic crystals

according to their symmetry systems.

Seismologists have long been interested in the influence of the anisotropy of geological

materials on the propagation of seismic waves. There is much seismological evidence that Earth

materials are anisotropic. A review of the current state of research on seismic anisotropy has been

provided by Crampin et al. (1984). In this work, Crampin discussed possible sources of anisotropy,

such as the fracture of large masses of rock, and the influence of anisotropy on wave propagation.

In the general case, Rayleigh and Love surface waves are coupled and shear waves travel at

different velocities depending on the direction of propagation. Crampin (1984a) calculated

equivalent elastic constants for fractured rock.

A particular type of anisotropy is cross-anisotropy, which is characterized by five elastic

constants (equivalent to the hexagonal crystal described by Love (1944)). In a cross-anisotropic

solid with vertical axis z, all vertical planes are planes of elastic symmetry. Thus all x-y planes,
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parallel to z = 0, are planes of isotropy. The solid exhibits radial elastic symmetry in that all

quantities are independent of the azimuth 0. This property gives cross-anisotropy the alternative

name of transverse isotropy. Many materials that are formed with a vertical orientation exhibit

cross-anisotropy. This category includes rolled metals, laminated solids, floating lake ice and

sediments deposited in layers. It has also been shown (Mitchell (1984)) that a solid composed of

many thin isotropic layers can be modeled by a homogeneous cross-anisotropic solid. The gross

anisotropic behavior of layered materials is of particular significance to the study of seismology.

The matrix of elastic constants for cross-anisotropy is

5-1

C11 - C1 2

where cos =

An alternative notation, introduced by Love (1944), is

A A-2N F
A-2N A F
F F C

5-2

In the isotropic case, A = C = X + 2G, F = A-2N

commonly used in the literature and is used in this

subscripts.

= X and L = N= G. This notation is

paper to avoid the confusion of carrying
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5.2 Wave Propagation in Cross-Anisotropic Halfspaces

A general technique for obtaining body waves in anisotropic media has been presented by

Crampin (1984b). This method involves rotating the elastic tensor so that a harmonic wave is

propagating with phase velocity c in the z direction. The values of c are then extracted from the

eigenvalue problem generated by the wave equations. In general, wave motion in an anisotropic

medium is very complicated. Crampin (1984b) pointed out that the group velocity of a wave in a

general anisotropic medium is a vector. Thus energy is propagated into the medium in a different

direction than the direction of phase. On the other hand, the symmetry of cross-anisotropy

uncouples the anti-plane from the in-plane motions. Thus cross-anisotropy considerably simplifies

the analysis of wave propagation.

Mitchell (1984) discussed the inversion of surface waves to obtain material properties of the

Earth. Traditionally, data from primary-mode Love and Rayleigh waves are fit to an isotropic

model of the Earth and elastic constants are computed. However, often this leads to incompatible

Love and Rayleigh velocities. A possible explanantion is the anisotropy of the Earth. Mitchell

attempted to fit the Rayleigh and Love wave data to a layered cross-anisotropic model and found

that the inversion is non-unique. Stoneley (1949) discussed the role of anisotropy in the Earth in

contributing to false measurements of the focal depth of earthquakes. He also described how

anisotropy would lead to a discrepency between the time of the event generating P and S waves

and how an explosive source would generate S waves as well as P waves.

Solutions for plane waves in cross-anisotropic media are well known. The distinguishing

feature of plane wave propagation in cross-anisotropic media is that in general the solution cannot

be separated into pure shear and compression waves. In other words, for in-plane waves, the

particle motion is not polarized into a compression wave in the direction of phase and a shear wave

with motion perpendicular to phase. This polarization does exist in degenerate cases. Stoneley

(1949) used displacement potentials to obtain the solution for plane waves in cross-anisotropic
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media. He then applied stress-free boundary conditions to obtain the Rayleigh wave equation.

White (1965, 1982) also derived the plane wave solution with potentials and used a numerical

Fourier transform to compute waveforms for a variety of cross-anisotropic media subjected to a

vertical point force. Kirkner (1979) applied the potential solution for surface waves to obtain the

dynamic stiffness of a cross-anisotropic halfspace. He constrained the elastic constants so that the

in-plane wave is polarized into SV and P components of motion. Anderson (1961) obtained the

plane wave motion and applied it to the solution of surface waves in a cross-anisotropic free plate

and a plate in contact with a fluid halfspace. He then generalized the single layer solution to the

problem of a layered medium with appropriate alterations to the Haskell-Thomson matrix.

Crampin (1970) presented the Haskell-Thomson matrix for a general anisotropic solid. Biot (1965,

1983) applied the potential solution for plane waves to the solution of stiffness matrices for

orthotropic plates. The stiffness matrices were used in stability problems of plates subjected to

horizontal compression and not for the purposes described herein.

As with the isotropic case, we wish to derive stiffness matrices that are algebraic in the

horizontal wavenumber k. Once we have obtained the elements of these matrices in terms of the

anisotropic elastic constants, the matrix algebra and Hankel transforms required to solve for

displacements are the same as described in the previous chapters. In other words, cross-anisotropy

affects only the elements of the stiffness matrices and we already have the machinery in place to

solve for dynamic and static displacements. Thus the stiffness method presented in this paper is

uniquely well suited to problems of cross-anisotropic media, since the anisotropy adds no further

complications to the mathematics.

Although the references described above represent a large body of literature on the solutions

to wave propagation in cross-anisotropic media, the notation in general is too bulky for the

purposes of deriving stiffness matrices. In particular, potential solutions for plane waves are

unnecessarily complicated, since the form of the plane wave can be assumed at the outset. Also,

we can bypass the plane wave solution and the Haskell-Thomson matrix to obtain the algebraic
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layer matrix with a finite element approach. The simplified plane wave solution and the derivation

of the stiffness matrices are presented below.

5.2.1 Anti-plane Motion

As in Chapter 2, we make the plane strain assumption that all displacements are independent

of the y coordinate. Then the anti-plane motion uncouples from the in-plane motion. Consider a

body in anti-plane shear subjected to a harmonic load. The displacement in the y direction is

v = a ei(ut-kz-qz) 5-3

Substituting Equation 5-3 into the equilibrium equation, we obtain

g2v g 2V g 2V
p(t2= N 5-4

pW2 = Nk 2 + L g2

Solving Equation 5-4 for q gives

q - V Nk2 - pw 2 = ±iq* 5-5

and the full solution is

v = {a, eq* z + a2 e-q z ei(wt-kz) 5-6

We discard the part of the solution that grows with -z

v = a eq z ei(wt-kz) 5-7

To obtain the stiffness matrix, we compute the shear stress

=y L L- = L q* V 5-8

Then the exact anti-plane stiffness is

kyy(k) = L q* =v L VNk2 _ pw2 5-9
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5.2.2 In-plane motion

This section follows (in two dimensions) the notation that Kausel (1984) used to derive the

algebraic layer stiffness matrices (these matrices are presented in the following section). In the

analysis below, the stiffness matrix is formulated for waves that propagate in the +z direction,

rather than away from the surface of the halfspace in the -z direction. This has the effect of

reversing the signs of the diagonal elements of the stiffness matrix. This discrepancy is corrected

when the stiffness elements are obtained.

Assume a wave of the form

U- u - a] -kqz i(ut-kz) 5-10
w c

In matrix form, the equilibrium equation is

pU- LTO =0 5-11
pU- LTD LU=0

where

LT= aax 0 a/az] 5-12
1 0 a/az a9/a9x

aT={a az TSZ

and D is the matrix of elastic constants. The operator L is expanded into

a a
L = L, + LZ O 5-13

so that the product LTDL becomes

a2  a2  a2
LTD L = DXz ai + 2Dz axaz + Dzz 2  5-14

where

D;;= ( LiD Lj+ L D L;) ij= ,z 5-15
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For the cross-anisotropic halfspace, the D;, are

x [A 0]

Dz=0 L

1 j[ 0 F+L] 5-16Dz = 2 F+L 0 51

Dz=0 C

Substituting Equations 5-16, 5-10 and 5-14 into Equation 5-11 gives the matrix equation

( pw2+k2A-k22L -ik2q(F+L)][] [l51

-ik 2 q(F+L) -pw 2 +k 2 L-k 2q2 C c 0

The roots q are found by taking the determinant of 5-17:

(-pw2 + k2A - k2 q2L)(-pw 2 + k2L - k2 q2C) + k4q2(F + L)2 = 0 5-18

Expanding Equation 5-18 and substituting w = ck, we obtain

q4CL + q2 F + L)2 + pc2(C + L) - AC - L2|+ pc 2 - A)(pc2 - L) 0 5-19

which is quadratic in q2 . Let Equation 5-19 be expressed as

a*q4 + b*q2 + c' = 0 5-20

where

a = CL 5-21
b* (F+ L)2 +pc 2(C+L)-AC-L 2

c' =(pc2 - A)pc2 - L)

The solution to Equation 5-20 is

-b*-+-b b*2 - 4a*c*
2 2a* 5-22

Let r2 be the + root and s2 be the - root of Equation 5-22. Then r2 and 82 reduce to the

values in Equation 2-13 in the isotropic case. Now we can solve for the ratio of the amplitudes a

and c from the eigenvalue problem 5-17. For the r root,
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(-pc2 + A - r2L) a -i
c ir(F + L) = f(r) a 5-23

where

-pc 2 + A - r2L
f~r)= F+L 5-24

In the limit of isotropy. f becomes r2 . Likewise, for the s root,

c = -- g(s) a 5-25

where

-pc 2 + A - s2 L

g(s )= F-+ L 5-26

In the limit of isotropy, g becomes 1. The full solution for displacements is

= ] a' e-krz + I a e-ksz + 5-27

air 1 g ekrz + g aI ekoz ei(t-kx)

where a1 and a'2 are amplitudes of waves traveling in the +z direction and a, and a2 are

amplitudes of waves traveling in the -z direction. The full matrix expression of 5-27 is

a,

[ diag {e-krz e-ksz, ehrz, ek ez Ig 5-28** r s -r -s a '

[u~~~~ ~~~~ = 9 het, kz52

where fx = eiftkz).

Since we are interested only in waves that travel in the +z direction, we discard the a and

a'i parts of the solution. Dropping the primes from the amplitudes, Equation 5-28 reduces to

iWCha ' 5-29



-117-

The displacements are

u = { a, e-krz + a2 e-kaz ) ei(wt-kx) 5-30

=w { r a e-krz + Z a2 e-kez } ei(wt-kx)

The stresses are given by

r u awl
r.z 9=L [9 + 9 5-31

&u 8w
ozz = FX + C -z

Substituting Equation 5-30 into Equation 5-31, we obtain

= -Lk r +L a e-krz 8 + a2 -ksz It 5-32

iazz = k[ (F - Cf) a, d-krz + (F - Cg) a2 e-kez I f

Now we need to solve for al and a2 in terms of the displacements. At the surface (z = 0),

Iu]=[ ]aIfTt 5-33

Inverting the above matrix gives

ars g/ -1 53
a2 Iz,t ~~ gr-fs -flr 1 Iw -3

Substituting Equations 5-34 into Equations 5-32 yields

Lk
r 2.z = gr-fs { (-r 2g + s2 f) u + (r2s + fS - 82r - rs) iw } 5-35

k
iozz = gr-fs { (Fgr - f) + Cgf(s - r)) u + Crs(f - g) iw }

Then, reversing the signs of the diagonal elements, we obtain the stiffness matrix

|Z k L(r2 g-s 2f) L(r2 +fs- 2r-gr) j

tz IZI l- f3-Fgr-fs)+CgfAs-r) Crs(g-f)II 53
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It can be proved that kzz = kz. In the limit of isotropy, L = G, F= X, C = X + 2G, f = r2 ,

g = 1 and r and s reduce to their definitions in Chapter 2. Substituting these values into the

expression for the shear stress yields

Gk
rzz = r(1 - rs) I r 2 (1 - 82) u + (r 2 s + r r - - r) iw =

Gk
1 - rs [ r(1 - s2) u + (2rs - 2 +

Gk(1 - 82)

1 - rs [ r u + iw] - 2Gk iw

1 - S2) iW I =

Gk(l - 82)
k,, =I - re

Gk(1 - s2)
z = 1 - rs ~2Gk

5-38

which agree with the elements given by Kausel and Ro~sset (1981). Likewise, substituting into the

expression for the normal stress,

k
izz = 1 - rs I ( rs) u + (X + 2G)(rs - r2 ) u + (X + 2G)s(1 - r2) iw =

k
1 - r [ (X + 2G)(1 - r2 u - 2G(1 - rs) u + (X + 2G)s(1 - r2 ) iW ] = 5-39

k
1 - rs [ G(1 - 32) u - 2G(1 - ra) u + Gs(1 - 32) gW I

Gk(1 - S2)

1 - re - 2Gk

Gk(1 - S2)8
z I - rs

which also agree with Kausel and Ro~sset (1981).

Thus

5-37

Thus

5-40



-119-

5.3 Algebraic Stiffness Matrices

In this section, the layer matrices derived by Kausel (1984) are presented and the matrices

obtained in the previous section are expanded in a Taylor series for use as algebriac halfspace

stiffness matrices.

5.3.1 Layer Matrices

The stiffness matrices for the discrete layers are derived with a finite element solution

employed by Kausel (1974) for isotropic materials. In Kausel (1984), the method is generalized for

anistropic materials. A brief summary of the technique is presented here, along with the resulting

layer matrices.

The vector of displacements U (= {u,v,w} 7 ) is approximated within a soil layer by a linear

expansion

U= -U1 + 1- i U2  5-41

The wave equation (presented here in matrix form)

W= pU - LTDLU 5-42

is no longer satisfied within the layer. Then we balance the internal forces in an energy sense:

WTT= SVTS + / U TW dz 5-43

where I' = {U TU }, T is the vector of applied external tractions and S is the vector of

interface stresses. Equation 5-43 states that the virtual work performed by the external tractions is

equal to the vritual work performed by the interface stresses and the unbalanced forces within the

layer. In matrix form, Equation 5-41 is

U = NV = EI 1 - I 5-44
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Substituting 5-44 and 5-42 into 5-43 gives

hh

1TT = FVTS + { f pNTNdz V- NT LT DLN dz V} 5-45

We assume a harmonic form for U

U= U ei(wt-kz) 5-46

where U = EV(z). The displacements at the interface are

V= V e1(t-k2) [ ei(wt-kz) 5-47

and similar relation exist for S and T in terms of S and T . Derivatives of V are

02V 92V

9t T = -w 2V 92 =-k 2V 5-48

and 2 V/ot2 is zero since the displacements are linear in z. Substituting the expressions for the

displacements and the interface stresses into Equation 5-45, integrating over the thickness of the

layer and requiring that the equation be satisfied for arbitrary 3Vleads to the stiffness relation

T= (Ak 2 + Bk+ G-w 2 M)V 5-49

The A, B and G matrices obtained for the cross-anisotropic case are presented in Table 5-I. The Al

matrix is unchanged by anisotropy since it is a function of only the depth and the mass density of

the layers.

5.3.2 Halfspace Matrices

In order to obtain the algebraic stiffness of the halfspace, we proceed as in Chapter 3. The

first three terms of the Taylor's series expansion about k = 0 of the true stiffness are computed.

For the anti-plane case, the derivatives of the stiffness can be computed and evaluated by hand.
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Table 5-I: Algebraic Layer Stiffness Matrices A, B and G

2A A

2N N
A=2L L

IA 2AI

N 2N

L 2L

F-L -(F+L)

B= F-L F+L

F+L -(F-L)

-(F+L) -IF-L)

L -L

L -L

GU= C -C

-L L

-L L

-C C
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For the in-plane case, derivatives of the stiffness elements and their limits when k - 0 are

computed with the MACSYMA computer program.

Recall the anti-plane stiffness

ky,(k) = V Nk2 - pw 2  5-50

At k = 0,

kyy(0) = V -pw 2 = iw V 5-51

The first derivative of kyy is

, I Nk LNk
k (k) = V Nk 2 

- = kyy(k) 5-52

which is zero when k = 0. The second derivative of the stiffness is

LNkYY(k) - k (k)LNk LN(ky,(k) - k k (k))

k Y(k)= k2 (k) k 2 (k) 5-53

At k = 0,

LN N L
k" (0) = =N -iN/ 5-54

7/1 :wvIpL = W P

Then the paraxial approximation of the anti-plane stiffness is

kyy(k) ~ iwv j - 1- 5-55

It can easily be verified that this reduces to the paraxial approximation of the istropic halfspace.

For the in-plane case, only the results obtained from MACSYMA are provided below. For

k,,(k):

k"(0) = iwVrii

k (0)=0 5-56
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,, i V CfL
k (0) = - C)

xwv p(L - C)2
{ -2L| 5/2 - 4FLs/2 - 2FO-L1/2 + C-112L3 +

2C'-1/2FL2+C1/2L2 -AC-1/2L2 + F*C-1|2L +

2C1/2FL + 2AC1/2L + C1/2F - AC3/2 }

For kxz(k):

kxZ(0)= 0

' (L(F+C)- VUL(L+F)
kOz(0)= L - C

k (0) = 0

For kzz(k):

5-57

5-58

kzz(0) = iwp

kzz(0) = 0

k np(0) = C { 2FL3/2 + 3CL3/2 + L1/2(F2 + 2CF - C+2)zz uvFp(LL - C)2
CF'2L-1|2 - 2C1/2L2 - AC1/2FL - 2C0I2,F2

It can also be verified that these reduce to the isotropic matrices by appropriate substitutions.

With these stiffness matrices, the procedure for computing displacements is the same as described.

in Chapter2.

5.4 Dynamic Displacements

Displacements were computed for a cross-anisotropic stratum resting on a rigid base and on a

cross-anisotropic halfspace. The stratum has depth H 1.0, density p = 1.0 and damping

8= 0.05. The elastic constants used for calculations are those of the rock beryl, taken from

Anderson (1961):
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A = 4.13 5-59
C = 3.62
F = 1.01
N= 1.33
L = 1.00

The stratum is subjected to disk loads with radius R = 0.25. Displacements were computed at the

surface for the stratum discretized into 1, 4 and 12 layers.

Displacements for the stratum on a rigid base, plotted versus dimensionless frequency

fo = fHVLIp, are shown in Figures 5-1 through 5-4. Figure 5-1 shows the real part of the vertical

displacement at the origin due to a vertical disk load. This plot shows a clear resonant peak

around fo ~ 0.45. This resonance occurs at the shear beam frequency of the vertically

propagating compression wave. The velocity of this wave is C,= _Cp - 1.9026. Resonance

occurs at the frequencies f = C,(2j- 1)/4H. The first two compression resonant frequencies in

this example are f =0.4756 and 12= 1.42697. Both of these peaks are evident in Figure 5-1.

Figure 5-2 shows the real part of the horizontal displacement at the origin due to a horizontal disk

load. Resonance occurs at the shear beam frequencies f = C,(2j- 1)/4H where here C, = VL/p

for vertically propagating shear waves. In this example, C, = 1.0 and resonance occurs at

f, = 0.25. f 2 = 0.75 and f3 = 1.25. The 12 layer case shows all these peaks and a smaller peak

appears around the compression wave resonance frequency. Figures 5-3 and 5-4 show the vertical

and horizontal displacements at p = 1.0 (four times the disk load radius) due to a vertical and a

horizontal disk load. These plots illustrate that the static displacements at p = 1.0 are essentially

maintained until the respective resonant frequencies are reached. The motion between the

resonant peaks is complicated and not easily interpreted.

Figures 5-5 through 5-8 show the same displacements plotted in Figures 5-1 through 5-4, only

the stratum is resting on an anisotropic halfspace with the same properties. Figures 5-5 and 5-6

show displacements that decrease smoothly as frequency increases. The shape of these curves is

similar to those of the isotropic case shown in Chapter 3. In Figures 5-7 and 5-8, at p = 1, the

displacements oscillate with frequency. An exact solution for dynamic displacements in cross-
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anisotropic media is not readily available for comparison with the approximate solution.

5.5 Static Loads in Cross-Anisotropic Layered Halfspaces

Several analytical solutions for displacements and stresses due to static loads in homogeneous

cross-anisotropic media have been published. Barden (1963) presented a solution for stresses and

displacements in a cross-anisotropic halfspace subjected to a vertical point load at the surface.

Calculations presented in this reference illustrate how increasing the vertical elastic modulus

(increasing the degree of anisotropy) decreases the surface displacements. A discussion of the

effects of anisotropy on soil behavior is provided at the the end of Barden's work. Pan and Chou

(1976, 1979) obtain the solutions for displacements due to point loads in infinite and semi-infinite

cross-anisotropic bodies. Their solutions are constructed by assuming a potential function for the

point source and then substituting it into the equilibrium equations and enforcing boundary

conditions. In general, the solutions for displacements are very complicated and unwieldy. At the

surface of a halfspace, they reduce to a more tractable form.

Approximate solutions for layered cross-anisotropic halfspaces subjected to static loads have

also been proposed. Gerrard (1967) applied a Fourier series to the solution of stresses and

displacements in a layered cross-anisotropic soil deposit subjected to a load symmetrically

distributed about the vertical axis. He calculated stresses as a function of depth in a two-layer

stratum subjected to a uniform vertical strip loading. Rowe and Booker (1982, 1983) used a

stiffness matrix method with numerical inverse transforms to calculate settlement in layered cross-

anisotropic halfspaces. They assumed that the elastic modulus varies exponentially with depth

within each layer.

The method for the analysis of layered halfspaces subjected to static point loads presented in

Chapter 4 can also be applied to cross-anisotropic halfspaces. Again, the solution technique

remains the same, only the elements of the stiffness matrix are changed by anisotropy. The exact
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stiffness matrix of the cross-anisotropic halfspace is linear in wavenumber k. The stiffness matrix

elements are obtained by taking the limit of the dynamic stiffness when w goes to zero.

For the anti-plane case, setting w to zero in Equation 5-9 gives the stiffness

k ,,(k) = VN7L k 5-60

In the isotropic limit, N = L = G and ky,(k) becomes kG.

For the in-plane case, the quadratic coefficients of Equation 5-20 become

a =CL 5-61
b* = FF+ 2L) - AC
c= AL

and we have the roots

-b + V b*2 - 4a*c*
2a* 562

-b + V b*2 - 4a*c*
2a'

Then the functions f and g become

A - r2 L

f= F+L 5-63

A - s2L

g= F+L

and the stiffness elements are (from Equation 5-36)

Lk
k,, = gr-fs (r2g - 2 f)

Lk
kxikz =k, = gr-fa (r2a - fs _ s2 r - gr) 5-64

Crsk
kzz = gr-fs (I 9)

In the static case, r, s, f and g are independent of k.
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The inverse of the stiffness matrix 5-64 is

K- 1  k k k2 z kZZ 5-65

As described in Chapter 4, the elements of K- 1 are the contributions of the rigid body modes to

the global flexibility matrix. The flexibilities are substituted into the expressions for displacements

due to point loads from Chapter 4 and the inverse transform is performed. The halfspace terms in

the displacements due to a horizontal point load are

1
Up 27rkyyp

kzz

u= 2r(k kzz - k2 )p 5-66

-kzz
UZ 2r(k kzz - k2 )p

The halfspace terms in the displacements due to a vertical point load are

-kZz
UP= 27r(k kz - k2 )p 5-67

kXX
z = 27r(k kz - k2 )p

The displacements in Equations 5-66 and 5-67 are the exact solutions for displacements at the

surface of a halfspace due to static loads at the surface.

Displacements were computed for a cross-anisotropic halfspace subjected to unit point loads

at the surface. The layer overlying the halfspace has depth H= 1.0. The entire halfspace has

density p = 1.0. The elastic constants used for calculations are those of freshwater ice, taken from

Anderson (1961):

A = 4.60 5-68
C = 4.96
F = 1.60
N= 1.215
L = 1.0
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Displacements were computed at the surface for the overlying layer discretized into 1 and 4

sublayers.

Figure 5-9 shows the horizontal displacement at the surface due to a horizontal point load.

The solid line is the analytical solution. The 4 sublayer solutions is an excellent approximation of

the true solution. Figure 5-10 shows the vertical displacement at the surface due to a vertical point

load. This single layer solution is excellent, the 4 sublayer solution is indistinguishable from the

analytic solution. Note also that the vertical displacements are less than those of the isotropic solid

(Figure 4-6) due to the increased vertical stifffness. The discrete layer method obtains excellent

results for the static cross-anisotropic halfspace with relatively few layers.



HORZ DISP AT THE SURF DUE TO HORZ PT LD EXACT

.. - I LAYER

-4 LAYERS

0.2 0.4 0.6 0.9 1.0 1.2 1.4 1.6

DISTANCE FROM 0ANIsoROPIC

STATIC CASE

FU

0.2.

0

.0

0



VERT DISP AT THE SURF DUE TO VERT PT LD

0.9

ANTI5TROPIC

STA TIC CASE

1.0 1.2 1.4 1.6

DISTANCE FROM 0

EXACT

. .. 1 LAYER

4 LAYERS

cm

0

C.

-.



-139-

Chapter 6

Conclusions

A method for obtaining displacements in layered isotropic or anisotropic halfspaces subjected

to static or dynamic loads has been presented. The technique involves solving the wave equations

in the transformed frequency-wavenumber domain. The displacements are approximated by a

linear expansion in the direction of depth. Then the stress-displacement relations of a soil layer are

expressed by a stiffness matrix that is algebraic in the horizontal wavenumber. The stiffness of the

entire soil system is formed by overlapping the layer matrices at common degrees of freedom. The

matrix inversion is accomplished by extracting the eigenvectors and eigenvalues of the global

stiffness matrix and applying orthogonality conditions. The inverse wavenumber transform is then

performed in closed form. Thus the final expressions for diplacements consist of sums of functions

of the wavenumbers and eigenvectors. The displacements are computed at discrete frequencies.

Solutions in the time domain can be computed with a numerical Fourier transform in the frequency

domain. Stresses can be computed in the center of each soil layer, since displacements are linear in

the direction of depth and continuous in the radial direction.

The fundamentals of this technique have been developed by Kausel. New developments

described in this paper include: the algebraic stiffness matrix for a halfspace, the solution for static

point loads in a halfspace and the layer and halfspace stiffness matrices for cross-anisotropic

materials. The algebraic halfspace matrix was obtained with the Taylor series expansion of the

true stiffness. The ability of the approximate stiffness elements to match the true stiffness has less

impact on the accuracy of the solution than does the ability of the approximate stiffness to match

the energy absorbing characteristics of the true stiffness. The characteristics of the algebraic

halfspace stiffness place limitations on the physical parameters. The accuracy of calculated

displacements decays at low frequencies. Some ranges of Poisson ratios give less accurate results,
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this can be overcome by increasing the number of sublayers in the model.

The stiffness matrix for static loads in the halfspace is algebraic in the wavenumber and thus

does not need to be approximated. However, the exact stiffness of the halfspace alters the

structure of the global stiffness matrix so that alternate techniques of linear algebra are required to

extract the eigenmodes. The analysis of anisotropic media proved to be simple with the stiffness

method. The anisotropic elastic constants appear in the elements of the stiffness matrix, the

essential mathematics remain unchanged. Examples of displacements are computed for many cases

and compared to known solutions when they exist. Comparison with known solutions illustrates

that the stiffness method is very accurate for a soil deposit modeled with relatively few layers.

The work can be extended to other topics of research. Distributed loads covering rectangular

areas could be treated with a Fourier transform over the spatial variables. The transform of the

loads itself and the inverse transform of the flexibility would be required in closed form. The

influence of a viscoelastic halfspace that behaves as a spring and dashpot in parallel could be

investigated. This might be accomplished by multiplying the static stiffness by a factor (1 + 2i#),

where here # is a measure of the strength of the physical dashpot. This solution could be used to

study the long term effects of the viscosity of the halfspace. Another modification to the method

would be to alter the stiffness matrices to include the effects of pore fluid flow. This work has

already been done for the Haskell-Thomson transfer matrix. Starting with the differential

equations of motion that include pore fluid, algebraic layer matrices could be obtained by applying

the finite element method described above.

Finally, the application of this method on a digital computer must be discussed. The static

and dynamic analysis programs are written in FORTRAN 77. The calculations behind the

illustrations in this paper were performed on an IBM 370 and a VAX 11/780. On the VAX, the

static and dynamic analysis programs each occupy about 85 kilobytes of memory. The space

required to run these programs, for a 12 layer problem, is about 175k. The small core requirements

for these programs make them ideally suited to applications on microcomputers. The static
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analysis program has been compiled and run on an IBM AT Personal Computer. The only

drawback to microcomputer applications is that mathematical calculations are an order of

magnitude slower than on a minicomputer. Since the calculation capacity of microcomputers is

growing rapidly, this problem is expected to diminish in importance. Eventually, distribution of

these programs on desktop computers would allow quick calculations for settlement, foundation,

vibration and many other geotechnical problems.
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Appendix A

Proof that Orthogonality Conditions and Flexibilities
For the Static Halfspace Reduce to Those

of the Rigid Base Case

A.1 Anti-plane Case

In the rigid base case, G,. - oc and therefore B = 0. Displacement at the bedrock interface

is zero, thus the last degree of freedom is removed from the system, making the C matrix non-

singular. The rigid body mode is no longer part of the system and the real root goes to oo (see

Appendix B). In fact, for the rigid base case

X = [ y1 ]

and

K = _L A-1

where X is now of dimension N-1 X 2N-2 and KL is N-1 X N-1. The notation is consistent

with that used by Kausel (1982b). Substituting A-1 in the orthogonality condition 4-15 gives

KX'TAXK - XTCX = LK] T A[ K ]Cy y [] cL o ]

KL TAY/KL -K #LA A yK#C, #Co A-

L -KL#AyOKL KL ,AAyyKL ocyyy cy y

But from Kausel (1982b) we know that OTA 5= I and 0T C 0 = -K 2 , so that A-2 equals

K2 + K2 -K2 + K K2 K2
L L = 2 L 2 = [K L 2 K2 A-3

-K2 + K 2 K2 + K2 K (-K)

Hence, our choice of normalization is consistent with the rigid base case.



-143-

Expressions 4-30 can be shown to reduce to the rigid base case, where B = 0 and M= I

1 1

0 - XT= -i { ,P _LK -,pT] - OYKLO T=0 A-4

Since K = K in the rigid base case, the last two equations of 4-30 are the same. Since C is

singular for the halfspace case, we cannot develop the corresponding orthogonality conditions that

parallel the rigid base case, i.e., C = ...- 2T

To prove that the flexibilities reduce to the rigid base case, we substitute A-1 into 4-38

1
1X (kI - K)- I~-1XT =

1 T K-
2 Y y I kIKL L

1[ 4i (kI - KL)- 1 T- 4 (kI + KL)- 1 Kj # | = A-5

2 [(kI - KL)- I1' - (kI + KL)- 1 KZ |

Expanding A-5 gives

kI - K L1K1 (kI+KL)-1-1 J = diag L2k (k - k) 2k,(k + ks)

[ k + ki - k + kiln
diag 2k, (k2 k2) =diag k2 - k2 =DL -1 . .,2N-2 A-6

Thus FYY = PYDL OT as given by Kausel(1982b).
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A.2 In-plane case

In the rigid base case, B. = Bz = 0. Displacements at the bedrock interface are zero, thus

the last degree of freedom in the x and z directions are removed from the system, making C. and

C. non-singular. For the rigid base case,

X = x-OO[ -z
and

[KR]K= -K]A-7

where X is dimension 2N-2 X 4N-4 and KR is 2N-2 X 2N-2. Substituting A-8 into the

orthogonality condition 4-15 gives

FKi T OT _'K KOZ OX] [K ~ K
R X 4 ~~i) RZ RZ zi

-KR 7 T Az ] -Tz -KR

z z xx 
C, 

z z

T T C

0 T _ O T zZ0 _iK ( OA,4x + OAzz ) KR KR -4AzAz + OAzz ) Kg

KR ( - .A4 T+ #O Az-z ) KR KR (TA Ox,4 + OTAziz, ) KR -

O T 0(z i + O C z 0 O C z - # f C z Oz

OTCz 0 - OTC,4 OTCz 0 + OTCz 0

Althought it is not readily apparent, the normalization of Equations 17a and 17b of Kausel (1982b)

can be expanded and manipulated to give

A + OTAzOz ) K - ( Cz +OTCz )=2K2

X~z z z R xX R

and

KR4TA0iZKR + TC,0 = 0 KTAz zK R+ Cz=0 A-9

Thus A-8 equals
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2 [KRK2 ] A-10
KR

When Equations A-9 are substituted into A-8, we see that both the diagonal and the off-diagonal

elements are satisfied. This, our normalization is again consistent with the rigid base case.

The inverse of A can be shown to reduce to the rigid base case, where M= I and

K = K = KR. Substituting A-7 into 4-63 gives

[ 1 
1 

p
A-- A ] 2 -=1J L ~ J

-2 2 _ 0 -K0 0 _ !P

z Z Z zX

A; ] - B.z] [A-

A~ BT AA
1z =1

_ X4  - ,K 5T4, T ,K
-2 0,a +0 -KR T _0~a -T za

[ T -1 R

[z ~z R~ z R Z z R=0

[--p KR<p ]

A-11

A-12

A- 13

These all agree with Equation 21 of Kausel (1982b). Since the C matrix is singular, we cannot

invert it.

Now we examine the flexibility 4-65. Let the flexibility matrix be given by

1X ( k - K )-1K-1 XT= i X D K-l XT A- 14
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where

D = D = k - ki 1
D 2  k + k]

Substituting A-7 into A-14 yields

[D D2 1 K

4T T *

z z
T5 T =
X za

0,DK - T 0DK 1P T

R +

Ox(DI - D2

Oz(DI + D2)KR1p

O.T(Dj + D2)Kl4'T

Oz(D 1 - D 2)K 4 T

Substituting the definition of D from A-15 into A-16 gives

1
~(D1 - D2 )K( =

1 ]I k+k 6-k+k]
k + ki 2kj (k2 - k2

diag [k 2 k 2 =DR

da 1  1] 1D2 ( D, + D2 )2k=dagj k- k + k + k -

diag [kg { k2 _ -k ) kK-RDR
i k

k- k+ k+k
(k 2 - k )

j

Thus

F, = Txy,

Fxz =k#K 1D4 T

F = 'ZDRz

which are the same expressions given by Kausel (1982b).

A-15

A-16

1=

1=A-17

A-18

OD 1K p + P.TD2K -10 &
OpD -10 _#2D2KR$ = j

diag 12kg k -ki~
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Appendix B

Static Eigenvalues for the Anti-plane Case of
a Homogeneous Stratum on an

Elastic Halfspace

B.1 Discrete Case

The analytic solution for the static anti-plane eigenvalues of a homogeneous stratum

overlying an elastic halfspace is derived below. The analytic solution for the discrete case is

difficult to evaluate numerically, but is useful for examining the behavior of the eigenvalues. The

analytic solution for the continuum case (the "exact" solution) is undefined when the halfspace is

homogeneous. The geometry of the problem is shown in Figure B-1.

B.1.1 Roots of the Eigenvalue Problem

To begin, we rewrite the eigenvalue problem, Equation 4-3, for the N-layer anti-plane case

(Ak 2 + Bk + C)X =0 B-i

in the dimensionless form

(~A 2 + BK +~C ) X =0 B-2

with K2 = 6 (kh) 2 and
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Figure B-1: Homogenous Layer Overlying an Elastic Halfspace
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F2 1 1 0  1 B-3
1 4 1

A = 1 4 1 B =

1 4.

I~ . .iII1
1 2] 1 17]-

1 21

1-12 -1

-1 2 -1 X= I

-1 2.I -1 . I- N.
I -ii IXN I

-1 1 zN+1

where

G
= = Zr

and the subscript r refers to the halfspace (rock).

Then all equations, except the first and last, are of the form of a difference equation

( K2 - 1 ) x 1.i+ ( 4K2 + 2 ) x + ( K2 - 1 )z+1= 0 B-4

while the first and last, which constitute the boundary conditions of the difference equation, are

(1 + 2K 2 ) + (-1 + K2 ) X2  0 B-5

(-1 + K2 ) ZN + ( 2K2 + - K + 1),= 0

Assume a solution of the form
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Xi = C zi-1 B-6

Then, after dividing by z 1- 2 , we obtain

-( 1 - K2 )+ 2 (1 + 2K2 ) Z - (1 - 2 ) Z2 = 0 B-7

which has the solution

1 + 2K2  1 + 2K2

Z= 2 1_-K2  I K2 2-1 B-8

Making the substitution

1 + 2K2

cos 9= 1- i 2  B-9

we obtain

z = cos ± Vcos 2 9- 1 = cos 0±V iv'1 - cos 20 cos 0 isin 9 B-10

Therefore z = e+ i6. The complete solution is then

x- A ei(1-1)0 + B e-i(1- B-11

with A, and B being arbitrary constants.

Now rewrite the boundary conditions in terms of 9:

z1 cos 9 - X2= 0 B-12

-xN +[cos + 1_2 = 0

Solving for tc from Equation B-9 gives

1 + 2K2 - cos 0 + K2 cos 0 = 0 B-13

That is

9 9
1 -cos 2 sin 2 sin 2

~2+cos = =~ 2 9
d3 - 2Bsin 2- - 2 s 2

and B-14



-151-

9
2 Sin 2

1-K2=1+3 2 9
1- -sin2-3 2

= 2 2
1 - sin 2

1-K
2 = 2isin

/ 2 9
Vi - sin 2

2 9

Then

46K
1- K 2 = 2i 8j sin 2

The boundary conditions are then (from B-12 and B-17)

zI cos 0 - z,= 0

-XN+ [Cos tf+ S sin 2  Xr= 0

Substituting the solution B-11 into the difference equation B-18, we obtain

(A+B)cos 0- (A eO+±Be-i#)=O

-[ A ei(N-1)0 + B e-i(N-1)6] + [cos 0 + A eiNO + B e-iN

Factoring out A and B gives

A ( cos 0 - eiO ) + B ( cos 0 - e-ie )= 0

eiNO A cos 0 - e- + sin + e-iNO B cos

Apply the identities

cos 0 - eiO = -i sin 0
cos 6- e- = isin 9

Then B-20 can be expressed as a matrix equation

Hence

Define

B-15

B-16

B-17

B-18

sin

B-19

9- e'0 + sin

B-20

2 0

B-21
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-i sin 0

i sin 0+ gin

i sin 0 A 0

e-iN -[ _sin 0 + sin ] B 02r. 2i8 J L

B-22

For a non-trivial solution for A and B, the determinant of the matrix must be zero. This

gives

-isin 0+ sin + eiNI i sin 0+ sin = 0 B-23

The above equation implies that either sin 0 = 0 or the term in brackets is zero.

possibilities are explored below.

If sin 0 = 0, then 0 = j7 and cos 0 = cos jr = (-1))= i 1. This gives (from B-14)

7r
2 sin 2 (-2

K2 - 3 1 s j =l
3 -2 sin 2 j 7 0

for j= odd

for j = even

Since x, = Aei('-1)0 + Be-i(-1), then for even values of j, we have

x; = A + B

which looks like the rigid body mode. On the other hand, for odd values of j, we have

e-O = e-ig = -1

and

x; = (A + B) (-1)1-1

As we shall see, both of the above are spurious solutions. Solving for A and B from the second

equation of B-19, we have

2 LJA eiNO + B e-iNO 0

with

eiN [

-i sin 6 [e-iN [
The two

B-24

B-25

B-26

B-27
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S0 , sin 2 = sin ji / 0 ,e~ -N

Thus

A+B=O -+ A= -B -+ zj=0 forjboth odd and even

Hence, the assumption that sin 0 = 0 is false.

If sin 0 / 0, then

iN -s eiN [ii Sin g + 3
s+T in2eNI isi]+ 0+ sin2

i sin ( eiNO _ e-iN) + sin 0(eiNO eiNO).O

9 6 2i aj
21 sin 2 cos 2 - 2i sin NO + sin 2- 2 cos NO = 0 B-28

0 6 o
sin 2 [ cos 2 sin N9+ cos N] =0

6 0
For sin 2 = 0 , 2 = 3r and K2 = 0, we obtain the true rigid body mode (this implies that A = B).

On the other hand, the non-rigid body modes follow from the transcendental equation

Scos 2sin NO+ cos NO= 0

or B-29

0
: y cos 2

cot NO = -

For purely real 0, the above equation cannot be satisfied.

B.1.2 Real Roots

For purely imaginary 0 = 2ia, we have

sin NO = sin 2iNa = i sinh 2Na
cos NO = cos 2iNa = cosh 2Na
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0
sin 2 = i sinh a

0
cos 2= cosh a

Substituting B-30 into B-29 gives

') cosh a
coth 2Na = 2

Vi + 'sinh 2 a

Applying the definition of ic and Equation B-14, we obtain

2 sinh a
kh =- 2

V1 + 2 sinh 2 a

Figure B-2 shows the root a of Equation B-31 for N= y = 1 and

Figure B-2 illustrates some of the features of these roots. Note that as

approaches 1 and the right-hand side of B-31 approaches - A from below.

will intersect at finite a only if -y > 1, or / > V2. The solution for

B-32 is only valid for y > ; . Note also that as a increases, kh approaches

on the magnitude of kh which is independent of the number of layers

B-32

kh as a function of a.

a increases, coth 2Na

Thus these two curves

kh given by Equation

-%16. This is a bound

Finally, the first equation of B-19 requires that A = B (since i sin 0 yp 0). Choose

1
arbitrarily A = B = -. Then

X1= cos (1- 1)0= cosh 2(I-1) a B-33

This is the modal shape.

It is also possible to find real roots for the wavenumber k for complex values of 0 or a.

Assume, for example

a = X + i3y B-34

Then

sinh a = sinh x cosh iy + cosh z sinh iy = sinh z cos y + i cosh x sin y =

/sinh2 X cos 2 y + cosh 2 x sin 2 y ei = r ei

B-30

B-31
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I + sinsh2a
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with B-35

cosh x sin y sin #
tan # =sinh x cos y = cos #

For arbitrary values of x and y, we can reach any point r and # in the complex plane. Hence, using

the form of kh from B-32, we obtain

sinh a

Vi + 2 sinh 2 a

- r e

Vi + 2 r2 e2i4

re'O

2
1 + r2 cos 2# + i

retd

r2 sin 2]

4V I + r2 cos

with

2# 2+[gr2 sin 2# 2 e2

2
3 r sin 24

tan = 2
1+ r2 cos 2#

The phase of the above ratio is ei(-f/2). For a purely real k, we must have

e (4 -2) = i 1, squaring gives ei (2 - +) = 1

Then

2#- 7= 2jr 20 = 0 + 2jir

tan 2# = tan 7P

This implies that (from B-37 and B-36)

sin 2#
cos 2# -

Hence

2
2 r2 sin 2#

2
1 + 2 r2 cos 2#

B-38

sin 2# [cos 2#

2

2 =0
1+ r2 cos 24)J

B-36

B-37
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This can be satisfied only if sin 2# = 0, that is

sin # cos #= 0 B-39

There are two solutions of B-39 to investigate.

If sin # = 0, then cosh z sin y = 0 and y =jr, so that cos y =cos j7 =(-1)i and

a = x + ijr. Hence

sinh a = sinh x (-1)i B-40
cosh a = cosh X (-1)i

and

cosh 2Na = cosh 2Nx B-41
sinh 2Na = sinh 2Nx

Substituting B-40 and B-41 in B-31 gives

7 cosh x -)
coth 2Nz = 2 B-42

V1 + 3 sinh 2 X

and substituting in B-32 gives

2 sinh x (-1)I
kh =- B-43

%/1 + sinh'

Since an odd j leads to z < 0 (from B-42), this is exactly the same solution that we had before

with a -+ z(-1)i. Hence, the assumption that sin # = 0 is not interesting.

The other possible solution to B-39 is cos # = 0. This leads to sinh x cosh y = 0 and either

x = 0 or y = 7r/2(2j-1). x = 0 is not a root because it makes 0 real and the characteristic

equation B-29 is not satisfied. The solution y = r/2(2j-1) gives a = z + ixr/2(2j-1) and

sin y = (-1)-1. Hence

sinh a = i cosh z (-1)1 B-44
cosh a = i sinh z (-1)i-1

and
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cosh 2Na = cosh 2Nx (-1)N(2j-1) B-45

sinh 2Nca = sinh 2Nx (-1)N(2j-1)

Fin ally,

1vI + sinh 2 a = V1 -cosh2X= ij cosh2z-1 B-46

Substituting in B-31 and B-32 gives

'y sinh z (-1)i-1
coth 2Nz = -ycsh2x B-47

V9cosh2x - 1

and

S2 cosh x (-1)-4
kh =- 2B-48

V9 cosh2x - 1

We choose j= 1, so that

-y sinh z
coth 2Nx = 21 sh x B-49

VIcosh2X _ I

and

2 cosh x
kh 2 B-50

cosh 2X - 1

These equations provide the real root for y < A. The two sides of Equation B-49 are

plotted in Figure B-3. The cosh z must be greater than A in order for the denominator of B-49 to

be real. Thus x is greater than 0.6584. Again, the limit of coth 2Nz is 1 as z becomes large. The

limit of the right-hand side (from above) is yV-1. Thus y must be less than 1 in order for there to

be a root z. The eigenvalue kh from Equation B-50 is plotted in Figure B-4. Again, kh approaches

-\5, but from -oc at x = 0.6584. The modal shape is

x = cosh ( 2 ( 1 - 1) ( x + i/2 ))=cosh ( - 1 )(2x + i)= B-51

cosh 2(l-1)x (-1)-'

The modal shape grows exponentially with depth and alternates in sign.
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To illustrate the effect of the soil properties on the real root, Figure B-5 is presented below.

This is a plot of -kh as a function of -. As -y goes toward 0 (the halfspace becomes stiffer), the

eigenvalue kh approaches oo.

B.2 Continuum Solution

B.2.1 Eigenvalues

The eigenvalues for the continuum case can be obtained directly from the transcendental

stiffness matrices for the single layer and the halfspace. The transcendental anti-plane stiffness of

the layer is

kG cosh kH -1I
K 1 = sinh kH -1 cosh kH B-52

The stiffness of the halfspace is

[ kG sinh kH
K,.= kG,.= sinh kH - B-53

The sum of B-52 and B-53 gives the global stiffness matrix

kG [cosh kH -1 1 1
sinh kHI -1 cosh kH + sinhkH B-54

To obtain the eigenvalues, we set the determinant of the global matrix to zero and solve the

resulting equation for k. By inspection, we can see that k = 0 is a root, this is the rigid body mode.

For k =/ 0, we obtain

1
cosh 2 kH + cosh kH sinh kH - 1 = 0 B-55

Applying the identity

cosh 2 kH - 1 = sinh 2 kH B-56

to B-55 gives the eigenvalue solution
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coth kH = -y B-57

In general, - < 1, and the above equation has no real roots. In this respect, it differs from the

discrete solution, which admits one real root. For y > 1, we do have real roots.

Assume a complex root of the form kH = -(x + i y). Substituting this root in B-57 gives

coth (x+iy) = y B-58

Expanding the hyperbolic cotangent

cosh (x+iy) cosh x cos y + i sinh z sin y
coth (x+iy) = sinh (x+iy) = sinh x cos y + i cosh x sin y B-59

Substituting this expansion into B-58 and separating the real and imaginary parts results in two

governing equations

cos y ( cosh x - 1 sinh z )=0 B-60
sin y(sinh x -ycosh x )=0

If cos y 4 0 and sin y - 0, then the above system of equations is incompatible. When

cos y = 0, the first equation is satisfied and sin y = 1. The second equation becomes

tanh z = B-61

which only has a root for -y < 1. The solution for z and y is then

x = arctanh y B-62

y = g(2j-1)

The eigenvalue is

kH =-arctanh I+ i 2 (2j-1) for -y < 1 B-63

When sin y = 0, the second equation of B-60 is satisfied and cos y = i 1. Thus the roots

for x and y are

coth x = xy, z = arecoth -y B-64
y = 7 j
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A root for x exists only if -y > 1. The eigenvalue is

kH = -[ arccoth - + i 7rj for -Y > 1 B-65

B.2.2 Modal Shapes for - < I

From the first equation of B-54, we have

un cosh kI - u, = 0 B-66

Arbitrarily selecting ul = 1 gives u. = cosh kHW.

For intermediate points, we decompose the stratum into two sublayers of thicknesses z and

H-z. The first equation of the overlapped stiffness matrix is ul cosh kz - u2 = 0, which leads to

z z
u2 = cosh kz = cosh kH = cosh ( (kH) where = H B-67

Then the mode shape is

# 1 =cosh [(4arctanh - + i 7 (2j-1) B-68

Define tanh = y, then #= arctanh -, and

cosh #( cos 2 (2j-1) (+ i sinh #sin 2 (2j-1) ( B-69

Note that no root exists when - = I (a homogeneous halfspace) other than the rigid body mode.

These "exact" eigenvalues are easy to compute and can be used as starting values in a search for

the discrete eigenvalues.
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Appendix C
Solution of the Discrete Static Eigenvalue Problem

The procedures used to extract the eigenvalues and eigenvectors of the static problem

described in Chapter 4 are explained below. Section C.1 presents an algorithm for obtaining

complex conjugate pairs of eigenvalues and eigenvectors. Section C.2 describes a method called

"cleaning" that improves the accuracy of the eigenvectors. In Section C.3, the application of these

techniques to the problem of Chapter 4 is discussed.

C.1 Iteration for Proximal and/or Complex Conjugate Pairs of Elgenvalues

The technique described below is an adaptation of one given by Zurmfihl (1964). The

method can be applied to obtain pairs of proximal or complex conjugate pairs of eigenvalues from a

non-symmetric real matrix. No complex algebra is required to obtain the complex conjugate

modes, which makes this algorithm extremely efficient for the purposes described in this paper.

A real, non-symmetric matrix A has right eigenvectors X, left eigenvectors Y, and eigenvalues

X given by

A X = X X right eigenvectors C-I

ATY= X Y or YTA = X yT left eigenvectors

Assume that the starting vector contains contributions from all N modes (N is an even number for

this case).

X0 =c141 + C262 + .. + c = 4 C C-2

YO= dit1, + d2=2 + . an+dnV = A D

After direct iteration, Xk+1 = A Xk and Yk+1 = AT ythnifhemdsaeotor lzd
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Xk =cIX 1+ c2 X 2 +... = Ak C C-3

Yk= dX kV) + d2 X + ... = PAk D

Ii |~| X2 , [which is the case when X2= X ,then X ~ Xk jand the vectors approach a

linear combination of the modes #1 , #2

Xk c1 4X 1 + c2X 2 2  C-4

Xk+1 ~ cIX q+#1 + C2X k+1

Xk+ 2 - ci k#1 + c2 k+202

The results are similar for Yk , k+1 > k+2. Notice that Xk and Y are not eigenvectors, i.e., they

do not satisfy the equations in C-1. The above implies that the three vectors are linear

combinations, i.e. they satisfy an equation of the form

Xk+2 - 2 a, Xk+1 + ao Xk = 0 C-5

Substituting C-4 into C-5, we obtain

( X - 2 a1 X, + ao ) cX #1 + ( X2 - 2 a, X2 + a0 ) c2 X$ 2 =0 C-6

Since #1 and #2 are independent, it follows that the terms in parentheses must be zero. Hence, X,

and X2 are the roots of the equation

X2 - 2 a, X + ao = 0 C-7

with solutions X = a Va - ao. We know that our solutions will be complex, thus

a = ai V a - a2 C-8

To determine a0 , a,, we return to Equation C-5, which we write in matrix form as

(Xk - 2 Xk+1 )[a] = -Xk+ 2  C-9

Multiplying C-9 by { Y , -iY jQi 1, we obtain
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r 1Xk - 24 Xk+1 I ao  -- Xk+2
1 =1 C-10
21k+1 Xk k+l Xk+1 al 2 k+1 Xk+2

The inverse of the matrix in C-10 is

1 r ( 1+1 Xk+1 2YkXk+1 1
( X) (Y+ 1 Xk+l) - (YXk+1)2 TYXk YX C-11

Letting the denominator of the constant term by given by D and making the substitution

TXk+ 2 = }A Xk+1 = 14 Xk+1, we obtain the solution for ao , a,

I [ ( Y'Xk+l) (k+1 Xk+2) - (Y+1 Xk+) 2  1
D I+ Xk)(,T y (Yj J C- 12[a , [( Xk) k'+1 Xk+ 2) - k+1 Xk) k+1 Xk+1

After finding ao , a, and X1 , X2, we determine the eigenvectors as (omitting a constant

normalization factor)

1 = Xk+1 - X 2 Xk C-13

2= Xk+1 - X1 Xk

In practice, the three iterations Xk , Xk+1 , Xk+ 2 will retain a residual contribution of the

other eigenvectors. Thus Equation C-5 translates into

S= ao Xk - 2 a, Xk+1 + Xk+ 2 3 0 C-14

Q = a0 k - 2 a1 Yk+1 + Yk+2 3 0

Note the S and Q have the same coefficients a 0 , a,, since they must lead to the same characteristic

polynomial for X. We now require the product q= QT S to be a minimum in the least squares

sense, i.e.

&0 0 Bal = 0 C-15

The product for q is expanded

q = a0 Y kXk - 2 a0 a1 (Y Xk+1+ 1 Xk )+ C-16

ao ( T X+2+ T2 Xk )+ 4 a
2 yT

2 a0 ( Xk+2++ 2 X k+1 Xk+1

a, (IT+ x k+2 + 17+T Xk+l ) +17+2 Xk+2
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Taking derivatives gives

= 2 ao Xk - 2 a ( Xk++ + 1 Xk)+ Xk+ 2 + + 2 Xk)=0 C-17

= -2 a0 ( YT Xk+ + +1 Xk ) + 8 a1 Y+ Xk+1 -

2 {+1 Xk+ 2 + 4+2 Xk+ 1 =0

In matrix form, C-17 is

1
Y Xk --(YXk+l + Y+ 1Xk)][ ao --(2jXk+2 + Yj+2Xk) 1

[,( Xk+l + Yk+ 1X k) + 1Xk+l a1 J (+ 1 Xk+2 + +2Xk+1)
Now, when we apply these identities to C-18,

4T Xk =Y A Xk = Xk119

SXk+ 2 = +1 Xk+1 4 +2 Xk

+2 Xkgi = 1+1 Xk+ 2

the above equations reduce to our original system C-10. Thus we have shown this solution to be

optimal in the least squares sense. It can also be shown that the eigenvalues X1 , X2 from Equation

C-8 have errors of the order (I I 1/ X, 1)2, as in Rayleigh's quotient.

C.2 Cleaning Elgenvectors

The "cleaning" procedure described in this section is adapted from Zurmiihl (1964). The

method takes advantage of the orthogonality of right and left eigenvectors to sweep out residual

components of other modes from a particular eigenvector. The three possible combinations of

modes are discussed: complex conjugate with complex conjugate, complex conjugate with distinct,

and distinct with distinct.
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C.2.1 Distinct Eigenvalues

First, we make a change of notation

X k -. Xk+1-* , C-20

The eigenvectors obtained from direct iteration are given by

# =c'#1+ c#2+ . .. + ( c#C-21

dt~l + '02 + i + di 7

where d'. and c'. are small coefficients. Our objective is to compute these coefficients so that the

residual components of other modes can be removed. For eigenvalues that are not repeated, the

orthogonality conditions are

$ A $= for i j
7 0 for i=j

and C-22

V To =0 for i j

, 0 for i= j

Then we can expand the product

k k OT 0 + j$"$. (+( d$ $k C-23

k 34 i i

$ 0j+ E cJtV'i + (; + ( ( dc k5
134j k -1:i k i 134j

The application of the orthogonality conditions C-22 to the summations in C-23 gives

(c iv),$; 
for i j

34 i0 for i=j
li i
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-_ , for i 3 j
d' $q$i = C-24

k k . 0 for s=j

(d'Zc $)$ = Z d'?c TpOpk
k / ii f jk 94 i,k y& j

The last expression of C-24 is quadratic in the error terms. For i j, we have

T $ .= cj$ + d>.;1 + quadratic error C-25

For i = j, we have

T p (T + quadratic error C-26

Since the quadratic error is very small, we can write

T $ ~ $$ C-27

We define the constants

T $ C-28

7 $T = # g = c #;+ d'

From the second orthogonality condition, we can write in a similar fashion

agg = X c #; + AXd.#j

with C-29

Combining the results of C-28 and C-29, we obtain the system

[;:g ] x; 
Ci]c 

] 
C-30

This has the solution
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=O. X X 10i C-31

j - X; #;i

from which we can obtain the correction coefficients, with X; ~ X. and Xj ~ X. (eigenvalues with

second order error). The above coefficients correspond to the corrections of # and 7Pi

0 - di# C-32

The correction coefficients for $. and '. are obtained simply by interchanging the indices i and j

[#c 1 -X; ag; -3

The new coefficients a and #j; are

"T " 'To " To'a .. ='P. #=. C-34

" T "
ii

In general, agj 74 ag; and #i; 0ji.

C.2.2 Complex Conjugate Elgenvalues

In this case, the ith and Jfh eigenvalues are both complex conjugate pairs. The iterations on

the Jh right eigenvector and ith left eigenvector converge to

it * *X- =c #1+ c'#02+..+ c% #+ c' +..+# ++. C-35

Y =diP + d'2 + ... + t' +... +d.+d. +...

with small coefficients c and d'.. The starred quantities correspond to complex conjugateS J7

quantities. In the expressions above, both the ith and jth modes are shown as multiple modes, but

this is not necessary in the general case. One additional iteration yields

X.= A X+ = XId#1+ ... +x;(#+ X c +... C-36
J7 J7
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Applying the orthogonality condition and ignoring the quadratic error terms, we have the products

X = CTX # + c. #
.. p + i q + r+

'P p+q+

Similarly,

'T C;'s~)
Y..=Y. X .= I c $; + i2 $ $ + X.$ $+ x*2* * j j

.= X p + X*2q + X r + X*2
13 1 S j j

For the second orthogonality condition, we have (as above)

a. . A X.=Y. X.

T * >*T O + X+ *
a". Zi i A X.= X = 7 O+xj

Similarly,

' T ' 3 3 3
a..= Y. A X.= X.p + X.q + Xr + X.e

Combining the previous results, we obtain the system of equations

1
I X
I2x

1 1 1

x. .

X 3 X

1P 1
Iq I
Ir I

[e J

C-37

C-38

C-39

C-40

C-41

a.i
[a 

from which we can solve for p, q, r and s. Writing the vector of unknowns in the form given below

alters the coefficient matrix so that all elements are real.

+ #+ d. 4

X

s
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(p + q) C-42

(r + s)

(p - q) (X; - X*)

(r - s) (X;- J
After finding p,q,r and s, we determine e and d'. and correct the eigenvectors as

" " * *

X. =X. -c-c $. C-43

Y. =Y. - d.-d. .
1 1 j j j

To obtain d and c'., we repeat the procedure, exchanging indices and computing a.., etc.
I .7'

C.2.3 One Complex Conjugate Elgenvalue and One Distinct Eigenvalue

In this case, the ph eigenvalue is a complex conjugate pair and the ith eigenvalue is distinct.

The iteration converges to

X' = c01 + c41 + . j .+cp+ . 0 .. + + $ + ... C-44
1. 2

and similar expressions for Y. and 4. Then the orthogonality conditions give (ignoring quadratic

error terms)

"? " T " + "*Ip *T*
,8..= . X.= ci $0+ .9 -+ d'. p. p. C-45

tj z .7 jj j7 77
If

Also,

If ffTA If 1T iT 1 T , * T*

a..= " . A X = X Xic ; d i+ X't. C-46
1.

Finally,
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. X.= XP + Xr + X.2s a

The matrix expression of the above is
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C-47

1
I X

Again, we can make

1 1 1

2 c2

the coefficient matrix

p I
Ir I

real by writing the vector of unknowns as

(
(r +s)

I(r - s) (Xj - X* )

The remainder of the procedure is as described in the two sections above.

C.3 The Static Eigenvalue Problem

The technique described here is applied to the solutions of both the in-plane and the anti-

plane eigenvalue problems. In the static problem, we first normalize the matrices by a reference

thickness h so that the eigenvalue problem becomes

(A (kh) 2 + B (kh)+ C) X =0

This improves numerical stability and gives constant dimensionality

For the static problem, the double dimension matrix A is

A = -A-1C -A-1B]

The right and left eigenvectors are defined by

C-50

C-51

C-48

Ia,

C-49
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0 I $i $k[ i C5-A-1C -A-1B] kyp] = k[kp] C-52

0 -CA-1 [$1] - k4 15
I -BA-1 p2i ~ 02$j

The relationship between the right and left eigenvectors is

0$2 j kA C-53

The orthogonality of the double dimension vectors gives the result described in Chapter 4

kik 1p Aqg - $TC$; = 0 for i =;4 j C-54

For the numerical method, the starting vectors for mode j are Yo= = { U, , UF- } where

-1 7r -

U0 = cosh - cos 2(2j-1)~-j~ C-55

is the continuum solution of Appendix B. To begin, we do not need to sweep components of the

rigid body mode out of the starting vector, since one iteration removes all components (X = 0). We

define the 2N vectors Xk and Yk as

Lk Tk Y =Wkj -5Xkj--V I= Z] C-56

One iteration on Xk gives

Xk+1 = A Xk = [A1 CUk - BVk) C-57

One iteration on Yk gives

Yk+1 = A' Yk = -cA-Zk] C-58

One more iteration is performed to obtain Xk+ 2 and Yk+2. Then the cross products of C-10

and C-12 are computed. The constants ao and al are computed and then convergence is checked.

If they have not converged, then Xk+ 2 and Yk+2 are normalized by their largest values and another
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two iterations are performed.

When the eigenvalues have converged to sufficient accuracy, the wavenumbers and modes are

stored and cleaning is performed with the eigenvectors previously obtained. Also, components of

each mode are swept from the starting vector C-55 with the Gram-Schmidt orthogonalization

procedure.

Since this method uses direct iteration, the remaining eigenvalue with the largest magnitude

is obtained. Convergence is rapid as long as two roots are not close in magnitude. One way to

avoid convergence problems is to obtain real roots with a search procedure. For the anti-plane

case, a search is conducted beginning at k = 0. For the in-plane case, the anti-plane real root is

used as a starting point for searches in both directions. Our experience has shown that the anti-

plane real root lies between the in-plane roots, although we have no proof that this observation is

always the case.
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Appendix D

Solutions of Integrals for Static Displacements

D.1 Integrals for Static Point Loads

Recall the definitions of these integrals from Chapter 4:

I -= a, k JO(kp) dk
0

I21 jx a, k J1 (kp) dk

I f 0 a, J1 (kp) dk

where

1
a, = 2 k1 ( k - k,)

Note also that

d 1
Ip 3j = 'i1 - I9 31

since

d 1
dp J1(kp) = k JO(kp) - ~ J 1 (kp)

The solutions of these integrals are found in Erdelyi et. al. (1944). This reference contains the

solution of the generic Hankel transform

f f(x) J,(xy) (Xy)1/2 dx 
D-5

D-1

D-2

D-3

D-4
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For the case where

f(X) = X-1/2 (X + a)-1

The solution of the Hankel transform is

J Jv(xy) zx (x + a)-1 dz =

7ra sec(uv ) Hv(ay) - YJay)

D-6

D-7

I arg (a)I < n

where H is the Struve function and Y is the Neumann function, or Bessel function of the second

kind. This formula allows us to solve for all three of the integrals in D-1.

D.1.1 Solution of I2 ,

Evaluate D-7 for the case where v= 1.

(ro J,(xy) z dx

0Ix + a
7r [

= -2 a I[H-(ay) -

Now substitute a = -ki, z = k, and y = p into D-8

oo J1 (kp) k dk 7r

0k - k = k 1 I H-_(-pki) -Y1i(-pkj) | arg (-k)I < ir

We apply these identities to the right hand side of D-9

Y_,(z) = -Y,(z)

2
H-1(x) = -H,(x) + ,

to obtain

2 k I- - H(-pkg) - Yi(-pki)]

Therefore

D-8

D-9

D- 10

D-11
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I = 1 - 7r ( H (-pkg) - Yi,(-pkg) )121 =2[ 1

This solution is valid for all kg which are not positive real numbers.

D.1.2 Solution of 13

First we must express I.. in a form to which we can apply D-7.

-00 1( k p ) dk f oo (k - kg - k) Jkp) dk
I31 = J( k-kk 1 k -k

2k

D-12

D-13
I oo J1 (kp) k dk

J1 (kp)dk,+ k - k

This is the sum of two integrals which we already know. Substituting 4-76 and D-11 into D-13

gives

2k ~-ki X + kX k; [ 1 - - ( Hl(-pkg) - Yi(-pkI))] D- 14

Rearranging terms gives

D- 15

D- 16

131 = [ - pk- ~2 ( H1 (-pkg) - Yi(-pkg))]

Comparing the two integrals above, we can see the relationship

1
121 = kg 131 + 2pkI

D.1.3 Solution of III

First we expand III

1 00 JO(kp) k dk I oo (k - k + kg) JO(kp) dk
I , = k - k, k - k D-17
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1 0c 1f 00 JO(kp) dk
0kJo(kp) dk + k- k

We apply D-7 to obtain

oo Jo(kp) dk i
k - ki = 2 ( Ho(-pkt) - Y0 (-pkt))

Substituting in D-17 gives

I= 2 + 7 ( HO(-pk) - YO(-pk)

D-18

D- 19

D.2 Approximations of Integrals for Static Disk Loads

The solutions to the integrals of 4-88 can not be found in integral tables. An approximate

solution for I,, is described below. First, we introduce the notation

D-20J,(kp) -+J,

J 1 (kR) -+ JR

For an integral of the form of I21, we choose an ansatz

fo J p JR dk

0 k + a

| arg (a) I < 7r

f oo J1 
JIR dk

0 k- a

| arg (-a)I < 7r

C J1 (ap) ( H _l(aR) - Y(aR))

C J(aR) ( H-_1(ap) - Y,(ap) )

C J(-ap) (H-(-aR) - Y i(-aR)

C J(-aR) (H._,(-ap) - Y 1(-ap))

where C is an arbitrary constant. When the two integrals above are added together, the result is

an integral from Table 2-Ill.

1 00 [ ip J1R lp J1R oo k J J1R D 2
k - a + k + a ]dk =k dk=gJap)HI2)(aR) D-22

D-21

p < R

p > R
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We apply these identities

H_1(-aR) = H-1 (aR) D-23
J,(-ap) = -J,(ap)

Y_1 (aR) = -Y(aR)
Y_1 (-aR) = Y(aR) + 2i J1 (aR)

Substituting D-23 into D-22 and summing, we obtain for p < R

C[ J(ap) ( H-(aR) + Y(aR)) - J(ap) ( H-(aR) - Y(aR) - 2i Ji(aR)) =

1
2 C J1 (ap) ( 2 Y(aR) + 2i J,(aR) ) = i C J,(ap) ( J,(aR) - i Y(aR) ) = D-24

i C JM(ap) Hd2 )(aR)

By equating the results of D-24 and D-22, we can solve of C

i C J,(ap) If 2)(aR) = 7r J,(ap) H(2 )(aR)

C = -- 2 D-25

Thus, we obtain

koo Ji- JI dk ~r J1 (ap)( H-j(aR) - Y__(aR)) p < R D-26
0

:7r

| arg (a) I < r -2 J,(aR) (H..(ap) - Y.(ap)) p > R

Numerical evaluation shows that this integral estimate is accurate for real values of a when a

is of the same magnitude as p and R. However, complex values of a introduce larger errors. When

a has a large imaginary part, there is no correspondence between the numerical values of this

integral and the integral estimate. For applications to static displacements, when the imaginary

part of wavenumbers are often many times larger than the real parts, this integral estimate is not

useful. It seems that terms are missing from the integral estimate. The true solution to this

integral is probably an infinite series of Bessel functions.
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Appendix E

Numerical Evaluation of Struve and
Neumann Functions

The integrals presented in Tables 2-III and 4-I are evaluated numerically. Algorithms for

functions in Table 4-I are presented here. Functions in Table 2-III can be found in the references

cited in Chapter 2. The Struve and Neumann functions are evaluated with ascending series for

small arguments and with asymptotic expansions for large arguments. The absolute value of the

argument at which evaluation goes from series to asymptotic expansion is determined by

convergence considerations. The ascending series are valid for all complex arguments z. The

asymptotic expansions are valid for arguments in the right half of the complex plane (positive real

part). For arguments with a negative real part, the functions are evaluated for the negative of the

argument; and the result for the true argument is then obtained with an analytic continuation.

The series and expressions given below are taken from Abromowitz and Stegun (1972), Spiegel

(1968) and Boas (1966).

E.1 Struve Functions

The functions appearing in Table 4-I are the differences between the Struve functions and the

Neumann functions (Bessel functions of the second kind). Since the numerical evaluations of these

functions have different convergence properties, they must be evaluated separately and then

summed. For large arguments, the difference between the Struve and Neumann functions has an

asymptotic expansion.
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E.1.1 Ascending Series

The ascending series of the Struve function is

oo -(z/2)2k+n+1
H.(z) = Y (-) T (k+3/2) r (n+k+3/2) E-1

k=0
The product of the gamma functions is

r (k+3/2) r (n+k+3/2) = 2 k+1 (2k + 1)!! 2 n+k+i (2(n + k) + 1)!! E-2

2" 22(k+1) (2k + 1)!! (2n + 2k + 1)!!

where !! indicates the odd factorial,

(2k + 1)!! = 1.3.5 - (2k + 1) E-3

Substituting F-2 into E-1 gives the ascending series

2 00 (-z 2 )k
Hn zn (2k + 1)!! (2n + 2k + 1)!! E4

k=0

In particular, for orders 0 and 1:

2 z3 z5

HO(z) = , z - 12-32 + 12-32.52 - - E-5

H1(z) =7 - 12.32.5 + 12.32.52.7 - 1
We want to find the limit on the absolute value of the argument that can be used in this

series by first finding the largest term in the summation. The order of magnitude of this term

determines how many digits of precision there are in the series evaluation. For H0 , the series takes

this form,

2 00 (-Z2)k
HO = z -7 1: 1 (2k + 1)!! ]2 E-6

k=0

We express the denominator as



(2k + 1)! (2k + 1)!
(2k + 1)!! = (2k)! = 2k k!

For large k, we apply Stirling's formula to E-7:

(2k + 1)!
2k k!

-184-

E-7

((2k + 1)/e)2 k+l V2,r (2k + 1)

2 k (k/e)k V27r k

From here, we neglect the 1 in (2k + 1) to obtain, for E-8,

2 k](k+1) 
\ 2

Then the denominator of E-6 is given by

1 (2k + 1)!! ]2 ~
2kr (2k+2)
[e X2

Now we examine the kth term in the series, substituting for z its absolute value R

R2k R2k-t2 1 R e (2k+2) 1

1 (2k + 1)!! 12 - (2k/e)2 k+ 2.2 X R2 = [2k2 E-11

In order to find the maximum, we want to find the k for which the derivative of the series term

with respect to k vanishes. Equation E-11 is of the form

yUV where u = u(k = 2 2k+2

Differentiating with respect to k gives

dy 89 du 9 dv
dk = 9u dk + &9v dk =
v u1-1 u' + ln(u) U" v' = 0
v u' + ln(u) u v'= 0

Substituting E-12 into E-13, we obtain

-(2k + 2) I + 2u ln[= =0

If we approximate the logarithm term as being of order 1, then

E-8

E-9

E-10

and v = v(k) = 2k + 2 E- 12

E- 13

E-14
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In [] ~ -+ = e - R=2k E-15

Then the maximum term is

R2k e eR+2

[ (2k + 1)!! 12 -[2k- I 2 X22 R E-16

For a double precision computer program with 14 available digits, if the desired precision is 8

digits, then no more than 6 digits are available for the largest term in the series. Then we can

compute the maximum radius

eR+ 2

2R2 = 106 E- 17

The solution of E-17 gives a maximum radius of R = 18. A test of the ascending series with a

quadruple precision program verified that for R > 18, the asymptotic expansion is more accurate

than the ascending series.

E.1.2 Asymptotic Expansion

We define the function F,(z) as the difference between the Struve and Neumann functions:

F.(z) = H.(z) - Y.(z) E- 18

The asymptotic representation of this function is

1 P-1 r (k + 1/2) (z/2)-2k+n-1
FF(z - 2 T(n - k + 1/2) E-19

k=O

The series is truncated before the pt term, where the terms begin to grow in absolute value. For

the expression in E-19, this occurs when the index p equals the absolute value of the argument R.

When n = 0, E-19 becomes

1 2 1 i (2k - 1)!! (2k - 1)!! 2 (2k+1) E-20

F0 z)= z + Y! 2k V7 ( _1)k 2A: E2

k=1

By defining (-1)!! = 1, we can simplify E-20
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2 1  [(2k - 1)!! 2FO(z) = - -) zk E-21

k=O

When n = 1,

V7 = ! /2 (z/2)2 1 r 2 / 2 k (2k - 1)!! (2 /z)2k
Fr/2 + + -(-)k-1 r 2k-1/(2k - 3)!! J

k=2

Simplified, E-22 becomes

2 1 1 (2k - 1)!! (2k - 3)!!
F1(z) = 7r 1 + Z2 ~ (- Z2)k E-23

k=2
As stated previously, the asymptotic expansion is valid for arguments z with a positive real part.

When z has a negative real part we must apply analytic continuation.

E.1.3 Analytic Continuation

Mapping a point z from the right half plane to the left half plane, without crossing the

negative real axis, is shown in Figure E-1. In going from the first quadrant to the third, z is

multiplied by e-ll. In going from the fourth quadrant to the second, z is multiplied by ei.

The continuation rule for the Struve function is

H"(z eLir) = e~ir(n+1) Hn(z) = (-1)n+1 Hn(z) E-24

Hn(-z) = -(-1)" Hn(z)

For orders 0 and 1,

HO(-z) = -HO(z) E-25
Hl(-z) = Hj(z)

The continuation rule for the Neumann function is

Y,(z e~ir) = (-1)"[Y,(z) + 2( J,(z)I E-26

Then

Y (-z) = [Yo(z) + 2i JO(z)] E-27

Y1(-z) = -[Y,(z) ± 2i J1 (z)]
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Figure E-1: Mapping z from the Right Half Plane to the Left

z eiTh
eN

z e~ ~ .q

'1~> I
- -

0

Substituting E-26 and E-24 into the expression for F,(z), we obtain

Fn(z e±ir) = H.(z e-ir) - Yn(z ei) =

-- -(-1)[Y(z) ± 2o Jn(z)] =

-(-)"[Hn(z) + Yn(z) ± 2 J.(z)] =

(z)- Y,(z) + 2{Yn(z) i J,(z)}] =

-(-)"[Fn(z) i 2i {iJ(z) + i)Y,(z)}]

F (z e~ir) = -(-1)n[F±(z) t 2i H2"(z)]

where the Hankel function Hn(z) are defined by

I (z) = Jn(z)+ i Yn(z)

H (z) = Jn(z) - iY(z)
n n

E-28

E-29
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In summary, when mapping from the first to the third quadrant, the appropriate expression is

F.(- z) = -(-1)"[Fn(z) - 2i H (z)] E-30

When going from the fourth to the second quadrant, we use

Fn(-z) = -(-1)n[Fn(z) + 2i H2 (z)] E-31

Numerical evaluation of the Hankel function is given in Section E.3 below.

A 'plot of the functions F0 (z) and F1 (x) is shown in Figure E-2. The argument of the function

is real and the function is singular at z = 0 due to the singularity of the Neumann function.

Figure E-3 to E-6 show contours in the complex plane of the F function. Contours are shown for

imag(z) > 1.0 due to numerical difficulties of calculation near the branch cut. Contour lines are

plotted for increments of .02 and dotted lines are negative contours. Figure E-3 shows contours of

the real part of F0 (z) and Figure E-4 shows contours of the imaginary part of FO(z). Figures E-5

and E-6 show the real and imagiLary parts of F(z). The outstanding feature of these plots is the

waviness of the functions near the negative real axis. For the purposes described in this paper, we

know from Chapter 4 that the functions are never evaluated near the negative real axis.

E.2 Neumann Functions

E.2.1 Ascending Series

The Neumann functions must be evaluated numerically for addition to the Struve functions.

The ascending series for the Neumann function is

-n! (z/2)-n n-1 (z/2)k Jk(z) 2
Y,(z) 7= r (n - k) k! +7r{ln(z/2)- (n+1)}J(z) E-32

k=0

2 oo (n + 2k) Jn+2k(z)
7E ()k k (n + k)

k=1

where
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n-1 i
(n) =-y+ E k

k=1

n > 2

and -y is Euler's constant ( 0.577216 ). We define these coefficients

(k)

bk 2 k!

2i k 1
Sk =r j

j=1

2i
c = ( in (z/2) + I)

Applying the coefficients in E-34 to the ascending series E-32, we obtain these simplified series

YO(z) = -i ( c +
2 ( c - Sk

k=1

Y1 (z) = -i (z/2) c - r (2)
- i (z/2) Z

k=1

bk

k+ 1
S-i 

1

These series are valid for complex arguments with absolute values less than 10. For R > 10, we

use the asymptotic expansion.

E.2.2 Asymptotic Expansion

The asymptotic expansion of Y,(z) for large argument is

Y,(z) = V { P(n,z) sin x + Q(n,z) cos X }

where x = z - ( n/2 + 1/4 ) 7r and, with 4n 2 denoted by p,

((nz) = 1 - !1) ( - 9) + 1) 9) (p -z
P~nz)= - 2! (8z)2 +4! (8Z)4

25) (i - 49)

(p - 1) .(p - 1) (p - 9) (p - 25)
Q(n,z)=i 8z 3! (8z) 3  +

This series is truncated before the terms begin to increase, approximately when k = R.

asymptotic expansion for the Neumann functions is valid for

E-33

E-34

E-35

E-36

E-37

This

Re(z) > 0. The analytic
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continuation is given by E-26. The Bessel functions required for the continuation have this

asymptotic expansion

J,(z) = V 7 { P(n,z) cos x - Q(n,z) sin x } E-38

which only differs from E-36 by the exchange of cos x and sin x. Thus the continuation is

computed without the explicit evaluation of E-38.

E.3 Hankel Functions

Hankel functions appear in the analytic continuation of the F,(z) function, E-28. Since the

Hankel function is only required when R > 18, we only need the asymptotic expansion. The

expansions contain the polynomials P(n,z) and Q(n,z) given in E-37

2
H 1 (z) = VV { P(n,z) + i Q(n,z) } e'X

H2 (Z) { P(n,z) - i Q(n,z) } e-iX E-39

The analytic continuation of the Hankel functions is given by

HI (z ei") = -H (z)

HO(z eir) = H (z) + 2 H (z)

H (z ei,) = H2(z)

H (z eC") = [H'(z) + 2 H (z)]

1(z e-i") = 2 H (z) + H(z) E-40

H2(z e-ir) = -H (z)

H'(z e--ir) = -[ H (z) + HI(z

H,(z e-"r) =H,(z)
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Appendix F

Calculation of the Paraxial Approximation

The first and second derivatives of the exact stiffness of the halfspace and their limits as

k -+ 0 are given in this appendix.

F.1 Anti-plane Case

Recall from Chapter 3 the anti-plane stiffness,

K(k) = k s G = kG 1 - (wkC) 2 = G k2 - (wC) 2

At k = 0, Equation F-1 is

Gw
K(0) =i

The first derivative of F-1 with respect to k is

k G
K'(k) = k2 - (w|C,)2

It is clear from Equation F-3 that K'(k) = 0. The second derivative of F-1 with respect to k is

G (w|C,) 2

K"(k) = (k2 - (w|C,)2)3/2

At k = 0, Equation F-4 is

G C,
K"(0) = -i

The second-order approximation of the stiffness is then

G w k2 G C,
K(k) - i -- - i

Ue

F-1

F-2

F-3

F-4

F-5

F-6
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F.2 In-plane Case

The exact in-plane stiffness is

K(k)=G 1-re
kr k]
k ke]

2k]]
S[2k

where

.3= V1 - (w/C 8 k)2

r= 1 - (w/C, k)2

The first derivative of s with respect to k is

ds (w|C8 k)2

dk k V1 - (wC 8 k)2

de 1 - s2
dk= ks

Similarly,

dr 1 - r2

dk kr

Also, we calculate

d (ks)
dk

de 1 23

= Ie +k = 8 +-t

d (ks) 1
dk = s

and likewise,

d(kr)
dk =

Now consider the first factor

- 32

Fk) = 1 - -3rs

F-7

F-8

F-9

F-10

F-11

F-12

F- 13
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We take the first derivative

dF
dk =

de d (rs)
-2di -~ ra) + (1 - a2) dk

(1 - rs)2

The derivative of rs is

d(rs) dr ds 1-r 2  1 _s2
dk =i +r~df=k kr +r ks

d (rs) 1
dk =r __ IS2 (1 - r2) + r2 ( 8_ 2)]dk k-

Substituting F-9 and F-15 into F-14 gives

1-32 1
dF 28 ks (1 - r3) + ( 2) k 132 (1 - r2) + r2 ( 2)

dk(1- rs)2

dF (1 - q2 ) (r - 3)2
dk krs (1 - rs)2

Now we can complete the derivative of the stiffness matrix.

For the first diagonal term:

dF d(kr)
(kr) + F dk

(1 - S2) (r - 8)2

- krs (1 - rs)2 Ir + r (1 - r3) =

1 - R2

rs (1 - rs)2 { r (r - 8)2 + s (1 - rs) }

For the second diagonal term:

dF d (k) (1- 2 ) (r - 8) 2  S 82

(k dk kr(1-rs) 2 k+e( 1 -srs)=

1 - S2

rs (1 - rs)2 { s (r - .)2 + r (1 - rs)}

For the off-diagonal term:

dF (1- 2 ) (r - s) 2 k 1 32
dkk+F 2 kra (1 - rs)2 +1 rs - 2

F-14

F-15

F-16

F- 17

F- 18

F- 19
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1 - S2

rs (1 - rs)2 { (r - s)2 + rs (1 - rs) } - 2

The first derivative of the stiffness matrix is

1 - G 2 [(r -s)2 1/3
K' I - rs 1 - rs 1/Irs

1/rs

1/r +
/r ] 2G

18 - [2G F-20

We must now evaluate this expression in the limit when k -+ 0. For s and r, as k goes to

zero,

aw
r t CS k

The limiting values of these quotients are

lim
k -+4 0

lim
k - 0

1-s2 _i 2  1
1-rs -i 2 a

(r - s)2  i 2(a- 1)2 (1 - a)2

1-rs -ia a

1
lim = lim

k~-+0 k 0

1
= lim

k-0

1
s= 0

then the first matrix and the diagonal elements of the second matrix of F-20 vanish.

derivative of K when k -+ 0 is

1 - 2a
K'(0)= G a 1]

Now we evaluate the second derivative. We define the factor H:

(r - s)2
H = I _ rs

F-23

Hence, the

The derivative of H is

F-21

F-22

Since

F-24

F-25
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2 dr de d rs
dH 2(r-e) dk-dk I (1-re)+dk(r-) 2

dkI (I- rs)2

-2 (r - s)2 (1 + rs) (1 - rs) + (r - S)2
krs (1 - rs)2

dH (r - 3)2 1 (r - 3)2 - 2 (1 - rs)
dk = kre (1 - re)2

Other derivatives that we need are

d 1 - s 2

dk k s3

d 1/r 1 - r2

dk k r3

d 1|rs r2 + S2 - 2r 282

dk ~ k(rs)3

We now want to take the first derivative of the first derivative of the stiffness matrix given by

K [[GF [ 1/rsK'= GFHL 1/re 1/r
S1/r Ii

+111/e
22G]

2G

For the first diagonal term:

F'H FH' F'
S + e +FH(1/s)'+7+F (1/r)'=

(1 - 32) (r - 8)2 (r - 8)2+
krs (1 - rs)2 Is (1 - rs) +

F-27

F-28

1- 2 r(r - S)2 (r2 + s2 - 2)
1-rs krs2 (1 - rs)2

(r - 3)2 (1 - .2)

- (1 - rs) ks3

In the limit when k -+ 0, several terms vanish, since r and s appear with higher powers in the

denominator. The only terms that survive are

(1 -S2) (r - S)2(l - S2)

- 1-rs (1 rs) k 3 +

C, a

- r2

k r3

F-30

F-26

(1 -r2)
~ kr3 I

F-29

I s (1 - r2) + r2 (1 _ S2)1)

1
r +
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Ce a2 - 2a .C (2 - a)
1 W a2 Sw a

Then

,, 
C, 2 2 - a]]KJI(0) = -ipCOW a _]

For the second diagonal term:

F'H + FH' + F + F

(1 - 82)(r - S)2

krs (1 - rs)2
(r - S)2 11i
1- rs + ] +

1-s 2  (r - s)2(r 2 + 82-2) (r - s)2(1 - r2 )

1-rs kr2s (1 - rs) 2  - kr 3 (1 - rs)

Again, in the limit, only the last two terms survive:

~ ks I

1 [i 2(a - 1)2 (-a 2i 2 )
a -i2 a a3sj 3w|C,

Cs

aw
(1 - a)2

~a2+1

+ i 2 -]J
+ j sw|C,

i C,

= a-3 W (

iC, iC,

-a3u (2a - 1) = a3W (1 - 2a)

Then

SiC, 2 1
K 22(0) = iwpCI W as- (1 - 2a)

The off-diagonal term is

1 1
F'H + FH' + FH [ + F'

It can be shown that in the limit of k -* 0 all terms vanish. Hence

F-31

F-32

a2 - (1 - a)2 ) = F-33

F-34

F-35
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[ 21-C,2(2 - a)
K"(0) = ipwC 2 a 1 - 2a]

The paraxial approximation to the halfspace impedance matrix is then

1/ I]
(1 - 2a) k+Ga k

G C [-(2 - a 1
+ i 2aw [ (1- 2a)/a2]K(k) - i wpC,

F-36

F-37
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Appendix G

Proof that the Paraxial Approximation is Consistent
with the Clayton-Engquist Approximation

In this appendix, it is shown that the paraxial approximation of the halfspace stiffness

derived in Chapter 3 is consistent with the paraxial approximation of the wave equation employed

as an absorbing boundary by Clayton and Engquist (1977). The paper cited above shall be referred

to as C-E in the following sections.

G.1 Anti-plane Case

G.1.1 Clayton-Engquist Method

The differential equation for anti-plane motion is

82 v 82 v 1
X2 + a2= V G-1

8

If we assume a solution of the form

v = A ei(wt-kXz-kzz) G-2

then the dispersion relation is

w = C, (k 2 + k 2 )1/2 G-3

Solving Equation G-3 for k. gives

kz= (w|C,) (1 -(C 2 k 2 /w2) )1/2 G-4

When I C,kz/w I > 1, k, is imaginary. This corresponds to evanescent waves, which are physically

impossible in the undamped halfspace. In C-E, solutions to the wave equation are restricted to
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paraxial waves by expanding the right-hand side of Equation G-4 about small C,k,/w. This can be

accomplished with any rational expansion, including a Taylor series. Approximation A2 of C-E is

the second-order Taylor series expansion (here we choose the negative root of G-4 for consistency

with the coordinate system of this paper):

C, k z 1 [ I k/4) 
-

= - 1 - (Ckw) 2  G-5

G.1.2 Stiffness Method

Now consider the paraxial approximation of the stiffness presented in this paper for the anti-

plane case:

rv19
ry= Gz= iwpC, [, k,|w)2  G-6

The exponential dependence of v on z implies that the derivative of v with respect to z is equivalent

to multiplication by -ikz:

av

= -ikZv G-7

Substituting G-7 into the paraxial approximation gives:

1
G (-ikz) v = iwpC, 1 - 2 (C, kz/w)2 G-8

Simplifying this expression gives

G kz = -WPC, 1 C, kw)2

1 (C, k,/W)2 G-9

C,8 kz 1 ./)
C = -1 - 2 (C k|w)2

which is identical to Equation G-5.



-205-

G.2 In-plane Case

G.2.1 Clayton-Engquist Method

Let the vector of displacements be denoted by U (= {u,w}T). In matrix form, the wave

equation is

(2U (2U 82U 92U
=Di+Hoxaz+D 2 (9

where

D2= [C2]
P

H_1 = (C2 - C )P 1L 0J

The Fourier transform of Equation G-10 is

[I - Dl(k,|W)2 - H(k,|w)(kz/w) - D2 (kzIw) 2 U(w,kx,kz) = 0

Consider this form of an approximation:

82U 82U a2U a2U
9t 9z + C1  (+tC 2  8x+ Ca&=0

The Fourier transform of the approximation is

U(kz/w) = [C1 - C2 (k,/w) + C3 (k/w )2 U

Substituting Equation G-14 into G-13 gives

1I - D 1(kzIW) 2 - (k,Iw)H [C1 - C2(kz/w) + C3 (klw )2 - D 2 {C1 - C2 (kx/w) +
C3(k,/w)212 I U = 0

We can solve for the matrices in the approximation by matching the powers of (k./w). Matching

the constant terms gives

G-10

G-11

G- 12

G-13

G- 14

G-15



I-D 2 C = 0

C 1 = 1/2

G- 16

1/c,

Matching the linear terms gives

-HC 1 + D2 (C1 C2 + C2 C) = 0

CC 2 + C 2 C, = D 2HC

C 1C 2 C + C2 = D- 1H = (C2 - C2 )1 '2'1 2p a

G-17

|C21|Cp

Assume that

C2 = C

Then substituting G-18 into G-17 gives

C1C2Cy1 +

a Cpb|C 8 ]
COc/C, d

C ]

+ [ = (C;
p

It follows then that

2a =0 - a=0

(C,|C+1)b= CC2 _C2

C-C
(C,|CO+1)c= P&

p

2d=0 - d=0

b= C,

C-C,

C2 = (C, - C,)
0 1/C
1/C, C

which differs in sign from the C2 matrix of C-E. Matching terms in (k/w) 2 gives

-206-

G- 18

+ [Ca
C
CP

I/C
p

G-19

Then

G-20

G-21

C2 = 3
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-D 1 + HC2 - D2 (C2 + C1 C3 + C3 C1 ) = 0 G-22

2C

C 1 C3 + C3 C1 = D-1 (HC 2 - D 1 ) - 2

The right-hand side of the equation above is

C2 -C C* * 2_C2-CCcPc8 C- _c 8c-C
CC, a P 8* G-23

CPC,

C2C 2CC+ C2C -2CC+CC 2 - 2C C + C2
('PC. P P

CC, P =

CC 
CC-2C,

C, 
J

Since C1 is diagonal, C3 must also be diagonal. Then

C=1 Ce - 2C G2
C3 2 1 CP - 2C, 

G-24

Substituting a = C8 /C,, we have the matrices

C1 =' a]

1 - a1
C2 = a a G-25

C3 =2 1 - 2a

G.2.2 Stiffness Method

The paraxial approximation of this paper was derived with a coordinate system where the z

axis is positive upwards, away from the halfspace. On the other hand, the C-E approximation was

derived with the reverse coordinate system, with the z coordinate increasing into the halfspace (i.e.

"down"). Thus the diagonal elements of the stiffness matrix must be reversed in sign. The
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paraxial approximation of the stiffness is then

1-2a
+ ikG a -

ik2 GCO
~ 2aw I a - 2 I(1 -2 )0

In terms of the displacement vector U, the stress vector is

r, T
a z

IGI& + G-27
]U

X+2G I a

We substitute Equation G-27 for the stress vector in Equation G-26 and multiply through by iW.

Then we interpret iw as derivation with respect to t and -ik as derivation with respect to z-

G 1 (2U
Ox at

G 1 2U
+ X+2G I az8t

92U 1 - 2a[
at 2 - G a I- 1

I] 02
Ox at

12U
(1 - 2a)/a 2 J Ox2

Then, rearranging terms and dividing by X+2G, we obtain

[a2  1 2U 1 a ] 2LT1 Oz 0t = [ 1] at2

(1 - a) 1
a] a2U CP r a2(a - 2)

ax at ~ 2 1 -

G-28

G-29

I2U
2a Ox2

The approximation of the differential equation is

G-26

82U 1 1
Oz Ot = ~,

82 U (1 - a)
t2 - a I a

1 ]2U CP a-]8x t ~2

Comparing Equation G-30 with Equation G-13 and the matrices give in Equation G-25, we can see

that these paraxial approximations are identical.

12U
- 2a] Ox2 G-30

rxz = _()C -i pC a

GC2 a - 2
~2
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