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Abstract

In the first part of this thesis we present a new, geometric interpretation of the jump num-
ber problem on 2-dimensional 2-colorable (2D2C) partial order. We show that the jump
number of a 2D2C poset is equivalent to the maximum cardinality of an independent set
in a properly defined collection of rectangles in the plane. We then model the geometric
problem as a linear program. Even though the underlying polytope may not be integral,
we show that one can always find an integral optimal solution. Inspired by this result and
by previous work of A. Frank, T. Jordan and L. Vegh [13, 14, 15] on set-pairs, we derive
an efficient combinatorial algorithm to find the maximum independent set and its dual, the
minimum hitting set, in polynomial time. The combinatorial algorithm solves the jump
number problem on convex posets (a subclass of 2D2C posets) significantly faster than
current methods. If n is the number of nodes in the partial order, our algorithm runs in
0((n log n)2.5) time, while previous algorithms ran in at least 0(n9 ) time.

In the second part, we present a novel connection between certain sequencing problems
that involve the coordination of activities and the problem of factorizing integer numbers.
We use this connection to derive hardness results for three different problems:

" The Joint Replenishment Problem with General Integer Policies.

" The Joint Replenishment Problem with Correction Factor.

" The Problem of Optimal Clustering of Frequency-Constrained Maintenance Jobs.

Our hardness results do not follow from a standard type of reduction (e.g., we do not
prove NP-hardness), and imply that no polynomial-time algorithm exists for the problems
above, unless Integer Factorization is solvable in polynomial time.

Thesis Supervisor: Andreas S. Schulz
Title: Patrick J. McGovern Professor of Management
Professor of Mathematics of Operations Research



4



Acknowledgments

I would like to thank all those who have supported me during these 4 years.

First of all, I want to thank my family for their support. They have always been there,

in all my happy and not so happy times.

I want to thank my advisor, Andreas Schulz, for all his support during my PhD. studies.

It still amazes me how he always managed to find problems that I like, even though I am

extremely picky when it comes to research problems. The good relationship we had during

these four years was determinant in my enjoyable experience as a doctoral student.

Jose Soto was already a friend of mine before I came to MIT, and I do not think there is

enough space here to express how much I value his friendship now. A complete chapter of

this thesis is the result of nearly two years of work together. I also want to thank Giannina

Miranda, his wife, for organizing so many dinners and for being such a reliable friend.

I always enjoyed our regular outings with my classmates: Allison Chang, Sun Wei,

Phillip Keller, Matthew Fontana, Shubham Gupta and Mallory Soldner. I am particularly

grateful to Allison Chang for being such a great friend and for her help in the late stages of

my thesis.

I always liked research, but working straight for more than two hours was never my

thing. Going for coffee with David Goldberg to have an interesting discussion was always

the most fun way to have a break. He is not only the most enthusiastic researcher I have

ever met, he is also a very good friend, and helped me through the hard times at MIT.

Finally, I want to thank Juliane Dunkel for her support in the last couple of years. She

was always there to help me when I needed it. But more importantly, she became one of

my closest friends during my time in Cambridge.

Cambridge, December 2011 Claudio Telha



6



Contents

1 Introduction 11

1.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Some prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The Jump Number Problem 15

2.1 Partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Geometrical representation of some partial orders . . . . . . . . . . . . . . 20

2.3 The jump number of posets representable in the plane . . . . . . . . . . . . 22

2.4 The 2D2C posets and its subclasses . . . . . . . . . . . . . . . . . . . . . 29

2.5 A linear programming algorithm for 2D2C posets . . . . . . . . . . . . . . 36

2.6 A combinatorial algorithm for 2D2C posets . . . . . . . . . . . . . . . . . 45

2.7 Implementation of the combinatorial algorithm . . . . . . . . . . . . . . . 49

2.8 The maximum weighted bump problem . . . . . . . . . . . . . . . . . . . 51

2.9 The related work: point-interval pairs and set-pairs. . . . . . . . . . . . . . 58

3 The Joint Replenishment Problem 61

3.1 Mathematical formulations of the JRP . . . . . . . . . . . . . . . . . . . . 63

3.2 Some remarks about approximability and complexity . . . . . . . . . . . . 70

3.3 Some differences between GI and GICF . . . . . . . . . . . . . . . . . . 71

3.4 A quick tour on the JRP . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 An approximation algorithm for the JRP . . . . . . . . . . . . . . . . . . . 77

3.6 An FPTAS for the GI model . . . . . . . . . . . . . . . . . . . . . . . . . 84



4 Synchronization, periodicity and Integer Factorization

4.1 Some background on number theory . . . . . . . .

4.2 The complexity of factoring integer numbers . . . .

4.3 Using the IFP to prove hardness . . . . . . . . . .

4.4 Application: The fixed base GI problem . . . . . .

4.5 Application: The Clustering of Maintenance Jobs. .

4.6 Application: The fixed base GICF problem . . . .

87

. . . . . . . . . . . . . 8 7

. . . . . . . . . . . . . 8 9

. . . . . . . . . . . . . 9 0

. . . . . . . . . . . . . 9 2

. . . . . . . . . . . . . 9 5

. . . . . . . . . . . . . 10 1



List of Figures

2-1 A bipartite set of precedences. . . . . . . . . . . . . . . . . . . . . . . . . 16

2-2 A geometric representation of precedences . . . . . . . . . . . . . . . . . . 17

2-3 Hasse diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-4 A 2-dimensional poset and its Hasse diagram. . . . . . . . . . . . . . . . . 21

2-5 A 2-dimensional 2-colorable poset and its Hasse diagram . . . . . . . . . . 22

2-6 Linear extensions of 2D2C posets and their corresponding bumps . . . . . . 24

2-7 Proof of Lemma 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2-8 Proof of Lemma 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2-9 Convex chains are rectangles for 2-dimensional posets . . . . . . . . . . . 27

2-10 Splitting operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-11 A bipartite 2-dimensional poset and its strong ordering . . . . . . . . . . . 30

2-12 A convex poset in non-rook representation . . . . . . . . . . . . . . . . . . 32

2-13 A geometrical representation of a bi-interval poset . . . . . . . . . . . . . . 33

2-14 A 2D2C poset in orthogonal-ray form . . . . . . . . . . . . . . . . . . . . 34

2-15 A graph in circular arc representation. . . . . . . . . . . . . . . . . . . . . 35

2-16 Intersecting rectangles correspond to crossing edges. . . . . . . . . . . . . 36

2-17 A 2D2C poset with non-integral independent set polytope. . . . . . . . . . 37

2-18 Corner intersections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-19 Proof of Proposition 2.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-20 Corner-free intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2-21 Solving minimum chain partitions using matchings . . . . . . . . . . . . . 44

2-22 The right-top order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2-23 Proof of Theorem 2.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



2-24

2-25

2-26

3-1

3-2

3-3

3-4

3-5

4-1 CMJ model . . . . . . . . . . . . . . ....

Proof of Theorem 2.6.1 . . . . . . . . . . . .

Proof of Theorem 2.8.1 . . . . . . . . . . . .

Proof of Theorem 2.8.2 . . . . . . . . . . . .

Example data . . . . . . . . . . . . . . . . .

Example data (cont.) . . . . . . . . . . . . .

General Integer model with correction factor .

Variants of the stationary JRP . . . . . . . .

Economic Lot Sizing model . . . . . . . . .

. . . . . . . . . . . . . . . 4 8

. . . . . . . . . . . . . . . 54

. . . . . . . . . . . . . . . 56

. . . . . . . . . . . . . . . 62

. . . . . . . . . . . . . . . 62

. . . . . . . . . . . . . . . 67

. . . . . . . . . . . . . . . 69

. . . . . . . . . . . . . . . 73

. . . . . . . . . . . . . . . 96



Chapter 1

Introduction

This thesis considers three problems, one from Partial Order Theory and the other two

from Operations Management. The main focus is on the question of whether there are

theoretically efficient algorithms to solve them.

The most widely accepted notion of a theoretically efficient algorithm is that of a poly-

nomial time algorithm. Given a function f : Z+ - Z+, an algorithm c/ runs in time

0(f(n)) if there is a constant c such that the running time of d on instances of encoding

size n is at most cf(n), for all n greater than a constant no. The class of decision problems'

that can be solved with an O(f(n))-time algorithm, where f(n) is a polynomial function

of n, is denoted by P. The fact that P only considers decision problems is not a major

limitation, as most problems can be written as decision problems for this purpose.

Identifying P with the class of problems admitting efficient algorithm is not a statement

exempt of criticism, as an algorithm with running time n30 is hardly efficient in practice.

However, most interesting problems solvable in polynomial time are eventually solved with

a fast polynomial algorithm2 . For example, the first polynomial algorithm to asymptotically

approximate the volume of a polyhedron in R' runs in time 0(m23 ) [11]. The ideas intro-

duced in this algorithm were subsequently improved in a sequence of papers ending with

an 0(m4) algorithm for the same problem, ignoring logarithmic factors [28].

The theory of NP-completeness revealed that many interesting problems in Combinato-

Problems where the output is either yes or no
2Say, 0(n4) with a relatively low constant c hidden in the 0(.) notation



rial Optimization and Operations Research are NP-hard, a statement that implies that they

are unlikely to be in P. The NP-hardness of a problem not only shows its inherent difficulty,

but also gives evidence that approximate algorithms are necessary. But for many problems,

it is still open whether they admit polynomial time algorithms or if they are NP-hard.

1.1 Summary

In Chapter 2 of this thesis we provide efficient algorithms to compute the jump number

of 2-dimensional 2-colorable partial orders. The jump number is a constant associated to

each partial order. We show that for the class of 2-dimensional 2-colorable partial orders,

this constant can be computed in polynomial time. More precisely, we provide an 0(n 8)

time algorithm based on linear programming followed by an 0(n 2 5 log n) algorithm that

exploits the combinatorial structure of the problem.

These algorithms allow us to extend the classes of partial orders for which the jump

number can be computed in polynomial time, as well as to provide a significantly faster

algorithm for the class of convex partial orders, a subclass of 2-dimensional 2-colorable

partial orders where prior to our work, the fastest algorithm for the jump number ran in

0(n9) time [10].

In Chapter 4 of this thesis we show that three optimization problems in Operations

Management, the Joint Replenishment Problem with General Integer Policies, the Joint

Replenishment Problem with Correction Factor and the Clustering of Frequency Con-

strained Maintenance Jobs are unlikely to have polynomial time algorithms. For these

results, we introduce a notion of hardness weaker than NP-hardness, but still enough to im-

ply that polynomial time algorithms are unlikely to exist. The hardness results also reveal

an interesting connection between those problems and the problem of factorizing integer

numbers. Finally, these results support the use of heuristics to solve these problems. In

Chapter 3 we provide a fully polynomial time approximation scheme for the Joint Re-

plenishment Problem with General Integer Policies. This is a family of approximation

algorithms that allow to approximate the optimal objective value to any desired, but fixed,

accuracy in polynomial time.



1.2 Some prerequisites

This thesis assumes that the reader has basic familiarity with Linear Programming, basic

Graph Theory and the notions of NP-complete and coNP-complete problems. A basic

exposition on these subjects can be found in [241 Here, we briefly describe some particular

results of Linear Programming that will be useful for us.

Linear programming is the problem of optimizing a linear function in R" subject to

m linear inequalities. It can be written as max{cx : Ax < b}, where A E R1nxn, b E R' and

c E Rn. Linear programming is a useful tool to efficiently solve, in theory and practice,

many problems in Combinatorial Optimization and Operations Research. However, linear

programs do not explicitly exploit the structure of the problems they model, leaving open

the possibility of faster polynomial time algorithms.

The dual of the primal linear program max{cx: Ax < b} is the program min{by: yA

c,y > 0}. The Theorem of Strong Duality guarantees that the optimal solution for both

programs (when they exist) have exactly the same value. In particular, any feasible solution

x for the primal and any feasible solution y for the dual satisfying cx = by are optimal for

the primal and the dual, respectively. In other words, duality is a certificate of optimality.
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Chapter 2

The Jump Number Problem

In this chapter, we study an optimization problem coming from partial order theory, the

Jump Number Problem. Our most important contribution is a collection of efficient al-

gorithms for some well studied instances of this problem. These algorithms are described

geometrically, and are supported by several techniques from combinatorial optimization.

Most of the results introduced here are joint work with Jose A. Soto [44, 43].

An example

The Jump Number Problem can be stated as a scheduling problem. Suppose that we have

to process six tasks labeled a, b, c, d, e, f sequencially, where some tasks have precedence

constraints:

" Task d cannot be scheduled before tasks a and b have been completed.

" Task e cannot be scheduled before tasks a, b and c have been completed.

" Task f cannot be scheduled before task c has been completed.

Several schedules comply with these precedences. For example, we could sort them (from

first to last) in the order a -± b - c -- d -± e -- f or in the order a -+ b -+ d - c -+ f -4 e.

In the Jump Number Problem we aim to find the schedule minimizing the total delay

between tasks. This delay is the total time "wasted" between the completion of a task and

the beginning of the next one. We assume that the only consecutive pairs of tasks that



produce a delay are those not linked by a precedence constraint. In those cases the delay is

equal to 1. For example, there is no delay if we schedule a and d consecutively, but there

is a delay of 1 unit of time if we schedule a and b consecutively.

If we decide to schedule the tasks in the order a - b -± d -+ c -4 f -s e, the pairs of

consecutive tasks linked by a precedence constraint (b -> d and c -+ f) are called bumps.

In contrast, the pairs not linked by a precedence constraint (a -+ b, d -- c and f -- e) are

called jumps. So this schedule has 3 jumps and 2 bumps. It is not hard to see that this

schedule minimizes the number of jumps (which is exactly the total delay) and therefore

this schedule is the optimal solution to this jump number instance. A non-optimal solution,

for example, is the schedule a -- b --+ c -> d - e -± f, with 5 jumps and 0 bumps.

In our example, the number of bumps plus the number of jumps is equal to 5 for every

schedule, so it follows that minimizing the number of jumps is equivalent to maximize the

number of bumps. This simple property is a key idea of this chapter, since we consider

instances of the Jump Number Problem for which maximizing the number of bumps can be

interpreted as a geometrical problem. Let us see some of the ingredients of this geometrical

interpretation. We initially use a directed graph to visualize the precedences, with nodes

representing tasks and arcs representing precedences:

d e f

a b c

Figure 2-1: A bipartite set of precedences.

Note that every arc starts with a task from {a, b, c} and ends with a task from {d, e, f}.

We color white the nodes {a, b, c} and we color gray the nodes {d, e, f} to emphasize

this distinction between the nodes. This is a very strong property: the fact that the nodes

can be bi-colored is equivalent to say that the set of precedences is bipartite. Note that

with bipartite instances we cannot infer implicit precedences using transitivity. For non-

bipartite instances, implicit precedences must be taken into account when computing the

jump number.



But so far there is no geometry involved. If we now position the nodes as indicated

in Figure 2-2, we see that arcs pointing towards the north-east, starting at a white point

d
e

a

b f

C

Figure 2-2: A geometric representation of the precedences in Figure 2-1.

and ending at a gray point are exactly the precedence arcs. One of the main results of this

chapter shows that finding the schedule maximizing the number of bumps (i.e. minimizing

the number of jumps) is equivalent to find the maximum number of disjoint rectangles

having the precedence arcs as diagonals.

Several well known families of bipartite precedences can be represented using this geo-

metric method. For these families, we design new efficient algorithms for the Jump Number

Problem.

2.1 Partial orders

The role of tasks and precedences in the example we just showed corresponds to what

in combinatorics is called a partially ordered set. And in the same context, schedules

correspond to linear extensions. In this section we give a precise definition of the Jump

Number Problem from the perspective of partial order theory. We then study in detail a

particular family of partial orders that admits a geometric representation from where we

can compute the jump number efficiently.

Definitions

A partial order - on a finite set X is a binary relation that is reflexive, antisymmetric and

transitive on X. It becomes a total order if, additionally, every pair of elements u, v E X



is comparable, that is, either u -< v or v -< u holds. We use u ~ v to denote comparable

elements.

A pair P = (X, -), where < is a partial order on X is called a partially ordered set, or

just poset. A linear extension of P is a poset (X, -<L) where SL is a total order on X which

is compatible with -, that is, u -< v implies u <L v for every u, v E X. The set of linear

extensions of P will be denoted by Yp.

Colloquially, we translate u -- v as "u is smaller than v under -<". Similarly, we say

that u is strictly smaller than v under -_ if u is smaller than v but u and v are not equal. We

denote this by u - v. A chain of a poset P = (X, _<) is a subset X' C X such that (X', - i),

the restriction of the poset P to X', is a total order. A convex chain is a chain X' that has

no other elements in between, that is, if u -3 v -< w, and u, w E X', then v E X'.

Finally, a poset P = (X, -) is bipartite if X can be written as the union of two disjoint

sets X = A U B so that u -< v implies u E A and v E B.

Basic representations of a partial order.

Every poset P = (X, <) can be represented using a directed graph where each element of X

is represented by a node and each comparison u -< v is represented by a directed arc from u

to v. We call this the natural representation of P.

The adjacency matrix representation of a partial order P = (X, <) enumerates the

elements of X, say X {x1 ,x2 ,... ,xiXI} and represents P using a binary matrix MP of size

IX x IX1, where M = 1 if and only if xi -< x. When the poset is bipartite, say X = A U B,

it is sufficient to provide the submatrix of MP associated to A x B only. We call this a

biadjacency matrix representation.

But so far none of these representations use the properties of the partial orders. In the

Hasse diagram, we represent the poset using a directed graph where nodes become ele-

ments, and arcs become comparisons, but the Hasse diagram does not include comparisons

that can be inferred by using transitivity. More precisely, u -< v is drawn in the Hasse di-

agram if and only if there is no element w so that u -< w -< v. We say that v covers u in

this case. The advantage of this representation is that it is easier to visualize and is more



compact than the standard graph representation. Figure 2-3 shows two Hasse diagrams.

1 VT
P Hasse(P) P Hasse(P)

Figure 2-3: Some Hasse diagrams, where a directed arrow from u to v indicates that
v covers u. In the graphical version, the arrows always point upwards, so they can be
deleted.

Another characterization of a poset is based on total orders. We can see a linear ex-

tension L of a poset P as a way to decide the comparisons not established under P. It is

possible to prove [47] that if u and v are incomparable under P, then there is a linear exten-

sion of P where u is smaller than v, and another one where v is smaller than u. Therefore

we can implicitly define P as the set of comparisons that are simultaneously compatible

with all the linear extensions of P, that is

P_ = L,

where the intersection of posets with the same ground set preserves the ground set and

intersects the partial orders.

Given the last property, it is natural to ask what is the shortest representation of P as

the intersection of linear extensions. The dimension of a poset P is the minimum number

of linear extensions of P whose intersection is P. For example, a poset where every pair

of elements is comparable (a total order, or chain) has trivially dimension 1, while a poset

where no pair of elements is comparable (an antichain) has dimension 2, because it is the

intersection of any total order of the elements and its reverse

The structure of a poset is determined by the comparable pairs and by the relative order

of each comparable pair. But even if the relative order is missing, the comparable pairs

are still enough to study several poset properties, the jump number among them [19]. The

'By reverse, we mean that "smaller than" becomes "larger than".



comparability graph G(P) of a poset P = (X, -) is the undirected graph with vertex set

X, and where there is an edge between u and v if and only if u and v are comparable. Note

that a comparability graph does not contain enough information to recover the partial order,

and therefore is not a representation of the partial order.

2.2 Geometrical representation of some partial orders

In this section we introduce two classes of a partial orders. What they have in common

is that elements can be identified with integral points in Z' and that convex chains can be

seen as hyper-rectangles. We start by formalizing a particular notion of representation. An

embedding of a poset (X, -x) on a poset (Y, -y) is a function f : X -± Y, where u -x v if

and only if u, v E X and f(u) -y f(v). We can identify (X, -<x) with (f(X), -<y f(x)) as

long as we only study poset properties.

We will define each of these posets geometrically, and then prove the equivalence to

their classical definitions. We do this just for clarity, as by default we will see posets

geometrically.

In this section, a point u e R' will be denoted as u = (u I, u2, ... ,Um)-

The m-dimensional partial order

An m-dimensional partial order P is a collection of points in Z"m with the partial order zm

defined as follows:

u zm v ifandonlyif uivifori = 1,...,m.

The following lemma "justifies" the term poset dimension.

Lemma 2.2.1 ([47]). Every poset P = (X, - ) can be embedded in (Z', zm), for some m.

The smallest value of m is equal to the dimension of the poset.

Proof Let Li = (X, '), i = 1, ... m be linear extensions of P with nO Li = P (in partic-

ular m can be the dimension of P). For each u C X, construct a vector u' E Z" where u is



Figure 2-4: A 2-dimensional poset and its Hasse diagram.

equal to the position of the element u in the linear extension Lt. Clearly, u -< v if and only

u <v and therefore, ui -< v if and only if u' <Zm v'. Therefore, f(u) = u' for u E X defines

an embedding of P in (Z"l, zm). The inverse of this construction shows that if P can be

embedded in (Z', zm), then the dimension of P is at most m. D

In this work, it is convenient to add an additional assumption to the geometrical repre-

sentation that is implicit in the proof of Lemma 2.2.1.

Lemma 2.2.2. Every m-dimensional partial order with k elements can be represented in

({ 1, 2, ... , k}', zm) so that no two points share a common coordinate value. We call this

a rook representation2 of an m-dimensional poset.

As an example, the 2-dimensional poset in Figure 2-4 is in rook representation.

The m-dimensional 2-colorable partial order

We now define a bipartite version of the m-dimensional poset. To the best of our knowledge,

this class has not been defined before.

An m-dimensional 2-colorable partial order is a collection of points S C Z' with a

coloring function f : S -* {white, gray} and the following partial order: u -< v if and only

if f(u) = white, f(v) = gray and u <Zm v.

The following lemma is a simple extension of a result in Soto [43].

Lemma 2.2.3. An m-dimensional 2-colorable partial order has dimension at most m + 1.

2In chess, rooks placed in those positions would not block each other.



/
Figure 2-5: A 2-dimensional 2-colorable poset and its Hasse diagram.

Proof If white is mapped to -1 and gray is mapped to 1, then the constraint f(u) white,

and f(v) = gray can be written as f(u) < f(v). This allows us to replace the coloring

condition by a partial order constraint in one additional dimension. El

Again, we can assume that no two points share the a common coordinate value. This is

shown in the same way as in Lemma 2.2.2 for m-dimensional posets.

Lemma 2.2.4. Every m-dimensional 2-colorable partial order with k elements can be rep-

resented in ({1,2,... ,k}", <n) and the same coloring function, so that no two points

share a common coordinate value. We call this a rook representation of an m-dimensional

2-colorable poset.

The 2-dimensional 2-colorable poset in Figure 2-5 is in rook representation.

2.3 The jump number of posets representable in the plane

The jump number has a simple geometrical interpretation when the partial order is 2-

dimensional 2-colorable. Since they are the main subject of this chapter, we will call them

2D2C posets.

Since we will work in the plane, we will use some ad-hoc notation. We denote the

coordinates of Z2 as x and y, so that a point p in the plane can be written as (px, py). For

any set S E Z2, the projection {sx : s c S} of S onto the x axis will be denoted by Sx. We

define Sy, the projection onto the y axis, in a similar way.

Given two sets S and S' of Z2, we write Sx < S' if the projection Sx is to the left of

the projection S', that is, if px < p' for all p c S, p' E S'. We extend this convention to



S, > S', S, < S' and S, > S', as well as to the projections onto the y-axis. Given two sets S

and S' of Z2, we write Sx < S' if the projection S, is to the left of the projection S', that is,

if px < p' for all p e S, p' c S'. We extend this convention to Sx > S', Sx < S' and Sx > S',

as well as to the projections onto the y-axis.

Finally, we denote by F(a, b) the rectangle with bottom-left corner a E A and upper-

right corner b C B. That is, F(a, b) ={p c R2 : ax < px < bx, a < py < by}. You can

assume that this definition only holds for a and b such that ax < bx and ay < by.
For notational convenience, we will describe a 2D2C poset as a set S = A U B C Z2

where A are the white points and B are the gray points. We will always assume by default

that the points of the poset are in rook representation. Although A U B is enough to

describe the partial order, we explicitly state the comparabilities using a set M of geomet-

ric rectangles that identifies each comparability a zn b, with a E A and b E B using the

rectangle F(a, b) having the segment between a and b as diagonal. In other words,

M {f(a, b) : a E A, b E B and a <z2 b}.

We call a and b the defining vertices of F(a, b). We are now ready to interpret the jump

number of 2D2C posets geometrically, using the set M. We say that R = F(a, b) and

R' = F(a', b') intersect if the rectangles R and R' have a non-empty geometric intersec-

tion. A collection of pairwise not-intersecting rectangles is called an independent set of

rectangles.

Lemma 2.3.1. For any two rectangles R = F(a,b) and R' = F(a',b'), with a,b,a',b' all

distinct, the following three statements are equivalent:

1. The rectangles R and R' intersect.

2. The following four comparabilities hold: a <z2 ba <z2 b',a' <z2 b and a' z2 b'.

3. There is no linear extension of ({a, b, a', b'}, <Z2) with bumps between a and b, and

also between a' and b'.

Proof Let us prove this in three steps:



* (1) =4 (2): Note that if there is a point p E RnR', then max(ax, a') px min(bx, b')

and max(ay, a;l) < py < min(by, b'), so the four comparabilities hold.

* (2) = (3): The only two possible linear extensions satisfying the requirement of (3)

are a -+ b -+ a' -+ b' and a' -* b' -± a -+ b. Both violate one of the four comparabil-

ities in (2).

* (3) :z> (1): By contradiction, suppose that R nR' = 0. Then one of the rectan-

gles must be either to the left or above the other one. Suppose R is located to the

left of R'. Then, it is easy to check that a -- b -- a' -- b' is a linear extension of

({a, b,a',b'}, z2). If R' is located to the left of R, then a' -+ b' -+ a -+ b is a linear

extension of ({a, b, a', b'}, z2). Both cases are therefore incompatible with (3). A

similar argument can be used when one rectangle is above the other one.

6 8

2

7 a 4

10

Figure 2-6: A linear extension (numerically ordered) of a 2D2C poset and the corre-
ponding bumps.

Now suppose P = (A U B,M) is a 2D2C poset. Using Lemma 2.3.1, it is easy to show

that the bumps of any linear extension of P corresponds to a set of disjoint rectangles in M.

Surprisingly, any collection of disjoint rectangles in 9 corresponds to a subset of bumps

of some linear extension of P. Although this result follows from a characterization of the

jump number of chordal bipartite posets [34], here we present a self-contained geometric

proof.



Lemma 2.3.2. Let Ri = F(ai, bi), i = 1,... , m be a collection of disjoint rectangles. Let

A = {ai, .. , am}, B = {bi,..., bm} and Y = Then there is a linear extension

of P = (A U B, 9) where each Ri is a bump.

Proof Consider the directed graph H with node set 2, and directed arcs from Ri to Rj if

and only if ai <z2 bj and i # j.

Figure 2-7: The directed graph H in the proof of Lemma 2.3.2.

If H is acyclic, then the transitive closure of H is a partial order, so we can pick any

linear extension of this transitive closure, say Rj, -± Ri2 - ... - Rj,, and the order aj1 -+

bi- ± aJ2 -- bj 2 -- ... -+ a, - b1 , will be a linear extension of P where each Ri is a bump.

This follows from the fact that every comparability in this order is compatible with P, by

construction.

The remainder of the proof is a geometric argument that shows that H is acyclic. Sup-

pose, by contradiction, that there is a cycle in H. Relabeling if necessary, let R, -+ R 2 -+

. .. -- Rk 1 -+ Rk be a cycle with minimum number of nodes. We divide the analysis in two

cases:

" Suppose first that k = 2. Then Lemma 2.3.1 implies that either al z2 b2 or a2 iz2

bi, which contradicts the definition of H.

" Suppose, on the contrary, that k > 3. For every i from 1 to k, it is easy to see that

at :z2 ai+1, where addition must be read cyclically in { 1,2,.. . , k}. Otherwise, we

would have that ai z2 bi z2 ai+1 2 bi+2, and therefore the cycle is not the short-

est. For the same reason, we also have that ai iz2 bi+2 for every i (cyclically).

Suppose now that (al), < (a2)x. We can then prove that (a2)x < (a3)x. To see this,

note that ai Iz2 b3 and a2 <z2 b 3 implies that b3 must live in the region marked
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Figure 2-8: Regions in proof of Lemma 2.3.2

in Figure 2-8, and therefore (a2)x < (a3)x. Iterating this argument, it follows that

(ai)x < (ai+1)x implies (ai+1)x < (ai+2)x. But then ak z2 ai, which contradicts the

fact that ak z2 b1 .

The following corollary is immediate:

Theorem 2.3.1. The jump number problem of a 2D2C poset P = (A U B, -) is equivalent

(under polynomial time reductions) to the maximum independent set of rectangles problem

in M.

Proof We can assume that P is in rook representation. Let M' be a maximum independent

set of rectangles in M. Using Lemma 2.3.1, there is a linear extension L of a subset of A U B

where each rectangle in M' is a bump. Extend this to a linear extension of P, by appending

every point in A not already in L to the beginning of L, and every point in B not already

in L to the end of L. This proves that there is a linear extension with at least |,'1 bumps.

On the other hand, again by Lemma 2.3.1, the bumps of any linear extension correspond to

an independent set of rectangles, and therefore any linear extension must have at most 1 'l

bumps. O

Using topological sort, finding a total order of an acyclic graph can be done in linear

time in the number of arcs, which is 0(n 2 ) for a 2D2C poset with n points. Therefore,

the reduction of the jump number problem to an independent set of rectangles problem is

unlikely to be the bottleneck of any algorithm solving the jump number via this equivalence.



The case of 2-dimensional posets

For 2-dimensional partial orders, a geometric characterization using independent sets of

rectangles was given by Ceroi [6]. Let P = (S, Z2) be a 2-dimensional poset, and let W be

the set of convex chains of P. Ceroi associates to each convex chain C E W with smallest

element u and largest element v the rectangle R {p E R2: u <R2 p <R2 v}.

Figure 2-9: Rectangles corresponding to convex chains in a 2-dimensional poset. For
Theorem 2.3.2, the weights of every rectangle is equal to 1, except for the thick rect-
angle that has weight 2.

Using Lemma 2.3.1, it is easy to prove that the set of (maximal) convex chains of any

linear extension correspond to sets of disjoint rectangles. This, together with a statement

similar to Lemma 2.3.2 translate into the following result:

Theorem 2.3.2 (Ceroi [6]). Let P = (S, Z2) be a 2-dimensional partial order Then the

jump number of P is equivalent (under polynomial time reductions) to a maximum weighted

independent set of the rectangles associated to convex chains. The weight assigned to a

convex chain is the number of points in the chain minus one.

The proof is quite similar to the proof of Theorem 2.3.1 for 2D2C posets. The weights

chosen by Ceroi are quite natural, since a convex chain C E ' is a collection of ICI - 1

bumps. In the case of 2D2C posets, convex chains have length 1 or 2 and therefore we

obtain an unweighted3 problem.

What happens after dimension 2?

For both, m-dimensional and m-dimensional 2-colorable posets with m > 3, the reduction of

the jump number problem to an independent set of convex chains problem is not applicable.

3weights are 0 or 1 only.



While it is true that linear extensions induce independent sets of hyper-rectangles having

weight identical to the number of bumps, not every independent set of hyper-rectangles

can be transformed into a linear extension where those rectangles are convex chains. An

example is the following set of three parallelepipeds in dimension 3:

1. The first parallelepiped determined by (1, 3, 1) and (4,4,2).

2. The second parallelepiped determined by (3, 1, 1) and (4,2,4).

3. The third parallelepiped determined by (1, 1, 3) and (2,4,4).

It is easy to see that they are disjoint. But since (1, 3, 1) Z3 (2, 4, 4), (3, 1, 1) z3

(4,4,2) and (1, 1,3) Z3 (4,2,4), there is no way to sort the extremes of those paral-

lelepipeds into a linear extension.

Why rook representation?

In most of this thesis, the use of a rook representation helps the intuition, and so it will be

assumed by default. There are cases, however, where using a more flexible representation

is more natural. One example is the following. Let us say that a 2-dimensional 2-colorable

poset P = (A UB, ?) has two elements in B that have exactly the same comparabilities with

the elements of A. It would be convenient to match the two elements in B to exactly the

same point in the plane.

We defined the geometric representation so that each element in the poset is a different

point in the plane. However, it causes no contradiction to assume that A and B can be non-

disjoint multisets. Points assigned to multiple elements can be split using the operation

indicated in Figure 2-10.

We will use this more flexible geometric definition in Section 2.4, when we introduce

biconvex, convex and bi-interval posets. It is indeed possible to prove most of the results

of this chapter under this definition, but this adds many technical details that makes the

exposition lengthier. For example, rectangles associated to bumps can now be degenerated

(points or segments).
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Figure 2-10: Splitting operations. The left side shows how to split points from the
same side of the bipartition (in the example, points from A). The right side shows how
to split points from different sides of the bipartition.

2.4 The 2D2C posets and its subclasses

Many important classes of partial orders are subclasses of 2D2C posets. In this section, we

give priority to the geometric definition of these classes, even though none of them were

initially conceived this way. We do this to keep the geometric intuition as the fundamental

viewpoint. Eventually, we will go outside the class of 2D2C posets in order to briefly

describe the state of the art of this problem. In this section, and all the subsequent ones, we

reserve the variable n to denote the number of elements in the poset we are working on.

Given any particular class of posets, the recognition problem is the one of deciding

whether a particular poset belong to this class. The class recognition problem is usually

applied to posets given in natural representation, not the geometric one.

The smallest subclass: bipartite 2-dimensional posets

Since 2D2C posets are a bipartization of 2-dimensional posets, it is reasonable to con-

sider the class of 2D2C posets for which this bipartization is unnecessary. A bipartite

2-dimensional poset P = (A U B, -4) is a 2D2C poset in which A and B are antichains.

Equivalently, a bipartite 2-dimensional poset is a bipartite poset that is simultaneously 2-

dimensional.

One of the most traditional characterizations of bipartite 2-dimensional posets is the

following:

Lemma 2.4.1 ([5]). A bipartite poset P = (A U B,M) is 2-dimensional if and only if we can

enumerate A - {aI,a 2 ,. ... ,alAI} andB = {bj,b 2 ,...,b|B|} so that if ai -p bj and ak _p b,

for some i < k and 1 < j, then ai -<p bj and ak -'<p bj must also hold. This property is called



strong ordering.
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Figure 2-11: A bipartite 2-dimensional poset and a possible strong ordering.

The intuition behind this lemma is easy to see geometrically (see Figure 2-11): if A and

B are antichains in rook representation, then sorting the points according to the coordinate

x immediately gives a strong ordering.

This class has strong structure, and the jump number can be solved extremely effi-

ciently. Steiner and Stewart gave an O(JVJ) algorithm [45], while later on Fauck [12] and

Brandstadt [4] gave an O(n) algorithm. In Section 2.8 we describe an algorithm that solves

a generalization of the jump number in time O(n), using an approach similar to the one of

Brandstadt.

As we will discuss later, recognizing bipartite 2-dimensional posets in natural repre-

sentation can be done in polynomial time, as it is also easy to construct the geometric

representation from the natural representation or even from the strong ordering.

Convex and biconvex posets

In a bipartite 2-dimensional poset P = (A U B, M), if we use the strong ordering of A and

B to index the rows and columns of the biadjacency matrix MP, we obtain a matrix where

in every row and column the set of ones form a consecutive block (i.e. with no zeros in

between). A matrix with this property is called biconvex. When only the set of columns

satisfy this property, the matrix is called convex.

Not every biconvex biadjacency matrix comes from a bipartite 2-dimensional poset. An

example is the matrix



0 1 1 0

0 0 1 1

.4
which is clearly biconvex, but it does not admit a strong ordering

It is natural to define (convex) biconvex posets as the class of bipartite posets with a

(convex) biconvex biadjacency matrix. These two classes are not equivalent. For example,

the biadjacency matrix

1 1 0 0

M'= 1 0 1 0,

1 0 0 1

corresponds to a convex poset. But there is no way to sort the columns of MP so that the

rows have consecutive ones.

Convex posets are 2D2C posets with a very particular geometric representation. The

following lemma describe this representation, although it is not of the rook type.

Lemma 2.4.2. A poset P is convex if and only if there exists a representation P = (A U

B, ), where the points of A are placed in the line x + y = n and the points of B are in the

halfspace x + y > n. (Note: the representation allows A and B to be non-disjoint multisets,

see page 28).

Proof Let MP be a convex matrix, and let A = {I, a2, ... , alA|} and B =b, b2, .bi|

be the set of points in Z2 that we will associate to the set of rows and columns of MP,

enumerated according to the rows and columns of MP, respectively. We will assume that

each point b c B is comparable with some point in A, as those b with no comparability can

be easily positioned afterwards. First, place all the points of A in the line x + y = n, by

setting ai = (i, n - i). For the points bj E B, if the j-th column of Mp has ones between the

ii-th and i2-th row (for i1 < i2) set bj = (i2,n - ii). The latter corresponds to put bj at the

intersection of the horizontal line passing through ai, and the vertical line passing through

ai2 (see Figure 2-12 for a concrete example). It is easy to check that bj is only comparable
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Figure 2-12: A convex poset in non-rook representation. Note that two elements are
mapped to the same location.

with ai satisfying i1 i < i2 (see Figure 2-12), and therefore M = 1 if and only if at -p bj.
1J

The converse follows from a similar argument. Given P - (A U B, M), where the points

of A are on the line x + y = n and the points of B satisfy x +y > n, it is easy to see that

each point in B is comparable with a set of consecutive points of A in the line x + y = n.

Therefore, ordering the rows of MP according to the order induced by this line gives a

convex biadjacency matrix.

The line x +y = n could have been replaced by other lines with negative slope. But the

construction given in the proof places all the points in {l, 2, ... ,n} x {l, 2, .. . , n}.

The state of the jump number problem prior to the work in [44] changed dramatically

from biconvex to convex posets. While in both classes, the jump number problem was

known to be polynomial time solvable, the fastest algorithm for biconvex posets ran in

O(n 2) time [4], while for convex posets the fastest algorithm ran in 0(n 9 ) time [10].

Bi-interval posets

If convex posets can be represented by placing points of A in the line x + y = n and the

points of B in the halfspace x + y > n, bi-interval posets extend this by allowing the points

of A to lie in the halfspace x+y < n. As with convex posets, it is convenient to assume that
4To see this easily, note that in any strong order the second row and the third column of MP cannot be first

or last, while the first column of MP must be either first or last.



A and B can be non-disjoint multisets.

This definition can be easily shown to be equivalent to the traditional definition of bi-

interval posets.

Lemma 2.4.3. A poset P = (A U B, §) is bi-interval if and only if we can associate to each

element v G A U B an interval Iv C [ 1, n] with integral extremes so that a -p b for a G A and

b G B if and only if Ia n ib # 0. (Note: the representation allows A and B to be non-disjoint

multisets, see page 28).

Proof Let P = (A U B,M) a bi-interval poset, where the points of A lie on the halfspace

x + y < n and the points of B lie on the halfspace x + y > n. It is easy to see that we can

assume that all the points lie in {1,2,... ,n} x {1,2,. ... ,n}. We assign, to each point a E A,

the interval Ia _ [ax, n - ay], and to each point b C B the interval Ib = [n - by, bx]. Clearly,

each interval is non-empty and has integral extremes. Suppose a -<p b for some a C A,

b E B. Then we additionally have ax < bx and ay < by, and therefore max{n - by, ax} <

min{n - ay, bx}. The latter implies that Ia and Ib cannot be disjoint.

For the converse, note that if we map the interval I, = [ii, i2] to the point v = (ii , n - i2)

for the points v E A and to the point v = (i2,n - iI) for the points v c B, we obtain a

geometric representation where the points a C A satisfy x + y < n, the points b C B satisfy

x+y ;> n, and the condition Ia nib #4 0 is equivalent to a dp b.

Figure 2-13: A bi-interval poset represented in the plane. The gray segments corre-
spond to the interval representation.

Muller [33] showed that bi-interval posets is a strict subclass of 2D2C posets that can

be recognized in polynomial time. In contrast to convex posets, prior to [44] it was not



known whether there were polynomial time algorithms for the jump number of bi-interval

posets.

2-directional orthogonal-ray posets.

In 2009, Shrestsa et al. [42] introduced the 2-directional orthogonal-ray posets5 . The

elements of a 2-directional orthogonal-ray poset P are rays in R2, which can be either

horizontal rays going rightwards or vertical rays going downwards. Given two rays rl and

r2 in P, we say that ri Z e r2 if and only if ri is horizontal, r2 is vertical, and the two rays

intersect.

More precisely, an horizontal ray in the poset has the form [ax, o) x {ay} while a vertical

ray in the poset has the form {bx} x (-oo,by], where a and b are points in R2 . It is easy

to show that we can assume that a and b have integral coordinates, and therefore these

two types of rays intersect if and only if a <z2 b (see Figure 2-14). Hence, we have the

following

Lemma 2.4.4. The class of 2D2Cposets is equivalent to the class of 2-directional orthogonal-

ray posets.

O ?

Figure 2-14: A 2D2C poset in orthogonal-ray form. Comparable elements are inter-
secting rays.

Shreshta et al. [42] give several properties of (what we now call) 2D2C posets. One of

them is the following characterization:

Lemma 2.4.5 ( [42]). A bipartite poset P is a 2D2C poset if and only it can be represented

using a biadjacency matrix MP having no submatrices of the following form:
5 however, they work with the comparability graph, so they call them graphs and not posets.



(1 0 1
1 0 1 0

We remark that Lemma 2.4.5 is valid for one particular biadjacency matrix representa-

tion. Another result shown in the same paper is the following:

Lemma 2.4.6 ( [42]). A bipartite poset P is a 2D2C poset if and only the complement of

its comparability graph is a circular arc graph, that is, the intersection graph of arcs in a

circle (see Figure 2-15).

3 4

2 5/

1

Figure 2-15: A graph in circular arc representation.

Given a 2D2C poset P, Shreshta et al. [42] show how to obtain, in O(n 2) time, a biad-

jacency matrix MP satisfying the conditions of Lemma 2.4.5. They also prove that from

such a MP the geometric representation of P using rays can be found in O(n2 ) time. But all

this holds assuming that they have access to the the circular ray graph representation of the

complement of P. This missing part follows from a result of McConnell [30]. Altogether,

this gives:

Lemma 2.4.7 (Implicit in [42]). We can find a geometrical representation of a 2D2Cposet

in O(n 2) time.

Beyond 2D2C posets: chordal bipartite posets

There are many possible generalizations of 2D2C posets. Here we only focus on one par-

ticular class that has a direct relation with our work.

A graph is said to be chordal if every cycle of the graph has a chord, that is, an arc

connecting some pair of non-consecutive nodes in the cycle. Muller [34] shows that the

jump number problem is NP-hard for posets with chordal bipartite comparability graph



(we call them chordal bipartite posets). It is not hard to see that 2D2C posets are chordal

bipartite. Indeed, this is implicitly shown in the proof of Lemma 2.3.26

A matching in a graph G = (V, E) is cross-free if the matching has no crossing edges,

that is, a pair (u, v) and (u', v') where (u, v') and (u', v) are both in E. For chordal bipartite

posets, the jump number is equivalent to find a maximum cross-free matching in the

comparability graph [34]. An alternative way to prove Theorem 2.3.1 uses this result,

together with the observation that crossing edges correspond to intersecting rectangles not

sharing any defining vertices. This is depicted in Figure 2-16.

a b2 b2

ai a
a2 a2

Figure 2-16: Intersecting rectangles correspond to crossing edges.

2.5 A linear programming algorithm for 2D2C posets

We now present a linear programming based algorithm that solves the jump number of a

2D2C poset P = (A U B, M) in rook-representation in polynomial time. As in the previous

section, we denote |A U B| as n. We will also denote {l, .. . ,n} as [n].

Let us start from one of the classic integer program formulations for the maximum

independent set of a collection of rectangles M:

misip(M) -- max [xR : [ xR < 1 q (E [n] 2;x E {f0, 1}- .
.m R6f R: qER

Informally, the constraints of this integer program state that at most one rectangle of

the solution can touch any "interesting" point in the plane. The removal of the integrality

61n the proof of this lemma, the fact that H is acyclic implies that all chordless cycles in the comparability
graph of a 2D2C poset have length at most 4.



constraint leads to the linear relaxation:

misLP(M) max , xR: xR < 1,q C [n]2 X> O
Rc4 R: qER

which is widely used in other contexts to obtain exact or approximate solutions to the

corresponding integer program. In what follows, we discuss some of the properties of this

linear program.

Integrality of the linear relaxation

Usually, the first step when using a linear relaxation of an integer program is to check

whether the underlying independent set polytope

P(M) = {x E R: xR < l,q E [n]2 ;x > 0}
R: qcR

has only integral vertices (which is equivalent to say that P(,4) is an integral polytope). It

is not hard to see that this claim is false in general. A simple counter-example is the poset

shown in Figure 2-17. If P(,4) was integral for this poset, then any linear maximization

b2

aib

a3

Figure 2-17: A 2D2C poset with non-integral independent set polytope.

problem over P(M) should have an integral optimal solution. But this is not true when the

objective c satisfies CR 1 for the five rectangles shown in Figure 2-17, and 0 otherwise:

any optimal solution must satisfy xR = 1/2 for each of the five rectangles.

There are several important results regarding the integrality of P(M). The intersection

graph of a collection of rectangles M, denoted by J (M) is the graph having the rectangles



in M as vertices, and with arcs connecting every pair of intersecting rectangles:

0(M) = (,V, E), whereE= {(R, R') E q 2 : RnR' -A 0}.

A graph is perfect if the chromatic number of every induced subgraph equals the size

of a maximum clique in that subgraph. A classical result on perfect graphs (see, e.g. [40])

establishes a connection between perfect graphs and the independent set polytope. In our

case, this result can be phrased as follows:

Theorem 2.5.1 ([40]). Given a family of rectangles ?, the polytope P(M) is integral if and

only if the intersection graph J (R) is perfect.

The more recent Strong Perfect Graph Theorem [7] gives a complete characterization

of perfect graphs in terms of forbidden subgraphs. The five rectangles shown in Figure

2-17 form an odd-hole in .J(6), which is one of these forbidden structures. In this work

we will not use this theorem to imply perfectness, but these ones:

Theorem 2.5.2 ([40]). Every comparability graph is perfect.

Theorem 2.5.3 (Weak Perfect Graph Theorem). The complement of a perfect graph is

perfect.

Since Figure 2-17 is a biconvex graph, the only subfamily of 2D2C posets for which

P(M) could be always integral is bipartite 2-dimensional. This turns out to be true. Al-

though this result is known, we present a proof that will be used later.

Lemma 2.5.1. For bipartite 2-dimensional posets (A U B, M), J (2) is perfect.

Proof Let us introduce a partial order \ of the rectangles in J. We will say that R \ S

if R and S are disjoint and either Rx < S, or Ry > Sy holds. It is not hard to verify that

D = (, \) is a partial order whose comparability graph is the complement of fJ(M).
Therefore, by Theorems 2.5.2 and 2.5.3, the graph J(R) is perfect. E



Finding an integral solution using uncrossing

While not every vertex of P(M) is integral, we can still find an optimal solution to

miSLP(M) = max xR: xR < 1, q E n]2X>
RG-V R: qER I

that is integral. The key idea is to find the optimal fractional solution to misLP(M) that

minimizes the geometric area. More precisely, if z* denotes the optimal cost of miSLP (M),
we consider the following linear program, that uses area(R) to denote the geometric area7

of R:

MiSLP (M) mi area(R)xR: XR z*; xR < 1, q e [n]2
REG RC2 R: qER

Let x* be an arbitrary but fixed optimal extreme point of misLP(M), and let -o be the

set of rectangles in M having non-zero value in x*:

Mo = {R E M : x g > 0}.

The set -o is usually called the support of x*. The properties of this set are important

for the linear programming algorithm we present here and for a combinatorial algorithm we

will present later on. To start, note that rectangles in 4o must be inclusion-wise minimal,

and therefore:

Lemma 2.5.2. Every rectangle in 4o does not contain any point in A U B other than the

two defining vertices.

It follows from this observation that the intersection described in Figure 2-18 (left)

cannot arise in -o. What is non-trivial to see is that the opposite type of intersection shown

in Figure 2-18 (right) cannot arise. We will call the two type of intersections just mentioned

corner-intersections.

Proposition 2.5.1. There are no corner-intersections in o.

7i.e. width times height.



Figure 2-18: Corner intersections.

Proof Suppose that R and R' have a corner-intersection as shown in Figure 2-19 (left).

Let L = min{x*, xR,}. Figure 2-19 (left) shows two other rectangles, R" and R"', that also

R R"f

R"I A 2A A A 2AA

Figure 2-19

belong to M. We modify x* as follows:

" We reduce the values of x* and x*, by A.

" We increase the values of x*1 and xi,,, by X.

Let * be this modified solution. We can show that.* is feasible for misLP(M), as the

total weight of the rectangles covering any point in the plane can only decrease with the

modification:

x*;> VSE .
SDq SDq

This is graphically shown in Figure 2-19 (right), and not only implies that the constraints

ES3q*S < ; 1 hold, but also implies that the values k* are between 0 and 1.

We can also easily check that Ese2:* = Esemx* = z*, and therefore X* is also feasible

for misLP(1).

Finally, the modified solution X* has

X ((area(R) + area(R')) - (area(R") + area(R')) > 0

less area than the original solution x*, contradicting the optimality of x*.



A corner-free intersection (c.f.i.) family is a collection of rectangles whose intersec-

tions have one of the forms shown in Figure 2-20. More precisely, a corner-free intersection

between two rectangles R and S arises if and only if Rx C S, and Sy C Ry holds or if Sx C R,

and Ry C Sy holds.

Figure 2-20: Corner-free intersections

Corner-free intersections have a special structure as the following proposition shows.

Proposition 2.5.2. Let X be any c.f i. family. Then -. ( X ) is a comparability graph.

Proof Consider the following relation " of the rectangles in X. We say that R " S if

and only if

1. R intersects S.

2. R is shorter than S (i.e., the length of Ry is smaller than or equal to the lenght of SY).

The collection X is a c.f.i. family, therefore, when (1) holds, the statement in (2) becomes

equivalent to Sy C Ry and equivalent to R, C S,. It is easy to check that " is reflexive

and antisymmetric. We can also prove that " is transitive: suppose R " S and S " T. It

follows that Ty C Sy C Ry and Rx C S, C T. Hence, RnT = R, x Ty -f 0 and R is shorter

than T, so R " T.

Therefore " is a partial order. To conclude, note that two rectangles in X intersect

if and only if they are comparable, and therefore -/O(X) is the comparability graph of

(X I "~~). LI

Note that Proposition 2.5.1, together with the inclusion-wise minimality of the rectan-

gles in Mo, is equivalent to say that 4o is a c.f.i. family. Together with the result above, we

have all we need to prove the integrality of x*.

Proposition 2.5.3. The point x* is integral. In particular; -4o is an independent set.



Proof Since qo is the support of x*, the linear program misLP(qo) also has x* as optimal

solution. But _0(,o) is a comparability graph by Proposition 2.5.2, and therefore it is

perfect. Using Theorem 2.5.1, it follows that P(Mo) is integral. To conclude, we only need

to prove that x* is an extreme point of P(Ro). By contradiction, if x* is not an extreme point

of P(Mo) then it can be written as convex combination of two points in P('4o) C P(V),

contradicting the fact that x* is extreme point of P(M)

Since linear programming admits polynomial time algorithms, it follows that:

Theorem 2.5.4. The jump number of a 2D2C poset can be computed in polynomial time.

Using the fastest algorithm for linear programming, the running time would be 0(n 8),

which is slightly better than the 0(n9 ) dynamic programming algorithm of Dahlhaus for

convex posets [10]. We will not discuss algorithmic improvements to our linear program-

ming method, since the combinatorial algorithm presented in the next section is far faster.

A link to the next section

We close this section with a small result that links what we have covered so far to the

combinatorial algorithm in the next section.

The dual of misLP(M) is:

mhsLP( V) = min Yp: yp > ,R C ; }y > 0.Spc[n]2  peR
The dual is called the minimum hitting set linear program, because it tries to minimize

the number of points that hit all the rectangles in M (a point p hits a rectangle R when

p E R). Since we were able to find an optimal integral vertex of misLP(V), it is reasonable

to ask whether there is also an optimal integral vertex of mhsLP(s?). More precisely, if we

call misip(M) and mhs1p(4) the integer program versions of misLP(4) and mhsLP(V),

the question is whether the last inequality in the following relations can be turned into a

equality:

misip(') = miSLP() = mhSLP(-) < mhsip(M).



Note that the first equality follows from Proposition 2.5.3, while the second equality is

an application of strong duality.

What we prove here is that we can obtain the full chain of equalities if, instead of M,

we use a c.f.i. family X (in particular X satisfies the main properties we shown for o).

This result can be derived from the perfectness of J(X), but a more elementary way to

prove it uses the fact J(X) is a comparability graph. The advantage of this approach is

that it provides some combinatorial intuition that cannot be obtained directly with linear

programming techniques. If " is a partial order on X with intersecting rectangles as

comparable elements, then independent sets in X are just antichains in (X, ") while

collections of rectangles hit by a point are just sets of pairwise intersecting rectangles, and

therefore they are chains in (X, "). It follows that the following two pairs of problems

are equivalent:

* The maximum independent set of a c.f.i. family X and the maximum cardinality of

an antichain in (X, "). The latter is the maximum antichain problem.

o The minimum hitting set of a c.f.i. family X and the minimum number of chains

in (X, ") containing all the elements of X. The latter is the description of the

minimum chain covering problem.

A classic result from poset theory states that

Theorem 2.5.5 (Dilworth's Theorem). For any partial order; the maximum cardinality of

an antichain equals the size of a minimum chain covering.

In our context, this result directly translates into:

Theorem 2.5.6. For any c.f i. family X,

mis1p(X) misLP(X) = mhsLp (X) = mhsIp(X)

But these equivalences have algorithmic implications, since maximum antichains and

minimum chain coverings can be found efficiently using combinatorial algorithms. What

we describe here is one of the fastest algorithms for these two problems. They will be used

later to solve the maximum independent set and the minimum hitting set of 2D2C posets.



Theorem 2.5.7. There is a 0(m 2 5) deterministic algorithm for solving the maximum an-

tichain and the minimum chain covering of a poset P = (X, -<) with m elements.

Proof Note that the minimum chain covering can be transformed into minimum chain

partition (where the chains are restricted to be disjoint) just by deleting repetitions of

elements appearing in multiple chains.

The algorithm for minimum chain partition operates as follows. Given the poset P

(X, -), it constructs a bipartite graph G = (X U X, E) (i.e., two copies of the set X form the

bipartition) where (u, v) E E if and only if u -< v. Note that each partition of P into k chains

induces a matching in G where pairs of consecutive elements in the chains are edges of the

matching. Similarly, any matching can be transformed into a collection of disjoint chains,

by putting u and v in the same chain if and only if (u, v) is an edge of the matching.

u u

Figure 2-21: Solving minimum chain partitions using matchings
Left side: a poset P in natural representation and its graph G defined in Lemma 2.5.7.

Right side: chains in P are matchings in G.

Since a matching with k elements induces a partition into n - k chains, it follows that

the minimum chain partition of P is equivalent to the maximum matching in G. The latter

can be found in O(m2 .5 ) using the algorithm of Mucha and Sankowsky [31].

The algorithm for minimum chain partition directly uses the equivalence above. In

contrast, the algorithm for maximum antichain first finds a minimum vertex cover C of

G in O(m2 .5 ) time, again using the maximum matching algorithm in [31]. The maximum

antichain is the set V of elements in X with none of their two copies (in G) in the vertex

cover. It is easy to see that V is actually an antichain, because if u, v E V were comparable,

then at one of the extremes of the edge (u, v) should be part of the vertex cover. It is

also easy to see that V|= -X -C|, and therefore the maximality of the antichain directly

follows from K~5nig's Theorem [40]. II



Corollary 2.5.1. The maximum independent set and the minimum hitting set of a c.f i.

family X can be found in O(|X|2.5) time.

What we just described is one of the two key elements of the algorithm described in the

next section. The other key element is the combinatorial construction of a particular c.f.i.

family that plays the role of 4o in the linear programming algorithm.

2.6 A combinatorial algorithm for 2D2C posets

We now propose a combinatorial algorithm for solving the maximum independent set of

a 2D2C poset P = (A UB,M). In a nutshell, what we do in this section is to efficiently

construct a family X C M with the following properties:

1. It only contains inclusion-wise minimum rectangles.

2. It is a c.f.i. family.

3. Its maximum independent set is a maximum independent set in M.

Note that those are the main properties we have shown for 4o, the c.f.i. family used

in the linear programming algorithm (even though for 40 we ended up proving that it was

already an independent set). It follows from the discussion in page 43 that a maximum

independent set in d can be efficiently found by solving the maximum antichain problem

in (X, "). The main difference with respect to the linear programming algorithm is that

X is determined with a faster combinatorial procedure.

Before going into the details, we need some additional notation. Given a rectangle R,

let A(R) be the bottom-left corner of the rectangle R and B(R) be the top-right corner of

the rectangle R . The notation is chosen so that when R is a rectangle of a 2D2C poset

(A U B,M), then A(R) E A and B(R) E B are the two defining vertices of R. However, we

will also use this notation for rectangles not in M.

Let M; be the set of inclusion-wise minimal rectangles. The construction of the c.f.i.

family X uses an specific order for the rectangles in M . We say that R appears before S

in the right-top order if either



* A(R), <A(S)x, or

* A(R)= A(S), and A(R), < B(S),.

1
3

(>- 2

4

Figure 2-22: Some rectangles labeled in right-top order.

To construct X, we just process the rectangles in M one by one according to the right-

top order, adding them to X if and only if X remains corner-free. Since this clearly gives

a c.f.i. family with inclusion-wise minimal rectangles, all that remains to do is to argue that

the maximum independent set in X is also maximum in M. The proof relies on the dual

problem, the minimum hitting set, as we show next.

The flipping subroutine

If we could prove that mhsp(X) = mhsip(M), we would immediately conclude that a

maximum independent set in X is also maximum in M. This easily follows from the fact

that mhslp (X) = misIp (X) < misip(M) < mhsjp(M).

To prove mhsjp(X) = mhslp() we use a constructive procedure that essentially

moves the points of a minimum hitting set for X so that in their new position they not

only hit X, but the entire M. As we will discuss in the next section, many of the ideas for

this algorithm are already present in the algorithmic proof of Frank for a min-max result of

Gydri on intervals [13]. Nevertheless, we will give a full description here.

Given two points p, q E Z2 with px <2 qx, the flipping of p and q "moves" these two

points to the new coordinates r = (px, qy) and s = (qx, py). Technically, this correponds to

delete p and q from some generic set and replace them by r and s.

The flipping algorithm will start from a minimum hitting set H = HO of X, and will

continue to flip pairs of points in H in any arbitrary order, as long as H hits all the rectangles

in X. We call a flip admissible when this property holds.



We claim that at some point no more flips are admissible. To see this, note that the

potential $ (H) = EpEH PxPy > 0 decreases after the flipping of p and q by

pxpy +qxqy- pxqy- qxpy = (px - q)(py - q),

which is greater than or equal to one. Therefore, no more than O(Ho) flips can be done.

It is easy to see that O(Ho) n3 , which gives a polynomial bound on the number of flips

made by the algorithm.

If we denote by H* the final set of points obtained, we know that IH* I=Ho1, and H*

hits all the rectangles in X. The main theorem of this section establishes that H* also hits

2q and, in consequence, M.

Theorem 2.6.1. [44] H* is a hitting setfor Mg. In particular; mhsip(X) = mhsjp(M).

Proof Suppose that H* does not hit 24. From all the rectangles not hit by H*, let R =

][(a, b) c M. \ X be the one that appears last in the right-top order. Also, let R' = F(a', b')

be the first rectangle added to X that has corner-intersection with R. Finally, let T =

F(a, b') and S = 1(a', b) be the two other rectangles we can form using the same defining

vertices. This is depicted in Figure 2-23.

b'
R'

T
b

S
a'

R
a

Figure 2-23: Rectangles in the proof of Theorem 2.6.1.

Since R and R' are inclusion-wise minimal rectangles having corner-intersection, it is

easy to check that S and T are also inclusion-wise minimal. Our proof has two main claims:

Claim 1: The rectangle S is in X.

Suppose, by contradiction, that S is not in X. Then there must exist a rectangle U =

(c,d) appearing before S and having corner intersection with S. It follows that c lies in

the zone Zi = [0, a') x (a', by), and d lies in the zone Z2 = (a', bx) x (by, n] as shown in



Fig. 2-24 (left). Note that (a', by) is in both R' and U, and therefore they intersect. But

since they are in X, their intersection must be corner-free.. Using this last fact, and that

c E Zi we conclude that d is either equal to b' or it lies in the zone Z3 = (b', n] x (a' by).

See Fig. 2-24 (right).

Z2 b b

Zb Z1

a' a'

a a

Figure 2-24: Zones in proof of Theorem 2.6.1.

From all the above, we conclude that R and U have corner-intersection. This contradicts

the choice of R' since U appears before R' in right-top order. Therefore, Claim 1 is true.

For the next claim, given that T appears after the last rectangle not hit by H*, it follows

that T is hit by a point q E H*. By Claim 1, there is also a point p E H* hitting S. The

following claim concludes the proof of the theorem, as it contradicts the properties of H*.

Claim 2: It is admissible to flip p and q in H*.

Since p eS\R and q E T\R we have that px <a ,< q, and py < by <qy. Let r=

(px, qy), s = (qx, py) be the potential flipped positions of p and q, and suppose that there is

a rectangle U E X hit by H* but not by (H* \ {p, q}) U {r, s}. If the rectangle U is hit by p

(but not by r or s), then its top-right corner B(U) must be in the region [pX, q,) x [py, qy).

In particular, B(U) E R' \ {a', b'}, contradicting the inclusion-wise minimality of R'. On

the other hand, if U is hit by q (but not by r or s), then its bottom-left corner A(U) must

be in (px, qx] x (py, q,]. As before, this means that A(U) C R' \ {a', b'}, contradicting the

inclusion-wise minimality of R'. Therefore, it is admissible to flip p and q. E

From this theorem, and the discussion presented in this section, the main result of this

section follows:



Theorem 2.6.2. For the c.f i. family e constructed in this section:

mhsp (X) = misip (X) = misip(M) = mhsjp(M).

With this result, we have shown that finding a maximum independent set in X is all

we need to obtain a maximum independent set in M. It is very easy to see that a naive

implementation of this algorithm will run in polynomial time. In the next section, we

discuss a very efficient implementation that runs in 0 ((nlogn) 2.5 ) time.

2.7 Implementation of the combinatorial algorithm

Let us show how to implement the algorithm described in Section 2.6 in 0 ((nlogn)2.5 )

time. Recall that for a 2D2C poset P = (A U B, V) in rook representation, this algorithm

solves mis(M) by first constructing an specific c.f.i. family X C M and then finding a

maximum independent set there.

Recall that by Corollary 2.5.1, the maximum independent set in X can be found in

0 (|X 2.5) time.

In this thesis, we will not analyze the running time of the minimum hitting set algorithm

for M that is implicit in the flipping subroutine. Naively, this algorithm can be implemented

in O(n 6 log n), but using the improved implementation and analysis by Soto [43], the run-

ning time can be reduced to O (n2.5 /log n).

Constructing the family X

Recall that in the construction of X we process the rectangles of M in right-top order,

adding them to X as long as this set remains corner-free. In this subsection, X' denotes

the set that is dynamically updated to generate X.

With a direct implementation, this construction takes at least 0(1 X|' _) time, as we

need to check whether the rectangles to be processed have corner-intersection with the



rectangles in X'. Here we show how to reduce the construction time to O(n2 logn) by

reducing the time invested in this checking. The critical observation is the following:

Lemma 2.7.1. Let R E R1 be a rectangle about to be processed. Then R has a corner-

intersection with a rectangle of X' if and only if one of the bottom-right corners of the

rectangles in X' is in the interior of R.

Proof Since the rectangles are processed in the right-top order, if R has a corner-intersection

with a rectangle R' c ', then R must contain the bottom-right vertex of R'. For the con-

verse, note that the only type of intersection where the bottom-right vertex of one rectangle

is included in the interior of the other one is corner-intersection. See figures 2-18 and

2-20. L

Motivated by the lemma above, as we process the rectangles in 2q we will dynamically

update a collection of lists {L[y]}y-1 ,,n, where L[y] contains the x-coordinates of all the

bottom-right corners of rectangles R E X' satisfying A(R)y = y. We will always keep these

lists sorted from smallest to largest. Since each time we add a rectangle to X' we need

to insert one number into a single list LLy], the total cost of updating is O(IXI logn) using

binary search.

Note that all the rectangles R c 4 sharing the same defining corner A(R) are consec-

utive in right-top order. The improved routine for checking corner-intersections processes

all these rectangles in a single batch. From now on suppose that we are currently process-

ing the rectangles R having A(R) = a. For y = 1,... , n, let leftmost(y) be the minimum

number greater than a, in Ua,<y'<yL[y']. Using Lemma 2.7.1, it is easy to show that R has

corner-intersection with some rectangle in X' if and only leftmost(B(R), - 1) < b.

Lemma 2.7.2. For fixed a G A, the function leftmost() can be computed in O(n log n) time.

Proof For every y E { 1,2, ... ,n} we can find the smallest number in Ljy] strictly greater

than a,. Call this number LeftMost(y). With binary search, this can be done in O(nlogn)

time. Then, using the recursion leftmost(y) = min{leftmost(y - 1), LeftMost(y)}, we can

compute the function leftmost( in additional O(n) time. L



With the leftmostO function computed, we process all the rectangles R E M with

A(R) = a, checking whether leftmost(B(R)y) < B(R),. If so, R has a corner-intersection

with a rectangle X and is discarded. Otherwise, R is added to X and L(ay) is updated.

Note that leftmost() does not change during all the batch process. When all rectangles

satisfying A(R) = a has been processed, leftmosto is recomputed.

For each batch, we can compute leftmost() in 0(nlogn) time. Since at most 0(n)

rectangles having a common defining corner can be inclusion-wise minimal, this function

has to be queried 0(n) times during a batch. Therefore, the total time spent during a batch

is 0(nlogn). There are 0(n) batches, so the total time is 0(n 2 logn).

Bounding the size of X and efficiency of the algorithm

From the discussion above, the family X can be constructed in 0(n2 logn) time. Finding

an independent set in X requires to build the intersection graph (that can be easily con-

structed in O(IX|)2 time), and then solving the associated maximum antichain problem in

0 (IX|2.5) time. We need a good bound for X in order to obtain an improved analysis.

The following result can be found in Soto's thesis:

Lemma 2.7.3 ([43]). The cardinality of any c.f i. family in a 2D2C poset with n elements

is 0(nlogn).

Using this, we obtain the following running time:

Theorem 2.7.1. The jump number of 2D2Cposets can be solved in 0 ((nlogn)2.5 ) time.

We want to remark that the running time can be reduced to 0((nlogn)2.38 ) in expec-

tation if we allow randomization. This follows from a faster randomized algorithm for

maximum matching.

2.8 The maximum weighted bump problem

Our algorithms for the jump number of 2D2C posets are based on the fact that the number

of jumps plus the number of bumps of every linear extension of a poset P is constant. But



there is no weighted version of this equation, so we cannot extend our results to the case

where the jumps are weighted. According to what we have done so far, it seems more

natural to to extend our results to the case where weights are assigned to the bumps of a

poset and the problem is to find the linear extension with maximum weighted bump. We

call this the maximum weighted bump problem. A similar variant was already considered

by Ceroi [6] for 2-dimensional posets8

For 2D2C posets P = (A U B,M) with weights {WR}REM on their possible bumps, the

maximum weighted bump problem is equivalent to find the maximum weighted indepen-

dent set of the rectangles in M, using wR as the weight function. Note that in previous

sections we have considered the case where wR is constant for all R C M.

Unfortunately, the algorithms presented in this work for the unweighted case do no

carry over to the weighted case. For example, the uncrossing argument in the linear pro-

gramming algorithm does not extend. In fact, there is a significant difference in the com-

plexity of the maximum weighted bump number for 2D2C posets.

Lemma 2.8.1 ([44], [43]). The maximum weighted bump number is NP-hard for 2D2C

posets.

Despite this negative result, we can still provide efficient algorithms for some subclasses

of 2D2C posets, as we see in the following subsections.

Bipartite 2-dimensional posets

Recall that for bipartite 2-dimensional posets P = (A U B, -) the intersection graph (i)

is perfect (see Lemma 2.5.1), and therefore we can still solve the maximum weighted inde-

pendent in - by finding an optimal vertex of

misLP( maX{wRxR XR < ,q [n]2 ;X O}
Re,4 R: qER

But we can provide a faster combinatorial algorithm. Recall the following partial order

introduced in the proof of Lemma 2.5.1: we say that R \ S if and only if R and S are
8although they call it "maximum weighted jump problem".



disjoint and either R, < S, or Ry > Sy holds. We claimed that the comparability graph of

(M, \) is the complement of VJ(M). It follows from here that maximum independent sets

in M correspond to maximum chains in (4, \), which are just longest paths in (M, \)
(seen as a directed acyclic graph).

Since the longest path problem in directed acyclic graphs can be solved in linear time

in the number of nodes and arcs [8], this observation immediately leads to an 0(1 _2)

algorithm. In what follows we describe an improved version of this algorithm that runs in

0(n 2 ) time.

Theorem 2.8.1 ([44]). There is an 0(n 2) algorithm for the maximum weighted bump of

bipartite 2-dimensional posets P = (A U B, M ).

Proof For simplicity, let us assume that all the weights are different. Our algorithm ex-

ploits the geometric structure of the independent sets in M. Since A and B are antichains

in Z2, the condition R \ S implies that A(R), < A(S)x and B(R)y > B(S),. Geometrically,

this condition orders the rectangles of any independent set from top-left to bottom-right.

Let M* C M be any maximum weighted independent set, and let R \ S \ T be three

consecutive rectangles in 4*. We can then extract the following information about S (see

Figure 2-25):

" Down-right scenario:

If Ry > Sy and Sx < T, then (i) S is the heaviest rectangle with corner B(S). In

particular, S is determined by B(S).

" Down-down scenario:

If Ry > Sy and Sy > Ty, then (ii) S is the heaviest rectangle below R with corner A(S).

In particular, S is determined by A(R), and A(S).

" Right-down scenario:

If Rx < S, and Sy > Ty, then (iii) S is the heaviest rectangle with corner A(S). In

particular, S is determined by A(S).

" Right-right scenario:



If Rx < S, and Sx < T, then (iv) S is the heaviest rectangle to the right of R with

corner B(S). In particular, S is determined by B(S) and B(R),.

Down-Right scenario Down-Down scenario

RR

-- - B(S)
S S

T A(S)
T

Figure 2-25: Proof of Theorem 2.8.1

For R E M, let V(R) be the maximum weight of a path in (M, \) that starts with R. For

a E A, let V (a) be the maximum weight of a path using only rectangles below a. Similarly,

for b E B, let V_ (b) be the maximum weight of a path using only rectangles to the right
of b.

Clearly, Vt(a) = max {V(S): S rectangle below a}, but from the decomposition into
scenarios we can restrict S to be a rectangle below a satisfying properties (i) or (ii). Using
this idea, we define:

{S : S is the heaviest rectangle with B(S) = b for some b below a},

{S: for some a' E A, S is the heaviest rectangle below a with A(S) = a'

{S: S is the heaviest rectangle with A(S) = a for some a to the right of b},

>YiV) {S: for some b' E B, S is the heaviest rectangle to the right of b with B(S) = b'}

and compute the recursion as follows:

V(R) = max {V (A(R)), V, (B(R))} + wR,

Vl(a) = max {V(S): S E Y i U c I ,

V,(b) = max V(S): S E Y ii) U Y'V)}



With some trivial preprocessing we can precompute Y,(') for all a e A in 0(n 2 ) time. We

can also precompute Y() for all a E A in 0(n2 ) time: we fix a' E A, and then traverse the

points a C A from bottom to top. As we do this traversal, we can find the heaviest rectangle

S below a satisfying A(S) = a', for all a E A. This finds one rectangle S belonging to each

Y'), in 0(n) time. Iterating now on a' c A, we determine the entire sets Y(") in 0(n2 )

time.

After this preprocessing, the rectangles in a') and Y(") can be accessed in 0(1) time.

The same holds for Y() and Y, via a similar argument. Since the cardinality of eachb an 9' i adnlt fec

of these sets is 0(n), and there are 0(n) values V (a) and V,(b) to compute, the complete

recursion for these terms can be evaluated in 0(n 2 ). Finally, the maximum weight of an

independent set is just maxR{V(R)}, which can trivially be found with O(M) = 0(n2)

additional time. The independent set itself can be found by backtracking the recursion,

giving an overall running time of 0(n2).

If there are repeated weights, we break ties in Properties (i) and (ii) by choosing the

rectangle S of smallest height and we break ties in Properties (iii) and (iv) by choosing the

rectangle S of smallest width. This does not affect the asymptotic running time. LI

We can further improve the running time of the algorithm when the weights are 0 or 1

only. Since just specifying the weights of the rectangles requires O(M) space, this requires

certain assumptions on the the way the partial order is given.

Theorem 2.8.2. The maximum weighted bump problem of bipartite 2-dimensional posets

can be solved in 0(n) time when the weights are either 0 or 1 and the input is given as a

biadjacency matrix MP in strong ordering form (see Theorem 2.4.1), where we can access

the first and last 1 of every row and column in 0(1) time.

Proof Our algorithm uses a simplified version of the the algorithm for arbitrary weights

introduced in Theorem 2.8.1. We completely ignore the rectangles of weight 0 in the fol-

lowing discussion.

Recall that for each b E B, 9a') contains at most a single rectangle S satisfying B(S) = b,

the one with minimum height. But Y,() corresponds to the Down-Right scenario, that as-

sumes that the rectangle immediately next to S in the independent set is located to the right



of S. Therefore, we can just delete from fYa() all the rectangles except the one minimizing

B(S), (or, equivalently, maximizing B(S),). This rectangle can be easily identified in the

biadjacency matrix, see Figure 2-26: first, we find the last element b comparable with a.

Then we look at the column b immediately to the right of b, and find the first row d that has

a 1. The rectangle we look for is F(a, b), that we denote by Sa-

b b b

1 1 0 0
5 590110

0 0 0 1 1
0

Figure 2-26: Proof of Theorem 2.8.2

Similarly, for each a' c A, a contains at most a single rectangle S satisfying A(S)

a', the one with minimum height. But since Y,8ai corresponds to the Down-Down scenario,

we can just delete from Ya) all the rectangles except the one maximizing A(S), . This

rectangle is actually the same as Sa, the remaining rectangle in Ya ).

With a similar argument, it is easy to show that V, (b) = V(Sb), where Sb is the rectangle

in Y(b') that minimizes B(Sb)x. This gives us a simplified recursion:

V(R) = max {V (A(R)), V, (B(R))) + WR,

V(a) = V(Sa),

V+ (b) = V (Sb).

To obtain an O(n) algorithm, we just need to access the rectangles Sa and Sb in constant

time. This is guaranteed by the hypothesis of the theorem. D

Note that the assumption made about MP in this theorem is not completely unrealistic.

It holds for example if the ones of each row and column of MP are connected by a double

linked list.



Convex posets

In [44], we show that the maximum weighted independent set of convex posets is equiv-

alent to find the maximum weighted point-interval set of a collection of intervals. For

the latter problem, described in Section 2.9, Lubiw shows a very simple polynomial time

algorithm [29] that we now describe in our context.

Suppose that P = (A U B, 4) is a convex poset such that the points of A lie in the line

x +y = n and the point of B lie in the halfspace x + y > n (see Lemma 2.4.2). Given

two disjoint rectangles R and S in M, let us say that R precedes S if either R, < Sx and

Ry n Sy # 0 or if R, < Sy and Rx n Sx #40. Since R precedes S implies that A( R) < B(R),

this relation induces no cycles. Therefore, every independent set must contain a rectangle

not preceded by any other. This rectangle splits the independent set in two parts .

The algorithm finds the maximum weighted independent set 4* by guessing a rect-

angle T C V* that no one precedes, and then recursively finding the maximum weighted

independent set of the rectangles lying below T and the rectangles lying to the left of T.

More precisely, for each point q E [n]2 in the halfplane x + y > n, let V(q) be the

weight of a maximum independent set using rectangles R having their defining vertices

A(R), B(R) <;2 q. The following recursion follows from the splitting property just men-

tioned:

V(q) max {V(qx,ay)+V(ax,qy)+w(a,q)},
aEA:a<q

where w(a, q) is the maximum weight of a rectangle R E M contained in F(a, q) (or 0 if

there is no such rectangle).

Therefore, the cardinality of the maximum independent set V ((n, n)), can be found in

O(n 3) by dynamic programming. The set itself can be found by backtracking the recursion.

Theorem 2.8.3 ([29], [44]). The maximum weighted bump number of a convex poset can

be solved in O(n3 ) time.



2.9 The related work: point-interval pairs and set-pairs.

The combinatorial algorithm for 2D2C posets presented in Section 2.6 uses many ideas

from previous research on seemingly unrelated problems. One of the main contributions

of our work with Soto [44] is to provide a common setting where all these ideas become

simple and intuitive. In this section we describe these connections.

Point-interval pairs

Gy6ri and Lubiw studied two dual problems associated to a finite collection of intervals J

in M. To define them, we need to introduce some concepts first. A point-interval pair in

J is a duple (p, I) where I E JV and p E I. A collection f of point-interval pairs in - is

independent if for every (p,I) # (p',1') c / we have p ( I' or p' V I. A basis of J is a

set of intervals f so that each interval in J can be written as union of intervals in f.
Gy6ri [18] showed that the maximum cardinality of an independent set in J equals

the minimum cardinality of a basis of ,f0. This result is in fact equivalent to the equality

misip(M) = mhs1p (M), when M is the family of rectangles arising from a convex poset. A

simple algorithmic proof of this min-max result, using the concept of c.f.i. families, was

given by Frank [13]. Our combinatorial algorithm for the jump number of 2D2C posets

(see Section 2.6) heavily relies on the ideas of that paper.

Lubiw [29] also studied a weighted version of the maximum independent set of point-

interval pairs. The algorithm she provided for this case is equivalent to the algorithm for

the maximum weighted bump number of convex posets described in Section 2.8.

Set pairs

In a seminal paper, Frank and Jordin [14] extend Gyuri's result to set-pairs. For this result,

we need to introduce some definitions.

A collection of pairs of sets { (Si, Ti)} is half-disjoint if for every i f j, Si n Sj or Ti n Tj

is empty. A directed edge (s, t) covers a set-pair (S, T) if s E S and t E T. A family Y

of set-pairs is crossing if whenever (S, T) and (S', T') are in 9, so are (Sn T, S' U T') and

(SU T,S' n T').



Frank and Jordin prove that in every crossing family Y, the maximum size of a half-

disjoint subfamily is equal to the minimum size of a collection of directed-edges cover-

ing Y. They also give a linear programming based algorithm to compute both optimiz-

ers. Later, combinatorial algorithms for this result were also given (e.g. [3]). See V6gh's

Ph.D. thesis [48] for related references.

Theorems 2.5.4 and 2.6.2 can be seen as non-trivial applications of Frank and Jordan's

result. Given a 2D2C poset G = (A U B, M), consider the family of set-pairs Y = { (Rx, Ry): R E

M;}. It is easy to check that this family is crossing, that half-disjoint families of 5 corre-

spond to independent sets in 25 and that coverings of Y by directed-edges correspond to

hitting sets for 25. We remark that this reduction relies heavily on the geometric interpreta-

tion of 2D2C posets we have presented in this thesis, and that our proofs are self-contained

and simpler than the ones used to prove the broader result of Frank and Jordan.

The combinatorial algorithm presented in Section 2.6 also comprises algorithmic ideas

from other applications of Frank and Jordan's result, such as the algorithm of Frank and

V6gh [15] for connectivity augmentation. Our description is tailored to the instances con-

sidered in this work, leading to a simpler description of the algorithm and a simpler running

time analysis.
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Chapter 3

The Joint Replenishment Problem

The Joint Replenishment Problem (JRP) is a fundamental model in inventory management

which captures the trade-off between ordering and holding costs in a supply chain. The

variant we consider in this chapter is the most basic version of a larger family of joint

replenishment problems, but it captures well the essence of the difficulty of the problem.

In this chapter, we introduce the JRP and provide very simple approximation algo-

rithms. The JRP is one of the main topic of the next chapter, although there it will be

studied from the perspective of complexity. The results presented in this chapter are joint

work with Andreas S. Schulz [41].

Before going into the mathematics, let us see the problem in action.

An introductory example

A manufacturing facility produces equipment using two commodities A and B. The produc-

tion flow is such that the weekly demand for each commodity is constant, and the facility

regularly order them from a single supplier. Each time the facility places an order for these

commodities, the supplier decomposes the bill as follows:

" A constant shipping cost to deliver the order.

" A constant transaction cost if the order includes A and another constant transaction

cost if the the order includes commodity B.



* The (variable) cost of the commodities themselves. We assume that the cost of each

commodity is proportional to the amount of commodity acquired.

The facility takes the acquired inventory to a nearby warehouse that weekly charges each

commodity proportionally to the volume stored. The problem of the facility is to minimize

the average costs over time associated with the inventory replenishment.

Let us add some fictitious data to this example. Note that we are not including the

variable cost of the commodities themselves: the constant weekly demand per commodity

implies that this cost is constant on average.

Commodity
A B

Weekly demand 2 2
Weekly storage cost per unit of commodity (in $) 2 1
Transaction cost per order including commodity (in $) 8 9

Shipping cost per order (in $) 3

Figure 3-1: Demand and cost information for the manufacturing example.

In the following table we propose several ways to replenish the inventory and their

respective weekly average costs in the long run:

Replenishment strategy Shipping Transactional Storage Total
A B A B

(1) Order A every 2 weeks B every 2 weeks (in $) 1.5 4 4.5 2 1 13
(2) Order A every 3 weeks B every 3 weeks (in $) 1 2.66 3 4 2 12.66
(3) Order A every 4 weeks B every 4 weeks (in $) 0.75 2 2.25 6 3 14
(4) Order A every 2 weeks B every 3 weeks (in $) 2 4 3 2 2 13
(5) Order A every 2 weeks B every 4 weeks (in $) 1.5 4 2.25 2 3 12.75

Figure 3-2: Some inventory replenishment alternatives for the
and their respective weekly average costs.

manufacturing facility



There are several ideas we can illustrate with this example. In all the strategies, each

commodity places its orders periodically. We call such replenishment strategies cyclic.

Strategy (5) is such that the smallest replenishment period is a divisor of the largest one,

so it is called nested. In real life, these strategies are easy to implement and they may be

preferred to more complex proposals. We will use the term dynamic when we consider

strategies that are not periodic. All the terms in bold are standard in the literature.

Now let us consider the costs. There should be a trade-off between shipping plus trans-

action costs and storage costs, in the sense that a decrease in one of these costs implies an

increase in the other one. Going a little bit further with this observation, it is possible to

argue that extremely frequent or infrequent replenishments is never a good strategy.

Another insight this example provides is the following. Consider strategies (4) and (5).

Although the total cost of (5) is lower than the total cost of (4), the sum of transaction

and storage costs of (5) are higher than those in (4). The triumph of (5) over (4) is due

to the "benefit of coordinated replenishments" that reduces the transportation costs. This

indicates that cyclic solutions that exploit this benefit must have replenishment periods that

are "far" from being coprime, which is the key idea introduced in Chapter 4.

The JRP version we study in this chapter is easy to describe, yet the simplicity of its

definition strongly contrasts with the difficulty of its solution. Being such a fundamental

problem, the JRP has been thoroughly studied since the seventies, but it seems fair to say

that our understanding of the problem is far from a satisfactory level. In fact, it is not

known whether there are (theoretically) exact efficient algorithms for this problem. This

work addresses two questions related to the existence of exact efficient algorithms for the

JRP.

3.1 Mathematical formulations of the JRP

In this section, we describe several variants of the JRP that differ in the set of feasible so-

lutions. Here we give precise definitions for most of the variants considered in the chapter,

and also in Chapter 4.

'Except for trivial cases



Defining the JRP. Finite Horizon v/s Stationary.

Formally, in the JRP a facility has certain demand for n commodities labeled J {1 ... , n}

during a time horizon [0, T), where T may be equal to +o. The facility acquires these

commodities from a single supplier.

" For each commodity i E J, the facility faces a constant demand rate di E Z+ per

unit of time that must be fulfilled on time (this is usually called a no backlogging

condition). But the facility can acquire commodity ahead of the time it is needed.

" The facility satisfies the demand by placing orders to the supplier. Each order may

include multiple commodities at the same time. The ordering cost, is the sum of

the individual ordering costs Ki E Z+ associated with each commodity involved

in the order plus a joint ordering cost KO E Z+ that is independent of the specific

commodities requested in the order.

" The acquired inventory is stored in a local warehouse until the time it is required.

The warehouse charges a holding cost at a holding cost rate hi E Z+ per unit of

commodity i and per unit of time.

" We assume that orders are delivered instantly. This is called a no lead time assump-

tion.

The JRP asks for an ordering strategy in [0, T), so that demands are fulfilled and the

sum of ordering and holding cost is minimized. Before stating the mathematical model,

there are some consequences of the assumptions above that we need to discuss. For sim-

plicity, we only describe them for the case T < c*, which is called the finite horizon model.

As we observed in the manufacturing example, given that the demand is constant, the fa-

cility must order at least diT specify interval units of commodity i E J. There is also no

reason to order more than diT units, as wasted commodity can be backtracked and elimi-

nated from the source order, decreasing the total cost. This is why the minimization in the

JRP does not include the costs of the commodities themselves, under the assumption that

the per-unit price of commodity is constant. By a similar argument, the demand between



two consecutive 01 and o2 must be fulfilled entirely by o. Therefore, the times and the

compositions of the orders uniquely define the quantities to order.

With these considerations in mind, in an optimal solution we can define orders and

their associated costs in the finite horizon case. A joint order (fO',t) is a request for a

subset of commodities 0 # ,0' C J at a specific point in time t c [0, T). A schedule

S {(J{,ti), (t 9 ,t2 ), . (N, tN)} is a finite sequence of joint orders where 0 ti <t 2 <

< tN < T. The costs associated with a schedule S {(J{, t1 ), (fJt 2 ), . - -, (N, tN)I) are

defined as follows:

* The total joint ordering cost of S is Ciont NK0 .

" The individual ordering cost of a commodity i E J is equal to

C (indiv ( Ki i E } .

In some sections of this chapter, we use ni as a shortcut for {j: i E

" The individual holding cost of a commodity i E J, denoted as Chold(i), is equal to

2 1(tj+ -tJ)2
j=1

where 0 = ti < ti < ... < t < T are the times where commodity i is ordered and

tn' 1 + T.

Finally, we also define the total individual ordering cost Cas E iv7(i), and the

total holding cost Chold as EiE f Chold(i). The objective of the JRP is to minimize the

total cost C[S) = C +Civ + Chold. Note that all the costs defined above depend on the

schedule S, but this dependence is not reflected in the notation. We will explicitly state the

schedule only if it is not clear from the context.

We use the term inter-replenishment period to describe the interval between two con-

secutive orders of a particular commodity (or, in the context of joint replenishments, the

interval between two consecutive joint orders). The term inter-replenishment time also

means the same thing, although it may refer also to the length of the interval.



When T = oo, we obtain a limit case of the finite horizon model usually called the

stationary model. The main differences with respect to the finite horizon model is that a

schedule S is now a countable sequence of orders, and the costs must be averaged over

time in order to obtain a meaningful cost expression. For example, the average total cost

per unit of time C[S] becomes

1
C[S] = lim -C[{(/, ti) E S: ti < T}].

TF-oo T

In a similar fashion, we can also define the average ordering cost per unit of time, the

average holding cost per unit of time, etc. Note that these limits may not exist. However,

we will always work with schedules where these limits exist and they are easy to compute.

Finally, there is another way to classify the orders according to the times they are

allowed to be placed. We have defined the JRP in the continuous time model, where

joint orders can be placed anywhere on [0, T). But we can also define a discrete model

where orders can be placed anywhere on [0, T) n pZ+ for some fixed value of p. Here,

pZ+ f{kp : k E Z+} denotes the set of non-negative multiples of p. The discrete model

is more suitable for scenarios where orders are processed daily, weekly or with any fixed

periodicity. We will use discrete models in Chapter 4.

The restriction to "simple" schedules: the general integer policy.

An arbitrary schedule is sometimes called a dynamic schedule. Since a highly irregular dy-

namic schedule may be difficult to implement in practice, it is natural to add some structure

to the feasible schedules. In JRP jargon, it is customary to call any subset of the dynamic

schedules a policy.

In the JRP with general integer policies we solve the stationary case, assuming that

joint orders can be placed only at multiples of a base period p (to be determined), and that

each commodity i E JO is periodically replenished every kip units of time, for some ki E Z+-

An accurate mathematical description of the scenario above is the following formula-
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Figure 3-3: GICF model. The plot shows the amount of commodity in storage over
time, when two commodities labeled 1 and 2 are replenished every qi and q2 units of
time, respectively. The ordering costs are shown below the horizontal axis.

tion, that corresponds to the general integer model with correction factor (GICF)

mi KoA(ki,...,kyI1) + Ki

P ic v kqi

s.t. qi = kip

+ --hidiqi
2

(GICF)

ki c Z+

p >0,

where A (ki, ... , kiol) /p is the average per-unit-of-time number of joint orders effectively

placed. This model is attributed to Dagpunar [9].

Let lcm(-) denotes the least common multiple of its arguments. For completeness, we

prove the following expression for the average number of joint orders.

Lemma 3.1.1.

A (ki, . ,klij )= (=1 1)i+1 E
Icy qil=i

Proof We can assume that p = 1 by a scaling argument. Note that commodity i is replen-

ished at times in the set Ai - kiZ+, and therefore the set of joint replenishment times is

A - Uic g Ai. For t > 0, let At = Ai n [0, t] and At A n [0, t] be the restriction of those sets

lcm(ki : i E I)-



to the interval [0, t]. Using the inclusion-exclusion formula

1 1J
!JAt IE :( )+11 DA

t E I l-=1 ICf:IIl=i iEI

Note that for any I ; _., f;i A = (lcm(ki : i c i) z+) n [0, t], and therefore, EI con-

verges to lcm(ki: i c I)-I as t -> oo. Taking the limit in the equality above, we obtain

A (ki, kl) =lim- A' = E(-1)i+1' lcm(ki, i E I)'.

It is easy to check now the correctness of the mathematical formulation (GICF). Fix

a commodity i E -J. The conditions qi = kip, ki E Z+ and p > 0 are exactly the restric-

tions enforced by the general integer policy. According to the general integer model, the

commodity is replenished every qi units of time, raising its inventory to diqi just after re-

plenishment and decreasing it linearly until the next replenishment at a rate -qi per unit

of time. This means that the average individual holding cost is 1hidiq? every qi units of

time, and the average individual ordering cost is Ki every qi units of time, which are exactly

the costs in (GICF). Finally, Lemma 3.1.1 guarantees that the joint ordering costs are also

correctly accounted for.

The GICF model is complicated to analyze because of the A term. Ignoring A (i.e.

setting the joint ordering cost rate to Ko/p in (GICF)) defines the general integer model

(GI). Note that this change is equivalent to assume that Ko is paid at every multiple of the

base period.



m. Ko /K i N1m -- + ( i + -hidiqi
p i"o \ qi 2

s.t. qi = kip

ki E Z+

(GI)

p > 0 .

We have just defined the GI and GICF formulations in the variable base model. Both

formulations have a variant where the base p is restricted. In the fixed base version of the

GI formulation, we require p to be a multiple of some constant B. In the fixed base version

of the GICF formulation, we require p to be fixed. We could have also called these versions

"discrete", but we decided to stick with the standard nomenclature for these variants.

Figure 3-4 summarizes the different models in the stationary case.

Continuous

Fixed
Base

Dynamic

" Orders at any time
" Average costs must
converge

* Not considered here

Stationary model (T = oo)

GICF

e Periodic replenish-
ments
e Joint orders restricted
to multiples of p
e Accurate joint order-
ing costs using the A
term

e As above, but now p
is a parameter

GI

* Periodic replenish-
ments
* Joint ordering costs
paid at every multiple
of p

* As above, but now p
is a multiple of some
parameter B

Figure 3-4: Variants of the stationary JRP considered in chapters 3 and 4, with their
main characteristics. We are not including the two finite horizon models (continuous
and discrete).



3.2 Some remarks about approximability and complexity

Two concepts of approximation

In this work we focus on two different classes of approximations. The first one is the

traditional notion of a-approximation algorithms: given an instance of JRP and a policy

P, an a-approximation algorithm must run in polynomial time and must output a schedule

satisfying P with cost at most a times the optimum within that class of policies. Of course,

smaller values of a mean better approximations, with a = 1 corresponding to an exact

algorithm. In a fully polynomial time approximation scheme (FPTAS), for every E > 0

there is an 1 + e-approximation algorithm running in polynomial time on the input size and

1/E.

But in the JRP it is more important to understand the increase in the cost due to the use

of a particular policy instead of the best dynamic one. We say that a policy P approximates

the dynamic policy by a factor of a if the optimal schedule satisfying P has a cost at most

a times the optimal cost with dynamic policies.

About complexity

In the JRP with continuous time and finite horizon, the input is a number T and list of

3 1I numbers (3 per commodity). If U is the maximum number of this list, then the input

size is O(log T + 1 0log U). It has not been ruled out that the optimal solution for this

problem is a "highly irregular schedule" that needs a description of size K(T). This means

that just describing the solution would take exponential time. The approach we take here

to develop approximate solutions in polynomial time is to impose a periodicity condition

on the solutions we report so that we can describe them using polynomial space.

A similar situation occurs in the stationary case with dynamic policies: the size of

the optimal dynamic schedule could be exponential in the size of the input. This issue

disappears when we restrict ourselves to general integer solutions, as they are defined by

their (constant) inter-replenishment periods.

Finally, we want to point out that there is another version of the joint replenishment



problem that goes by the name "JRP" alone. This version is substantially different because

demands can fluctuate over time: for each j E [0, T] n z+, there is a demand dJ c Z+ for

commodity i. The rest of the model is essentially defined in the same way as in the JRP

with continuous time and finite horizon 2. This problem is known to be NP-hard [2], but

this result is unlikely to imply a similar one for any of the problems we consider here.

One reason is that every JRP variant with constant demands and finite horizon has input

size proportional to 0(log T), while the input of the variable demand case is a list of O(T)

demand values per commodity. This strongly suggests that there is no polynomial time

reduction between these two problems, as their inputs have incomparable sizes.

Finally, we want to remark that for all the variants of the JRP considered in this work,

no hardness results were previously known. In particular, it is not known whether they can

be solved in polynomial time.

3.3 Some differences between GI and GICF

We now describe certain differences between the two main stationary models that are criti-

cal for our work. We mainly focus on the continuous versions of both models.

The natural decision variables for the JRP with general integer policies are the inter-

replenishment times per commodity. Once we know this set of values, the joint replenish-

ments are uniquely defined, and therefore p is not really a parameter of the problem. How

do we decide the parameter p then?

In the GICF model, given the inter-replenishment times per commodity qi = aL, i E J

where ai, bi E Z+ are coprime3, we need to find p > 0 such that kibip = ai for some ki

integer. It follows that 1/p must be a multiple of bi and p must be a divisor of ai, for each

i E Y. The largest value satisfying both properties is p* = gcd(ai:iL , where gcd(-) denotes

the greatest common divisor of its arguments. But note that any integer divisor of p* also

satisfies the required properties. Under GICF, the cost remains the same no matter which

of those values of p we pick.

2Except that since demands are discrete, the holding cost function is discretized.
31f the inter-replenishment times are irrational, it is not clear how to choose p in certain cases.



In the GI model, the situation is completely different. Under the same conditions we

still need to find p > 0 such that kibip = ai. But now it is easy to see that if we want the best

possible estimate for the joint ordering cost we need to choose the largest possible value of

p. In fact, we can make the cost artificially large by choosing p arbitrarily small. So in the

GI model we must pick p = .cd~a:i

From the previous discussion, it is easy to build schedules where the GI model gives

an average joint ordering cost completely different than then GICF model. For example, if

1,0l = 2 and the inter-replenishment times qi. # q2 are two very large prime numbers, then

p must be equal to 1. Therefore, the GI model reports an average joint ordering cost of Ko,

while the GICF model reports an accurate average joint ordering cost of KoO (min(iq2)

This bad behavior, however, disappears when we are close to the optimal GI policy. This

follows from the fact that the continuous GI model approximates the dynamic stationary

model by a factor of ~ 1.02 [32, 39].

While the good approximation achieved by GI policies is a strong reason to study it,

researchers have focused on the GI model almost completely neglecting the GICF model.

This lack of research on the GICF model seems to be the byproduct of a research trend.

For example, most papers working on the JRP hardly, if at all, mention the GICF as

a reasonable alternative to the JRP with general integer policies. Prior to our work in

Chapter 4, there was no evidence forbidding an scenario where GICF is polynomial while

GI is not.

3.4 A quick tour on the JRP

When we say "quick", we certainly really mean it. The JRP is one of the most well studied

more studied in Inventory Management, and covering all the associated literature would be

like writing a small book by itself. Here we focus on what has direct relevance with our

work.



The single commodity case

When restricted to one commodity, the JRP is equivalent to the Economic Lot Sizing

(ELS) problem. Introduced at the beginning of the twentieth century, the ELS models

a simple trade-off between ordering and holding costs. The problem considers a facility

facing a constant demand d for a single commodity that is met by placing orders to a

supplier with unlimited stock. Assuming a fixed ordering cost K per order placed, and a

holding cost rate h per unit of commodity stored per unit of time, the facility must choose

the inter-replenishment period q so as to minimize the average cost rate

K hdq
q 2

Clearly, the optimal solution is q* = and the total cost is 2Khd.

Commodity

dq jhdq2

Time
K K K K

q bp

Figure 3-5: ELS model. The picture illustrates the amount of commodity in storage
over time, if the commodity is replenished every q units of time. The total holding cost
between replenishments is proportional to the area of each gray triangle.

It is easy to check that the Economic Lot Sizing is equivalent to the stationary and

continuous JRP with a single commodity. It is also equivalent 4 to the stationary and con-

tinuous JRP with multiple commodities and no joint ordering costs. For convenience, we

assume from now on that K= KO +i Ki and H E sY dihi are both strictly positive.

If not, it is easy to check that the problem reduces to ELS.

An interesting result regarding this model is the performance of the power-of-two pol-

icy. In a power-of-two policy, the value q is restricted to be a power of two multiple of a

base period p chosen beforehand, that is, q = p2k with k E Z+. It can be shown that the

optimal power-of-two policy has a cost within ~ 6% of the cost of the optimal solution [21].
4Under polynomial time reductions.



The stationary case

In a certain way, the JRP is the simplest non-trivial generalization of the ELS problem.

However, even in the stationary case, optimizing the coordinated replenishments is so com-

plicated that extra assumptions (policies) on the schedule are usually needed in order to

obtain efficient and implementable solutions.

Among the strongest policies is the rotation cyclic policy, which forces every com-

modity to share the same constant inter-replenishment interval. This policy is very easy to

implement in practical applications. Also, computing the optimal solution under this policy

is equivalent to an ELS problem with ordering cost K and holding cost rate H per unit of

time. Therefore, the optimal rotation cyclic policy has cost \/2KH. This policy does not

offer any theoretical guarantee of its performance..

A less restrictive policy is the power-of-two policy, that forces each commodity to have

a constant inter-replenishment period which is a power of two multiple of some base value

p chosen beforehand. Jackson et al. [21] prove that this policy approximates the dynamic

ones within a 6%. A very important feature of this policy is that its inter-replenishment

times are pairwise nested: for each pair of commodities, one of their inter-replenishment

times is always an integer multiple of the other one. This property is highly desirable in

practice.

The general integer policy relaxes the power-of-two policy by allowing every commod-

ity to choose its own constant inter-replenishment interval. This policy is not pairwise

nested anymore, but it is still "highly" periodic. Since the fixed base GI model includes

power-of-two policies, the 1.06 approximation holds for this class as well. But the approx-

imation can be improved to 1.02 in the continuous GI model [32]. Again, these approxi-

mations are taken with respect to the optimal dynamic solution.

Unfortunately, neither the power-of-two nor the general integer policy are known to be

computable in polynomial time, so heuristics procedures have been developed to solve both

of them efficiently. In the next paragraph we cover some of these heuristics.

Heuristics for continuous general integer policies. Many heuristics for the continuous

GI model are based on a two step procedure where some values of p are decided first,



and then the inter-replenishment periods qi are determined independently per commodity.

Kaspi and Rosenblatt [23] proposed one of the first algorithms of this type, which ap-

proximately solves the continuous GI problem for several values of p and then picks the

solution with minimum cost. They propose to pick values of p that are equispaced in a

range [pmin, Pmax) known to contain the optimal p, but they do not specify how many val-

ues of p to use. For completeness, we now state and prove two possible values for pmin and

Pmax -

Lemma 3.4.1. Any optimal value of p* for the GI model satisfies

K0  2K
pmin = < p* & Pmax = 2  ~. (3.1)

2KH H

whenever K KO + Lico Ki and H = Eigydihi are strictly positive.

Proof Note that any GI schedule with p < Pmin has to pay at least the joint ordering costs

2KH and any GI schedule with p > Pmax has to pay at least the holding costs

11 ~
( dihik i p > Hmax = 2kHC.

These costs are already larger than the total cost obtained with the optimal rotation cyclic

policy. E

Back to our review, Wildeman et al. [49] transform the algorithm of Kaspi and Rosen-

blatt into an heuristic that produce a sequence of solutions whose cost converges to the

optimal cost with continuous GI policies. The main two differences are that they exactly

solve the problem for a sequence of values of p, and that this sequence is determined using

a Lipschitz optimization procedure that ensures convergence to the optimal cost. While

they claim that this procedure is more efficient than linear search in [pmin,Pmax], they do

not establish any guarantee about the speed of convergence.

A completely different approach uses the convexity properties of the continuous GI

model. Let C(p) be the optimal cost of a continuous GI policy with a given base p. It is

easy to see that C(p) is piecewise convex and that the local optima between breakpoints can



be computed easily. This would lead to an efficient algorithm if the number of breakpoints

is polynomial, which unfortunately is not known to be true. Yet, Lu and Posner [37] show

that for every E > 0 it is possible to slightly modify the cost function in the GI model so

that the two properties above holds, the number of breakpoints is O(n/./) and the optimal

schedule according to this modified cost function is within 1 + e of the optimal GI cost.

This gives an FPTAS for continuous GI policies.

The GICF model. The joint replenishment problem with general integer policies was

first introduced by Goyal [16]. He assumes periodic joint orders (some of them possibly

empty), which essentially translates into the continuous GI formulation. This assumption

was controversial at that time, as the consequences of using empty joint orders was not

clear at all. Dagpunar [9] strongly criticizes Goyal's formulation and proposes the contin-

uous GICF model. Goyal [17] replies back stating that it is hard to implement a solution

complying with the GICF cost model, since joint replenishments will need follow a non-

regular pattern. He also argues that finding a good solution for the GICF is harder than

finding a good solution for GI, and therefore the model should be defined directly as in the

GI model6 . While both, Dagpunar and Goyal arguments are valid, the research has mainly

focused on the GI model. But at the same time, it is rarely mentioned that empty replenish-

ments are charged. Some papers, when defining the GI model, describe the problem with

a sentence like "a processing cost is charged each time an order is placed", which is highly

misleading. We find this very unusual, and somewhat confusing.

There are very few papers studying the GICF model in more detail. Most of them

state simple facts, like those mentioned in Section 3.3. A more complete study is given by

Porras and Dekker [36]. They show that the inclusion of the correction factor significantly

changes the replenishment cycles ki and the joint replenishment period p. Moreover, they

prove that the optimal solution of GICF has cost strictly less than Eie -2(Ko +Ki)/hi,
which is the cost obtained assuming that individual orders cost KO + Ki instead of just Ki,
but joint ordering costs are eliminated. This property of GICF is very natural: if we pay KO

5i.e., the modified cost function is piecewise convex in p and the local optima between breakpoints can be
computed easily.

6Interestingly, with variable demands non-periodic inter-replenishment times are widely accepted.



for each individual order instead of for each joint order, the optimal cost should increase.

Surprisingly, this natural property is not known to hold for GI policies.

The finite horizon case

In the finite horizon case the most interesting problem is the JRP with variable demands (as

defined in Section 3.2). This problem admits several approximation algorithms [26, 22],
with a current best approximation factor of 1.8 [27]. However, all these algorithms run in

£ (T) time, which is only pseudopolynomial when demands are constant. One exception is

the algorithm of Joneja [22], which is designed for variable demands, but can run in poly-

nomial time when demands are constant, achieving an approximation factor that converges

to 11/10 as T -+ oo.

3.5 An approximation algorithm for the JRP

In this section we present a dynamic schedule for the finite horizon case in continuous time

that approximates well the cost of the best dynamic policy. In certain sense, our schedule

will be very close to be periodic, as we will discuss later.

We temporarily assume that the approximation algorithm has oracle access to N, the

total number of joint orders in some optimal solution for the JRP. We do this assumption

to make the description and analysis of the algorithm simpler. We show how to remove this

assumption in the next section. The algorithm (see Algorithm 1) is a simple two-step pro-

cess. In the first step, the algorithm places joint ordering points at every multiple of T/N,

starting at t = 0. In the second step, each commodity places its orders on a subset of those

joint orders in such a way that the individual ordering and holding costs are minimized.

Note that this can be carried out separately for each commodity. This is one of the key

ideas of the algorithm of Wildeman et al. [49] in the context of GI policies.



Algorithm 1

1: Approx-JRP (T,hi, di, Ki,Ko)
2: Guess N, the number of joint orders in an optimal solution.
3: Set p = T/N to be the joint inter-replenishment length.
4: Set J= {jp : j = 0,...,N - 1}, the set of joint order positions.

5: for i E J do
6: Choose a subset of J to be the orders of commodity i such that Cind" (i) +Chold (i)

is minimal.
7: return the schedule obtained.

Running time analysis

We have to be careful in how to execute the algorithm. The set J may have 9(T) elements,

while the input size is proportional to log T. However, we can explicitly define this set by

giving T and N, and it is easy to check that the size of N is polynomial in the input size.

For example, a simple bound follows from the observation that the cost of the schedule that

orders everything at time t = 0 must have cost at least NKo, which is a trivial lower bound

on the optimal cost. Therefore, N < No where

No = Ko + Y (Ki +hidiT2). (3.2)

A similar difficulty arises in Step 6 of the algorithm, but a similar representation can

be applied to keep the space polynomial. To see this, note that for each commodity i, the

function Cid (i)-+ Chold(i) is convex. If there are two renewal intervals of lengths qi and

q2 with q2 - q1 ;> 2p, then we can replace them with two renewal intervals of lengths qi + p

and q2 - p to obtain a schedule for that commodity with the same ordering cost CJn"(ivi),

but with a lower holding cost Chold (i). Therefore, we can specify each individual schedule

in Step 6 by giving these two inter-replenishment lengths and their frequencies.

It follows that the only step where polynomiality can fail is Step 6. The following

lemma establishes its complexity.

Lemma 3.5.1. Suppose that commodity i can be ordered only at multiples of some fixed

period p. Moreover; assume that T is a multiple of p. Then, it is possible to compute the

schedule minimizing Chod (i)+ Cq"iv (i) in polynomial time with respect to the input size.



Proof If C iv(i) + Chold(i) is minimum, then the inter-replenishment lengths can take at

most two values, and both are consecutive multiples of p. If these values are mp and

(m + 1)p, let a (resp. b) the number of orders of length mp (resp. (m + 1)p). Clearly, we

have that ma + (m + 1)b = T/p - N, which is a Diophantine equation in a, b with integral

solutions of the form

a = -N+ (m+ 1)r b=N-mr, forrEZ. (3.3)

The non-negativity of a and b implies the restriction N/m > r > N/ (m +1). We need to find

m, a, b such that [N/(m + 1), N/m] contains an integer and Chold (i) + C'iv (i) is minimized.

Consider the cost rate function CR(u) Ki/u + hidiu/2, which coincides with the actual

cost rate of the commodity when the inter-replenishment interval length u is constant. This

function is minimized at u* =. By convexity of the function CR(u), it follows that

" If the optimal m satisfies mp > u*, then it has to be the minimum m satisfying

[N/ (m +1), N/m nz z, o .

" If the optimal m satisfies (m + 1)p < u*, then it has to be the maximum m satisfying

[N/(m+ 1),N/mn 0Z # 0.

e If mp < u* < (m+ 1)p, then m [u*/p].

Therefore, m is one of these three values. They can be computed efficiently. For example,

if mp > u*, then m is at least m* - [u/p], and we are interested in the smallest integer

m > m* such that [N/(m + 1),N/m] contains an integer. The largest integer in [0,N/rm*] is

r [N/m*], and therefore the smallest m we can use satisfies:

N N
- -1 < m < - and m > m*.
r r

So we set m = max{m*, [N/r- 1]1.

Once m is fixed, the values of a and b are chosen in such a way that the inter-replenishment

length with minimum cost rate appears the maximum number of times. It is not hard to see

that a and b can be computed efficiently. Each of the triplets (M, a, b) is a candidate for



the optimal schedule, and we can find the actual optimum by picking the triplet defining an

schedule with minimum cost. For completeness, we describe the procedure in Algorithm 2.

Algorithm 2 Computing the schedule for commodity i minimizing Cr " (i)+ Chold (i), sub-
ject to replenishments in {jp : j= 0, ... ,N- 1}, where p = T/N.

1: Set u* = ,2Ki/(hidi).
2: Set m* =Fu*/p] and m* =u*/p].
3: Set ri [N/m*] and r2 = [N/m*].
4: Set ml max{mI, [N/r1 - 11}, M=2 =[N/r2] and m3 = Lu*/pi.
5: for i= 1 to 3
6: do
7: if CR(mip) < CR((mi + l)p)
8: then set ai = -N + (mi + 1) [N/mij and bi = N - mi LN/mij.
9: else set ai -N+ (mi + 1) [N/(mi + 1)] and bi = N - mi [N/(mi + 1)].

10: Set (M, a, b) = arg min { I (aiCR(mip) + biCR((mi + 1)p))}.

11: return the schedule that places a orders of length mp, followed by b orders of length
(m+ 1)p.

Approximation analysis

Given an instance of JRP, let OPT be any optimal solution having exactly N joint orders,

where N is the value guessed by Algorithm 1. For i E Y, let ni be the total number of

individual orders of commodity i in OPT and let OPT be the optimal cost. In this section,

we may emphasize the dependency on the schedule by including the schedule in brackets.

For example, we may write C[OPT] = OPT.

If a commodity is ordered exactly m times, it is easy to show that its holding cost is

minimized when the replenishments occur at {jT/m: j = 0,... ,m - 1}. We say that m

orders are evenly distributed when they are placed according to this configuration. This

optimality property for the holding cost of evenly distributed orders is the basis for a lower

bound on OPT we use to prove the approximation guarantee. Our first step in this direction

is to define two feasible solutions for the problem:

* The virtual schedule (or VS) places exactly (1 +# i)ni evenly distributed orders of

commodity i, for every i E Y. Each #i is a parameter to be defined.



e The real schedule (or RS) allows joint orders in J = {jp : j = 0,...,N - 1}. For

each commodity i we place exactly (1 +# i)ni orders, that are obtained by shifting

each individual order in the virtual schedule to the closest point in J. If there are two

closest joint orders, we choose the closest one backwards in time.

Note that both schedules are not defined algorithmically. The real schedule is defined from

the virtual schedule, and there is a one to one correspondence between their individual

orders through the shifting process. We use the term shifted order to indicate this corre-

spondence.

Loosely speaking, the cost of the real schedule is closely related to the cost of the

schedule output by Algorithm 1, while the virtual schedule is related to a lower bound on

OPT. Both are used as a bridge that relates OPT with the cost of the schedule returned by

Algorithm 1.

Proposition 3.5.1. If Pi < 1/8 for every i E f, then Chold[RS] < 2Chold[VS].

Proof Consider any commodity i E f. For simplicity, we omit subindices and write n

instead of ni and # instead of Pi. Let q= T/ (1 + 3)n be the inter-replenishment length of

the commodity in the virtual schedule. Let p = T/N be the joint inter-replenishment length

for the real schedule. Note that q > p/ (1+#P).

Suppose first that p > q. In RS, the commodity is replenished in every joint-order

position. Directly evaluating the holding costs gives

T 2hd T 2 hd 9
Chold [RS](i) - 2N = (1 +#)Chod[VS](i) < -Chold[VS](i).2N -2n -8

On the other hand, if p < q, let k be the only integer satisfying kp q < (k + l)p.

Clearly, the inter-replenishment lengths in the real schedule can only take the values kp or

(k + 1)p. Let a be the number of orders of length kp and let b the number of orders of

length (k + 1)p in the real schedule. We have the relations:

a+b=(1+#)n and a(kp)+b(k+-l)p=q(l+)n,

from where we get, in particular, that bp = (1 +# )n(q - kp). Using these three relations,



and evaluating the holding cost, we obtain:

Chold [RS] (i)

Chold [VS] (i)

a(kp) 2 +b(k+ 1)2p2  (I+#3)n(kp)2 +b(2k +1 )p2

q2(l +f3)n q2(l±+3)n

which can be written after some additional manipulation as

Choid[RS](i) < (
Chold [VS](i) -

k2 -k (P) 2
-k -k) -

q f
+ (2k + 1) -.

q

To conclude, note that -k(k + 1)x2 + (2k 1 )x, as a function of x, has maximum value
(2k , 1)2 which is at most 9/8 when k > 1.4k(k±1)'

The next proposition shows that the individual ordering and holding costs in RS are

within a constant factor of the respective costs in OPT. The proof uses Prop. 3.5.1 and

some simple relations among RS, VS and OPT.

Proposition 3.5.2. Let y = 9/8. Then for every E > 0 we can choose { pi }i j so that the

real schedule satisfies

0 Chold [RS] (1+ E)2 ' Chold [OPT]

9 Cindi [RS] < (1+ E )y 2 .r [OPT].

If T is sufficiently large, we also have

" Chold[RS] < (1 + E)Y - Chold[OPT]

* Clnd [RS] 1 ( E)y. CIn [OPT]

Proof It is easy to see that Chold[VS](i) = 2 .lftn Also, Chold [OPT] (i) ;> 2 hdi because

the right hand side is equal to the holding cost of ni evenly distributed orders. Combining

these relations, we obtain

min{l I+ #i}Chold [VS] 5 Chold[OPT].

Additionally, if $i < 1/8, we can combine this result with Prop. 3.5.1, obtaining

Chold[RS] < Chold [OPT].
8 minicy{1 I +#AI}



Fix # > 0 and T sufficiently large such that for every commodity i there exists /i satisfying

(1 +i)ni is integer and (1 - E')(1 +1) 1 +#Pi < 1I+#f, for some e' > 0 to be chosen at

the end of the proof. Such value of T must exist because the inter-replenishment length of

the commodity in any optimal solution has an upper bound independent of T. Under these

assumptions, we have that

Cindiv RS] <max{1+#indiv [OPT] r )Cn"v[OPT]
ord [RS]I< mJordI+OPT] ord

and
,1 9

Chold [RS] < Chold [OPT].
(8(1 - E')(1+#P))

Choosing the value of 3 that gives the best approximation bound, we obtain

[RS) < ,C r [OPT] and Chld [RS] < Choid[OPT].
l- rd [1-E'

We finish the proof by choosing E' so that (1 - E')- 1/2 (1+ E). In the case of arbitrary

T, we can only choose #i = 0, obtaining the bounds stated in the lemma. E

Let S be the schedule returned by Algorithm 1. Recall that its output is a schedule S

that minimizes Ci'v + Chold restricted to use N evenly distributed joint orders. This and

Prop. 3.5.2 give the following inequalities for large T:

C Chold n iv + Chd [RS] < (1+ E)y Cnriv + Chold) [OPT].

Since N is the number of joint orders in OPT, then Cnot[S] C-t[OPT]. Adding up, we

obtain C[S] < (1 + e)yC[OPT] which is an approximation guarantee asymptotically equal

to y for Algorithm 1.

Theorem 3.5.1. Algorithm 1 is a 9/8-approximation algorithm ( N9/8 for large T) for

dynamic policies in the finite horizon case.



3.6 An FPTAS for the GI model

We can easily adapt the algorithm described in Sect. 3.5 to the GI model with variable base

(see Algorithm 3). We now guess p, the optimal joint inter-replenishment length. Note that

Step 5 is simpler, since qi is always one of the two multiples of p closest to 'Ki/hi.

Algorithm 3 GI model algorithm

1: Approx-JRP (T,hi, di,Ki, Ko)
2: Guess p, the optimal renewal interval in an optimal solution.
3: Set J= {jp: j= 0... ,N - 1}, the set of joint order positions.
4: for i - J do
5: Choose qi as a multiple of p such that Ki/qi + hiqi is minimum.
6: return the schedule obtained.

Note that Algorithm 3 finds the best value of qi for the optimal p, and therefore com-

putes the optimal GI policy. Since GI policies approximate unrestricted policies by a fac-

tor of 1/(v 2 log2) 1.02 [32, 46], our algorithm achieves these guarantees. The bound

in Section 3.5 (~ 1.06) is slightly worse since we are not using the powerful machinery

available for the stationary case.

From this observation we can obtain a fully polynomial-time approximation scheme

for GI policies by exhaustively searching p in powers of (1 + e). The range of search can

be [pmin, Pmax], which are the values defined in Equation 3.1. The total running time is

polynomial in the size of the input and - 0(1/E). The only thing we need to prove

is that choosing p' in the range p < p' < p(1+E) is enough to get a (1±8)-approximation.

This follows from the fact that if (p, {ki};iE') defines an optimal schedule with value OPT,

then (p/(1+ E), (kiI i~) has cost

Ko Ki
+ -+ hidiki (1+E) (1+E)OPT.

p(1+E) i.cE(I+)kip 2

Essentially the same idea can be used to remove the guessing assumption in Algorithm

1. We just exhaustively search N in (approximated) powers of y.

Finally, Algorithm 3 can be extended to the fixed base GI model. The only difference

is that we guess p assuming it is a multiple of the base B. The exhaustive search in powers

of (1 +8) has to carefully round the values of p to be multiples of B.



Theorem 3.6.1. [4 ]Algorithm 3 (properly modified) is an FPTAS in the class of GI poli-

cies and in the class of fixed base GI policies.
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Chapter 4

Synchronization, periodicity and Integer

Factorization

In the Integer Factorization Problem (IFP) we want to express a positive integer as a

product of prime numbers. The decomposition into product of primes is called prime

factorization, which is one of the building blocks of elementary number theory.

Researchers widely believe that the IFP does not admit polynomial time algorithms.

But this belief is not justified by any of the traditional concepts from computational com-

plexity. In this regard, the IFP stands as a unique problem in complexity theory.

In this chapter we establish the hardness of several scheduling problems in Operations

Management based on the presumed hardness of the IFP. The problems for which we are

able to prove these results share some elements of synchronization and periodicity, two

properties that we link to integer factorization. The main results in this chapter are joint

work with Andreas S. Schulz [41].

4.1 Some background on number theory

For convenience, in this subsection a, b and d denote positive integers.

We say that a is a divisor of b (or b is multiple of a) if the ratio b/a is an integer. We

denote this relation as alb. A basic property of this relation is the following.



Lemma 4.1.1 ([20]). If d a and dIb with a > b, then d| (a + b) and dIa - b.

Every positive integer has two trivial divisors, namely 1 and itself. Positive integers

greater than or equal to 2 with only trivial divisors are called primes. Otherwise they are

called composite. The Fundamental Theorem of Arithmetic [20] guarantees that every

positive integer can be uniquely written as a product of primes. For example, we write

36 = 22 - 32. Since every composite number is the product of at least two primes, we have

the following property:

Lemma 4.1.2 ([20]). Every composite number b has a prime divisor no larger than v'b.

We are interested in two particular integer functions. The least common multiple of

two positive integers a and b, denoted by lcm(a, b), is the smallest positive number that is

simultaneously a multiple of a and b. The greatest common divisor gcd(a, b) is the largest

positive number that is simultaneously a divisor of a and b. It is very easy to compute both

functions from the prime factorization. For example, if a = 24 38 -59 and b = 27 . 36, then

gcd(a, b) = 2 min{4,7} - 3 min{8,6} - 5 min{9,O}

and

lcm(a, b) = 2 max{4,7} - 3 max{8,6} . 5 max{9,O}

In other words, the greatest common divisor takes the primes appearing in the prime

factorization of a and b, and raises them to the minimum of their corresponding exponents.

The least common multiple does the same, but raises the primes to the maximum of their

corresponding exponents. From this property we easily obtain the next lemma.

Lemma 4.1.3 ([20]). gcd(a, b) - lcm(a, b) = a - b.

We say that a and b are coprimes if gcd(a, b) = 1. In other words, coprime numbers do

not share any prime factor. It is possible to show that if a > b are coprime numbers, then

so are a and a - b. For example, this follows from the next result:

Lemma 4.1.4 ([20]). For every a > b, gcd(a, b) = gcd(b, a - b).

up to reordering of the factors.



Lemma 4.1.4 implies that gcd(a, b) = gcd(b, a - kb) for any integer k > 0 such that

a - kb > 0. From this we can express gcd(a, b) as the gcd of significantly smaller numbers,

which leads to a simple iterative method to compute the greatest common divisor. For

example,

gcd(30, 24) = gcd(24, 30 - 1 -24) = gcd(24,6) = gcd(6,24 - 3 -6) = gcd(6,6) = 6.

Implemented properly, this algorithm satisfies:

Lemma 4.1.5 (Euclid's algorithm [8]). The greatest common divisor of a and b can be

computed in polynomial time (with respect to log(a + b)).

This result is important for us, as we will need to compute the greatest common divi-

sor efficiently. It follows from Lemma 4.1.3 that the least common multiple can also be

computed efficiently.

4.2 The complexity of factoring integer numbers

Given two positive integers N < M, the decision version of the IFP is to decide whether

M has a non-trivial divisor d satisfying d < N. It is easy to show that a polynomial time

algorithm for the decision version of IFP leads to a polynomial time algorithm for the IFP

itself2 , so they are essentially equivalent for the discussion that follows.

What makes IFP very unique in terms of complexity starts with the following result:

Lemma 4.2.1. The decision version of IFP is in NP n coNP

Proof Let N < M be positive integer numbers. To show that IFP belongs to coNP, note

that the prime factorization of M can be used to certify that M has no divisor d with d < N.

To check the correctness of the prime factorization we can use the primality test of Agrawal

et al. [1]. To show that IFP belongs to NP, we can just use any non-trivial divisor d < N of

M to certify that this divisor exists. l

2Basically, binary search in N allows us to find a non-trivial divisor in polynomial time.



It follows from this lemma that the IFP is unlikely to be NP-hard or coNP-hard. More-

over, most problems initially shown to be in NP n coNP have been eventually shown to be

in P (a classic example of this is linear programming).

Another particularity of the IFP is that it can be solved in polynomial time using quan-

tum computers. This is a remarkable result, as it was the first famous problem that was

shown to be efficiently solvable with a quantum computer, but not with a traditional one.

But against all this "evidence", researchers widely believe that the IFP is not polyno-

mial time solvable with traditional computers. In fact, many cryptographic protocols used

for transactions over the Internet depend on the hardness of integer factorization. If there

were an efficient algorithm for factoring, then all those protocols would be breakable. The

most well known of these protocols is RSA [38], which has been around since 1978 and is

still used as of today. For this reason, and for its theoretical importance, the IFP has been

heavily researched, but all attempts for finding an efficient algorithm have, so far, failed.

4.3 Using the IFP to prove hardness

We say that a problem r is Integer Factorization-hard (or simply IF-hard) if the ex-

istence of a polynomial time algorithm for 7r implies the existence of a polynomial time

algorithm d for integer factorization. Usually, the way to prove this type of results is by

using a reduction, that uses a fictitious polynomial time algorithm for ir to algorithmically

solve the IFP in polynomial time.

Since NP-hardness implies IF-hardness, we look for problems ir that have an intrinsic

connection with the IFP, but have not shown to be NP-hard. Indeed, we picked problems

for which the complexity has been open for decades. To the best of our knowledge, this is

the first time that an optimization problem is reduced to the IFP.

The problems we consider are optimization problems with discrete decision variables

representing the frequency of certain events that are repeated periodically over time. The

optimization function must model an incentive to synchronize the periods. By this, we

mean that the model prefers to choose periods where multiple events are simultaneously

executed.



In contrast to most non-trivial NP-hard reductions, there are no gadgets. We directly

model the number M to factorize into the problem. To illustrate the technique, consider the

following optimization problem having M as the only input:

max U(ql,q2) =Mqi +gcd(ql,q2)

s.t. qi M

q2 M- 1 (4.1)

qlq2 E Z+-

Note that if qi M- 1, thenU(q1 ,q2 ) M(M - 1)±(M 1) = M2 - 1. If qi = M,

we then have U(qi , q2) > M 2. Therefore, qi must be equal to M in any optimal solution.

In all the proofs of hardness we will eventually prove that some variable is equal to M in

any optimal solution. We call this Step 1. Note that this argument critically depends on the

discreteness of q1 and q2.

Now, given that qi = M, we can figure out what the value of q2 is. In this case, we

just want to maximize gcd(M, q2) subject to q2 < M - 1. Therefore gcd(M, q2) will be the

largest non-trivial divisor of M, so the optimal objective value implicitly contains informa-

tion to compute a non-trivial divisor. We call this Step 2.

In the final step we put the pieces together by describing an algorithm that finds a non-

trivial divisor of M in polynomial time, assuming that problem 4.1 is solvable in polynomial

time. In this case, we just need to substract M 2 from the optimal objective value. Finding a

non trivial divisor of a composite number in polynomial time is all we need to solve the IF

in polynomial time, as we can recursively factorize every divisor we find.

For the hardness results that follow, the functions involved in the optimization problem

are more complicated, and so the proofs of Step 1 and Step 2 are lengthier. In Step 2 we

may not be able to use the optimization problem to find a divisor of every positive integer

M. However, the hardness proof still works as long as we can factorize every positive

integer M either using the method just described, or using any other procedure that runs in

polynomial time.



4.4 Application: The fixed base GI problem

We now prove a first hardness result for the Joint Replenishment Problem. The optimization

problem, already introduced in Chapter 3, is the fixed base GI model:

Ko (K l1
min -+ -+ --hidiqi

pi qi 2

s.t. qi E Z+ for all i E J
P

PE Z+-
B

In this problem, the base B is part of the input.

Setup

Starting from the fixed base GI model with two commodities, we set B= 1, !h2d2 = and

K2 = KO. Renaming !h1di = H1, we obtain the following optimization problem:

min U(p,qi,q2)=Ko (--) +-1+Hiqi+q 2(p q2 qi

s.t. q, q2 Z+ (4.2)
P P

p Z+

We choose B = 1 because this guarantees the integrality of p. Setting 1h2d2 =1 is just

a normalization of the coefficients in the objective U. The choice of K2 = KO requires to

understand the proof, but setting it at the beginning makes the proof simpler.

Step 1

In order to force qi = M in any optimal solution of (4.2), the idea is to fix Ki and H1 so that

the minimum of L(q ) -= KL +Hiqi is attained at q1 = M. We also need that Hi and Ki are



large enough compared to the other coefficients in U(p, qi, q2), so that U(p, qi, q2) ~ L(qi)

and therefore picking qi # M is never optimal.

With this objective in mind, we set

HI = 4Ko + (M + 1)2 and Ki = M2Hi

It is easy to check that L(qi) is minimized at qi = M. To prove that qi $ M is never optimal

for U(p, qi , q2), note that a little bit of algebra gives

L(M+ 1) - L(M) H1
M+1l

L(M - 1) - L(M) = H .
M -I

Using these bounds and the convexity of L, we obtain that for all qi #y M:

4K0U(p,ql,q2) L(qi) >min{L(M- 1),L(M+1)} =L(M)+ +M+ 1.
M+1

(4.3)

On the other hand,
2K0U(M, M, M) = L(M) + +M
M

is already smaller than the lower bound in (4.3), so qi must be equal to M in any optimal

solution.

Step 2

From Step 1, we can set qi = M and ignore the now constant terms in (4.2). If we also

rename q2 as q, and set K0 = M, we obtain the following optimization problem

min V(p, q) = M (

s.t. Mq E Z+
p p

p E 7+

(4.4)

+ --) + q
q



In this step we assume that M is a composite number but not a multiple of 2 or 3, and we

want to prove that every optimal solution (p* q*) of (4.4) satisfies that p* is a non-trivial

divisor of M. This is almost implied by the constraints of (4.4), as they guarantee that any

feasible p is already a divisor of M. We only need to prove the following lemma.

Lemma 4.4.1. Let M be any composite number that is not a multiple of 2 or 3. Then every

optimal solution (p*, q*) of (4.4) satisfies p* 5 1, M.

Proof It is easy to check that

V(1, q) > M for every q E Z+

and

V(M, q) > q > M, for every feasible q in (4.4).

Note that we used the constraint C Z+ in order to imply q > M.

On the other hand, let p be any non-trivial divisor of M. Since M is not divisible by 2

or 3, it follows that 5 <-5 < 1. Using these bounds we can show that

2M 2M M 3M

p 5 5 5

Since (p, p) is feasible for (4.4), and V(p, p) is smaller than both V(l, q) and V(M, q), for

any feasible q, it follows that p = 1 or p = M cannot be optimal for (4.4). El

Putting everything together

The algorithm d that finds a non-trivial divisor of a composite number M is simple. First,
it tests whether M is multiple of 2 or 3. In those cases, d reports the non-trivial divisor 2

or 3 and terminates. Otherwise, it solves the following GI problem associated to M:



I 1 +M2m2
min U(p, qi, q2 ) M + (M2+6M+ 1) -- +ql +q 2

s.t. q, q E Z+ (4.5)
p p

p E Z+.

If the optimal solution found is (p*, q*, q*), it returns p* and terminates. Steps 1 and

2 guarantee that p* M, and p* -4 1, M, therefore p* is actually a non-trivial divisor of M.

Since the size of the coefficients in (4.5) is polynomial in logM, algorithm d could be

implemented in polynomial time if there were a polynomial time algorithm to solve the

JRP with GI policies. Therefore,

Theorem 4.4.1. The JRP in the fixed base GI model is IF-hard.

4.5 Application: The Clustering of Maintenance Jobs.

Many industrial processes ensure the correct function of its different components by doing

regular maintenance jobs. In many cases, these jobs render the components unusable during

the maintenance times, forcing the whole system to become idle for the duration of the

maintenance.

The Clustering of Frequency-Constrained Maintenance Jobs Problem (CMJ) aims

to reduce the cost of these downtimes. We describe here a special case, where the set

of components c E V are nested. These relations are given by a directed rooted tree

T = (W ,E) with root r, where an arc from c to c' indicates that component c' is part of

component c. The leaves of the tree (components with no outgoing arcs) are called indi-

visible components.

We assume that the maintenance of a component requires to disassemble all the compo-

nents in which it is contained. In other words, if a component c E W is under maintenance,

all the components in the path from r to c must be under maintenance. We associate a

constant cost Ke to the start of any maintenance job of a component c.



In the model we study here, we additionally assume that each indivisible component c

works a constant integer amount of time qc between maintenance jobs. Each qc value, to

be determined, is bounded from above by a given maximum operational time fe, that is,

qc < fe. This constraint implies that c cannot work for more than fc units of time without

maintenance.

For the following example, we refer to Figure 4-1. Consider an scenario with three

components, where one component (labeled 0) contains two indivisible components (la-

beled 1 and 2). Suppose the maximum operational times of the indivisible components are

fi = 5 and f2 = 6. A valid maintenance schedule is ql = 4 and q2 = 6, which is depicted

in Figure 4-1. Our model does not consider the amount of time for each maintenance, so

we arbitrarily set it to 1 in the timeline.

Component 0
Component 1

Component 2

K1+ K2 K1  K2  K K 1+ K2  K1  K2
K0  K0  Ko Ko K0  K0  K0

Figure 4-1: An example of the CMJ model. Components 1 and 2 are indivisible,
and they are both contained in Component 0. Black areas denote maintenance jobs.
Dashed areas denote idle time (where the component is not working and not under
maintenance). Alternating gray and white areas delimit the times where a component
is working without maintenance. Each maintenance job extends for one unit of time.

The objective of the CMJ is to minimize the maintenance cost per working unit of

time. For indivisible components c, this cost is just Ke/qc. For every other component

(for example Component 0 in Figure 4-1) this cost is harder to compute, as maintenance

jobs on these components are generated whenever one of its indivisible component starts

a maintenance job. In order to give an explicit formula, let 0c be the set of indivisible

components that c contains, plus the component c itself. Using the inclusion-exclusion

formula (as in Lemma 3.1.1) we can write the maintenance cost of a component c E W per

unit of working time as:

Kc E (-1)i+1 lem(qc : c E I)-I
i=1 IcfeC:JIJ=i



This leads to the following formulation of the CMJ model:

min K 1(-1)'+' [ lcm(qc : c I) 1

cEW i=1 IfcJlllI4

qc < fe for all indivisible components c, (CMJ)

qc C Z+ for all c E W.

Levi et al. [25] generalize this model, applying it to the maintenance of aircrafts. In this

generalization, the cost of performing a maintenance job of a collection of commodities at

a given time is not the sum of the maintenance costs of each commodity in the collection,

but a submodular function of the collection. They also assume that maintenance occur at

times that are integral multiples of a fixed base period, which corresponds to our integrality

.3assumption

Other applications and results on this subject can be found in [35]. In the next section,

we show that the model of CMJ presented above is IF-hard.

Setup

Starting from the CMJ with two indivisible components 1 and 2, and a third component 0

containing the other two, we obtain the following special case of CMJ:

K0+HK 1  Ko+K 2 _ K0min U(ql,q2) = +
qi q2 lcm(ql,q2)

s.t. q1i fi, q2 f2

ql,q2 C Z+

We initially set K0 = 1 to normalize the coefficients. We will also set K2 = 0 to make

the proof simpler. The model becomes:

3after proper rescaling



1+K 1  1 1
min U(ql, q2) = + I-

q1 q2 lcm(qi, q2)

s.t. qi < fi, q2 < f2 (4-6)

ql,q2 E Z+

Step 1

In order to force qi = M in any optimal solution of (4.6), we set fi = M and choose Ki large

enough so that U(ql, q2) ~ ' . It turns out that setting 1 + K1 = M 2 (M - 1) is enough.

Note that

1±+K1  2
U(q 1, q2) > = M2 whenever qi < M. (4.7)

M -

On the other hand,

U(M,f 2) < -- + lK 1-M+M2.
f2 M

Since U(M, f2) is already smaller than the lower bound in (4.7) for any M > 2, it follows

that qi must be equal to M in any optimal solution to (4.6).

Step 2

From Step 1, we can set q1 = M and ignore the now constant terms in (4.6). If we also

rename q2 as q, and f2 as f, we obtain the following optimization problem

1 1
min V(q) =-

q lcm(M, q)

s.t. q < f (4.8)

q C Z+

In this step we assume that M is a composite number but not a multiple of 2, 3, 5 or

7. We write M = ab, where a < M. This factorization is guaranteed to exist by Lemma

4.1.2. Finally, we set f to be an arbitrary integer satisfying M - a < f < M -



Under these assumptions, we will conclude that any optimal solution q* of (4.8) is not

coprime with M. Before proving this result, we need a small lemma.

Lemma 4.5.1. Let M be a composite number that is not a multiple of 2,3,5 or 7.

a < M be a divisor of M. Then

Let

M 3
M-a- - > --Ma 4

for all M > 4

Proof Since 11 < a < M, it follows that

M 10
M a > -- M - M.

a 11

It is easy to see that the right-hand side of this inequality is greater than 2M for M > 4. D

Lemma 4.5.2. If M is a composite number that is not a multiple of 2,3,5 or 7, then any

optimal solution q* to (4.8) is not coprime with M.

Proof If M and q* were coprimes, then lcm(M, q*) = Mq* and therefore

V(q*);> min - - =(4.9)
q<f q Mq f Mf

Let q -- a(b - 1) = M - a. Clearly, q is a feasible solution to (4.8). We will prove that

V(q) < V(q*). Since lcm(M, q) < M(b - 1), it follows that

1 1
V(q) = - - I

q lcm(M, q)

1 1

q M(b-l1)

We now try to link (4.9) and (4.10). First, using that q < f < M - 9 we obtain:

1 1 M-a-f -a/2 -1
f q fq q2 2a(b- 1)2

On the other hand, using M - a < f < M and Lemma 4.5.1 we get:

f - (b - 1)

f(b - 1)
M-a-b

M(b - 1) >

(4.10)

1 )

(b -1)
1

f
3

4(b - 1)'



Finally, multiplying this last inequality by 1 and adding it to the previous one, we

obtain:

V (q* ) - V(q) >
a(b - 1) 4b 2(b - 1)

It is easy to check that the right hand side is positive, for every b > 3, and therefore, for

every M > 32 9

Putting everything together

Let Pi be the following CMJ problem:

mm ~q~q)=M2 (M-l1) 1 1min U(qi, q2) = 2(M-1 + - -
q1 q2 lcm(qi, q2)

s.t. qi < M, q2 < M-2' (Pi)

ql,q2 C Z+

and denote by (q'1, q') an arbitrary optimal solution of Pi found by a hypothetical polyno-

mial time algorithm for CMJ.

The algorithm d that finds a non-trivial divisor of a composite number M works as

follows. First, it checks whether M is a multiple of 2, 3, 5 or 7. In those cases dV reports the

non-trivial divisor 2, 3, 5 or 7 and terminates. Otherwise, for each i c {1, 2,3,..., LlogMj },
a solves Pi and computes di = gcd(M, q2), reporting the first number di that is a non-trivial

divisor of M.

We claim that if M is a composite number that is not a multiple of 2,3,5 or 7, then di is

a non-trivial divisor for some i. To see this, note that if M = ab with 11 < a < -/M, then

there exists i E {1, 2,3,..., [log Mj} such that M - a < M - 2' < M - 1. Using Steps 1 and

2, it follows that di is a non trivial divisor of M.

Since we solve O(logM) instances of CMJ, each one having coefficients of size poly-

nomial in logM, it follows that algorithm d could be implemented in polynomial time
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if there were a polynomial time algorithm to solve CMJ. Hence, we have the following

theorem.

Theorem 4.5.1. The CMJ problem is IF-hard, even with three components.

4.6 Application: The fixed base GICF problem

We now prove another hardness result for the Joint Replenishment Problem, this time for

the fixed base GICF model. The optimization problem, already introduced in Chapter 3, is

the following:

min KoA(k 1 ... ,k1 1) + ( + -Ihidiqi
p i i 2

s.t qi =kip'

ki E Z+.

Recall that in the fixed base model, p' is part of the input.

Setup

(GICF')

Starting from the GICF model with two commodities, we initially set the following pa-

rameters:

p'=1, K2 =0 and -h 2d2 =1.2

Renaming -hI di = H1, we obtain the following optimization problem:

min U(q1,q2)=Ko -
(ql q2 lcm(ql, q2)

K1+ +H 1 ql +q2
gql

s.t. ql,q2 E Z+ (4.11)

Note that, ignoring the term Ko/lcm(q , q2), the objective U(q 1 , q2) is the sum of two

functions of the form f(x) = + bx. We will frequently use that the minimum of f on the

real line is attained at x = a/b.
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Step 1

In order to force qi = M in any optimal solution of (4.11), the idea is to fix K1 and H1 so

that the minimum of L(qi) = +Hiqi is attained at qI = M. We also need that H1 and K1

are large enough compared to the other coefficients in U(qi, q2), so that U(qi, q2) e L(q 1 )

and therefore picking qi 5 M is never optimal for U(q1 , q2).

With this objective in mind, we set

Ki = 2KoM 3 and Hi 2KoM.

It is easy to check that L(qi) is minimized at qi M. We now prove that qi # M is

never optimal for U(qi, q2). A little bit of algebra gives

H1 KoM
L(M+1) - L(M) = > = Ko

M+ 1 M
Hi

L(M - 1) - L(M) = > K0 .
M -- 1

Using these bounds and the convexity of L, we obtain that for all qi # M

L(qi) > min{L(M - l),L(M+ l)} > L(M) +Ko,

and therefore

U(ql, q2) > L(ql) + I > L(M)+Ko + = 4KO M2 +K+1 forallqi # M. (4.12)

On the other hand,

U(M, 1) = 4KOM 2 +Ko + 1

is already equal to the strict lower bound in (4.12), so qI must be equal to M in any optimal

solution.
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Step 2

From Step 1, we can set qj = M and ignore the now constant terms in (4.11). If we also

rename q2 as q, and set Ko - M2/4, we obtain the following optimization problem

M2 (l1i
min V (q) ----- + q4 q lcm(M, q)

s.t q E Z+. (4.13)

For the algebra that follows, it is convenient to define

m2 m2
A(q)= -+q, B(q)=

4q 4lcm(M, q)'

so that V(q) = A(q) - B(q).

In this step, we also need to assume that M is an odd composite number satisfying

M > 5. What we prove is that any optimal solution q* for (4.13) satisfies that the greatest

common divisor of q* and M is not equal to 1 or M.

The following lemma rules out the possibility that q* is either 1 or a multiple of M. We

would gain no information about the divisors of M in those cases.

Lemma 4.6.1. If M > 5 is an odd number; then any optimal solution q* for (4.13) is between

2 an M- 1.

Proof Note that A (q) is convex differentiable with real minimum q = This implies

that A(q) is increasing in [M/2, oo) and therefore A(q) > A(M) for all q > M. Also, since

lcm(M, q) > M, we have that B(q) is maximized at q = M, and therefore -B(q) > -B(M)

for all q > M. Altogether, we obtain that V(q) > V(M) for q > M.

Direct computation and bounding shows that

M12 M
V(M) = M, and also V(1) = + 1- > M for all M > 5

4 4

and therefore V(q) > M for every q {2, 3, ... , M - 1}.

On the other hand, we can upper bound V(q) for q = [M/2] as follows. It is easy to
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check that A(q) is decreasing in (0, M/2]. This, and a little bit of algebra gives

A ([-j) <A (M-1) =A (-)+M 2
2 _ - 2 2 -1M - 2

A eM=f w

Also, since lcm(a, b) < ab and [ M] m- 1 for odd M, we obtain:

Combining these

M > 5 we obtain

and therefore q*

(4.13)

M>M _M

B -M > =
2 _ - 4 [M/2] 2(M - 1)'

two inequalities for A and B, and using that 2 - 2 0 for

M- 2(M M)

Vcano <b M+ M < M
_2_ M--2 2(M-1) '

cannot be greater than M or equal to 1 in any optimal solution to

What we prove now is an analogous result to Lemma 4.5.2 for the CMJ problem.

Lemma 4.6.2. If M is an odd composite number then every optimal solution q* to (4.13)

is not coprime with M.

Proof Suppose that M and q* were coprimes. Then B(q*) = , and therefore

V(q*) >v =min A(q)--- =min -- 1I- +q}.
qER 4q qea 4q M

Defining u = 1 - 1, it is easy to see that v = M/u, and this minimum is attained at =.

To obtain a contradiction, we prove that there exists an integer q such that V(q) < v.

The main two properties we need are quite similar to those we required in the Clustering

Problem. We need that q is close to q, and also that q is not coprime with M.

Since M is an odd composite number, Lemma 4.1.2 guarantees that M has a non-trivial

divisor 3 < p < M. Let q c [4 - p/2, q + p/2] be any multiple of p. It follows, using

Lemma 4.1.3, that

m2 _M.gcd(M,q) Mp
B(q) >

41lcm(M, q) 4q -- 4q'
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and therefore
m2 Mp

V(q) < -+ q-
4q 4q

If we write q = q(1 + E) for some 1 + E > 0, we can rewrite this upper bound as follows:

M 2u
V(q) -+q-

4q
M(p- 1) = M 2 u M(p - 1)

4q 4qc(1 + E)4q( + E)

Now, note that = q, and v = 2q, so we can rewrite the last upper bound as follows:

V(q) < v+ +*1 (E - 1)
(1+ E)

M(p - 1)

4q(1+ E)

1
(4.14)

Finally, note that |Eq| < E. Using this and 3 < p < v M we obtain the following bound

for one of the terms in (4.14):

4E2 2 -M(p -1) < p2 -M(p- 1) < M - M(p - 1) < 0.

Plugging this bound into (4.14), we conclude that V(q) < v, achieving the desired con-

tradiction. n

Putting everything together

The algorithm d that finds a non-trivial divisor of a composite number M is very sim-

ple. First, it tests whether M is even. In this case Q1 reports the non-trivial divisor 2 and

terminates. Otherwise, it solves the following GICF problem associated to M:

m2
min U(qi,q2) = -

4 (qI
1 1

q2 lem~qi, q2)/

m 5

2qi
m3

+ qi + q22

s.t ql,q2EZ+- (4.15)

Using Euclid's algorithm, d returns the non-trivial divisor gcd(M, q2) and terminates.

Step 1, together with Lemmas 4.6.1 and 4.6.2 guarantee that the optimal solution of

(4.15) satisfies gcd(M, q2) -f 1, M, and therefore this number is actually a non-trivial divisor
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of M.

Since the size of the coefficients in (4.15) is polynomial in logM, and Euclid's algorithm

is polynomial, it follows that &/ could be implemented in polynomial time if there were a

polynomial time algorithm to solve the JRP in the fixed base GICF model. Therefore,

Theorem 4.6.1. The JRP in the fixed base GICF model is IF-hard, even with two com-

modities.
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