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Abstract 

Actin, the primary component of the cytoskeleton, is the most studied semiflexible filament, yet its dynamics 
remains elusive. We show that hydrodynamic interactions (HIs) significantly alter the time scale of actin 
deformation by 2-20 fold at different levels of network structure. For a single fiber, HIs between the mesh-sized 
segments can change the net force by up to 7 fold. Relaxation times are underestimated, if HIs are ignored, but 
mode shapes are not affected. HIs can explain deviation of the relaxation times from standard worm like chain 
models, speculated to be due to internal viscosity of the filament. HIs affect filament alignment, a necessary step 
for bundle formation. Ignoring HIs can result in up to 20-fold overestimation of shear loss modulus in the 2 !" 
range investigated. Even for a 1 mg/ml F-actin (0.1% volume fraction), HIs cannot be neglected whether the 
network is discretized into beads or rods. A shear loss modulus, slightly dependent on system-size, can be defined 
consistent with (intrinsic) viscoelasticity. However, axial loss modulus follows a quadratic system-size dependency 
consistent with poroelasticity. Our results suggest that including HIs is critical for consistency in theoretical models 
or analyzing experimental observation in cytoskeleton mechanics and dynamics. We also propose a new rod 
method to incorporate the HIs accurately and effectively. This method includes HIs in the larger systems, the same 
way as typical bead models, but it can decrease the computational cost by up to 100,000 fold. 
 The primary part of this thesis deals with the viscous properties of the cytoskeletal actin networks investigated 
via theoretical bottom-up approaches in the nm to !m ranges. However, initially we focus on elastic properties of 
arterial tissue in the !m to mm ranges via an experimental top-down approach. We develop a combined robust 
registration and inverse elasticity method to investigate the mechanical properties of arterial tissue. We quantify 
the accuracy of this method with simulated problems and in vitro gels. This method can identify lipid pools via 
OCT (optical coherence tomography) and assess plaque rupture risk for cardiovascular diagnosis. The method can 
also be used as a model-based registration technique. 
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size: ξ). (c): 3D-cross discretized into beads. This specific number of beads correspond to ξ/(2a)=11 (a: 
filament radius). Beads are colored according to z-coordinate for better 3D visualization. ............................ 114!
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Chapter 1:    Introduction to Cardiovascular Mechanobiology 

1.1 Cardiovascular Disease and Atherosclerosis 

Cardiovascular disease (CVD) holds the first rank in the mortality and morbidity rate in the 
United States[1]. Furthermore, the world health organization (WHO) is expecting that CVD 
will become the major killer globally within 9 years[2]. In the United States, CVD has been the 
first killer since 1900, every year but 1918. Recent mortality data shows that CVD, as the 
underlying cause of death, accounted for 33.6% of all 2,423,217 deaths in 2007, or 1 of every 3 
deaths in the United States[1]. Moreover, CVD claims more lives each year than the next four 
leading causes of death combined, which are cancer, chronic lower respiratory diseases, 
accidents, and diabetes mellitus in the United States[3]. CVD not only is a leading cause of 
death, but also is expected to cost about $286 billions for Americans in 2007[1]. Consequently, 
CVD prevention, early diagnosis, and treatment can save thousands of lives and dollars. 

Apparently the most frequent CVD diseases are stroke, heart attack, high blood pressure, 
congenital cardiovascular defects, arrhythmias (disorders of heart rhythm), arterial diseases, 
bacterial endocarditis, and cardiomyopathy. However, many of these diseases can be the direct 
or indirect consequence of atherosclerosis. Atherosclerosis word comes from the Greek words 
athero (paste) and sclerosis (hardness)[4]. This disease is an inflammatory process, which involves 
deposits of fatty substances, cholesterol, cellular waste products, calcium and other substances in 
the arterial wall.  

These deposits are called plaques and they typically affect large and medium-sized arteries. 
Three proven causes of damage to the arterial wall are[4]: 1) elevated levels of cholesterol and 
triglyceride in the blood, 2) high blood pressure, and 3) tobacco smoke. 

These plaques (or atheromas) produce enzymes that enlarge the artery over time. As long as 
the artery enlarges sufficiently to compensate for the extra thickness of the plaque, then stenosis 
(narrowing of the flow cross section) will not occur (Fig. 1-1). If the enlargement is beyond the 
proportion of the atheroma thickness, then the less frequent disease of aneurysm will happen.  

Stenosis or atherosclerosis is usually divided into two categories: coronary artery disease 
(CAD) and peripheral arterial disease (PAD). CAD involves the coronary arteries, but PAD 
occurs outside the heart (e.g., in the brain, kidneys, legs or arms). There are four major PAD 
types/sites: Cerebrovascular PAD, PAD of renal arteries, PAD of the lower extremities, and 
PAD of the mesenteric arteries. 
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Figure 1-1: Development of atherosclerosis and stenosis leading to acute myocardial infarction (AMI), taken 

from[5]. 

Stenosis can impose local or global blood pressure problems. For example, in renal arterial 
disease, stenosis increases blood pressure indirectly and eventually even kidneys might fail. As 
another example, PAD of the lower extremities happens to be a major cause of diminished 
ability to walk, pain in legs and in advanced cases leg amputation. Moreover, less frequent PAD 
of the mesenteric arteries (mesenteric arterial disease) can cause severe pain, weight loss and 
death from intestinal gangrene. 

Furthermore plaques might become unstable and rupture. Their rupture can release some 
chemicals in the blood stream, which in turn ends to clot formation. The blood clot (thrombus) 
can totally block the blood flow in the arteries. The clot can block blood flow in the arteries in 
which it is formed or it might move to smaller arteries, block them and cause embolus. The 
destination organ determines the kind of apparent disease. For example, thrombosis in coronary 
leads to heart attack. Moreover, thrombosis in arteries supplying blood to brain, like carotids, 
ends to cerebrovascular disease which is the number one reason for stroke and disability in the 
United States[1]. 
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1.2 Pathogenesis of Atherosclerosis 

There are major evidences and motivations for standing against atherosclerosis. Section one of 
this thesis aims to test and develop elementary principles of a new diagnostic technique for 
atherosclerosis. Any technique is highly dependent on complicated pathological and 
mechanobiological evolution of plaques and so enhancing our knowledge about pathogenesis of 
atherosclerosis is a critical step. Here a brief summary of process leading to development of 
atherosclerosis, its underlying structure and its rupture is presented.  

For years, atherosclerosis was thought to be a natural response to aging. Then it was found 
that hypercholesterolemia plays a major role in pathogenesis of atherosclerosis[6]. Since mid 
1980[7], several groups have investigated the inflammatory pathway in atherosclerosis[5,8-12]. 
Consequently, markers of inflammation like CRP (C-reactive protein), IL-6 (Interleukin), or 
VEGF (Vascular endothelial growth factor) can be utilized for cardiovascular risk 
assessment[13]. 

1.2.1 Plaque Formation 

At the beginning, the endothelium increases its permeability to lipoproteins and other plasma 
constituents. This event is mediated by nitric oxide, prostacyclin, platelet-derived growth factor, 
angiotensin II, and endothelin. Other mediators include: up-regulation of leukocyte and 
endothelial adhesion molecules and also migration of leukocytes into the artery wall. This 
migration is mediated by oxidized LDL (low-density lipoprotein), MCP-1 (monocyte 
chemoattractant protein), IL-8 (interleukin), platelet-derived GF (growth factor), M-CSF 
(macrophage colony stimulating factor), and osteopontin[10].  

Atherosclerosis begins with arterial wall injury. However, vascular progenitor cells, 
especially EPCs (endothelial progenitor cells produced primarily by bone morrow), have an 
intrinsic capacity for repair of the vascular wall and are important contributors to the vascular 
repair process. Such cells are released in response to signals derived from the injured vascular 
wall and anchor at the sites of arterial lesions. Evidence for their contribution to the repair of 
the arterial wall is emerging. Their absence or dysfunction result in more advanced vascular 
lesions, whereas their administration to animals deprived of competent vascular progenitor cells 
can retard the onset of vascular disorders[14].   

Under ordinary conditions, the endothelial cells oppose against the firm adhesion of 
leukocytes. However, endothelium dysfunction, caused by inflammatory cytokines provides 
initial adhesion of leukocytes. Those cytokines in turn can be produced by lipoprotein oxidation 
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following hyperlipidemia. Other triggers like smoking, hypertension, hyperglycemia, obesity, or 
insulin resistance, can also initiate the expression of adhesion molecules by endothelial cells[15]. 

  The specific roles of monocytes, T-lymphocites, and mast cells are demonstrated in Fig. 
1-2. All these leukocytes are the primary cells in the formation of atherosclerotic plaques but 
monocytes are the most important ones. As demonstrated by Fig. 1-2-A, monocytes adhere to 
the endothelium layer mostly via VCAM-1 (vascular cell adhesion molecule). After adhering, 
leukocytes are pulled to the tunica intima by chemoattractant gradient via endothelial cell 
junctions. For example, blood monocytes are derived primarily by interaction of MCP-1 with 
its receptor CCR2. Once monocytes enter intima, they go through a series of events, acquire 
macrophage characteristics, replicate and finally form “foam cells”. Within intima, monocytes 
over express scavenger receptors from modified lipoproteins such as SRA (scavenger receptor A) 
and CD36. Modified LDL taken up via scavenger receptors is delivered to lysosomes, where 
enzymes hydrolyze cholesterylesters to free cholesterol and fatty acids. These lipid-laden 
macrophages, known as foam cells, characterize the early atherosclerotic lesion. Macrophages 
within atheroma also secrete a number of growth factors and cytokines involved in the lesion 
progression and complication[5]. 

Lipid-laden monocytes, macrophages (foam cells), and T-lymphocytes (T-cells) form initial 
fatty streaks. Subsequently, various SMCs (smooth muscle cells) migrate to the lesion as well. 
This migration is stimulated by platelet-derived GF, fibroblast GF-2, and transforming GF-β. 
Similarly, T cells become activated when they bind to antigen processed and presented by 
macrophages (Fig. 1-2-B). T-cell activation amplifies the inflammatory response due to the 
secretion of cytokines like IFN- !  (interferon), TNF-α and β (tumor necrosis factor). 
Furthermore, blood platelets adhere and aggregate to the arterial wall stimulated by integrins, 
P-selectin, fibrin, thromboxane A2, tissue factor, and other factors responsible for the adherence 
and migration of leukocytes. Meanwhile, foam cell formation is mediated by oxidized LDL, 
M-CSF, TNF-α, and IL-1[10].  

Fatty streaks progress to intermediate and advanced lesions by forming a fibrous cap that 
surrounds the injury site. The fibrous cap forms due to decreased connective-tissue degradation 
and increased activity of platelet-derived GF, transforming GF-β, IL-1, TNF, and osteopontin. 
The fibrous cap contains a mixture of leukocytes, lipid, and debris, which may form a necrotic 
core. These lesions expand at their shoulders by means of continued leukocyte adhesion and 
entry. The necrotic core represents the results of apoptosis and necrosis, increased proteolytic 
activity, and lipid accumulation. The principal factors associated with macrophage 
accumulation in this period include M-CSF, MCP-1, and oxidized LDL[10]. 
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Figure 1-2: Primary leukocytes active in the atherosclerosis plaque and their individual transformations: A) 

monocyte, B)T-lymphocite, and C)mast cell; taken from[5]. 
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1.2.2 Life-Threatening Plaque 

Atherosclerosis begins very early in the life. Indeed one-sixth of American teenagers already 
have pathologic intimal thickening in their coronary arteries[16]. However, it takes several 
decades, for initial fatty streak to be transformed to an advanced lesion and result in clinical 
issues.  

Higher shear stress due to stenosis or remodeled artery can stop plaque size growth and 
stabilize its geometry. In fact stenosis by itself is not a major health issue compared to 
thrombosis and plaque rupture. Indeed, only in 15% of cases studied by serial angiogram data 
extreme stenosis occurred weeks or months before MI[17]. Additionally, as mentioned earlier, 
coronary arteries can enlarge and compensate for plaque enlargement, thus preserving the flow 
of blood to the myocardium. This mechanism becomes overwhelmed only when the stenosis 
occupies 40% of the arterial lumen[18]. 

Rupture or ulceration of the fibrous cap, can rapidly lead to thrombosis and usually occurs 
at sites of cap thinning in the advanced lesions. Thinning of the fibrous cap is apparently due to 
the continuing influx and activation of macrophages, which release metalloproteinases and 
other proteolytic enzymes at these sites. These enzymes cause degradation of the matrix, which 
can lead to hemorrhage from the vasa vasorum or from the lumen of the artery, and can result in 
thrombus formation and occlusion of the artery[10]. 

 

Figure 1-3: Primary mechanisms in plaque rupture and thrombosis formation, taken from[19]. 

As demonstrated by Fig. 1-3 four mechanisms can lead to plaque rupture and thrombosis 
formation. Rupture of fibrous cap is responsible for about two third, to three quarters of fatal 
coronary thrombosis. Superficial erosion occurs in one fifth, to one quarter of all cases of fatal 
coronary thrombosis. Erosion of a calcium nodule may also cause plaque disruption and 
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thrombosis. In addition, friable microvessels in base of atherosclerotic plaque may rupture and 
cause intraplaque hemorrhage. Consequently, local generation of thrombin may stimulate SMC 
proliferation, migration, and collagen synthesis, promoting fibrosis and plaque expansion on 
subacute basis. Similarly, severe intraplaque hemorrhage can cause sudden lesion expansion by 
mass effect acutely[19]. 

 

1.3 Biomechanics of Atherosclerosis 

The hemodynamic forces play a major role in the formation, development and eventual rupture 
of atherosclerosis plaques. Unlike ordinary passive structures exposed to fluid forces, the 
cardiovascular system is a highly active system and adapts itself to flow conditions, as well as to 
other body signals. Consequently, from the biomechanical point of view, there are almost two 
separate ongoing areas of research emphasizing the biomechanics of atherosclerosis. The first 
area of research is the evolution of plaque due to biomechanical forces, and is highly linked to 
the second one, plaque rupture. Here we are interested in the second one, and we want to 
utilize this for diagnostic analysis.  

The first area of research is dealing with the long-term effects of hemodynamic forces on 
the plaque formation and composition, artery remodeling, and related gene expressions. This 
can be connected to the second section of this thesis dealing with actin as the primary 
component of the cytoskeleton. However, the second area of research, is mostly concerned with 
the final event of plaque fissure, in order to build a plaque vulnerability index. The first area 
mostly deals with the biological evolution of plaque, while the latter evaluates mechanical forces 
that might lead to plaque rupture. It is clear that both areas of research are highly linked and 
this is just a simplification for dividing the research.  

Evaluation of related mechanical factors is more complicated when we are concerned about 
evolution than when we are interested in rupture. For the rupture case, we might neglect fluid 
structure interactions (FSI) and simplify our FEM (finite element modeling) analysis. This 
relies partly on the fact that the lumen tensile stress induced by blood pressure load is several 
orders of magnitude larger than that induced by wall shear stress (WSS)[20]. However, as we 
will see, when we are dealing with plaque evolution analysis, the interaction between wall and 
fluid shear force has a major biological role in the plaque formation.  
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1.3.1 Biomechanics in evolution of plaque 

Since the early 1960s, research has been conducted on the effects of hemodynamics forces on 
the development of plaques[21-25]. However, only recent discoveries and novel available 
technologies let us have a better understanding of the exact biological and molecular pathways 
of mechanotransduction in the arterial wall[20,26-28]. 

The development of atheromas cannot be blamed only on hyperlipidemia, inflammatory 
response, smoking or other general factors. In fact, while the whole body receives the same 
blood, only certain locations in the arterial tree are prone to atherosclerosis. These focal sites are 
those associated with complex hemodynamics, such as bifurcations, junctions, regions of high 
curvature or anywhere there is an abrupt change in flow conditions[29]. 

As a result, many researchers have attempted to correlate flow indices to pathological 
indices of atherosclerosis evolution. The most and the longest studied index is the wall shear 
stress (WSS)[30]. Wall shear stress is thought to be markedly different in focal sites of 
atherosclerosis and considerable attention has been paid to it.  

Traditional hypotheses declare that regions with high and low wall shear stress are both 
dangerous. However, now we know that high shear stress is not severely dangerous and in fact 
temporal or spatial derivative of shear stress might be more important than its absolute 
value[29]. In other words, the flow condition can be divided with respect to being laminar or 
turbulent. 

Still our knowledge about hemodynamic effects is considerably limited and there are several 
contradictory opinions. Part of this controversy relies on the multifactorial and multistage 
development of atherosclerosis. Consequently, we do not expect any more, that a single 
hemodynamic factor can characterize the entire life of all types of plaques. For example, it is 
believed that low shear stress provides favorable conditions for atheroma initiation and as a 
simple explanation, low shear stress facilitates the adhesion of leukocytes to the endothelial layer. 
On the other hand, high shear stress might accelerate endothelial injury and erosion, and finally 
lead to plaque rupture and thrombosis.  

In summary, shear stress can induce atherogenic or atheroprotective effects via several 
molecular and cellular pathways. Those pathways mostly interact with vascular endothelium 
cells, which have different behaviors for different flow regimes. Nonlaminar flow promotes 
changes to endothelial gene expression, cytoskeletal arrangement, wound repair, leukocyte 
adhesion as well as to the vasoreactive, oxidative and inflammatory states of the artery wall. 
Disturbed shear stress also influences the focal pattern of atherosclerotic, associated wall 
remodeling, plaque vulnerability, stent restenosis and smooth muscle cell intimal hyperplasia in 
venous bypass grafts[31]. 
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Investigation of shear stress role in atherosclerosis is not of our immediate interest and this 
discussion is closed here. Yet, it should be taken into account that an accurate analysis of plaque 
evolution and rupture cannot be carried out without monitoring biomechanical factors such as 
shear stress over a long time span. In addition, there are still several unknown pathways by 
which interacting mechanical and chemical signals can alter plaque evolution. For example, high 
cyclic mechanical strain is known to have a considerable effect on atherosclerosis. It is 
demonstrated that cyclic strain up regulates the expression of eNOS (endothelial nitric oxide 
synthase) transcripts and protein levels in bovine aortic endothelial cells[32]. Kakisis et al. and 
Lee et al. provide further details in their reviews about mechanotransduction pathways of cyclic 
strain on vascular cells[33,34]. 

1.3.2 Biomechanics in plaque fissure 

For more than two decade, there has been an intense interest in studying biomechanical factors 
affecting atherosclerosis. Those data can help us to suppress this disease and propose new 
therapeutic methods as well as better stents. In addition, diagnostic techniques and assessment 
of plaque vulnerability highly relies on state of hemodynamic forces. No one can propose a 
vulnerability index without considering the chance of plaque rupture, and no rupture can be 
analyzed without evaluation of stress and strain patterns.  

Our ultimate objective is to develop a mechanical vulnerability index for plaque rupture. 
The ruptured fibrous cap causes some three-quarters of acute myocardial infarctions, still most 
episodes probably cause no clinical symptoms[5]. However, 70% of high grade stenosis have 
had a prior disruption that healed[35]. Moreover, vulnerable plaques are not isolated, so even if 
one plaque rupture does not lead to a clinical syndrome, a nearby plaque might soon cause a 
fatal event[36]. These facts together emphasize that plaque rupture is the most serious event 
that should be prevented and that is why many researchers have focused on identifying rupture 
sites. Although, a future research might focus on predicting which plaque disruption is 
dangerous and causes ischemia or thrombosis.  

Plaque rupture can be analyzed as a totally mechanical event, provided that we have a 
reasonable set of parameters for constitutive stress-strain relations, as well as a rupture criterion. 
On the other hand, it can be rather reliably predicted by knowing plaque composition and 
geometry. However, as a matter of fact, we have neither a perfect set of mechanical parameters 
nor a good imaging modality to reveal both geometry and composition of plaque accurately. 
Consequently, we seek to combine imaging data with a mechanical model to further develop 
vulnerability indices[37]. In the next parts, we will discuss how to obtain those parameter sets 
and which imaging modalities to utilize. Now, we briefly review the feasibility of using stress 
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and strain patterns to predict plaque rupture sites.  
Plaques have an astonishingly complicated 3D geometry with anisotropic and 

non-homogenous mechanical behavior. Nonetheless, simple 2D and 3D linear isotropic models 
have shown satisfactory results in predicting rupture sites. No one has ever proposed a 
sophisticated rupture model and basically in all studies sites of elevated stress, strain or cyclic 
strain are interpreted as rupture prone sites. Holzapfel et al. provide an excellent review on the 
attempts to determine mechanical properties of atherosclerosis plaques[38]. Meanwhile, it 
should be noted that stress values are not very sensitive to variation in material properties. In 
other words, prescribed force boundary condition (applied as blood pressure) suppresses stress 
variation due to constitutive relation, even if we use a model with anisotropic or nonlinear 
material properties[39]. 

By 1989 the connection between plaque rupture and blood pressure load was identified 
using finite element modeling (FEM) and postmortem pathological comparisons[40], although 
earlier, attention was focused on the shear stress effects. Since then, FEM modeling has been 
extensively used to study biomechanics of plaque rupture. Several 2D and 3D models have been 
built and various effects by utilizing fluid only, structure only and fluid-structure interacting 
models have been studied[41-43].  

In particular, it has been demonstrated that sites of stress concentration are severely 
vulnerable. Good correlation has been found between increased circumferential tensile stress 
and sites of plaque rupture, usually located near thin cap shoulders[44]. This is a well accepted 
hypothesis for plaque vulnerability assessment[40,45-48]. Other risk factors, like elevated strain 
levels, have also been studied but they are not directly correlated to plaque rupture and they 
seem to be more involved in morphological changes of tissue[33,49].  

Additionally, a newer study proposed a fatigue model for studying the plaque rupture. It 
demonstrated that cracks begin at the lumen wall at areas of stress concentration, depending on 
the shape of the lumen, thickness of the fibrous cap, and stiffness of the plaque components. 
Mean or pulse pressure did not affect initiation location. Cracks extended radially and grew at a 
rate that was highly dependent on both mean and pulse pressure and on lipid stiffness. It was 
concluded that a fatigue mechanism reconciles clinical evidence of acute plaque rupture at 
seemingly low stress levels[41]. Yet, the crack develops at location of elevated stress and in 
summary, if we can identify stress concentration sites we have identified vulnerable plaque 
rather reliably. 
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1.4 Elastography and Elastic Modulus Estimation 

In the previous section, we demonstrated that plaque evolution and rupture is related to 
mechanical factors, stress and strain. Currently, we want to study how related mechanical 
parameters can be measured. As stated earlier, Holzapfel et al. provide a good review on 
attempts to quantify mechanical parameters of atherosclerosis plaques[38]. While in vivo we 
have biaxial loading, most studies have used in vitro uniaxial tension tests and the results are 
sensitive to the specific test setup[47].  

Additionally, the numerical values proposed by literature vary widely, for example they 
cover four orders of magnitude for lipids[50,51]. This variation is mostly due to the large 
morphological extent that a plaque and its constituents may cover[44,52]. Furthermore, within 
even a single plaque there are different stiff and compliant components like fibrous, calcified, 
smooth muscle cells and lipid pools. Consequently, it is prohibitively hard to isolate a uniform 
region suited for uniaxial tension tests, which require a sample size at least 0.5×3.0 mm2.  

As a result, for a reliable mechanical analysis, we need to probe the tissue mechanical 
properties specifically and locally. This has emerged development of indirect measurement 
techniques like elastography and modulus estimation via inverse elasticity problem. Historically, 
these techniques emerged from palpography, and later their application was extended to 
identification of mechanical properties and eventually analysis of plaque rupture.  

In palpography, a physician touches patient tissue, and if he/she observes any abnormality 
in tissue stiffness he can expect it to be a sign of some malfunctioning behavior of tissue. In 
other words, often changes in tissue associated with a disease result in varied mechanical 
properties and provides us with an indirect technique to test tissue healthiness. Palpography has 
been an important and simple non-invasive test for detection of breast cancer. However, human 
fingers have limited sensitivity and usually miss early, deep or small cancer nodules. 
Consequently since 1990, the palpography concept has been exploited via elaborate imaging 
systems and a major effort has been focused on developing related techniques to more accurately 
and quantitatively analyze tissue stiffness. Ophir et al. proposed to measure the strain after a 
uniform load has been applied to the tissue. Hence, strain levels can reflect tissue elasticity and 
the strain image called “elastogram” can be interpreted for medical purposes[53]. This 
technique is called either elastography or palpography by alternative groups[54,55], with the 
corresponding image named as either elastogram or palpogram. 

 To relate elastogram to tissue elasticity, it is typically assumed that the tissue is 
experiencing a uniform load, for example by a uniform boundary pressure, causing uniaxial 
compression. However, first this uniform load can only be applied in boundaries and in fact in 
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most cases instead, a uniform displacement condition is imposed via rigid compressors. 
Furthermore, even if we apply a uniform stress at boundaries, the presence of inclusions or 
nodules will change the stress fields; consequently strain levels are not linearly related to tissue 
elasticity. Hence, the elastogram has several artifacts like target-hardening and stress 
concentration near inclusions[56]. These artifacts can be avoided when there is only a single 
inclusion, but when there are several inclusions or the noise level increases, it becomes hard to 
distinguish between real inclusions and artifacts. 

Consequently, several groups have proposed to reformulate the problem as an inverse 
problem (IP), in which we know the boundary conditions and inside displacements, and we 
seek to find the elastic properties[57-60]. This is called the Inverse Elasticity Problem (IEP) as 
opposed to the Direct Elasticity Problem, in which we know the material properties and 
boundary conditions, and we seek to find the displacement field. As summarized in Fig. 1-4, 
the solution of IEP provides us with elastic modulus field, which can be interpreted as another 
image beside elastogram. IEP can be cast as a general parameter estimation problem, and we 
will discuss it further in the next chapters. 

 

 
Figure 1-4: Schematic depicting conventional procedure to solve the inverse elasticity problem following 

registration problem. In this thesis, we present a new method to directly relate elastic properties to the image 
frames (IREP: Inverse Elasticity and Registration Problem). 

Elastography and modulus estimation has been successfully applied to various tissues and 
organs. Elastography, for the first time, was utilized for in vivo imaging of the breast tissue and 
skeletal muscle[61-63]. In addition, the elastography community has focused on prostate cancer 
diagnosis[64-67]. Conventionally, ultrasound modality is used for elastography, but MRI 
(magnetic resonance imaging) is also emerging as a successful modality for elastography. MRI 
elastography (or viscoelastography) uses a similar approach, but instead of elastic properties, it 
measures viscoelastic properties of a tissue imposed to shear wave vibrations[68]. 
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1.5 Thesis Plan 

In Part I, Chapters 1-3, we describe and develop models for !" to !!-sized tissue elasticity 
analysis. In particular, we focus on how to register two images by incorporating tissue 
mechanics as side constraints in the registration process. The eventual output of our results will 
be elastic modulus for a given region of the material. In Part II, Chapters 4-5, we focus on 
hydrodynamic interaction (HI) phenomenon, and eventually utilize it for viscoelastic loss 
modulus of actin network, the primary component of the cytoskeleton, in the !" to !" size 
range. Taken together, this thesis covers viscoelasticity at different scales for both tissues and 
cell constituents. Initially, we use experimental top-down approach in Chapters 2 and 3, and 
finally in Chapters 4 and56, we use theoretical bottom-up approach.  

1.5.1 Part I-Elastic Moduli Estimation with Image Registration and Inverse Elasticity 

Part I of this research aims to develop new imaging and image processing techniques for 
assessment of arterial diseases such as atherosclerosis. By developing elastography and modulus 
estimation techniques we will have: 

1. New images based on strain/stress and modulus distribution. 
2. Local elastic properties of arteries as a highly non-homogenous material: these data can 

be used for further biomechanical analysis and simulations. 
3. Third and finally the most important one: a risk assessment technique based on more 

realistic values of higher levels of stress/strain instead of relying only on the geometry. 
While, the elastography can be applied to different imaging techniques, here we focus on 

its application to optical coherence tomography (OCT) as our imaging modality of the best 
interest. Optical coherence tomography provides high resolution, high contrast image of arteries 
and seems as a promising modality for atherosclerosis diagnosis[69]. Optical coherence 
tomography is also capable to distinguish tissue types directly, which can be used as a 
priori-information for image analysis[70,71].  

As stated by now, the Chapter 1 of thesis dealt with background information and tried to 
provide a brief review about arterial biomechanics and atherosclerosis. Interested readers are 
encouraged to follow up our references for further information. 

The Chapter 2 deals with mathematical background of this work. Initially, our mechanical 
model is explained and later a code to create finite element models (FEM) is verified. Next, 
inverse elasticity problem is explored and then it is linked to registration problem. New 
techniques for simultaneous solution of inverse elasticity problem and registration problem are 
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provided there. After that, we explore different regularization techniques thoroughly. Finally, at 
the last section of that chapter, numerical techniques to solve the problem, including adjoint 
and Newton methods, are briefly discussed. 

The Chapter 3 presents some of our results about inverse and registration elasticity 
problem. Initially, it tries to investigate the feasibility of elastography and modulus estimation 
of arteries based on a perfectly registered displacement field. First, the implemented method is 
verified and then the code efficiency is discussed. Then, we try to answer whether it is possible 
to reconstruct the complicated modulus field or not. It should be noted that the conventional 
elastography deals with breast cancer nodules, in which we have an isolated large inclusion 
surrounded by a background within the same order of the elasticity. On the other hand, in 
arteries we have fatty streaks, several plaques and etc., which shape a complicated modulus field. 
Furthermore, elastic modulus of plaques covers different order of magnitudes and this brings an 
extra complexity in arterial elasticity reconstruction. We also try to identify limiting bounds on 
registration problem. Uniform strains and rigid body displacements are of especial interest 
because they can characterize the noise effect on image registration. Later, we deal with 
simultaneous solution of image registration and inverse elasticity problem. The findings from 
previous chapter, as two ideal cases, are utilized for further analysis of the results and assessment 
of benefits, disadvantage and limits of our techniques. The method is applied to artificially 
generated OCT images, real phantom images and an ascending aortic sample under in vitro 
uniaxial stretch. 

1.5.2 Part II-Viscoelasticity of Actin Networks, Dependence on Hydrodynamic Interactions 

In Chapter 4, we begin by introducing the concept of the hydrodynamic interactions. We 
present the standard bead method, based on discretizing filaments into side-by-side stacked 
spherical beads. We use Rotne-Prager tensor for hydrodynamic interactions and briefly review 
other tensor forms. We cover various methods to compensate for the discretization errors due to 
geometrical difference between stacked spheres and a cylinder. Next, we introduce an optimal 
bead method, where instead of spherical beads, we use disk-shaped beads to build an exact 
cylindrical filament. Then, we introduce the Swanson-Batchelor formulation to calculate the 
drag coefficients of filament at both large and small aspect ratios. Next, we develop a new 
simplified rod method to account for HIs. The method uses Swanson-Batchelor formulation, 
mixed with Rotne-Prager tensor to calculate HIs between rod segments. We further quantify 
accuracy of this method and examine different candidates for its Stokes radius. The basic 
method and our new rod methods are used in the next chapter for analysis of HI effects in the 
mechanics of the cytoskeleton. 
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In Chapter 5, we begin by introducing the F-actin structure and its prominent role in cell 
mechanics. Next, we focus on the role of HIs on altering actin mechanics and dynamics at 
different length scales and structural levels. We begin by looking at the role of HIs at a single 
filament level in rigid body motion and diffusion, as well as filament lateral fluctuations. We 
specifically investigate how HIs can alter mode shapes or relaxation times. Next, we look at the 
HIs effect for aligning filaments during bundle formation. We study acto-myosin alignment for 
antiparallel filaments and crossed parallel filaments. We also study zipper action for aligning 
crossed filaments by invoking several passive crosslinkers. Later, we focus on the role of HIs in 
the network model. We begin by examining a regular 1D network and move toward a random 
physiological 3D network. In this part, we report the viscoelastic loss modulus and discuss its 
relation with the system size and the alternative poroelastic model. Finally, we introduce a 3D 
cross, as an idealized basic unit to build a regular 3D network, and find simple estimates on how 
loss modulus might be affected by HIs effect in a random 3D network. 

At the end in Chapter 6, we summarize both Parts of this thesis. There, we conclude our 
work and provide a summary of research outcomes. We also try to shed light on future possible 
directions and other applications of interest. 
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Chapter 2:    Mathematics of Elastography 

2.1 Introduction 

This chapter presents mathematical backgrounds required for elastography part of this thesis. In 
the beginning, we explain the mechanical model, introduce direct elasticity problem and verify 
our custom-built finite element modeling (FEM) code. Later, inverse elasticity problem is 
explored and then it is linked to registration problem. New techniques for simultaneous solution 
of inverse elasticity problem and registration problem are provided there. After that, we explore 
different regularization techniques thoroughly and finally, at the last section of this chapter, a 
brief review about numerical techniques to solve the problem, including adjoint and Newton 
methods, is presented. 

2.2 Direct Elasticity Problem 

Materials are divided to rigid or deformable ones. “Mechanics (of Materials)”, as a branch of 
science, investigates how objects are deformed, when forces are applied to them. A special 
group of deformable materials are elastic materials, in which upon removal of force, objects go 
back to their original undeformed shape. Direct elasticity problem is the problem in which we 
seek to find how an elastic body will deform when a special set of loads are applied to it. This in 
turn relies on how a local loading (expressed as stress or force per unit area) will cause local 
stretch or strain.  

 
Figure 2-1: Simple depiction showing relation between force/displacement with stress/strain. A: Area, L: Length. 

Stress and strain are the macroscopic versions of force and deformation due to 
displacement, as shown in Fig. 2-1. The relation between stress and strain is called stress-strain 
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constitutive relation. This relation and boundary conditions (including loads) are known in the 
direct elasticity problem and we want to compute the displacement field. However, sometimes 
we know how an elastic object is deformed (as well as its original shape), and we are interested 
to know the stress-strain constitutive relation. The latter problem is called inverse elasticity 
problem. To solve the inverse elasticity problem, we assume a specific kind of constitutive 
relation and then we try to see if that constitutive relation can reproduce a displacement field 
similar to the observed displacement field. Consequently, to solve the inverse elasticity problem, 
we should be able to solve the direct elasticity problem for an assumed form of stress-strain 
constitutive relation. 

In general, any experiment for computing elastic constants can be cast as an inverse 
elasticity problem. However, the inverse elasticity problem is usually used for non-homogenous 
materials, whose elastic constants are a field function (a function of spatial coordinates). On the 
other hand, for lumped models we have only a few unknowns as opposed to a field function. 
Hence, for a lumped model, we can estimate more complex (nonlinear) stress-strain 
relationships and yet rely on simpler numerical approaches like brute force or genetic algorithm, 
as employed by Karimi et al.[72] or Khalil et al.[73]. 

2.2.1 Stress-Strain Constitutive Relations for Vascular Tissues 

Prof. Fung made major contributions to the field of biomechanics. He can be called the “the 
father of modern biomechanics”[74]. His books e.g., Biomechanics: Circulation or 
Biomechanics: Properties of Living Tissues[75,76], can be the best sources for getting a 
through understanding about cardiovascular biomechanics. Here we briefly summarize popular 
constitutive relations for cardiovascular tissue. However, interested readers are encouraged to 
study Fung’s circulation book, or the newer book by Guccione et al.[77]. We have also discussed 
different relations for ascending aorta, based on our experimental data[78]. 

Various stress-strain constitutive relations have been utilized for different tissues. Relative 
slow motion of arterial tissues results in negligible inertial forces. Moreover, we have small 
strains when we consider two consecutive image frames of arteries. Furthermore, we can note 
that we have a rather stable periodic excitation by heart-beats and hence neglect stress relaxation 
or any other viscous behavior. Here we restrict ourselves to consecutive relations on which 
loading history, or strain rate, is not important. Nonetheless, we should be careful about how to 
interpret elastic constants, which indeed might refer to instantaneous, harmonic or relaxed 
loading. 

The simplest constitutive relation between stress and strain is the linear relation, in which 
we have only two unknown constants namely !, ! or Lame’s constants as follows: 
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σ ij = 2µε ij + λεkk i, j =1...3  Eq. (2-1) 

11 22 33kkε ε ε ε= + +  Eq. (2-2) 
 
  

Here ,ij ijσ ε  refer to the components of stress and strain tensors accordingly. The above 
notation follows “Einstein’s Index Notation”. 

Lame’s constants can be expressed in terms of other linear elasticity constants, e.g., ,E v  or 
“Young’s Elasticity Modulus” and “Poisson’s Ratio”. They both can be directly measured from 
experiments and related to the Lame’s Constants: 

 

µ = E
2(1+ v)

=G G: Shear Modulus  Eq. (2-3) 

(1 )(1 2 )
Ev
v v

λ =
+ −

 Eq. (2-4) 

 
Poisson’s ratio indicates that how a uniaxial stress generates transverse strains. In most 

loading cases, biological tissues are rather incompressible due to presence of water. 
Incompressibility condition can be expressed mathematically as 0.5v→ . Unfortunately direct 
application of this condition into equations leads to singularities in computing λ . The 
singularity introduces another unknown field (beside the displacement field), namely presser 
field, which is defined as follows: 

 

3
kkp σ= −  Eq. (2-5) 

 
Some numerical approaches consider this second unknown field and use “u,p formulation” 

where u stands for displacement field. While this is the right approach, it is rather complicated 
and most authorities simplify it by just choosing a ! not equal to 0.5, but very close to it like: 
0.49, 0.499, 0.499, 0.4999 and so on. Due to presence of above singularity, this condition is 
extremely sensitive to problem type and truncation errors. Numerical solution might be stopped 
by a phenomenon called “locking” and finite element modeling can only be done by extra tricks 
and only through a few families of elements used for numerical discretization[79,80]. This is 
beyond the scope of this brief review and interested readers are referred to above references. 
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Here we try to follow the guideline given for this case without using “u,p formulation”. 
By assuming a known value for Poisson’s ratio, we are left with only one unknown in our 

constitutive relation, which hugely simplifies the inverse elasticity problem. Due to the 
difficulty of the inverse elasticity problem and also troubles associated with its solution 
uniqueness, almost all groups have used a linear isotropic incompressible model as their 
constitutive relation[56,81-84].  

A few researchers have also computed the Poisson’s field as well as Young’s or shear 
modulus field[85]. To the best of our knowledge, no one has ever tried to compute a nonlinear 
elastic field due to its complexity, but we have estimated the nonlinear mechanical properties of 
the lumped models[86]. In this work, we assume a linear isotropic incompressible model. 
However, to have a better understanding that where this model stands among other models 
describing vascular tissue mechanics, we will briefly review alternative models. 

Deviation from linear isotropic incompressible non-viscous model comes primarily from 
these facts:  

1. Anisotropic behavior: mainly originated from the directionality of the fibers 
composing tissue (e.g., collagen fibers).  

2. High level of stress or strain: will result in nonlinear kinematics and tissue 
softening/hardening.  

3. Viscous behavior: not of our interest but yet incorporated in apparent modulus for 
our period loading. 

The anisotropic linear elastic behavior can be expressed by generalized linear elastic 
relationship: 

 
σ ij =Cijklεkl i, j,k,l =1...3  Eq. (2-6) 

  
Above relation incorporates 81 elastic coefficients, however Voigt inherent symmetries ensure 
that there are only 21 independent constants for the most generalize anisotropic linear elastic 
material. Moreover, if there exists one symmetry plane we will end up with only 13 coefficients. 
Furthermore, for an orthotropic material, i.e., having three mutually perpendicular symmetry 
planes, we have only 9 independent coefficients. Finally for a transversely isotropic material, we 
have only 5 independent coefficients. 

An elastic isotropic tissue can have a macro structure composed of randomly oriented 
elements. On the other hand, when symmetric elements are oriented toward a specific direction 
we have a transversely isotropic behavior. This behavior is a good approximation for many 
tissues including muscle fibers. Unfortunately, unequal pre-stretches in the transverse directions 
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can render a transversely isotropic material as an orthotropic one. This can be a common case 
for arterial tissues. Now we should think that what justifies our assumption of an isotropic 
behavior? 

Problem complexity is the main reason for assuming an isotropic model. In fact, to estimate 
more constants, we need to observe our deformed shape under different (and independent) 
loading conditions[87,88]. However, in our application we have only one independent loading 
condition (varying blood pressure), and hence we almost have to restrict ourselves to one 
unknown. Nonetheless, it should be noted that the reasonable assumption of the plane strain in 
the axial direction of the arteries, can help us to not worry about the anisotropic behavior in that 
direction. We also have to restrict ourselves to small strains, mainly due to registration 
problems associated with higher strains like strain induced speckle decorrelation[89]. Despite 
the nonlinear behavior of cardiovascular tissue at large strains, a linear form can be derived for 
small strains. For example, the following model is a common generalized hyperelastic relation 
for soft tissue[75]: 

 

! = !
2 !! − ! − 1 + !2 Eq. (2-7) 

 
In the above relation, ! represents the strain energy density from which Cauchy stresses 

can be computed. !!" are the components of the Green strain tensor1 [90,91]. ! and ! are 
both quadratic functions of !!" with up to nine unknown coefficients. ! accounts for linear 
elasticity, and ! accounts for nonlinear terms provided that the ! coefficient is not zero. For 
initially isotropic material, the above relation can be simplified by using strain invariants !!:   

 
W = f (I1, I2 , I3)  Eq. (2-8) 

 
Finally, for an incompressible tissue, we have !! = 1 and hence the strain energy function 

can have a simpler form. The most commonly used nonlinear model for the arterial component 
is the Mooney-Rivlin model, as follows: 

 

1 1 2 2( 3) ( 3)W C I C I= − + −  Eq. (2-9) 

                                                        
1 Cauchy stress: the load divided by the undeformed cross-sectional area. 
Green strain: exact nonlinear strain based on undeformed coordinate system.  
Green strain: exact nonlinear strain based on undeformed coordinate system.  
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In the above equation, !! and !! coefficients can be related to linear elasticity constants 

such as ! and !![92]. Hence, by elastography at low strain and estimating the apparent 
modulus in that regime, we can still properly identify the material constants for nonlinear 
behavior.  

2.2.2 Custom-Built Finite Element Software and its Verification 
 
For an efficient solution of the inverse elasticity problem, we require direct access to the 
mechanical variables to differentiate them (i.e., to calculate gradients/Jacobian/Hessian for the 
numerical schemes). However, all commercial FEM software have limited output and we have 
to only rely on numerical differentiations based on perturbation analysis[93]. This perturbation 
analysis is erroneous and slow. Furthermore, while in a typical inverse elasticity problem we 
have fixed elements and nodes, in all iterations, FEM software starts from scratch to compute 
elemental stiffness matrices and to assemble them. Consequently, we opted to do our analysis 
based on a home-built finite element package. Direct access to the FEM matrices let us explore 
new numerical techniques such as adjoins that are faster[82,94]. This direct access and avoiding 
redundant FEM calculations enabled us to reduce the calculation time from 14 hours to 5 
seconds, which means our technique can be utilized for live diagnosis.  

Our FEM software is implemented mainly in Matlab (MathWorks, Natick, Massachusetts, 
USA) and uses Matlab for visualization as well as pre/post-processing. It can generate 
structured mesh for simple geometries, use 2D Delaunay triangulation, or import the mesh 
from alternative software (e.g., Abaqus, LS-Dyna, and Adina). Matlab will carry (stiffness) 
calculation for each element, but their assembly and the solution of the linear set of the 
equations can be carried out either in Matlab or a computational code written in C++. This C++ 
core communicates with the Matlab code with both *.mat files and text-files used for input 
setting. In summary, computationally intensive (and repetitive) work can be carried out in C++, 
but the algorithmically complicated yet computationally simple parts are carried out only in 
Matlab. With this collaboration between Matlab and C++, we can enjoy the benefits of both 
and reduce both the computational cost and the implementation cost in an optimal way.! 

FEM implementation mainly follows guidelines suggested by Bathe and Hughes books 
[79,80]. Our code is capable of solving linear and nonlinear 2D and 3D problems involving a 
given constitutive relation and inertial properties. All of these capabilities are verified against 
standard problems, and the convergence rates (versus mesh size) have followed the expected 
behavior. However, since we only use 2D modeling for the inverse elasticity problem, we only 
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present verification problems related to the 2D implementation.  
Our FEM code can utilized 3D Quad-27 elements, as well 2D elements such as Quad-9, 

Quad 8, Tri-6, and Tri-3 (triangular or quadrilateral elements). All elements types have passed 
the patch test as a necessary condition to ensure proper implementation. The patch test 
examines the code on a domain consisting of several arbitrary elements, where the exact solution 
is known. Typically, in mechanics, the prescribed exact solution consists of displacements that 
vary as linear functions in space (called a constant strain solution). The elements pass the patch 
test if the finite element solution is the same as the exact solution[95,96].  

For all types of 2D elements, there are two options: plane strain or plane stress. In arterial 
mechanics, plane strain is commonly used for 2D modeling since arteries are relatively long and 
they do not experience any axial strain[37]. On the other hand, thin objects are usually modeled 
as plane stress in 2D modeling, because we ignore any stress perpendicular to their surface. 

 Each 2D element type is tested against constant axial strain (in two directions) and shear 
strain. Hence, each 2D element requires six patch tests to cover all stress cases (!2× 2+ 1 =
6). For all element types, all series of patch tests have shown satisfactory results and relative 
errors around the numerical precision (~10!!" for double numbers typically used in Matlab). A 
typical patch test is demonstrated in Fig. 2-1. 

Next, we examine elasticity problem for a plate in plane strain with a circular hole in the 
middle as depicted in Fig. 2-2-b. Equations of the linear elasticity in this case can be solved 
exactly and they can be used to examine the convergence rate of our implementation. In this 
problem, it is assumed that a uniform stress, !!, is applied at infinity in X direction. However 
due to symmetry, we only model 1/4th of the hole located in the corner of a finite size square (6 
times the radius of the hole). We apply prescribed displacement boundary conditions, based on 
the exact solution, to the straight edges and stress free boundary conditions to the curved edge. 
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Figure 2-2: Patch test for the Quad_8 element in the plane stress and shear mode. (a): Normalized shear stress, (b): 
element and node indices as well as boundary conditions (red: node index, black: element index, f: force boundary 
condition, u: displacement boundary condition). Solution corresponds to ! = !.! and applied stress of !/! =

!.!" (!: shear stress). The deformations are scaled by 10 times. 
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 According to the exact solution, maximum stress (or stress concentration: !

!!
) is 3 and it 

happens in the upper edge of the hole (where hole edge is parallel to the X direction). 
Furthermore, !!!  is equal to zero at the lower edge of the hole (where hole edge is 
perpendicular to the X direction). Both these values of stress can be checked in the Fig 2-2-b. 
In fact, with refined mesh we have better matches for these values. Furthermore, convergence 
rate can be confirmed versus element order for different element types and in all cases shows 
satisfactory results. For example, energy error norm versus number of elements follows a 
quadratic form for our Tri_6 elements as expected for this quadratic element type (Fig. 2-2-a). 

We also checked our FEM convergence for a singular problem. We modeled a crack in 
plane strain for an infinity large domain as depicted in Fig 2-3-b. The crack covers the entire 
negative X-axis. Despite the infinite size of the domain, in our FEM model, we only model a 
rectangular region. This rectangle has a length two times the length of the crack and a width 
the same size as the crack size (Fig. 2-3-c). We apply stress free boundary conditions to free 
edges and prescribed displacement boundary conditions to the rest of the edges based on the 
exact solution.  

Due to singularity, an infinite stress concentration exists in the center (edge of the crack), 
and no matter how refined our elements become, we cannot fully model the stress pattern by 
simple FEM. Hence, the convergence rate of FEM will be slow and this can be checked in Fig. 
2-3-a. Nonetheless, the stress pattern and contours are in accordance with the exact analytical 
solution (Fig. 2-3-c). 

Above examples, and others not shown here, demonstrate that our finite element modeling 
and implementation are correct and hold satisfactory results. Next, we focus on the registration 
problem and describe how to use our finite element modeling to arrive at a model-based 
registration. 
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Figure 2-3: Stress concentration in a circular hole in plane strain. (a): Energy norm of error versus number of 
elements follows a quadratic form for Tri_6 element type, (b): Normalized !!! corresponding to the 4th data 

point in curve (a). Solution corresponds to ! = !.! and !!/! = !.!" . 
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Figure 2-4: Stress pattern near a crack. (a): Energy norm of error versus number of elements shows a slow 

convergence for our Quad_9 element type, (b): Geometry and loading depiction, (c) Normalized !!! 
corresponding to the 4th data point in curve (a) plotted in the deformed configuration (10 times actual 

deformation). Solution corresponds to ! = !.! and !!/! = !.!". 

2.3 Registration Elasticity Problem 

We have shown the overall flow of information from the medical images to the diagnostic 
assessment in Fig. 2-4. Typically, images are registered to find the displacement field. At the 
same time, images are segmented and a mechanical finite element model is built to relate the 
displacement field to the stress values. The displacement field of this mechanical model is 
compared with the displacement field computed by the registration. Inverse elasticity problem is 
used to match both displacement fields by varying mechanical parameters. When we achieve a 
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satisfactory match, we can rely on it to assess the stress field and use it for diagnostic purposes. 
Actual level of stress/strain/elasticity-modulus can be compared against indices describing 
severity of atherosclerosis plaques. These indices rely on geometrical data, easily observed in 
images, as well as chemical factors that can be measured by histological markers. For the 
verification purpose, we can perform histological sectioning of tissue in vitro and compare it 
with our mechanical vulnerability indices. 
 

 
Figure 2-5: Overall flow chart of the elastography and parameter estimation procedures for arterial plaque 

characterization taken from Karimi et al.[72]. Frames of images, as obtained with IVUS/OCT/MRI modalities, 
are registered to find the strain map. The images are segmented to build a lumped mechanical model. Then an 
iterative scheme is used to match the strain computed by image registration and the mechanical model. Finally, 

when the process converges, a reliable strain/stress/modulus map is achieved. This map can be validated with 
histological markers of plaques (including their vulnerability level), and then can be used to build biomechanical 

indices for plaques vulnerability and evolutions. 

Generally sequential frames are registered via block matching algorithms and then the 
resulting displacement field is further processed for the inverse elasticity problem (IEP). 
Conventional registration schemes typically produce poor displacement estimates[97,98]. In a 
previous work, our group developed a robust registration method that extensively improved 
elastogram estimates by exploiting kinematical constrains into registration[89]. Later, our group 
applied this robust registration technique to solve the IEP in uniform materials like hydrogels 
and elastic bands. There, we needed to iterate between two steps to justify the balance between 
regularization and data fidelity[93]. This motivated us to the current approach where we have 
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unified both steps within a single framework.  The new approach is computationally more 
efficient, and more importantly has better regularization characteristics resulting in more 
realistic solutions. 

The improvements in the Chan et al. study were obtained by exploiting the kinematics of 
incompressible tissue as side constraints within the registration process[89]. In block matching, 
the displacement is solely computed by image correlation, while he also penalized strain 
non-smoothness as well as incompressibility of the displacement field. Building on this 
foundation, here we proceed to incorporate FEM-derived mechanics directly into the 
registration process. In other words, earlier we only penalized kinematically impossible motions, 
while here we restrict our registration to produce kinetically feasible motion with a minimum 
number of unknowns. 

Elastic energy has been used extensively for regularization in the image registration in the 
past[99]. However, in our new approach, we reduce the number of independent displacement 
unknowns. We limit our unknowns to the displacement of the perimeter nodes, and relate the 
motion of the internal nodes to the boundary nodes via an elastic model. Similar ideas have 
been applied to the ultrasound data[100,101] and in all of them, including 
multi-resolution[89,99], the number of unknowns has been decreased in the beginning. Indeed, 
with gradual increase of the unknowns (in another words the solution’s degrees of the freedom), 
we can better monitor the solution progress and ensure that it leads to a realistic and physically 
meaningful answer. Limiting the number of unknowns to the boundary nodes significantly 
reduces the computational cost by decreasing the spatial dimension of the unknowns (i.e., 
instead of having nodes in all areas of the 2D image, having them only on the 1D perimeter). 

 
Figure 2-6: Different steps for processing intensity frames for extraction of displacement, strain, and even stress or 
moduli. Note that how each simpler step might help in initializing more complicated steps. Solid dashed blue line 

shows a typical IEP (inverse registration problem); it starts from RP (registration problem) and ends by 
computing moduli. 
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A careful plan is required to relate intensity images to the mechanical parameters. In one 
side, we have intensity frames and in the other side, we are looking for displacement, strain, 
stress and elastic properties as depicted in Fig. 2-5.  All information is derived from images, 
but its fidelity and utility depends on how smart the registration. In other words, the 
registration should circumvent image noise and the potential local minima to achieve at useful 
data. To ensure that the solution progresses accurately and quickly, we derive it from simple 
steps. All steps can be imagined as different combinations of registration and elasticity problem. 
Accordingly, we define a series of terminologies, each corresponding to a single step in the 
solution progress: 

• RP - Registration Problem:  finding the displacement from the intensity frames 
based on either pure block matching or a block matching with kinematical 
constraints.  

• IEP - Inverse Elasticity Problem:  finding elastic modulus from the displacement.  
• REP - Registration Elasticity Problem: finding the displacement of the boundary 

nodes from the intensity frames based on block matching (possibly including 
kinematical constraints) while internal points move according to an elastic model. 

• IREP - Registration and Inverse Elasticity problem: same as REP but elastic 
modulus also varies. 

 
(a): RP (b): REP (c): IEP (d): IREP 

  

 

 

Figure 2-7: Different problems in a 4x4 grid. Each arrow represents an unknown displacement vector. In RP, all 
nodal displacements are included in the unknown variables and there is no need for a mechanical model. IEP is 

based on a totally known displacement (possibly from RP), but unknown moduli. In IREP and REP only 
boundary nodes are considered as unknown displacements. However, IREP is based on unknown moduli, but 

REP is based on a known (e.g., homogenous) moduli. 

These different steps correspond to different sets of the unknowns as depicted in Fig. 2-6. 
The conventional elastography is a non-penalized (no kinematical constraints) RP followed by 
an IEP. In RP, we only compute strain filed; but in IEP, REP or IREP we also compute stress. 
Furthermore, in IEP or IREP we can compute the elastic moduli, while in REP we need to 
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know elastic moduli in advance.  
IEP uses displacement of a registered image to compute elastic field, while RP, REP, and 

IREP use similarity measure for registration of two frames. RP is based solely on kinematics, so 
it varies displacement at every node. On the other hand both REP and IREP use a mechanical 
model for registration and vary only displacement of boundary nodes. However, REP uses a 
given (uniform) elasticity field, while IREP in a scheme similar to IEP, computes its own 
elasticity field. REP technique alone can be used as a fast registration scheme; and furthermore 
it can be used to initialize RP and to eliminate the need for multi-resolution initialization of 
RP. 

All these problems are cast as a one/multi-step nonlinear optimization problem and then 
they can be solved with BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization 
scheme[102]. It is vitally important to properly initialize these high dimensional optimization 
problems. Hence, in all cases we first find an average displacement (all nodes have the same 
displacement) corresponding to a rigid body displacement. Sometimes, we start the 
optimization at different initial conditions covering a rectangular grid around zero 
displacement. Varying initial conditions ensure that the average displacement calculated is 
around the right value.  

Secondly, we find the displacement field corresponding to the uniform (incompressible) 
strain case and then we use it to initialize RP, REP or IREP. In fact, we apply a uniform 
stress/strain and this uniform strain initiates the full registration problem with values that 
ignore non-homogenous elasticity (for a homogenous material, a uniform strain results in a 
uniform stress and vice versa). Interestingly, our rigid and uniform body displacements usually 
reduce the number of iterations required for the registration problem by 3 fold. Hence, they 
significantly contribute to reduction of the computational cost, and furthermore, they ensure 
that the solution progresses in the right channel. 

The former two steps, average displacement and average uniform strain, are not shown in 
Fig. 2-5. However, in that figure we show that how each simpler step can be used to initiate 
(provide initial value for the optimization) more complex schemes. For example, REP has fewer 
unknowns than RP and by assuming a known (uniform) elastic modulus we can solve REP and 
initialize RP. Later, RP solution can be used to solve IEP. Then we might rely on modulus 
computed from IEP to redo REP; however instead we can follow REP with IREP and 
simultaneously find the modulus field and the boundary displacements that maximize image 
similarities. In this way, IREP produces the best answer and we are ensured that it is properly 
initialized.  
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2.3.1 Formulation 

Here, we present the mathematical formulation for all above problem. We model all of them 
within a vibrational framework, and then use optimization techniques to solve those problems. 
Registration problem is solved on a specific region of interest, called Υ, which is fully captured 
in all sequential frames. This region should have low imaging aberrations and a high signal to 
noise ratio (i.e., be near surface).  

Here, the formulation is presented for the 2D (two dimensional) case, but can be easily 
extended to the 3D cases. Image similarity is measured based on cross correlation. The study by 
Chan et al. provides a detailed explanation of cross correlation theory for OCT (Optical 
Coherence Tomography)[89]. We utilize the final version of their results and extend it to 
include kinematical constraints: 
 

ρx,y (u,v) =
IR (x '− x, y '− y) − IR⎡⎣ ⎤⎦ IS (x '− x − u, y '− y − v) − IS⎡⎣ ⎤⎦

SB
∫ dA

IR (x '− x, y '− y) − IR⎡⎣ ⎤⎦
2

SB
∫ dA IS (x '− x − u, y '− y − v) − IS⎡⎣ ⎤⎦

2

SB
∫ dA

⎡

⎣
⎢

⎤

⎦
⎥

1/2

 

Eq. (2-10) 

 
! and ! are spatial coordinates of image points (i.e., pixel indices). !" = !"′!"′ is an 

area differential. !" is the sub-block, kernel, window, or template wherein cross correlation is 
computed (all !! put together). ! is the image density (pixel value) and ! is the average 
density within each !". ! and ! refer to the sample and reference images. !!,!(!, !) is the 
normalized cross correlation at!!,!; when !" has moved an amount equal to !, ! from the 
reference frame to the sample frame.  

Cross correlation is computed efficiently with FFT (fast Fourier transform) for some 
discrete levels of possible motions of a node (within a small block) before iterations. During 
registration iterations, for a given !, ! values, !!,!(!, !) and its derivative with respect to 
!!and !  are computed by cubic interpolation from initially calculated discrete levels of 
!!,!(!, !). Currently, image is discretized into different nodes and image similarity is based on a 
summation of !!,!(!, !) value at different nodes. Alternatively, given a displacement field, 
sample frame can be transformed into the reference position, and then, image similarity can be 
computed based on the difference of the intensity between the reference and the transformed 
sample frame. We can use either sum of squared differences (SSD) or sum of absolute 
differences (SAD), both covering all pixels inside the region of interest Υ. However, sum of 
absolute differences (SAD) is slower and is not well aligned with optimization techniques. 
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All costs are integrated over, and normalized by, Υ area (! = ∫!!"). As a result, weights 
are image size independent and we can easily manipulate different mesh densities at different 
locations or have different grids for image and finite element model. For example, !! or 
similarity energy is defined as: 

 

Es (V (x, y)) = − ρx,y (u,v)
ϒ
∫ dA / dA

ϒ
∫ = −A−1 ρx,y (u,v)

ϒ
∫ dA, dA = dxdy

 
Eq. (2-11) 

 
! is the displacement function (i.e., ! !,! = !(!,!) !(!,!) ), corresponding to the 

vectors of all nodal displacements for the discrete case. The pure block matching can be cast as 
an optimization problem (Eq. 2-12), in which ! is our best estimate of the displacement 
minimizing similarity energy (or maximizing image similarity): 

 
[V̂ ] =

[V ]
argmin Es (V )

 
Eq. (2-12) 

 
Next, we introduce kinematical constraints. The most important constraints are 

incompressibility and strain smoothness. Here, it is vitally important to have a formulation that 
can be represented by invariants of the strain tensor. Otherwise, the formulation will have 
inherent mathematical issues and the solution will depend on the coordinate system. The first 
and second strain or ! invariants (!!,!) can be found as: 

 

[ε] = 1
2

∇V + (∇V )T( ) =
ε xx ε xy ε xz
ε xy ε yy ε yz
ε xz ε yz ε zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

λ1,ε = ε xx + ε yy + ε zz
λ2,ε = ε xxε yy + ε yyε zz + ε zzε xx − (ε xy

2 + ε yz
2 + ε xz

2 )
⎧
⎨
⎩

 

Eq. (2-13) 

 
The first invariant must be zero for the incompressible case. Furthermore, for pure 

incompressible planar motion, when all “z” components of strains are zero, the second invariant 
can be simplified to !!,! = − !

! !!!! + !!!! + !!"! . The !!,! term can be used to penalize 
high strain levels or to form an invariant for computing strain smoothness. Alternatively, 
∇!!  term can be employed to penalize high levels of the strain variation (this term is zero for 

uniform strain)[89]. The kinematical cost or energy, !!, can be computed from below relation 
where !! defines relative strengths of different constraints. In this relation, we have three !! 
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values corresponding respectively to incompressibility, strain smoothness, and low-level strain 
constraints: 

 

Ek (V ) = A
−1 α1λ1,ε

2 +α2 ∇2V
2
−α3λ2,ε⎡

⎣
⎤
⎦

ROI
∫ dA  Eq. (2-14) 

 
Above integrals are approximated by areal weighted summation of integrand value 

(summation at the center of elements in the discrete problem). To compute the strain 
smoothness, we compute areal weighted average of strain at nodes; and then we use finite 
element interpolations to compute the gradient of the strain at the center of elements. For the 
discrete case, with careful manipulation and selection of proper norms, we can assemble all 
terms as a quadratic function (of the displacement vector) prior to the beginning of the 
iterations. This prior term assembly accelerates the computation and simplifies !! value to a 
single quadratic matrix form. This quadratic form incorporates the displacement vector and a 
sparse matrix with a bandwidth dominated by ∇!!  term. 

Regardless of the way !! is computed, our penalized robust RP (Registration Problem) 
can be formulated as: 

 
[V̂ ] =

[V ]
argmin Es (V ) + βkEk (V ){ }

 
Eq. (2-15) 

 
Here, ! scalar refers to the penalization strength. The kinematical cost can be also used 

for REP. In IEP, instead of similarity cost, we have a measured displacement, !!, and we 
define a quadratic energy/cost associated with the deviation from the measured displacement: 

 
Em (V ) = A

−1 V − V̂m
ϒ
∫ 2dA

 
Eq. (2-16) 

 
In IEP, a smooth shear modulus field ! = !(!,!) is preferred. Consequently, we penalize 

shear modulus gradient: 
 

E∇µ (µ) = A
−1 ∇µ 2

ϒ
∫ dA

 
Eq. (2-17) 

 
Other constraints can be also included for shear modulus. For example, we might have an 

average guess for shear modulus and impose it similar to Eq. 2-16. Furthermore, in many cases 
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we have only displacement boundary conditions, and hence, only a relative map of shear 
modulus (an arbitrary scale) can be computed[88]. However, to attain a unique solution, we 
might additionally employ the known value of the net force to estimate the energy of the 
deformation. This (average) energy can be used to find the right scale of the modulus. This 
constraint can be formulated as: 

 

EH (µ,V ) = A
−1 h(µ,V )

ϒ
∫ dA − Hm (V )

⎛

⎝⎜
⎞

⎠⎟

2

 
Eq. (2-18) 

 
Where ℎ is elastic energy density and !! is the net external energy inserted to the 

system. This external energy can be simply computed by multiplying the (net) force with the net 
displacement at the boundaries. Alternatively, some studies have tried to impose a uniform 
stress boundary condition. However, our approach (Eq. 2-18) is more accurate, and does not 
restrict the field of view to be wasted on regions far from inclusion (where uniform stress 
boundary condition applies). Remarkably, we can omit Eq. 2-18 from below functional (i.e., set 
!! = 0), and instead apply the scaling value suggested by it for the modulus after the 
termination of iterations. Finally, we can model IEP (Inverse Elasticity Problem) as below 
optimization problem: 

 
[µ̂] =

[µ ];   s.t. V=V (µ,V̂m )
arg min Em (V )+ βkEk (V )+ β∇µE∇µ (µ)+ βHEH (µ,V ){ }  Eq. (2-19) 

 
Note that in general the displacement can be expressed as a function ! = !(!,!! , !!), 

where !! and !! !are the displacement and stress boundary conditions. However, we assume 
that !!, like pressure, is accurately known and therefore omit it from the former functionals. 
Finally, note that for IEP !! is a subset of already estimated !!, and consequently, we will 
have ! = !(!,!!) for IEP case. On the other hand for IREP, the !! must be estimated as 
well, and hence, the problem can be formulated as: 

 
[µ̂,V̂B ] =

[µ ,VB ] ;s.t. V =V (µ ,VB )
argmin Es (V ) + βkEk (V ) + β∇µE∇µ (µ) + βHEH (µ,V ){ }

 
Eq. (2-20) 

 
By comparing Eq. 2-19 and Eq. 2-20, we can realize that IEP and IREP differ only in 

terms of independent variables as well as using !! instead of !!. Lastly, REP (Registration 
Elasticity Problem) can be stated as an especial case of IREP where we set ! = !! (a known 
value for moduli) and we arbitrarily omit !! from Eq. 2-20: 
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[V̂B ] =

[VB ] ;s.t. V=V (µm ,VB )
argmin Es (V )+ βkEk (V ){ }  Eq. (2-21) 

 
Again by comparing Eq. 2-15 and Eq. 2-21, we can realize that RP and REP differ only in 

terms of independent variable. REP looks for the displacement at boundary points, but RP 
independently varies the displacement of all points. Independent unknown variables of the RP, 
REP, IREP and IEP are all demonstrated in Fig. 2-6 showing the optimization variables used 
in Eq. 2-15, and Eq. 2-19…21. 

2.3.2 Numerical Implementation 

Former optimization equations should be solved for a discrete system. Image is discretized into 
pixels, and the elastic domain is discretized into nodes and elements. Consequently, integrals 
are replaced with summation over nodes/elements/pixels. 

Lumped systems can have a larger variation in mechanical parameters. Khalil et al. have 
used the genetic algorithm to solve for linear properties, and we, Karimi et al., have used it to 
solve for nonlinear properties[72,73]. However, here we have restricted ourselves to systems 
where elastic properties are a field function (non-lumped). A simple form of above equations 
can be solved by either Gauss-Newton method[93], or adjoint method[82]. Former references 
are a good starting point to learn how to calculate the gradients/Jacobi/Hessian by above 
methods.  

Gauss-Newton method is a second order method. It has a faster convergence rate, but it is 
memory intensive. On the other hand, the adjoint method is a first order method and it is much 
faster per iteration[94]. While we have used both methods for simple calculations, we have 
indeed moved forward to utilize their idea only to calculate the gradients/Jacobi/Hessian values. 
We use those values in more advanced optimization algorithms. We have used both Numerical 
Recipe package in C++ and the trust-region constrained nonlinear optimization algorithm in 
Matlab. Interested readers are encouraged to look at above reference. Here, we will escape the 
confusing details applied to all different forms of the problem (Eq. 2-15, and Eq. 2-19…21). 
However, details can all be checked in scripts in the accompanying CD. 

The core computational codes were implemented in C++ and we used parallel processing 
for vectors whenever possible. The assembly of the stiffness matrix takes the largest portion of 
the run time and is repeated in all iterations. The matrix is usually stored in a sparse 
row-column format. This format is characterized with slow search for the right column. To 
overcome this slow search for the column index, we made a vector referring to the vectorized 
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position of our stiffness matrix in accordance to all incidences of assembly for all elements. As a 
result, the assembly was accelerated and was carried within a single loop.  

Analytical formulation, custom-built FEM code, C++ implementation, FFT calculation of 
the image correlation prior to the optimization and several other modifications made it possible 
to achieve a 5 sec analysis time instead of 14 hours by Khalil et al.[93]. This fast computational 
time allows us to use our technique for live diagnosis and it cannot be achieved without properly 
taking into account all details described in this chapter.
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Chapter 3:    Elastography and Registration Results 

 
 
 
 
 
 
 
 
 
In this chapter, we present some of our results about elastography and image registration. We 
try to proof the feasibility of the elastography to estimate mechanical properties. We focus on 
the atherosclerotic plaques with their complicated geometry covering several order of magnitude 
changes in elastic moduli. 

Our algorithms are verified by published results of the elastography for ultrasound modality. 
With equivalent quality, our methods produced elastogram and modulus images tested by Kybic 
et al. for two different phantom gels as well a thyroid gland[101]. Our algorithms worked 
despite totally different nature. However, the ultrasound images usually are less noisy and have 
good speckle-correlation. Hence, here we will present results of our preferred imaging 
modalities, OCT (Optical Coherence Tomography)[69] and CARS (Coherent Anti-Stokes 
Raman Spectroscopy)[103], which are less studied and more challenging. 

3.1 Inverse Elasticity Problem 

A typical breast cancer nodule is an isolated large tumor. Furthermore, its elastic modulus is 
about the same order as that of the background tissue. However, as demonstrated in Fig. 3-1 
atherosclerosis is a focal disease and plaques are not isolated objects. Not only they spread and 
cover a full region, but also, their shape and mechanical properties are more complicated. In this 
section, we assume that we have an accurate measured displacement field, and we will examine 
whether inverse elasticity problem can be tuned to investigate the mechanical properties of 
arterial tissue/plaques. 
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Figure 3-1: Human tissue: (a) interior aortic wall of a healthy sample, (b) interior aortic wall of a atherosclerotic 
subject died due to a cardiovascular disease, (c): atherosclerotic plaques in calcified fixed aortic valves (a surface 

similar to broccoli surface). Note the healthy smooth tissue versus rough arterial surface caused by atherosclerosis 
covering all nearby regions. 

3.1.1 FEM model: mesh size and constitutive relation 

We start by seeing whether the finite element mesh size has an effect in the inverse elasticity 
problem or not. We use CARS image, manually segmented by our collaborators in KRISS 
(Korean Research Institute of Science and Standards). In summary, CARS images are analyzed 
by these procedures: 
 

1. Mimics program:  it export CARS image to an image looking like CT or MRI. Then, 
the image can be meshed in Hypermesh program (2D and 3D are both possible). For 
reference, Mimics generates and modifies surface 3D models from stacked medical 
images such as CT, Confocal Microscopy, Micro CT, or MRI. 
 

2. Hypermesh program: the images from Mimics are unclean and noisy. They cannot be 
directly used to generate mesh. Hence, they are modified neatly, and then, Hypermesh 
program generates meshes from corrected images. 
 

3. Finite element program: ANSYS or ABAQUS analyze and simulate the stress/strain 
distribution for the meshed image. Mechanical properties should be provided for 
analysis.  
 

A typical mouse carotid image, generated by z-projection (maximum projection) of the 3D 
stacks of CARS images, is shown in the Fig. 3-2-a. We have followed above procedure to 
segment and mesh the image. Then, we have imported the image into our custom-built FEM 
model as shown in Fig. 3-2-b. CARS imaging modality can identify different lipid structures, 
namely: lipid pools and needle/plate-shaped lipid crystals. These lipid structures and arterial 

(a) (b) (c) 
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wall are shown as different colors in Fig. 3-2-b. 
 

 
Figure 3-2: Mouse carotid: (a) CARS image showing different lipid structures, (b) corresponding lumped FEM. 
Yellow: arterial wall, red: needle-shaped lipid crystal, violet: plate-shaped lipid crystal, cyan: lipid pool (appearing 

as bubbles in CARS image). Image in each direction has 512 pixels with a width equal to 0.25mm. 

In this inverse elasticity problem, the measured displacement field are simulated by a direct 

Stretch Direction 

(a) 

(b) 
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elasticity problem corresponding to an artificial problem with no noise and 1% X-stretch in the 
boundaries (details in Fig. 3-2-b). This artificial problem corresponds to the finest possible 
mesh size (Fine 5), and its displacement field is compared against inverse elasticity problem 
from coarser meshes (Fine 1 to Fine 4). Linear elastic properties are arbitrary selected such that 
different moduli are sorted as below covering four orders of the elasticity:  

Elipid pool   <   Ewall   <   Eneedle   <   Eplate 

Our linearized elastic properties correspond to the Table 3-1 values used for nonlinear 
analysis in ABAQUS. We compared stress patterns in the linear model (estimated by the 
inverse problem via custom-built FEM in Matlab) with the nonlinear model (ABAQUS). We 
found that regions of highest von-Mises stress and its value are similar in both models, and 
hence, we conclude that linearized FEM does not look to compromise the highest stress 
values/locations commonly used as indices for the atherosclerosis risk factor. 

 
Table 3-1: Material properties selected for nonlinear ABAQUS simulation corresponding to Fig. 3-2-b. 

Material 
 

Lipid Pool 
 

Arterial Wall 
 

Needle-Shaped  
Lipid Crystal 

Plate-Shaped 
Lipid Crystal 

Model Hyperelastic 
C1=0.01 MPa 
C2=0 
            Eq. 2-9 

Hyperelastic 
C1=0.1 MPa 
C2=0 
            Eq. 2-9 

Linear Elastic 
E=4 MPa 
 

Eq. 2-1 

Linear Elastic 
E=40 MPa 
 

        Eq. 2-1 
 
We also investigated the inverse-elasticity-problem convergence versus mesh size, as 

depicted in Fig. 3-3 and Fig 3-4. The coarsest mesh, Fine 1, does not converge, but finer 
meshes, Fine 2 to Fine 4, converge. Intermediate mesh size, Fine 2, converges quickly, which 
highlights the fact that a middle-size mesh should be selected to ensure a convergence (fine 
enough to capture image details) and a fast solution (coarse enough). However, in general, there 
should not be a problem for a fine mesh as long as we have enough computational power. 

In this problem, we used Matlab trust region optimization functions and passed accurate 
analytical gradients to Matlab optimizers. Analytical gradient does not change accuracy 
significantly or does not improve stability for convergence. Interestingly, in several cases, 
hard-limit constrained optimization (fmincon function in Matlab) converges, while 
unconstrained version (fminunc function) does not. Consequently, hard-limits (e.g., Modulus is 
positive or is less than 1.0 GPa) can play important roles in the convergence; although, they are 
not typically included in the Gauss or adjoint methods. 
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Figure 3-3: Convergence versus FEM mesh size for a lumped inverse elasticity problem in a mouse carotid 

corresponding to Fig. 3-2. Fine 1 to Fine 4 correspond to meshes becoming finer. Y-axis corresponds to the 
optimization functional (proportional to the sum of the squared differences between measured displacement and 

FEM inverse-elasticity-problem calculated displacements). 

 
Figure 3-4: Convergence versus mesh size and iteration number for different lumped regions of Fig. 3-2-b. Note 

that compliant regions converge quickly and stiffer regions converge slowly. 
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3.1.2 Shape Complexity and Contrast Recovery Ratio 

We used one of our own OCT images to find the shape of a typical plaque. Then, we meshed 
that image and generated several complicated low-contrast2 shapes of shear modulus field 
(varying shear modulus for different elements). In all cases, our inverse elasticity algorithm 
converged qualitatively and quantitatively to the desired shear modulus field. One of these 
complicated shapes, alternative rows of hard and compliant tissue, is depicted in Fig. 3-5. We 
tested several element types and found that simpler elements (i.e., lower number of nodes) can 
converge better to the objective modulus field. In this simulation and the next one, we used 
BFGS optimization with the same parameters. Similar results were obtained regardless of the 
choice of Newton or adjoint method. We used prescribed displacement boundary conditions, 
and hence, we can only compute a relative shear modulus field. Following Eq. 2-18, shear 
moduli are normalized such that average moduli are constant, meaning that the net force is 
almost constant. 
 Given that we can recover complicated shapes of low contrast, we aimed at examining the 
high-contrast isolated small inclusions. This is important, because unlike (breast) cancer 
diagnosis by ultrasound in which big nodules are dangerous; in arterial wall thin 
plaques/shoulders are unstable and threatening! We varied contrast ratio, elastic modulus ratio 
of inclusion to the background, from 0.01 to 100 covering four orders of the magnitude as 
expected for arterial plaques. Compliant inclusions were identified accurately, meaning that they 
have a contrast recovery ratio approximately equal to 1.0 . However, stiff inclusions are not 
identified as well, and we have shown their recovery for ratio of 10 and 100 in Fig. 3-6. For the 
ratio of 10, the computed contrast is 10.39, and for the ratio of 100, the computed contrast is 
30.86 (contrast recovery ratio equal to 1.039 and 0.3086). The reduction in contrast recovery 
ratio can be related to two phenomena. First, given that our normalization ensures a constant 
average modulus, a uniform initial guess is close to the final solution for a compliant inclusion. 
However, for a stiff inclusion, the solver should go several rounds to increase the inclusion 
stiffness at the cost of substantially decreasing the background stiffness. Secondly and specially 
in real problems, a stiff inclusion’s deformation is relatively small compared to the background, 
and hence, its registration is difficult and erroneous. Similarly, due to small displacements, it 
will have a small role in the functional, and hence, its accuracy can be totally compromised 
against other terms. Nonetheless, arterial plaques are usually compliant lipids, and hence, this 
                                                        
2 Contrast refers to the inclusion/background ratio of the elastic modulus. In a low-contrast 
image, the inclusion and the background have approximately the same moduli. 
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error can be avoided. Interestingly, as evident from Fig. 3-4 even for a lumped model, elastic 
moduli of the compliant regions are found first.  

 

 
Figure 3-5: Recovery of a complicated low-contrast objective (shear) modulus in the invers elasticity problem for 
(a) Quad_4 elements and (b) Quad_9 elements. In each case, objective moduli is shown on the top figure and the 
calculated moduli is depicted in the below figure. Colorbars show relative shear moduli. Axis units are in pixel and 

each pixel is equivalent to 0.01 mm. 

(a) 

(b) 
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Figure 3-6: Recovery of an isolated stiff high-contrast objective (shear) modulus in the invers elasticity problem 

for (a) Contrast=10 (b) Contrast=100. In each case, objective moduli is shown on the top figure and the calculated 
moduli is depicted in the below figure. Colorbars show relative shear moduli. Axis units are in pixel and each pixel 

is equivalent to 0.01 mm. 

(a) 

(b) 
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Figure 3-7: Contrast recovery curve for an isolated stiff /compliant inclusion having the same geometry as Fig. 3-6. 
Modulus contrast is related to the ratio of the elastic modulus between the inclusion and the background (arterial 
wall). Contrast recovery ratio is almost equal to 1, for compliant inclusions; and reduced to 0.4 for a stiff inclusion 

with a contrast equal to 100. 

3.2 Registration Elasticity Problem 

In the former section, we showed that given an accurate displacement measurement, inverse 
elasticity problem can identify complicated structural patterns of the plaques with several orders 
of the magnitude change in the elastic moduli. We indicated that a moderate mesh size and a 
linear model can reliably predict locations of increased stress/strain without significant accuracy 
compromise. Furthermore, we showed that the moduli of the compliant inclusions can be 
accurately calculated by the inverse elasticity problem, but the moduli of the stiff inclusions are 
conceded. Now, in this section we consider the more realistic scenario of errors being present in 
the displacement measurements. We identify the level of errors in the strain values. Given the 
errors in the pure registration problem and the pure inverse elasticity problem, we move toward 
simultaneous solution of the registration and inverse elasticity problem. This simultaneous 
solution is optimized to use the best regularization parameters based on the data fidelity 
calculated in the pure (disconnected) problems. 
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3.2.1 Registration Problem followed by Inverse Elasticity Problem for an Elastic Band 

The kernel size in the image similarity measurement (Eq. 2-10) plays the most important role 
in determining the registration noise/resolution of the pure registration problem. Increasing the 
kernel size or the regularization parameters will increase the chance of convergence at the cost 
of decreased resolution of the elastogram. A former phantom gel study varied the kernel size by 
10 pixel increments and proposed that a 41×41 kernel (41 pixels in each direction) has the best 
registration accuracy[98]. We used this value as the starting guide in our kernel size. 

We used the robust registration algorithm suggested by Chan et al.[89], solely based on 
Kinematics and discussed in section 2.3, to find the displacement field between consecutive 
OCT images of an elastic band. We followed that by solving the inverse elasticity problem with 
the adjoint + BFGS method to calculate the elastic properties depicted in Fig. 3-8. 

Since an elastic band is a homogenous material, the expected solution should be a constant 
relative modulus (e.g., all equal to 1.0 ). However, there is an inherent balance between 
enforcing the measured/registered displacement values and enforcing the uniformity of elastic 
modulus. For example, the solution depicted in Fig. 3-8 has a 8.0% average mismatch between 
computed and measured displacement of nodes, for a 4.4% standard deviation in elastic moduli 
of different elements.  

We ask ourselves how much fidelity, and in numerical terms how big a coefficient, we can 
attribute to our prior information regarding each constraint and measured values. To find the 
proper balance between different terms, we have to quantitatively know the uncertainty/error in 
each term/process. Hence, in the next part we will focus on an idealized registration problem to 
quantify registration errors.  

Alternatively, we could use REP (registration elasticity problem), based on a uniform 
elastic modulus, to find an idealized displacement field, and then, use it to quantify the errors in 
the registration problem. However, while REP is based on an idealized 2D mechanical model, a 
big portion of the mismatch in registration and 2D mechanical models is due to the 3D 
displacement (e.g., out of plane displacement which is not quantified in our experiments).  

In general, errors can be attributed to factors such as OCT noise, registration error, out of 
plane displacements, imaging aberrations, and actual non-uniformities in the material (i.e., here 
elastic band). Unfortunately, these factors cannot be simply isolated. Former theoretical studies 
in this lab by Chan et al., Khalil et al., and Karimi et al. have partially quantified the errors 
introduced into the inverse elasticity problem, given that measured displacement has a given 
percentage error[72,89,93]. They have also used artificially built OCT images3 to quantify 
                                                        
3 An OCT image sequence based on PSF (point spread function) of OCT and a displacement 
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errors solely due to OCT noise. However, while interested readers are encouraged to read those 
references, here we will present results based on actual OCT images in typical situations (which 
contain all sources of the errors together).  

 

 
Figure 3-8: Inverse elasticity problem following registration problem of an elastic band imaged by OCT. (a): 

Shear modulus field, (b): Convergence of relative shear modulus of individual elements (initial guess is equal to 
1.0 for all elements). 

                                                                                                                                                                                   
field provided by FEM[89]. 
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3.2.2 Noise Reduction and Strain Limits based on Phantom Gels 

We also built several polyvinyl-alcohol phantom gels and imaged them with OCT during a 
uniaxial stretch. Similar to the elastic band, the ideal solution is again uniform strain and 
modulus fields. However, our prior knowledge about uniformity can push our regularization 
parameters toward our desired uniform fields. To surpass this problem, we fix the regularization 
weights and compare the results of different experiments. In this way, we can compromise 
between the effects of regularization to eliminate the noise as well as the desired signals.  

Since there is no alternative method to find the displacement of the samples, the accuracy 
and reliability of results can only be verified against uniform fields. Here, we study on an OCT 
image of a uniform gel, shown in Fig. 3-9, under uniaxial stretch or rigid body motion. 

 

 
Figure 3-9: OCT gray scale cross section of a uniform gel. The cyan box depicts the region of interest. Magenta 
and green box correspond respectively to the actual size of the kernel and the search window around each node. 

Nodes are depicted with blue crosses. Axes units are in pixel and each pixel corresponds to 10 microns. Nodes are 
separated approximately by 10 pixels, which corresponds to about 50% overlap in their corresponding correlation 
kernel. Magenta box represents the SB (sub block) used in Eq. 2-10. Green box represented the search domain in 

which correlations are calculated with FFT before optimization starts. 

First, an image sequence was generated by a 69-pixels rigid body displacement imposed by 
moving the scanner head. While the rigid body estimation was correct, we had a 0.5% RMS 
(root mean squared) error in the strain (as opposed to zero strain). Further study proved that 
this significant error corresponds to the image distortion in the OCT device (or probably out of 
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plane displacement). Hence, to achieve better results and to avoid strain artifacts, we have to 
use the same optical region in the field of view, which means that we have to limit our studies 
to the smaller motions. At the same time, for the static sequences (zero motion) we had a 0.005% 
strain RMS (ideally should be zero); which proves that static speckle decorrelation is totally 
negligible. Various strain measures are listed for these two cases in the Table 3-2.  

 
Table 3-2: Error quantification for pure registration in static case (similar frames at different times) and rigid body 

displacement (due to moving scanner head). 

               Strain Measure in % 
 
Relation between Consecutive Frame  

Lateral Average Axial Average RMS  

Static (solely due to image noise) 0.0001 -0.0005 0.005 
Rigid Body Displacement (69 pixels) 0.46 -0.40 0.56 

 
 
The REP or IREP could be used to improve the estimated displacement by incorporating 

extra constrains. However, to study the worst-case scenario, we have used the RP without any 
regularization for all results in 3.2.2 . In other words, we have simply done an image registration 
based on local block matching. Nonetheless, it must be noted that a uniform material, like gel 
or elastic band, has extremely few landmarks for registration, and hence within the same 
scenario, we might expect smaller errors in a tissue due to having a larger number of structural 
features. 

To study the uniform strain cases, we have used a simulated 2nd frame subjected to an 
imposed incompressible plane strain ( ! = !!! = −!!! , !!" = !!" = !!" = !!! = 0 ). To 
include some speckle noise, the 2nd frame is based on averaging two consecutive static frames.  
Then, this averaged frame is interpolated to the given displacement field, to generate the 2nd 
frame corresponding to the imposed strain. 

Strains starting at 0.1% till 30% at different increments were tested as depicted in Fig. 3-10 . 
This range corresponds to 3 folds of variation in the average nodal normalized cross correlation. 
Strains more than 6% required some manipulation in initialization including: initial guesses, 
extended search window or a brute force search for mean displacement. However, our algorithm 
could not converge at all for 30% strain. This shows an upper limit in applicable strain levels 
probably due to breaking of the block-matching technique used for image registration.  

Registration accuracy is quantified in Fig. 3-10 based on error of the average strain, as well 
as RMS of the strain distribution. In general, the average value had a lower error in the 
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lateral/stretching direction, compared to the axial/depth direction. On the other hand, the 
RMS error of the strain was much higher in the lateral direction. Apparently, registration has 
an anisotropic behavior potentially due to the lower image resolution and different signal delay 
in the axial direction.  

 

 
Figure 3-10: Strain estimation based on RP (Registration Problem) without any regularization applied to a 

simulated incompressible planar stretch of a uniform phantom gel. X-axis in all images corresponds to the applied 
strain. In the ideal case, the output strain (y-axis left figure) should be constant and equal to the input strain 

(x-axis). However, the registration generates a variable strain characterized by its average value (left figure), RMS 
error (root mean squared depicted in the middle figure), and the error in its average value (right figure). 

Errors do not have an exactly monotonic behavior with respect to the applied strain. 
However, in general, the relative error of the average strain decreases with increasing levels of 
the applied strain. In general, it can be seen that strain RMS error and error in the average of 
the strain are respectively about 1/10 and 1/100 of the applied strain. This means that local 
variations smaller than 10% in the elastograms are not reliable/significant. 

Further study of the results proves that for a relative RMS error less than 10% (of the 
applied strain), we should restrict ourselves to strains higher than 1%. In general, the 1-5%  
strains range seems to provide the best compromise for the test. Higher values of strain are 
susceptible to strain induced speckle decorrelation, as well as breaking apart the adopted 
block-matching foundation of the image registration. Lower values of the strain are not good 
either, because their displacement values are close to the system noise. 

In summary, this study and similar studies have helped us to select the proper range of the 
parameters chosen for our results. This parameter set contains values such as the proper applied 
strain, the maximum allowable rigid body displacement, or the weights for different constraints 
in the optimization functional (fidelity to different prior information). We have used the same 
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parameter set for all of our results unless otherwise noted. 

3.2.3 In Vitro Feasibility of IREP 

As a preliminary verification of in vitro feasibility, we injected butter into a porcine aorta’s lipid 
pool to increase its lipid content. As depicted in Fig. 3-11, a fatty region (low elastic moduli) 
was identified at the center of the arterial wall, showing a higher contrast in both the elastogram 
and the modulus image. 

 These figures are generated with IREP (simultaneous registration and inverse elasticity 
problem), and we have used a REP-RP-IEP initialization procedure shown in Fig. 2-6. Unlike 
Chan et al. study[89], with the use of this initialization, we directly applied our technique to a 
fine mesh and we did not need to use a multi-resolution scheme. 

It must be noted that while the lipid modulus varies in 4 orders of magnitude, our image 
has a greatly lower dynamic range (about 15). However, OCT image itself had a low contrast 
for the lipid pool (as shown in Fig. 3-11-a, lipid pool cannot be directly identified), but the 
modulus and elastogram images clearly show the compliant nature of the lipid pool, and hence, 
enhance the image contrast. Furthermore, from clinical perspective, the identification of a 
region of reduced elastic modulus can be more important than the measurement of an exact 
absolute modulus.  
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Figure 3-11: In vitro feasibility of IREP. (a): OCT image of porcine aorta with a lipid pool in the center 

(temporally and spatially blurred with a Gaussian filter). (b,c): Elastogram corresponding to lateral and axial 
strains. (d): Relative modulus image. Images are partially taken from Karimi et al. [104]. X and Y axes units 

correspond to pixel indices.
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Chapter 4:     Modeling of Hydrodynamic Interactions  

 
 
 
 
 

In the former chapters, we described and developed models for !" to !!-sized tissue 
elasticity analysis. In particular, we focused on how to register two images by incorporating 
tissue mechanics as side constraints in the registration process. The eventual output of our 
results was elastic modulus for a given region of the material. In this and the next chapter, we 
focus on hydrodynamic interaction (HI) phenomenon, and eventually analyze it in terms of the 
viscous constant of actin network, the primary component of the cytoskeleton, in the !" to 
!" size range. Taken together, this thesis covers viscoelasticity of biological tissue. Initially, we 
used experimental top-down approach, and finally in these chapters, we use theoretical 
bottom-up approach to analyze and understand mechanical properties of biological tissues and 
cell constituents at different scales. 

4.1 Introduction 

It has remained elusive how the viscous forces imposed by the fluid phase, i.e., the cytosol, can 
limit movement and consequently remodeling rate of the cytoskeleton. In the Stokes regime, 
cytosol hydrodynamic (drag) forces limit the movement of intracellular particles or relaxation 
time of filaments. These forces are usually calculated by using a drag coefficient based on the 
movement of an isolated particle. However, in vivo particles are not isolated and can interact 
with each other via the cytosol. As depicted in Fig. 4-1, a moving particle generates a flow field 
around itself that imposes forces on the surrounding. This phenomenon is called hydrodynamic 
interaction (HI) and is crucial for accurate estimation of drag coefficients and diffusion 
rates[105], both of which are related to relaxation times of actin filaments. HIs are responsible 
for organized collective motion of birds, cyclists and according to recent speculations even actin 
filaments in myosin motility assays[106].  
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Figure 4-1: Hydrodynamic interaction concept: If particle A is in a fluid and it is moving (e.g., to the right), then 
it will apply a force to the particle B. This force is non-zero, unless particle B moves with the same speed as local 

fluid (disturbance) velocity caused by particle A. 

The truncation error for an interaction decaying with !!! is scaled with !!!!
rcut-off

!" 

and can be finite only for fast decaying interactions (! > 1). In general, the HI forces decay 
slowly as inversely proportional to distance (!): !!![107], and given that !!!!

rcut!off
!"  is not finite, 

HI effects cannot be simplified by invoking a cut-off radius to truncate the interactions of 
distant elements. Consequently, HIs result in non-sparse matrices formed from (3N)! nonzero 
entries (N: number of particles) as opposed to sparse matrices for fast decaying interactions (e.g., 
electrostatic interaction scaled as !!!). As N increases, prohibitive memory requirements and 
more importantly the slow convergence of the iterative procedure to solve the equations, make 
it almost impossible to solve the resulting linear system, explaining why HIs are usually ignored 
in network models. 

The objective of this Chapter is to explore, describe and propose new models for HIs. Then, 
we can quantify HI potential role on altering the mechanics and dynamics of actin cytoskeletal 
networks discussed in the next chapter. Our group previously showed that an elastic Brownian 
dynamics rod model can replicate the dynamics of a single actin filament[108]. In a follow-up 
study, our group developed a 2D averaged bead model to account for HIs between multiple 
filaments. Despite 2D limitations, our model reproduced the experimentally observed dynamics 
of actin filaments and demonstrated that confinement increases persistence length[109], as 
observed experimentally as well[110]. Even in the absence of steric (repulsive contact) forces, 
HIs in the confinement alone lead to persistence length changes, suggesting that steric forces 

B A 
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due to confinement should be distinguished from increased HIs in the confinement. Steric 
forces depend on inter-particle distances, but HIs are linearly dependent on the velocities and 
act to alter time rates of the system or vibration amplitudes. We will demonstrate that HIs have 
a significant role in altering actin dynamics. However, current theoretical models, including 
tube model, are incapable of accounting for HIs or isolating their effects at the network 
level[108-112]. We begin this Chapter by first presenting the standard techniques and then our 
new method to include HIs. We present standard bead model for spherical beads based on 
Rotne-Prager tensor, and then, present a new method for HI modeling of rod-shaped segments. 
We use these methods to analyze the role of HI in actin mechanics. 

4.2 Bead Model for Hydrodynamic Interactions 

Here we briefly describe the numerical scheme that we used to calculate hydrodynamic forces 
while taking into account nonlinear hydrodynamic interactions (HIs). All results presented here 
are based on this standard model, unless otherwise noted. Initially, filaments are discretized into 
beads with diameters equal to the diameter of the filaments, and then, we apply this model for 
HI. 

The hydrodynamic force applied to the ith bead is given by !!,! = !!(!!!!!), where !! is 
the ith bead velocity,!!! is the local fluid velocity (fluid velocity at the position of bead i) and ! 
is the friction coefficient in the Stokes regime. Quantity !!,! = !!,!/!! = (!!!!!) is defined as 
the hydrodynamic velocity, which is proportional to the drag force[109]. Hydrodynamic 
velocity can be interpreted as the slippage velocity between particle and fluid velocity. Although 
in reality, there is no slip, and instead, a drag force is applied to the particle. For a spherical 
particle with radius a (we use a = 3.5!nm for actin), we can calculate friction coefficient from 
! = 6πηa, where η!is fluid viscosity.  

 

Figure 4-2: Schematic representing particle locations for ! !! − !!  (hydrodynamic interaction tensor). 
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Due to HI, the presence of other particles will disturb the local fluid velocity according to 

!! = !!,! + !!→!!!! , where !!,! is the local fluid velocity in the absence of all particles and 
!!→! is the disturbance at the location of particle i due to particle j. Induced velocity can be 
obtained from !!→! = !(!! − !!)!!,! in which ! is particle location and is depicted in Fig. 
4-2.  

! is usually calculated from ! ! = !
!!" ! ! + !!!

! ! + ! !!
! !

!
! ! −

!!!
! !  where β = 0 

would correspond to a point force (Oseen’s tensor) [113,114] and β = 1 would correspond to 
spherical beads[109]. We use β = 2  case corresponding to the most commonly case, 
Rotne-Prager(-Yamakawa) tensor[115] for non-penetrating beads of the same radius ( ! > 2! 
see Sedeh et al. for details [116]).  Matllab is used to assemble all the linear equations and 
solve them to relate the bead velocities to the hydrodynamic (drag) forces. These drag forces are 
used for our analysis. Accuracy and proper implementation of our equations was tested against 
several published data, including rotating flagellum-shaped torque and trust[117], drag 
coefficient of different filament types (rods, S/C-shaped, and circular)[105], as well as test cases 
of Chandran et al.[109]. 

To model the effect of hydrodynamic interaction in a network broken down to rod 
segments, but without hydrodynamic interaction between those segments, we set !(!! − !!) to 
zero for any two beads that do not correspond to the same segment/rod.  

 

4.3 Rod Model for Hydrodynamic Interactions 

4.3.1 Simplified Rod Model for Hydrodynamic Interactions 
 

Our group, recently developed an averaged hydrodynamic interaction model for 2D 
filaments[109]. That method is based on the fact that hydrodynamic force of a rod varies almost 
linearly for rigid body displacement. Consequently, free ends can be treated as individual beads 
and beads between them are lumped together to have a linear force profile. Some sample force 
profiles are presented in Fig. 4-3. In this model, the lumped middle beads require several 
summations and approximations, which make its formulation complicated for implementation, 
and yet, at best they represent a shish-kebab shape instead of a cylindrical filament. Instead, this 
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study suggests improving this former study, by replacing the lumped beads with a rod. Rod 
hydrodynamic properties can be taken either from experiment or currently published data. 
Additionally, since rod model already includes the effect of free ends, we can ignore the 
free-end beads. However, mixing rods and free-end beads together can make a more accurate 
model. 

 

 
Figure 4-3: Averaged implicit hydrodynamic interaction model of Chandran et al. for filaments with different 
lengths and at different modes of rigid body movement[109]. The hydrodynamic velocity profiles are shown in 

gray and their approximations, based on averaged model, are shown in black. (a) Lateral movement, (b): rotation, 
(c-d): axial motion for two filament with different lengths. Fluctuations in c-d are due to ignoring a nonlinear 

term, which its effect is cancelled in the averaged model. Picture taken from[109]. 

 
 Now, we have to find a way to account for hydrodynamic interactions between rods. There 

are already a few methods developed to approximate those interactions by doing double 
integrations along filament lengths approximated by Gauss quadrature[118-120]. Unfortunately 
despite great accuracy, those models are heavily complicated, and hence, unlikely to be adopted 

The summation in the first matrix is over all interior beads
comprising the section of beads. The first matrix gives the
hydrodynamic influence of the section on the end bead
!HES", and the second matrix gives the hydrodynamic influ-
ence of one end bead on another !HEE".

To summarize, the averaging procedure therefore consists
of two ideas. The first idea is that the normal and parallel
hydrodynamic velocity profiles over sections of interior
beads can be approximated by the normal, parallel and rota-
tional hydrodynamic velocity of the central bead in that sec-
tion. The second is that the angular hydrodynamic velocity
about the representative bead can be determined by the dif-
ferential of the normal hydrodynamic velocity profile there.
It is important to note that in this averaging technique, the
hydrodynamic equation written for a bead still includes the
hydrodynamic influences of all its neighboring beads. How-
ever, the number of beads for which the hydrodynamic equa-
tions need to be solved is reduced, thereby decreasing the
computational cost.

In Figs. 9!a"–9!d" we show the single-section averaging
of the hydrodynamic velocity profiles of Figs. 5!a"–5!d". The
interior beads have uniform normal, rotational and parallel
hydrodynamic velocities for the respective cases of a rod in
pure normal, rotational, and parallel motion; and the end
beads show much higher hydrodynamic velocities. The total
drag calculated by summing the averaged profile matches
that predicted by standard equations and by the implicit
string-of-beads method #see Figs. 6!b" and 6!c"$.

2. Averaged implicit hydrodynamics for multiple sections
and rigid rods

The above averaging technique can be extended to the
interaction between multiple sections within a rod, to the

interaction between multiple rods. The hydrodynamic equa-
tions now require generalized expressions for the hydrody-
namic influence of one end bead or section of beads on the
representative bead of a section or on an end bead. The hy-
drodynamic influence of an end bead on another end bead or
representative bead can be determined using Eq. !9" of Sec.
II A 4. The equation describes the hydrodynamic influence of
one arbitrarily placed bead on another. Here we describe the
calculation of the hydrodynamic influence of one section of
beads on the representative bead of another section. The hy-
drodynamic influence of a section on an end bead is similarly
calculated, except that the self interaction matrix HS is unity
for an end bead #the summation terms in HS of Eq. !12" do
not exist for an end bead$.

Consider two sections, S1 and S2, which are parts of two
separate rigid rods !Fig. 10". Let V1

p ,V2
p and V1

n ,V2
n be the

parallel and normal translational velocities of the sections; !1
and !2 be their orientation angles; and c1 and c2 be their
representative central beads. Let !c1j and rc1j be the angle
and distance between c1 and the jth bead of section S2 !Fig.
10". Let sections S1 and S2 be composed of M interior
beads. Using the previously described notation for the hydro-
dynamic velocities, the equation for the hydrodynamic

(a) (b)

(c) (d)

FIG. 9. Approximation of the bead hydrodynamic velocity pro-
file of Fig. 5 by assuming all interior beads to have uniform normal,
parallel, and rotational hydrodynamic velocities !that of the repre-
sentative beads". The bead hydrodynamic velocity profiles are
shown in gray and their approximations are shown in black.

(b)

c1

S2

S1

c2 Bead j

(a)

c2

!1

!2

S1

c1

S2
Bead j

FIG. 10. Capturing the hydrodynamic influence of the beads of
section S2 on the representative bead of section S1. !a" The distance
rjc1

and the angle ! jc1
between c1 and bead j of section S2, vary for

each bead when integrating through the beads of S2. !b" A simple
rotation of frame so that section S2 lies along the horizontal axis,
makes rjc1

and ! jc1
a function of only one variable xjc1

.

AVERAGED IMPLICIT HYDRODYNAMIC MODEL OF… PHYSICAL REVIEW E 81, 031920 !2010"

031920-9
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by most biologists. Instead, this study suggests that we can use the same beads tensor (used for 
hydrodynamic interaction of the beads), as rods tensor as well. Essentially, this means that rods 
see each other as beads and the only difference between rod and beads would be their drag 
coefficients. Beads have an isotropic drag coefficient,!!; whereas rods have an orthotropic drag 
coefficient composed of !!and !∥. This assumption about hydrodynamic interaction of the 
rods is a blunted assumption, but we show that the compromise in accuracy is minor in our 
applications (modeling actin filament). In fact, Leonardo et al., independently and recently, 
used holographic tweezers to show that microrods interact like point particles in three 
dimensions at large distances, and in two dimensions for distances shorter than their 
length[121]. 

 
 

4.3.2 Rod Drag Coefficients based on Swanson-Batchelor 

Drag coefficients !!and !∥  depend on the aspect ratio ! = !
!  (where !,!  are filament 

length and radius accordingly). For long rods, ! > 15, we use Batchelor formula[122] and for 
shorter rods, 1 < ! < 15,  we use shape-preserving piecewise cubic interpolation of 
ln!!!between discrete points of Swanson et al.[123] (listed in Table 4-1), and corresponding 
point of Batchelor for ! = 15. With this Swanson-Batchelor (SB) combination, there would 
not be any error in discretizing a rod into beads, if !! is not an even number (which can be a 
large error for low aspect ratios). Additionally, our rod segments can go for an aspect ratio as 
low as!!!=1 (i.e., a disk shape). Hence, if needed, we can discretize our rods into fine cylindrical 
segments, instead of usual spherical beads which are responsible for several errors in the shish 
kebab’s model[114].  

We chose Batchelor formulation due to higher accuracy especially in the low aspect ratio 
regime compared to the computational data of Swanson et al. (matched with experimental data 
within 0.5% error)[123]. This higher accuracy can be checked in Fig. 4-4. Furthermore, the 
same graphs can also be used to realize that typically different experiments and theories have a 5% 
difference, and hence, any attempt to provide a method with more than 5% accuracy (compared 
to any of those curves) is questionable.  
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Figure 4-4: Comprehensive list of experimental data or computational models to obtain drag coefficients of rods 

in (a): lateral and (b): axial modes. (Top): drag coefficients, (Bottom): relative difference between above drag 
coefficient and a reference value based on SB (Swanson-Batchelor). The below graphs show why Batchelor is the 
best candidate among theoretical models, to be used for interpolation. Different lines/markers correspond to data 

from different sources[122-133]. Markers represent discrete data sets, and lines represent models based on a 
continuum function of aspect ratio. Please note that some data set are limited to only lateral or axial mode. 

Rod drag coefficients are normalized by ! = !
!". Values of ! for discrete Swanson et 

al.[123] data are listed in Table 4-1 and for Batchelor regime are calculated as follows: 
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 C! = 4πϵ !!!!"!
!!!.!! + (K!" + 0.5K!")ϵ

!  

 C∥ = 2πϵ! !!!!"!
!!!.!! + (K!" − 0.5K!")ϵ

!  

K!" = ln 2 − 1 ≅ −0.307!!!!!!!!!!K!" = 1+ K!"! −
π!
12 ≅ +0.272 

 ϵ = !
!"!!!!!! 

Eq. (4-1) 

 

Table 4-1: Drag coefficients for low aspect ratio rods, adopted from computational data in Table IV by Swanson 
et al.[123]. These discrete data points are combined with C values from Eq. 4-1 at ! = !" to be interpolated of 

at ! < ! < !". 

!
! 

1 2 4 8 

!!! 17.74 11.34 7.755 5.652 
!∥ 19.57 11.27 6.939 4.590 

 
 
 
 
 

4.3.3 Volume Correction and Discretization 

If a filament is discretized into beads, parts of it can be truncated, which can have an up to 20% 
effect on the drag coefficients (Fig. 4-5). We have listed different methods to compensate for 
this volume loss in Table 4-2. The effect of those methods in computing drag coefficient is 
plotted in Fig. 4-5. In summary, each method is good for a certain aspect-ratio range, and has a 
preference for either axial or lateral mode. 

We have suggested a new method, called optimal bead, which is a special case of our rod 
model, in which lateral and axial drag coefficients are exactly equal. Unlike other spherical beads, 
this bead has a disk-like shape, and hence, can better mimic a filament by being stacked side by 
side. Nonetheless, since it has equal drag coefficients in all directions, at long distances, it is like 
a spherical bead. Hence, we can use well-developed spherical bead hydrodynamic interaction 
tensors already available. Consequently, we can use standard hydrodynamic interaction routines, 
and only change discretization schemes slightly to accommodate for the optimal bead. 
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We also tested force distribution for a straight filament moving laterally or axially, and we 
found that other than at the free-ends, these different techniques have subtle effect on force 
distribution. 
 
 

Table 4-2: Different methods to discretize a filament into stacked beads starting from shish kebab’s model, 
followed by different ways to compensate for volume and finally our proposed model. Schematic shows a filament 
composed of 3 beads, but effective bead diameters and overlaps are not to actual scale. Filament radius, effective 

radius, hydrodynamic radius and bead spacing are represented by !,!!,!! and ! respectively. 

Method Bead Discretization 
Volume 

Correction 
Eq. 

Description 

w/o Volume 

Correction  
N.A. 

!! = a, ! = 2a  
Filament is discretized into spherical beads 

stacked side by side. 

1  
4
3 !!!

! = !!!×2! 
Use results of the first row, but multiply the 

hydrodynamic forces by !!! =
!
!

! ≅ 1.1447 

2  
4
3 !!!

! = !!!×2! 
Use the discretization of the first row, but 

proceed to the hydrodynamic interactions with 
!! = !! ≅ 1.1447! 

3 
 
4
3 !!!

! = !!!×2!! 
Use results of the first row for the same number 

of beads, but multiply aspect ratio by !!! =
!
! ≅

1.2247 

4  
4
3 !!

! = !!!×! 
Similar to the first row, but beads are stacked 

with overlap (! = !
! ! instead of ! = 2!) 

Optimal 
Bead 

 

 

C∥ = C! 

!! ≅ 1.1842!, s ≅ 1.9237! (C∥ = C! ≅
11.604 for ! ≅ 1.9237) 

Filament is discretized into disk-shaped beads 
stacked side by side. For each disk, transverse 

and axial drag coefficients are equal and hence a 
spherical bead can approximate those disks. 
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Figure 4-5: Drag coefficients of rods discretized into beads having different volume corrections compared against 
theories or experimental data in (a): lateral, and (b): axial modes for Rotne-Prager tensor. (Top): drag coefficients, 

(Bottom): relative difference between above drag coefficient and a reference value based on SB 
(Swanson-Batchelor). The below graphs show why optimal bead can be the best candidate for volume correction 

and discretization. Different lines/markers correspond to data from different sources[122,123,129-133]. Markers 
represent discrete data sets, and lines represent models based on a continuum function of aspect ratio. Please note 

that some data set are limited to only lateral or axial mode. 
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4.3.4 Rod Model: All components together 

At this point, we can establish that Swanson-Batchelor can be used as a reliable reference 
benchmark to test our different hydrodynamic interaction models for the rods. According to Fig. 
4-4, as long as a rod model can produce the same drag coefficients as Swanson-Batchelor 
(within 5%), it can be assumed to pass the minimum verification requirements. To finalize our 
rod model, we have to set the following two variables and we opted to test the following 
candidates: 

 
1. Candidate for Hydrodynamic interaction tensor: 

a. Oseen: the simplest 
b. Spherical bead 
c. Rotne-Prager: similar to spherical bead, but can have a different form if the 

beads penetrate each other. 
 

2. Candidate for Stokes radius appearing in the above tensor: 
a. Segment radius 
b. Segment length 
c. Segment equivalent Stokes radius in 2D 
d. Segment equivalent hydrodynamic radius in 3D 
e. Segment Aspect ratio 
f. Segment equivalent volumetric spherical radius: the radius for the sphere 

within the same volume 
g. Ignore hydrodynamic interaction! 

 
As for the selection of the tensor, we wanted a tensor that works well with the optimal bead, 

as the ideal and the simplest case of the rod model. It turns out that in general, Oseen tensor 
and Rotne-Prager tensor behave similarly, especially at long distances, and work better than 
spherical bead tensor. However, both Oseen tensor and spherical bead tensor are susceptible to 
generate unstable solution, as can be seen in Fig. 4-6 for the axial mode. In fact, since for a 
straight rod individual beads moving in the axial direction have a doubled interaction, axial 
direction is more likely to become unstable. Indeed, that is why Rotne-Prager tensor was 
developed to improve the solution stability and decrease numerical fluctuations. Hence, we 
conclude that we will pick up the standard Rotne-Prager tensor for our rod model. That is great, 
because almost every custom-built hydrodynamic interaction code is based on Rotne-Prager 
tensor, and hence, our model can be better integrated to available codes. 
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Figure 4-6: Relative error in the drag coefficients of rods discretized into beads having different volume 

corrections compared against theories or experimental data in (a): lateral, and (b): axial modes for (Top): Oseen 
tensor, (Middle): spherical bead tensor, (Bottom): Rotne-Prager tensor (the stable case). The graphs show relative 

difference between drag coefficient and a reference value based on SB (Swanson-Batchelor). 
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We also tested our rod model with different candidates for Stokes radius. We discretized 
rods with different aspect ratios, into different number of segments. Then we calculated the 
drag coefficient of the total rod and evaluated its error against the Swanson-Batchelor reference 
data. To our surprise, almost all a, c, d, and f candidates behave similarly with less than 5% error! 
Candidate b, and e are OK but only for lateral mode; however, candidate g generates huge 
errors as expected. All this data are shown in the Fig. 4-7. 

In summary, at this point for our rods, hydrodynamic interactions are so big that it cannot 
be neglected (candidate g fails). However, segments geometry is such that the specific choice of 
Stokes radius among a, c, d or f does not make a big difference. This subtle difference is also 
due to the fact that each of these candidates perform well for either lateral or axial, and in a 
specific range of the aspect ratio. Hence, when they are compared together in general they most 
look alike. Nonetheless, we might pick up a specific Stokes radius based on our application.  

We could also think of the alternative scenario, where these subtle similar errors are mostly 
due to the assumed form of the hydrodynamic interaction tensor, instead of its Stokes radius. 
This is likely; because we have approximated the polarized flow patterns around a rod, with a 
isotropic flow pattern around a sphere. Nonetheless, it is still surprising that this simple model 
can bring the error down to about 5%, where 5% is in fact, the uncertainty in the 
Swanson-Batchelor model.  

We also tried candidate-a (segment radius) in a problem for two F-actins being aligned 
from either parallel configuration or crossed. Our results indicate that while hydrodynamic 
interactions could change the alignment dynamics. However, at least for this problem, 
candidate-a resulted in a solution similar to bead-discretized model (which means it is 
confirmed against standard method). Nonetheless, more complex 3D models might 
discriminate between our different candidates for Stokes radius. In fact, as will be noted in the 
network section of the next chapter, for a 3D system nearby filaments will substantially increase 
the role of hydrodynamic interaction, as opposed to small hydrodynamic interactions for the 
distant parts of the same filament. Consequently, further studies are required if this model is 
applied to crowded 3D or 2D networks. 
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Figure 4-7: Relative error in the drag coefficients of rods discretized into rod segment with different number of 
segments in (a): lateral, and (b): axial modes for 7 different candidates, a to g, of the Stokes radius for our Rod 

model. The graphs show relative difference between drag coefficient and a reference value based on SB 
(Swanson-Batchelor). 
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c. Segment equivalent Stokes radius in 2D 

 
 
 
 
 

 
 
 

d. Segment equivalent hydrodynamic radius in 3D 
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e. Segment aspect ratio 

 
 

 
 
 
 

 
 

f. Segment equivalent volumetric spherical radius 
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g. Ignore hydrodynamic interaction: errors are generally much bigger than 
20% 
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Chapter 5:    Role of Hydrodynamic Interactions in F-actin 
Mechanics 

 
 
 
 
 
 
 
 
 

5.1 Introduction 

Cytoskeletal network is a dynamic structure in cells responsible for cellular shape, integrity, 
remodeling, and migration[134]. Actin is the primary structural component of the cytoskeleton, 
constituting up to 10% of the cell mass. Actin responds rapidly and dramatically to external 
forces, and is also instrumental in the formation of leading edge protrusions during cell 
migration[135]. Actin protein is found in all eukaryotic cells (except the nematode sperm) and 
its genome has been highly conserved.  

As demonstrated in Fig. 5-1 and Fig. 5-2, actin builds different structures ranging from 
isotropically crosslinked networks to highly polarized bundles named stress fibers[136,137]. As 
depicted in Fig. 5-1-a, F-actin forms by the polymerization of globular, monomeric actin 
(G-actin) into a twisted strand of filamentous actin (F-Actin) 7–9 nm in diameter. Monomers 
have a molecular weight of 43 kDa and consist of 375 amino acids. F-actin is a polarized 
molecule having two different ends, namely a barbed end and a pointed end. ATP can bind to 
the barbed end, which allows for monomer addition and filament growth, whereas 
depolymerization occurs preferentially at the pointed ends. Hence, a tread milling process can 
occur which will polarize the cell, and will help in cell motility. Actin’s persistence length is 
about 15− 17!!" and its Young’s Modulus is about 3 GPa[135]. 
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Figure 5-1: Actin molecular and macro structure. (a): F-actin (filamentous actin) is formed from two helices 

composed of G-Actins (Globular actin: having a known protein sequence). F-Actin is a polarized molecule having 
different ends. Picture is taken from Dominguez et al.[138]. (b) Actin organization in 3T3 cells: A) 

fluorescence-staining of F-actin, B-D) electron microscopic image of actin. B) Actin junction. C) Homogenous 
structure at the leading edge, D) polarized/ Heterogeneous structure elsewhere. Picture is taken from Svitkina et 
al.[139]. (c) Similar to (b)-A, F-actin forms different structure inside the cell and has different concentration at 

various locations. Some F-actins form bundles, called stress fibers, which are the key component of the cell 
motility (especially with the aid of focal adhesion proteins such as Vinculin, which is stained here). Focal 

adhesions and F-actin are visualized with anti-vinculin antibodies and phalloidin, respectively in U2OS cells. 
Three categories of contractile actin arrays are highlighted on the F-actin image: dorsal stress fibers (red), 
transverse arcs (yellow) and ventral stress fibers (green). Scale-bar: 10 micrometer. Picture is taken from 

Hotulainen et al.[140]. 

BB40CH08-Holmes ARI 15 April 2011 16:6

36 nm

Pointed end

Barbed end

that, although the orientation of the actin
monomers in the helix was correct, the two
long-pitch helices in this early model were
about 3 Å too far apart.

Since this initial calculation, a number of at-
tempts have been made to deduce the nature
of the G-actin to F-actin transformation by re-
fining models against the data from X-ray fiber
diagrams (24, 32, 52). The fiber diagram used
had limited resolution (∼7 Å). Moreover, dis-
orientation in the sample, which smears out the
layer lines, loses information. Unique answers
were not obtained.

Actin fibers are diamagnetic. Well-oriented
X-ray fiber diffraction patterns can be obtained
by placing F-actin gels in a very strong mag-
netic field (35) (Supplemental Figure 3). The
resulting higher resolution X-ray fiber diagram
(3.3 Å in the radial direction and 5.6 Å along
the equator) indeed made it possible to eluci-
date the nature of the G-actin to F- actin transi-
tion (35). The main component of the transition
from G-actin to F-actin is a 12◦–13◦ propeller-
twist of the outer domain with respect to the in-
ner domain about an axis roughly at right angle
to the helix axis (Figure 3). Moreover, there are
bending movements of domains 2 and 4 in the
same direction. The final result is that F-actin is
flatter than G-actin by about 17◦–18◦. Further-
more, the D-loop takes on an open-loop config-
uration and inserts itself into the target-binding
cleft of the subunit immediately above it.

Oda & Maeda (36) have defined the
propeller-twist angle (θ) between the two ma-
jor domains as the angle between two planes,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 2
The helical structure of F-actin derived from
cryo-electron microscopy (16). The molecules are
arranged on a single helix with 13 molecules
repeating in almost exactly six left-handed turns.
The rise per molecule is 2.76 nm and the twist per
molecule is −166.6 ± 0.6◦(for simplicity of drawing,
in the figure the value −166.15 has been used to
make the structure repeat exactly after 13 residues).
Because −166◦ is close to 180◦, the structure takes
on the appearance of a two-start right-handed
long-pitch helix.
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Actin polymorphic structure can respond to instantaneous loads and absorb extracellular 

shock, while for lower loading rates it can gradually release the excess stress by remodeling and 
relaxing. Actin’s persistence length, 15− 17!!", is close to the cell size. This means that the 
contour length of actin filaments is typically of the same size as its persistence length, hence a 
semiflexible filament[135]. In contrast to flexible or rigid filaments, the dynamics of 
semiflexible filaments are not yet fully understood and actin has been used as a model polymer 
to study semiflexible filaments. Actin filament length, crosslinker density and strength can all be 
tuned to investigate a wide range of behavior in crosslinked/entangled networks of semiflexible 
filaments[110,141-143]. Superbly different forms of crosslinked actin networks are depicted in 
Fig. 5-2, all generated by varying crosslinker/actin relative concentration and crosslinker type. 

 

 
Figure 5-2: F-actin crosslinked network at different concentration/types of crosslinkers taken from Lieleg et 

al.[137]. We are particularly interested in HMM (Heavy Myosin Motor) case, which forms isotropically 
crosslinked active networks. 

a simple criterion for the bundling transition that is qualitatively

different from that of the cross-link transition described before.

However, in this case a detailed microscopic interpretation of the

transition is still lacking. Such a microscopic description would

have to consider the tradeoff between the loss in entropy

resulting from the packing of filaments into a well-ordered

superstructure and the gain in enthalpy upon binding of the

cross-linker proteins to the actin filaments.

For even more complicated phase transitions parameteriza-

tions of the transition boundary are not available yet. At our

current stage of understanding, the network mesh size, the

entanglement length and the cross-linker distance as well as the

persistence length of actin filaments or bundles play an important

role in the transition between different structural phases. Yet, it is

a priori not clear which of these length scales dominate in the

different structural regimes. This underlines the importance of

a detailed microscopic characterization of the different network

microstructures.

Concerning the network structures induced by different ABPs,

intuition seems to match reality—at least in in vitro systems:

small cross-linking proteins such as scruin,27 fascin23 or espin28

tend to tightly pack actin filaments into parallel bundles. Larger

cross-linking molecules such as a-actinin,29,30 filamin,31,32 dic-

teostelium discoideum filamin33 or anillin34 tend to induce a more

complex phase behavior: while at low concentrations they cross-

link actin filaments into networks or gels, at higher concentra-

tions purely bundled phases or composite networks with a rather

diverse geometry occur35,36 (for a schematic overview see Fig. 2).

Engineered cross-linkers in which two hisactophilin actin binding

motifs are coupled by different numbers of dicteostelium

discoideum filamin rod domains support this observation: the

shortest constructs have the highest F-actin bundling propensity,

larger distances between the binding domains result in

a composite phase, a structure which is extremely difficult to

quantify.33

Interestingly, the size of the cross-linking protein seems to

have little or no effect on the ABP/actin ratio at which the

structural transition occurs. This underlines that mainly the

binding affinity and therefore the average distance between

cross-links at a given actin concentration sets the transition to

another structural phase. The type of phase is then set by the

geometry and the resulting configurational freedom of the cross-

linking protein. Thus, it seems to be the effective binding

propensity which determines the resulting phase—analogous to

adhesion phenomena, where the effective binding efficiency is set

by the product of binding affinity and separation distance

between distinct adhesion molecules.37

The effect of the ABP binding domain on the network struc-

ture has been less studied—as a matter of fact, most cross-linkers

seem to have an affinity for F-actin with a typical dissociation

constant of Kd ! 0.1 mM and a dynamic off-rate on the order of

koff z 1 s"1 at room temperature.38,39 Differences in binding

affinity between different a-actinins have been shown to result in

shifts in the bundling threshold concentrations.29 As a result of

the temperature dependence of the binding constant, K(T) !
exp("EB/kBT), transitions between different network phases can

also be achieved by a variation of the temperature.21,40 For an

effective remodelling of the actin cytoskeleton it is essential that

the unbinding rates of cross-linking proteins from actin filaments

are in the msec regime. This avoids the necessity of complete

Fig. 2 In reconstituted actin networks a pronounced structural polymorphism is observed. The detailed architecture of a cross-linked actin network is

set both by the type and concentration of the cross-linking molecule. At low cross-linker concentrations a generic weakly cross-linked phase occurs while

relatively high cross-linker concentrations are required to induce a structural transition to an isotropically cross-linked, bundled or composite phase. At

very high cross-linker concentrations clusters of actin bundles are observed for long and flexible cross-linking molecules. In contrast, small cross-linkers

tend to form homogeneous purely bundled phases.

220 | Soft Matter, 2010, 6, 218–225 This journal is ª The Royal Society of Chemistry 2010
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It has remained elusive how the viscous forces imposed by the fluid phase, i.e., the cytosol, 

can limit movement and consequently remodeling rate of the cytoskeleton. In the Stokes regime, 
cytosol hydrodynamic (drag) forces limit the movement of intracellular particles or relaxation 
time of filaments. These forces are usually calculated by using a drag coefficient based on the 
movement of an isolated particle. However, in vivo particles are not isolated and can interact 
with each other via the cytosol. As depicted in Fig. 4-1, a moving particle generates a flow field 
around itself that imposes forces on the surrounding. This phenomenon is called hydrodynamic 
interaction (HI) and is crucial for accurate estimation of drag coefficients and diffusion 
rates[105], both of which are related to relaxation times of actin filaments. HIs are responsible 
for organized collective motion of birds, cyclists and according to recent speculations even actin 
filaments in myosin motility assays[106].  

The objective of this chapter is to explore how HIs may alter the mechanics and dynamics 
of actin cytoskeletal networks. Our group previously showed that an elastic Brownian dynamics 
rod model can replicate the dynamics of a single actin filament[108]. In a follow-up study, our 
group developed a 2D averaged bead model to account for HIs between multiple filaments. 
Despite 2D limitations, our model reproduced the experimentally observed dynamics of actin 
filaments and demonstrated that confinement increases persistence length[109], as observed 
experimentally as well[110]. Even in the absence of steric (repulsive contact) forces, HIs in the 
confinement alone lead to the persistence length change, suggesting that steric forces due to 
confinement should be distinguished from increased HIs in the confinement. Steric forces 
depend on inter-particle distances, but HIs are linearly dependent on the velocities and act to 
alter time rates of the system or vibration amplitudes. Here we demonstrate that HIs have a 
significant role in altering actin dynamics. However, current theoretical models, including tube 
model, are incapable of accounting for HIs or isolating their effects at the network 
level[108-112].  

5.2 Hydrodynamic Interactions in Single Filament 

To explore the effect of HIs on an actin network, we begin at a single filament level examining 
its bulk movements and vibrational modes. Next, we examine two filaments being aligned 
during bundle formation. Finally, we investigate the role of HIs in network level for regular 1D 
and 3D random networks. We examine the HIs between different filaments as well as HIs 
between different positions of the same filament. 
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5.2.1 Rigid Body Movement and Diffusion 

 
Figure 5-3: Dimensionless (a) normal (!!), and (b) axial (!∥) drag coefficients of an actin filament (η:  viscosity, 

U: velocity, a: filament radius). Blue line: reference values based on SB (Swanson-Batchelor) introduced in section 
4.3.2 [15,16]. Dashed black line: discretized into mesh-sized, !, rods without HIs. Dash-dotted red line: 

discretized into beads with the same diameter as the filament without HIs. Inset shows different discretizations. 

The viscous drag force on the filament is a function of the filament length (Fig. 5-3), as 
discussed in section 4.3.2 . These forces per unit length are inversely proportional to!ln !, where 
! is the filament length[122,123]. This nonlinearity implies that the forces summed over 
smaller segments are overestimating the net force on the filament. However, generally in 
theoretical and computational models and specifically in the commonly-used tube model, the 
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drag forces are based on the coefficients corresponding to the drag for the effective mesh size, 
ξ[111]. Depending on the concentration of crosslinkers and actin, ξ can vary between 
20!nm!and 1!!m. Ignoring the HIs between these segments could lead to erroneous net forces, 
which can yield erroneous deformation rates in force-induced movement and remolding of the 
actin network (see Fig. 5-3).  

For example, C∥ (dimensionless axial drag coefficient) for a 30!!m filament is ~0.8 for 
the whole filament, and ~6 for the same filament broken into 20!nm rods. Consequently, if 
the HIs between those rods are ignored, an approximately 7-fold error is expected ( !!.! ≅ 7). 
Alternatively, if a single filament is divided into ξ -sized segments to model its elasticity, its net 
diffusion would be inaccurate by the same factor. Additionally, larger errors, more than one 
order of magnitude, would be expected if the filament is discretized into beads without 
accounting for HIs, i.e. when the HI effect is ignored in the bead level (dash-dotted red line in 
Fig. 5-3). Our finding corroborates the earlier finding that only theoretical models which 
explicitly account for HIs can quantitatively match experimental dynamics of single actin 
measured via fluorescence correlation spectroscopy[112]. 

5.2.2 Lateral Fluctuations 

Fluctuations of filaments, also affected by HIs, are related to the macroscopic behavior of actin. 
Indeed, lateral bending modes are the main contributor to the viscoelasticity of cross-linked 
actins[111,144,145]. These mode shapes can be derived from worm-like chain models of 
filaments as employed here. Unless otherwise noted, in all simulations henceforth, we discretize 
filaments into beads and adopt the Rotne-Prager tensor[115], which is the standard method for 
HIs (see chapter 4 for details). Since we are interested only in the hydrodynamic forces, we 
examine only a single time snapshot of the system in equilibrium. As a result, we do not need to 
include Brownian forces or elasticity of the network. While both of these factors play significant 
roles in the dynamics of cytoskeletal network, they have no direct effect on instantaneous 
hydrodynamic forces. These instantaneous forces depend only on system configuration and 
velocity distribution at low Reynolds number. 

To calculate filament bending-modes we note that, since axial modes are expected to relax 
much faster than lateral modes, an equation of pure bending can be employed[146,147]:   

  
 ! !!!

!!! + !
!"
!" + !

!!!
!!! = ! !, !  Eq. (5-1) 
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Nomenclatures used in this section are fully described in Table 5-1. Worm-like chain 
models ignore variation of hydrodynamic drag coefficient on the filament due to the screening 
effect and instead utilize the constant !!drag coefficient in Eq. 5-1. This coefficient is 
multiplied by the local velocity of the filament to calculate local hydrodynamic force per unit 
length responsible for decaying the filament vibrations. 
 

Table 5-1: Nomenclatures used in analyzing filament fluctuations. 

Symbol Description 
!(!, !) lateral displacement  

! position index along filament axis − !
! ≤ ! ≤ !

!  (!: filament length) 

! time 
! filament mass per unit length 
! filament lateral drag coefficient per unit length per unit lateral velocity  
! bending elasticity constant 

! !, !  stochastic Brownian force 
!!,!! eigenvalue and mode shape ! 

!!! or !! mode shape zero with pure lateral rigid body displacement (!!! = 1:!no rigid 
body rotation) 

!! viscous drag force per unit length 
 

Inertial terms, ! !!!
!!!  , can be neglected due to low Reynolds. Normal mode analysis is 

applied to Eq. 5-1 to arrive at the following !! !modes: 
 

 

!! = !" + ! ! = 0

!! =
!"#!!!!
!"#!!!

+ !"#$!!!!
!"#$!!!

! = 1,3,5,…

!! =
!"#!!!!
!"#!!!

+ !"#$!!!!
!"#$!!!

! = 2,4,6,…

 Eq. (5-2) 

 
We model the vibrations of a single filament with free ends. Free-end assumption holds 

true for isolated low concentration networks. However, in vivo, most segments have ends 
attached to other filaments (e.g., via crosslinkers or branches generated by Arp 2/3). Hyperbolic 
terms in Eq. 5-2 are used to satisfy free end boundary conditions, but their contributions are 
negligible for higher modes or away from filament ends. Otherwise, in general the mode shapes 



 

 96 

are not sensitive to boundary conditions. 
Mode shapes, !!, are originally derived to represent the amplitudes of vibrations, but they 

can also be interpreted as the velocity profiles. Mode shapes are shown on Fig. 5-4-a. 
 

 
Figure 5-4: (a) Mode shapes and (b) local drag coefficient for a 0.7 µm filament at different modes. Solid blue line: 

rigid body lateral translational mode. Red shades: the first 10 modes. Brighter reds correspond to higher modes. 
Dashed and dash-dotted lines represent first and second modes respectively. This filament is discretized into 100 

spherical beads each with a 7-nm diameter. 

 
In Eq. 5-1, for simplicity it is assumed that the drag force is proportional to local filament 

velocity. However, we already know that even in !!! mode (simply called !!!henceforth), the 
drag force is not uniformly distributed. Based on the velocity profile of a given mode, !!, we 
can calculate drag force profile !!!! and examine the linearity between local velocity and local 
drag force. Mode shapes, !!, and !!!!!!

 ratios are plotted in Fig. 5-4-b for a filament with 
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! = 0.7!!". We can note that for this filament length and others not shown here,!!!!!!!
! is 

almost constant far from free ends and singularities (when !! is zero), but slightly different for 
different modes. Next we try to quantify these variations. 

We define the following normalized internal product as a measure of how much !!!! and 
!! are proportional: 

 

 !!⨂!!!! ≝ !!!!!!!"

!!!!" !!!!!!"
 Eq. (5-3) 

 
According to Cauchy–Schwarz inequality, we know that !!⨂!!!! ≤ 1!and only if !!!! 

and !! are exactly proportional, then !!⨂!!!! !will be equal to ±1. Absolute values smaller 
than 1.0!correspond to functions that are not well aligned. From the physical perspective, local 
power consumed against viscous medium is proportional to !!!!!! and hence !!⨂!! can also 
be interpreted as the power ratio of !! contained in the !! !mode.  

Results in Fig. 5-5 indicate that for the first 10 modes of filaments between 140!!" and 
30!!"! long, !!!!  power is more than 95% contained in the corresponding mode !! . 
Consequently, based on Fig. 5-5 and Fig. 5-6-inset, we conclude that force distribution due to 
hydrodynamic interactions does not alter normal modes substantially and hence application of a 
constant drag coefficient per unit length is a valid approximation (at least for lower modes 
considered here). 

 

 
Figure 5-5: Normalized internal product of mode shape and hydrodynamic force,!!!⨂!!!! , for different modes. 

Line styles match legend of Fig. 5-4-b. This internal product represents a power ratio (out of 1.0) for the 
component of the hydrodynamic force consistent with assuming a uniform drag for each mode (i.e., ignoring local 

variations in the drag coefficients, shown in Fig. 5-4-b, due to hydrodynamic interactions). 
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However, as is evident from Fig. 5-4-b,!!!!!!!
 has a variable value depending on the mode 

number and hence we require a ! value to be dependent on the mode number. Generally ! is 
approximated based on its value from !! mode, simply called !! (Fig. 5-3 for actin filaments), 
as follows: 

 

 ! ≅ !! = !!!!"
!!! !" Eq. (5-4) 

 
Eq. 5-4 cannot be used for higher modes because for them !!  is not constant (i.e., 

!! = !!(!)). To extend the above equation to higher modes, it might look natural to replace the 
denominator with !!!". However, for higher modes, !!!" is zero or close to it. Hence 
instead, we modify Eq. 5-4 to Eq. 5-5 to be applicable to higher modes. This new form, Eq. 
5-5, eliminates plus and minus terms cancelled in both numerator and denominator in Eq. 5-4 
simple extension ( !!!!"

!!!"
). Nonetheless, this new form results in the same !! value for !! 

mode.  
Eq. 5-5 is similar to Eq. 5-3 (definition of !!⨂!!!!), and can be considered as a way to 

calculate an average proportionality factor between !!!! and !! by avoiding singularities in 
!!!!
!!
!. 

 

 !! ≝ !!!!!!!"
!!!!"

 Eq. (5-5) 

 
In fact, above !!  value is an optimal choice to minimize following integral: !! ! ≝

(!!!! − !"!)!!", and by this optimal value we can show that square error follows this formula: 
!! !! = (1− (!!⨂!!!!)!) ! !!!!!!". This !! !!  formula provides a mathematical insight into 
the interpretation of !!⨂!!!!, which is used in the next part as a normalized root mean squared 
error to examine linear fit quality (!"#!! ≝ !! !!

!!!!!!"
= 1− (!!⨂!!!!)! depicted in Fig. 

5-6-inset). 
Results of Eq. 5-5 are normalized as !!!! values depicted in Fig. 5-6 . We can think of !!!! 

as a measure of how much higher modes receive higher drag forces due to less screening effect. 
Additionally, since relaxation time of each mode is proportional to !! , then !!!!!is also an 
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indicator of how much the relaxation time is underestimated, if as usual we use !!instead of !!. 
To examine linearity of f!!! and q!  pairs, we minimized E! ζ ≝ (f!!! − ζq!)!ds  (a 

squared error integrated over filament length) to find an optimal ζ! value defined as the 
effective drag of mode i. We define RMSE! ≝ E!(ζ!)/ f!!!!ds as a root mean squared error 
to quantify our fit quality. It was observed that for the first 10 lateral bending modes of actin 
filaments 140!!" to 30!!" long, a uniform drag coefficient can result in 10% to 30% 
!"#!!  in drag (Fig. 5-6-inset). Interestingly, higher modes have a better proportionality 
between the velocity and the drag force. As expected, higher modes have shorter wavelengths 
and hence have more cancellation between positive and negative fluid velocity disturbances. 
Therefore, we conclude that HIs have a subtle effect on altering mode shapes due to local 
variations of drag coefficient. 
 

 
Figure 5-6: HI effects on the first 10 lateral bending modes versus actin filament length (L): The ratio of drag 

coefficient for a given mode compared to the drag coefficient of rigid body lateral translation is plotted here. This 
ratio is the same as the underestimation in relaxation time of those bending modes, if we use !!, instead of !! 

Inset: the normalized root mean squared error of linear fit to examine proportionality between local velocity and 
local drag. Blue line: rigid body lateral translational mode. Red lines: the first 10 bending modes (brighter colors: 

higher modes). 

On the other hand, the same cancellation means that filament segments cannot take 
advantage of screening effect to reduce their drag coefficient. Generally, drag coefficient 
obtained from rigid body lateral translation, !!! (Fig. 5-4-a), is used to calculate relaxation 
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times in the tube model. Lateral modes seem to have an effective drag coefficient higher than 
!!!value. The ratio !!!!, where !! !is the effective drag coefficient of mode !  (Fig. 5-6) can be 
used as a more accurate numerical pre-factor in the tube model calculations. For instance, let us 
consider a network with a crosslinker distance !!  equal to 100!!", which means we are 
interested only in the vibrational modes corresponding to a filament with 100!nm length or 
less. As indicated in Fig. 5-6, without the inclusion of HIs, the relaxation time of the first mode 
is underestimated by a factor of 2. Higher modes decay even more slowly than what is predicted 
from!ζ!. Indeed experimental data for both actin and microtubule filaments suggest that higher 
wave numbers have an effective drag coefficient higher than that suggested by ζ!. Although 
such observations have been linked to internal viscosity of the filament[148,149], here we note 
that they might also be due to HIs especially in actin filaments whose internal structure is 
simpler and non-hollow.  

It should be noted that typically mesh size of actin filaments are less than their persistence 
length, and hence, during deformation of an actin network the dominant mode of movement is 
local rigid body displacement (i.e., !! for lateral and !∥ for axial motions) covered in section 
5.2.1 . Similarly, in section 5.4.3, we investigate the rigid body displacement of a 3D cross as 
the representative repeating unit of a 3D regular network. Nonetheless, entropic elasticity of 
each filament is dominated by the relaxation times covered in this section[150-153].  

5.3 Hydrodynamic Interactions in Bundle Formation 

5.3.1 Geometry and Assumptions 

As depicted in Fig. 5-1 and 5-2, F-actin uses various crosslinkers to form different network 
structure. Bundled (composite) networks are based on thick fibers (e.g., stress fibers) formed by 
(crosslinked) aligned filaments. In particular, cell movement utilizes acto-myosin machinery to 
pull the cell body by forces transmitted via stress fibers. When the bundles are formed, they 
approximately can be treated as a single filament, but with a bigger diameter. Increased 
diameter leads to increased hydrodynamic interactions similar to the results in former section. 
Consequently, in this section we focus on the process that leads to the bundle formation. 
Bundle formation is based on filaments being aligned, generally by the following two 
mechanisms[154], both depicted in Fig. 5-7: 
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1. Acto-myosin: sliding of anti-parallel filaments.  
2. Zipper action of crossed filaments: 

a. Passive crosslinkers (they do not slide on F-actin): several crosslinker gradually 
align the filament.  

b. Myosin for crossed and parallel filaments: (one) myosin crosslinker gradually 
moves toward barbed end and aligns the filament. 

 

 
Figure 5-7: Two F-actin filament being aligned. (a): Acto-myosin: sliding of anti-parallel filaments. (b): Zipper 
action for crossed parallel filaments. The same geometry also applies to passive crosslinker; although for passive 

crosslinkers, the directionality of F-actins is not important. 

As depicted in the Fig. 5-7, to model above phenomena, we restrict ourselves to two 
F-actins with the same length (L) moving toward each other symmetrically (i.e., the net 
movement of the center of the mass is zero). However, as depicted in Fig. 5-8, during cell 
migration one filament can be fixed (i.e., via focal adhesion), and the other filament can be 
pulled toward the fixed filament (to move the cell body). The later case can be considered as a 
combination of rigid body displacement (discussed in the previous section), and an alignment 
process.  

We also assume that filaments have a fixed distance (H) from each other. This might be 
true, if the filaments are not attached to elsewhere. However, otherwise filament will bend 
locally before being aligned. Consequently, here we assume that all energy or power is 
consumed against viscous fluid, but in crowded environments, part of the energy could be 
consumed against bending or steric forces. 
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Figure 5-8: Acto-myosin force balance during cell migration. Myosin forces can be balanced with filament 

movements, force transfer to substrate via focal adhesion, retrograde flow, etc. Picture taken from danuser lab 
(http://lccb.hms.harvard.edu/research.html). 

 
 

Nonetheless, for a first order of approximation, we calculate forces/torques (F: force, T: 
torque) required to move/rotate filaments in the absence and presence of hydrodynamic 
interactions between the two filaments (force: !with%HI or !w/o$HI, torque: !with%HI or !w/o$HI). 
In the absence of other time limiting factors (e.g., filament bending or acto-myosin sliding-rate 
limit), the ratio between !with%HI/!w/o$HI or !with%HI/!w/o$HI can determine how much filament 
alignment dynamics can be affected with hydrodynamic interactions.  

H, distance between filaments, can have different values depending on the size and 
orientation of the crosslinkers. We calculated the hydrodynamic interaction for when the 
crosslinker is perpendicular to the filament, and hence, the distance between filaments is 
maximized. Crosslinkers, which are typically, overall smaller than the filament, can be at the 
center between filaments, where the net distributed flow velocity due to HI is zero, and hence, 
we have ignored their role in HIs. Nonetheless, eventually crosslinkers could be almost aligned 
with the filament to form a highly packed bundle. In that case, HI effects can be elevated due to 
closer distance. Hence, our HI factors (!with%HI/!w/o$HI or !with%HI/!w/o$HI) might be interpreted 
as lower-estimates. 
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5.3.2 Sliding of Antiparallel Filaments 

 
Figure 5-9: Effect of hydrodynamic interactions between two antiparallel F-actins being aligned by myosin. F 

represents axial force. Overlap and L are defined in Fig. 5-7. 

We start by simulating the acto-myosin sliding of two antiparallel filaments at different lengths. 
Due to size of myosin, we assume that H=707 nm (and as before a=3.5 nm as actin radius). 
Interestingly, for filaments shorter than 1!!" depicted in Fig. 5-9, HI effects are totally 
negligible regardless of the overlap length (less than 7%). In fact, it looks like that if the 
filament (overlap) length is about the same order as the closest distance between the two 
filaments, then the HI effects can be ignored.  
 It is also interesting that the !with%HI/!w/o$HI factor is almost the same for all the filaments 
larger than 2!!" at Overlap=0 case. This can be interpreted by realizing that the portion of 
the filament that is beyond the 2!!" front has almost zero hydrodynamic interaction with the 
other filament. We further checked this by plotting !(!,!"#$%&') (hydrodynamic force as a 
function of bead position and overlap) depicted in Fig. 5-10 for 3 values of overlap. That curve 
clearly shows that during !"#$%&' ≫ !, there is not any hydrodynamic interaction between 
filaments, and hence, the force is like when they are isolated but moving with the same speed 
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(Fig. 5-10 black line). On the other hand, when !"#$!"# = !, we have the maximum force 
(Fig. 5-10 blue line). In the between, the portion of the filament that has overlap switches to 
the maximum force and the rest remains relatively unchanged (Fig. 5-10 red line for 
!"#$%&' = !/2). In fact, in the corresponding animation it looks like that a smooth wave 
moves with the same speed as the filament, and switches the overlapping beads to the higher 
force values. Since this pattern holds for both axial and lateral force, this phenomenon might be 
observed experimentally by seeing a dent (bending) moving across filament with the same 
speed.    
 

 
Figure 5-10: Normalized force distribution, ! !,!"#$%&' , for 3 overlap values: blue) side by side and maximum 

force, red) half side by side, black) at distance infinity corresponding to minimum force . This simulation 
corresponds to two 10!!" antiparallel actin filament coming side by side. We chose H=47 nm to elevate HIs and 

have a curve that better distinguishes the above 3 states. Nonetheless, H=707 nm results in the qualitatively 
similar curve, but with a less steep wave front. Force values near free ends, s=0 and 1, have fluctuations due to 

approximations in HIs tensor. (!: viscosity, U: velocity, a: filament radius) 

5.3.3 Zipper Action of Crossed Filaments  

As described in Fig. 5-11, we tested two different crosslinkers, namely myosin and !-actinin by 
choosing different values for H. 
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Figure 5-11: Effect of hydrodynamic interactions between two crossed F-actins being aligned. (a): H=707 nm, 

simulating myosin for crossed and parallel filaments. (b): H=47 nm, simulating passive crosslinkers representing 
α-actinin. T represents the torque required to rotate the filaments. θ and L are defined in Fig. 5-7. 

Conclusions similar to section 5.4.3 can be made here as well. For example, when filaments 
are perpendicular (i.e., ! = 90°), the exact length of the filament does not appear in HI factors. 
On the other hand, when they gradually align, they start to see the full length of each other and 
interact with all their body. 
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For myosin cases, both antiparallel and crossed, the HI factors were at most 1.35 . Hence, 
we can expect up to 35% slow down in their movement dynamics, if we ignore HIs. While 1.35 
might look like a small number, 35% change in the rates can be measured experimentally. 
Furthermore, for the !-actinin case, the HI factor can go up to 2.2, meaning that dynamics can 
be severely miscalculated if we ignore HIs. Finally, we can realize that HIs can be more 
significant at the frontal edge of the cell (or near membrane), where actin filaments are densely 
packed by similar small crosslinkers. Comparing our cases for H=47 and 707 nm can also 
provide us with rough estimates on how HI effects might be different, when our packing 
density changes. 

5.3.4 Verification of Simplified Rod Model  

We also used the antiparallel case as a benchmark for our approximate rod model. We have 
plotted HIs factors in Fig. 5-12 for two antiparallel filaments. We have also plotted the bead 
method data (formerly plotted in Fig. 5-9) as our reference values. For different filament 
lengths, 0.5!!" to 10!!", and at different values of overlap, we compared rod method and 
bead method (both method introduced in Chapter 4), while varying the number of the rod 
segment (from 1 to 2000). As depicted in Fig 5-12, we found that for all cases by increasing the 
number of segments both methods converge to the same results. This also holds true for the 
similar problem of zipper action of crossed filaments, which we have not shown here in the 
interest of space.  

According to Fig. 5-12, with only 5 segments, we can ensure an error less than 5%. This is 
significant, because bead method for a 10!!" filament requires 10!!"/7!!!" ≅ 1429 beads. 
On the other hand, rod method requires only 5 segments for the negligible 5% error. Given that 
HI matrix scales as the squared number of the particles, rod method requires (1429/5)! ≅
0.82×10! less memory and similarly less computational time and resources. 

Therefore, we realize that the application of our rod method can decrease the 
computational resources required by up to 5 orders of the magnitude. This is highly significant, 
since it opens a door to include HIs in problems with larger length scales. Those new problems 
can be in various different fields, and hence, this method has a potential impact far beyond 
cytoskeletal mechanics. 

Here, we have used filament radius as the Stokes radius in our rod method. Furthermore, 
relating to the discussion in section 4.3.4 , we found that Rotne-Prager tensor works as the best 
candidate for including HIs. However, we could not point out to any particular best candidate 
for Stokes radius. 
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Figure 5-12: Comparison of approximate rod model and bead model for effect of hydrodynamic interactions 
between two antiparallel F-actins being aligned by myosin. Bead model: solid line with circular marker. Rod 

model: dashed line with square marker. Different graphs vary on the number of rod segments used for 
discretization of each filament. X-axis: !"#$%&'/!. Y-axis: !with%HI/!w/o$HI!. F represents axial force. Overlap 

and L are defined in Fig. 5-7. 
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It should be noted that the strong variations in the Fig. 5-12 for low number of rod 
segments (1, 2, or 5) is a numerical artifact. This artifact is cleared, when we use higher number 
of rod segments, and hence, the rod method results converge to the bead method results. This 
artifact can be attributed to two factors.  

Firstly, the pure bead model is susceptible to some unphysical variation of the force. For 
example, we can solve the HI equations for the rigid body motion of a single filament 
discretized into beads (Fig. 5-4-b blue line). Then, we can see that near free-ends force 
oscillates, whereas in the physical system, force increases monotonically toward filament ends.  

Secondly, axial and lateral HIs have different strengths, and hence, for two single beads the 
position corresponding to the minimum distance, might not match the position with maximum 
HIs. This idea is depicted in Fig. 5-13 for two spherical beads, representing a similar problem 
to Fig. 5-3-#(Rod-Segments)=1. In both problems, the maximum HIs can happen around a 
point in which velocity partly results in an axial HIs (which is stronger than lateral HIs). This 
can be the main reason for overshoot in Fig. 5-3-#(Rod-Segments)=1 between !"#$%&'/!=0.8 
and !"#$%&'/!=1.0 .  
 

 
Figure 5-13: Effect of HIs between two beads moving toward each other with equal speeds on H-spaced parallel 

lines. Beads have a 7 nm diameter, equal to the diameter of F-actin. System geometry is shown on the subset. The 
ratio plotted corresponds to the force component in parallel to V. Note that maximum interaction (peak value of 

y-axis) does not necessary happens when the beads have the minimum distance (! = !"°). 
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5.4 Hydrodynamic Interaction in Actin Networks 

5.4.1 Idealized Regular 1D Network 

In a dense network, each segment is closer to nearby filaments than remote parts of the same 
filament, and hence HIs can increase beyond what we reported in Fig. 5-3 for a single filament. 
To examine this, we build a simple 1D network composed of actin filaments uniformly spaced, 
56!nm, parallel or perpendicular to each other (Fig. 5-14-subset). A uniform strain rate is 
applied on this network, in both shear and axial modes, and the force required to overcome fluid 
drag is calculated. This force can be considered as the stress required for imposing the desired 
strain rate (!). 
 

 
Figure 5-14: A regular 1D actin network built from different numbers of 56 nm units is devised, and 

dimensionless force to impose shear (diamond marker) or stretch (square marker) is calculated.  Three methods 
for computing hydrodynamic forces are compared: 1) bead with HIs (blue), 2) mesh-sized rod segments w/o HIs 
(black), and 3) beads w/o HIs (red). When HIs are small, the markers overlay to appear as hexagonal stars. Inset: 
deformation modes and networks discretized into beads for N=1 and N=3 units. Beads are colored according to 

z-coordinate for 3D visualization. 

In the elastic regime, a constant strain leads to a constant stress regardless of section depth. 
At a constant strain rate in viscous regime, in contrast, force is gradually transmitted to the fluid 
phase, and hence force increases with the addition of newer elements along the cross section 
(Fig. 5-14). In absence of HIs, this force would increase as a quadratic function of the section 
depth. However, due to HIs, the flow fields imposed by peripheral elements superimpose at the 
location of the central elements, and hence their smaller movement is similar to their 
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surrounding fluid. Consequently, central elements are shielded or screened from surrounding 
stationary flow, force is fairly constant in central region, and overall the force is decreased (blue 
markers Fig. 5-14). A model including HIs can therefore better mimic the viscoelastic behavior 
that assumes for a given strain rate, stress is constant. Nonetheless, the poroelastic model is 
better suited to model stress variation at different depths.  

Here, the hydrodynamic forces are calculated in three ways and together they demonstrate 
that ignoring HIs, be it between beads or rod segments, results in significant overestimation of 
force. Rod model of Fig. 5-14 is achieved by breaking each 56!nm unit to eight horizontal 
segments each 49!nm long (seven actin beads), and four vertical segments each 63!nm long 
(nine actin beads). For consistency, drag force of the rod model is still calculated based on 
segments discretized into beads, but any HIs between beads of different segments are ignored. 
Despite having different velocity fields, in comparison to Fig. 5-3, we notice that the 
overestimation factors are considerably higher for the same ξ. Clearly, if the same network units 
were assembled to build a 3D network, additional lateral HIs would result in even higher 
overestimation of stresses for the same deformation mode. 

5.4.2 3D Network 

Finally we consider a more physiologically representative 3D actin network, generated by 
2.1-!" actin filaments randomly oriented at a sufficiently large box to achieve a 1!mg/ml 4 
concentration at an inner cubic box of size 0.7!!". This inner box is trimmed or extended 
periodically to build a cubic box of desired size ! (Fig. 5-15-subset). ! is a measure of 
network/system size and is used to investigate the effect of HIs in the loss modulus for systems 
of different sizes. Loss modulus or G" value is typically measured in the viscoelasticity tests as a 
function of frequency.  

We simulate the network in the undeformed state and calculate viscous forces exerted by 
the fluid. Here we assume that undisturbed flow velocity, !!, is zero uniformly. This means 
that any flow velocity is only due to the moving particles and otherwise the fluid is stationary. 
This assumption is a better match for actomyosin contraction and the cytoskeletal network 
where cytosol movement is a secondary effect, as opposed to the rheometer setup where walls 
directly induce (a linear) flow fields as used elsewhere[111]. In other words, here we are 
isolating the viscous forces due to network affine velocity field (corresponding to a harmonic 
affine deformation of the network in a stationary fluid), whereas Kim et al.[111] examined the 
contribution of the fluid affine velocity field for a network (non-homogenously) deformed by 
                                                        
4 1!mg/ml is almost equivalent to 24!!M, consistent with 43 kDa molecular mass of actin. 
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elasticity laws. Our study provides more accurate results for fluid effects, but the other 
assumption provides better results for elasticity and deformation in Brownian dynamics across 
different frequencies.  
 

 
Figure 5-15: Dimensionless (a) loss modulus and (b) dissipative power per unit volume versus network/system size 
with HIs included (blue) and excluded (red), for uniform strain rate in pure axial elongation (square marker), and 

simple shear (diamond marker).  Without HIs, the red markers overlay to appear as hexagonal stars. Solid dotted 
line in (a): L2 scaling as the expected behavior when HIs are excluded and filaments are homogenously distributed. 
Gray dashed line in (b): F-actin concentration in mg/ml (on average 1 mg/ml). Subsets in (a): corresponding cubic 
networks for S=0.7 µm and 1.4 µm discretized into beads (colored according to z-coordinate for 3D visualization). 

 
Ideally, we would like to combine both studies but it is beyond our computational power to 

perform time integration, and simultaneously solve elasticity and HIs non-sparse matrix for 
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large length scales. Furthermore, the assumption of an affine deformation is an acceptable 
condition for isotropically crosslinked actin networks, to which we limit our study[150]5. Indeed, 
Gardel et al. reported that actin networks, in general, deform uniformly at high concentration of 
actin and crosslinkers (similar to physiological condition in cell), as opposed to non-affine 
deformation for low concentrations[155]. It should be noted that although we did not include 
elasticity of the network in our calculations, this factor has been implicitly incorporated in our 
model with the assumption of an affine deformation. 

In time domain, we have F ∝ ! (F: hydrodynamic drag force), which leads to G" ∝ ! in 
the frequency domain. G" typically refers to shear, but we use this notion to refer to simple 
shear and pure axial elongation (deformation shown in Fig. 5-14-subset). However, the range 
of the frequency, !, in which this holds is bounded at least between a lower limit due to the 
dissociation rate of crosslinkers, and an upper limit due to Stokes regime.  

The crosslinker’s life-time, about 20 sec, sets the lower limit to 0.05 Hz[150]. Additionally, 
for an oscillatory pure strain of 2%, the Reynolds number is calculated as !" =
0.01! !"!!! !where ! is the length scale and ! is the cytosol density. If we set !=30 µm (the 
diameter of a cell), viscosity to ! =5 cP for the cytosol and !" =0.1 as the upper limit for the 
Stokes regime, we find the upper limit of the frequency to be near 8.8 KHz. 

The normalized loss modulus and dissipative power per unit volume for our simulated actin 
network are shown in Fig. 5-15. These values are obtained by averaging over three modes of 
uniaxial stretch and six modes of pure shear. Below 0.4!!", there are steep changes, likely due 
to non-homogeneous density of the network at those length scales near ξ (0.3 !" for 1 mg/ml 
actin used here). Interestingly, beyond 1!!" , including HIs results in a fairly constant 
dissipative shear power as well as nearly constant G",!similar to one-particle (1P) microrheology 
values measured at ~2 Hz by Gardel et al.[143] (based on ! = 5!!" for cytosol).  

Experimental study (typically for in vitro actin gel) and theoretical models report a 
G" ∝ !!/!  and G" ∝ !!/!  behavior respectively for low and high frequencies 
[143,151,152,156-158]. In the intermediate frequencies, and especially in the presence of 
crosslinkers, more complex behavior, including having a maximum and minimum in G" can be 
observed[142,144]. For sufficiently higher frequencies, solvent viscosity dominates and G" ∝ ! 
behavior emerges[151].  

Around 2 Hz, viscoelastic behavior follows G" ∝ !!/! form consistent with the prediction 
of the tube model due to lateral bending[143,152]. Our model does not account for elasticity 
                                                        
5 Our HI model does not include any crosslinker. However, crosslinkers are implicitly included 
by imposing an affine deformation. Furthermore, crosslinkers relative volume fraction is much 
lower than actin, and hence, they have a negligible role in drag forces. 
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explicitly and our results are based on a single time snapshot of the undeformed system. Yet the 
confinement effects are rather accurately included to calculate G". This can be understood by 
noticing that at a length scale around ξ, actin filaments are rather rigid, and if no energy is 
consumed in breaking crosslinkers or deforming the filaments, all the forces are balanced 
against viscous medium.  

On the other hand, in the axial deformation mode, the dissipative power and viscous 
modulus tend to increase with system size. This means that we have to either adopt a 
length-dependent axial loss modulus or decline to define it. This observation is similar to Fig. 
5-14, where we denoted that poroelastic models better represent stress variations at different 
depths[159].  

The loss modulus and dissipative power computed by excluding HIs (red markers) are also 
shown in Fig. 5-15, which increase rapidly with system size and diverge from the values 
including HIs. Therefore, loss modulus and dissipative power could be erroneous by nearly two 
orders of magnitude in the shear mode in the length scale we investigated if we exclude HIs (a 
~20-fold overestimation for shear loss modulus). This again highlights the necessity of 
including HIs in any model that deals with network viscoelasticity. This is indeed a surprising 
finding, given that filaments are only occupying about 0.1% of the entire volume. As in Fig. 
5-14, errors due to ignoring HIs could be decreased by using a rod model, but would still be 
significant if HIs between rods were ignored. To further examine this observation and to dissect 
error sources, an equivalent regular network (similar to Fig. 5-14, but in 3D) can be built in 
which a 3D-cross is envisioned as the repetitive network unit. An isolated 3D-cross reveals that 
local HIs (i.e., HIs within a volume size of !!) are responsible for ~6.5-fold share out of this 
20-fold error, leaving only ~3-fold error due to distant elements or potentially the finite variable 
size of the system (see details in the next section 5.4.3 ).  

The computational burden of modeling the HIs limited our application to the!2!!" length 
scale, where we achieved results similar to 1P microrheology[143]. However, if we could 
overcome this computational limitation and model larger length scales, we might achieve results 
closer to macrorheology and examine the size dependency of the G" 
value[110,142,143,160,161]. Interestingly, we might be able to use our own rod model to push 
this length limit. While most studies cover frequency-dependent behavior of actin viscoelastic 
properties, to the best of our knowledge, no study has yet discussed the sample-size dependency 
of G" for crosslinked actin networks. Here we postulate that HIs may have a significant effect 
on modulating the G" value according to the system size. Nonetheless, according to Fig. 5-15, 
in the absence of HIs, the simulation box size has a significant role in calculation of G". Hence, 
care should be exercised in building consistent multiscale models of cytoskeleton, composed of 
elements with different sizes. 



 

 114 

In summary, we show that HIs significantly alter the viscous forces required to deform and 
eventually remodel actin networks. Our observation is consistent with recent suggestions that 
crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion[162]. 
We also show that HIs between elements of the actin network can alter their dynamics by at 
least 2-20 fold at different levels of network structure. Future studies are required to understand 
HI effects at larger length scales. 

 

5.4.3 3D-Cross Model to Approximate Hydrodynamic Interactions Strength in a Network 

In this part we explain a simple bead model to approximate the overestimation factors 
encountered in Fig. 5-15. According to Fig. 5-15, if we ignore hydrodynamic interactions, our 
results in shear modulus are erroneous by 20-fold. That is based on a model network in which 
filaments have random orientations. To simplify, we envision a regular network (similar to Fig. 
5-14 but in 3D), in which filaments are uniformly spaced, are all parallel or perpendicular to 
each other and together build cubic units as depicted in 5-16-a. This network can be built by 
assembling 3D-cross units depicted in 5-16-b. 
 

 
Figure 5-16: Simplification of a regular network into a 3D cross. (a): A regular network formed from filaments 

representing cubic units. This network is extended to infinity, but for simplicity only 3 units in each direction are 
plotted. Filaments are colored for better 3D visualization, but they are all identical. (b): 3D-cross as the repetitive 
unit of the network in part (a). All members of the cross have the same length (equal to mesh size: ξ). (c): 3D-cross 

discretized into beads. This specific number of beads correspond to !
!"=11 (!: filament radius). Beads are colored 

according to z-coordinate for better 3D visualization. 

To calculate forces applied on the 3D-cross unit we make two important assumptions. 
Firstly, we ignore the hydrodynamic interactions between different units. It is generally assumed 
that hydrodynamic interactions are screened at length scales in the same order as the mesh 
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size[147,163,164], hence this assumption is reasonable for our !-sized box. 
Secondly, we ignore velocity variation in the 3D-cross and assume that it has a rigid body 

velocity equal to the velocity value at its central point. In fact, velocity varies linearly for affine 
deformation rate and its average value is equal to the velocity value at the central point. 
Furthermore, for a large network (! ≫ !), it can be assumed that velocity variation across a 
single mesh (!!! ) is rather small compared to the average velocity of the cross (!!). 

The normalized drag force per unit length, per unit velocity for a single bead is equal to 3π 
(dash-dotted red line in Fig. 5-3 based on F = 3π 2! η!  (η:!viscosity, ! : velocity, ! : 
filament radius). The 3D-cross can be discretized into beads (Fig. 5-16-c), and in the absence 
of hydrodynamic interactions between beads, the force required to move it would be equal 
to !FBead%w/o%HI = 3π 3! − 2×2! η! ≅ 3π 3! η! . On the other hand, if we break the 
3D-cross to three rods, then in the absence of hydrodynamic interactions between rods, a force 
FRod$w/o$HI ≅ 2C! + C∥ !η! is required to move it. Values for C! and C∥ are depicted in Fig. 
5-3 (blue lines). 

Using ξ! value (0.3 !" for 1 mg/ml actin used here) and exact bead equations with 
hydrodynamic interactions, we can evaluate above equations to arrive at !!Rod$w/o$HI!Bead%with%HI

= 1.6 (based 
on C! ≅ 2.73 and C∥ ≅ 1.73). Similar to Fig. 5-14, ignoring hydrodynamic interactions 
between rod segments leads to erroneous drag (1.6-fold overestimation). If we compare rod case 
with when we ignore hydrodynamic interactions between beads, we observe that overestimation 
errors are higher for beads, !Bead%w/o%HI!Bead%with%HI

= 6.5. Hence, we can conclude that overestimation errors 

are mostly due to hydrodynamic interactions within beads composing each rod (!"!! ≅ 3.45 and 
!"
!∥
≅ 5.45). Comparing this model 3D-cross with simulation of Fig. 5-15, we can speculate 

that observed overestimation is mostly due to local hydrodynamic interactions (i.e., 
hydrodynamic interactions within a volume size of !!) accounting for 6.5-fold out of 20-fold, 
and the remaining 3-fold overestimation is due to distant elements or potentially the finite 
variable size of the system. 

This 3D-cross model also provides intuitive idea about superimposition of hydrodynamic 
interactions due to filaments with different orientations. For an isolated filament, !"!! and !"!∥  
are factors describing average drag reduction due to hydrodynamic interactions within each rod. 
For the central bead in Fig. 5-16-c, we can envision that screening from filaments at three 
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perpendicular orientations superimpose to reduce its drag approximately by factor! !"
!!
!
! !"
!∥
≅

65.1. Accurate bead equations (same as FBead with HI discussed above) lead to the factor 80.2, 
which is higher because drag force across filament is not uniform. The central parts receive 
lower drag forces and hence have more drag reduction (blue line Fig. 5-4-b for local drag force). 

While for the net force to move all the 3D-cross we have !Bead%w/o%HI!Bead%with%HI
= 6.5, for its central 

bead we have !" !" !!
!Center&with&HI

≅ 80.2 . Clearly, not all the beads can receive as much screening as 
this central bead, hence this factor of 80.2 can be thought of as a generous upper-estimate. On 
the other hand, looking at the full network, the end points of this cross, which receive the 
highest drag, are not completely isolated and their drag would be lower than what is predicted 
here (i.e., they themselves are in the middle of a segment). Consequently the!factor!6.5 can be 
interpreted as a mean lower-estimate.  Our 20-fold factor in Fig. 5-15 falls between these 
lower and upper bounds suggested here (!!"!∥ ,

!"
!!
!< 20 < !"

!!
!
! !"
!∥

). However, care has to be 
taken in using the suggested model because the key variable in Fig. 5-15 is system size, which is 
not incorporated here. Furthermore, the model in Fig. 5-15 varies in other aspects such as being 
composed of a non-regular network. Nonetheless, it is still interesting that with only application 
of rod and bead drag formulae, we can find bounds that contain overestimation factor predicted 
from that complex model. It is possible that simulations with larger systems sizes cover the 
entire range presented here. 
 

5.4.4 Hydrodynamic Interactions and System-Size Dependent Viscoelastic Shear Loss 

Moduli  
 
It is evident from Fig. 5-15 that in the absence of HIs, friction between network and solvent 
constantly increases as a function of system size (!). In fact, overall stress due to that friction is 
proportional to the square of the system-size for a homogenous network deformed uniformly: 
  

 ! = !
! =

!"
!! ∝ !!!!

! !!"
!! ∝ !!! Eq. (5-6) 

 
As a result, the loss modulus in the absence of HIs follows G" ∝ !! behavior (for a 
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sufficiently large ! such that homogeneity approximation is not violated). This can be verified 
in Fig. 5-15 for ! > 0.9!!" (i.e., !/ξ >3), where the logarithmic plot demonstrates a perfect 
linear form. Although, Fig. 5-15 is for the bead model without HIs, but Eq. 5-6 can be 
extended to a rod model without HIs as well. Hence, we conclude, that a model without HIs 
will significantly overestimate the frictional forces and the resulting G" or E" value.  

On the other hand according to Fig. 5-15, beyond 1!!", including HIs result in a fairly 
constant dissipative shear power as well as nearly constant G" in agreement with experimental 
observation for 1P (one particle) microrheology. Consequently, while excluding HI effects 
results in a sever size dependency (in conflict with out intuitions), including them results in an 
almost constant value that increases slightly with system size. This slow increase has the 
potential to clarify the mismatches observed between micro and macro measurements of 
viscoelastic moduli. While most studies cover frequency dependent behavior of actin viscoelastic 
properties, to the best of our knowledge, no study has yet discussed the system/sample size 
dependency of G" (loss modulus) for actin networks.  

2P (two particles) microrheology probes viscoelastic moduli at 100!!" length scale and its 
results are consistent with bulk rheology (probed with rheometer at a 160− !" gap size as 
the dominant length scale)[143]. This suggests that variation of G" with system size will 
asymptote around 100!!" length scale. Consequently, we need further studies to extend the 
system size beyond current limit (2!!") to relate micro-size data to macro-size data. Rod model 
can help us to increase the system size by up to an order of the magnitude.  

Nonetheless, analyzing a system with infinite size might not be possible. Analytically, 
Reynolds number of such a system is infinity, and hence, Stokes regime does not apply to it. For 
example, analytical solution of Stokes equation for a cylinder with infinite size results in a zero 
drag (it imposes a uniform velocity across fluid equal to the cylinder velocity). This is called 
Stokes paradox and is due to a logarithmic singularity by ignoring inertial terms in 
Navier-Stokes equations[165,166].  

Similarly, it is hard to experimentally measure viscoelastic properties for a large system. In 
such a system, momentum diffusion of solvent as well as wave propagation in the network are 
slower than shear plate oscillations (!). Consequently, deformation is not affine and we cannot 
simply relate sensor force to a known average deformation. In fact, even for systems with finite 
size, interplay between momentum diffusion, wave propagation, and network-solvent friction 
can result in complex deformation patterns (e.g., see Fu et al. FIG. 2-b[167]). Additionally, 
purified proteins are expensive and are not available in large quantities. 

Nonetheless, experiments probing !" to !! system sizes have proved that viscoelastic 
moduli vary at different length scales, consistent with our predictions. Next, we review some of 
those experiments. According to Tassieri et al.[110], microrheological measurements of 
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viscoelastic moduli can match the scaling laws found by macroscopic rheology, while 
disagreeing by a constant factor in absolute magnitude. Further deviations can arise if the probe 
size or surface chemistry does not match the network. 

Gardel et al. used 2P microrheology to probe the contributions of large length scale 
fluctuations to !′, and 1P microrheology to isolate the contributions of fluctuations at short 
length scales[143]. In their measurements reprinted in Fig. 5-17, values of G" from 1P and 2P 
microrheology are always lower than bulk values. However, while 2P values are slightly smaller 
than bulk values, 1P microrheology results are abruptly lower by a factor of 10 in 1.0 mg/ml 
F-actin (entangled but not crosslinked). They also reported that 1P and 2P microrheology 
measured the same plateau elasticity (G!!, elastic moduli, at low frequencies). However, they 
differ in higher frequencies due to longitudinal fluctuations diffusing in the length scale of the 
persistence length. Unfortunately, they do not discuss the differences in the G" value. Though, 
they state that in the cytoskeleton, as a result of crosslinking, these longitudinal fluctuations are 
less important, and hence, 1P results are closer to bulk rheology. In fact, according to Luan et al. 
the ratio of plateau modulus between macro and micro measurements varies from 4 for low 
concentration of crosslinkers to 2.5 for entangled F-actin to 1 for high concentration of 
crosslinkers[160].  

 

 
Figure 5-17: Viscoelastic moduli of F-actin at (a) 1.0 mg/ml, and (b): 0.3 mg/ml concentrations compared 

between 1P, 2P and bulk rheology. Bead radius: !.!"!!". Picture is taken from Garden et al.[143]. 

! ! 10 sec, the 1P and 2P MSDs converge to similar
values. Similar behavior is observed with the 0:32-"m
spheres. Remarkably, the 2P MSD of the 0:23-"m par-
ticles also overlays well with the 2P MSDs obtained with
the larger probes. Although the 0:23-"m spheres can
permeate through the network, these motions are not
correlated at long distances; the two-particle analysis
reflects only that portion of the tracer motion due to
advection by strain fluctuations of the network.
We measure the 2P MSD of 0:42-"m particles in a

1 mg=ml F-actin solution and use the generalized Stokes-
Einstein relation [22] to obtain a good approximation of
the frequency-dependent bulk elastic modulus,G0"!#, and
viscous modulus, G”"!# as shown by the closed and open
circles, respectively, in Fig. 3(a). These are in excellent
accord with the bulk values, shown by the closed
and open triangles, obtained using a home-built stress-
controlled rheometer with a parallel plate geometry
[8,13]; bulk properties are also correctly measured with
the 2P MSDs of the 0.32 and 0:23-"m particles. In
1 mg=ml F-actin, between 0.1 and 30 rad= sec, 2P micro-
rheology measures a viscoelastic response with the elastic
and loss moduli similar in magnitude, and proportional
to 0.5 as shown by the solid line in Fig. 3(a). At the lowest
frequencies, below 0:1 rad= sec, the elastic modulus be-
gins to dominate and we infer a plateau modulus, Go $
0:2 Pa. Similarly, we find the 2P MSD of 0:5-"m par-
ticles yields results in good accord with bulk measure-
ments of the frequency-dependent viscoelasticity for a
0:3 mg=ml F-actin solution, as shown in Fig. 3(b), and

we infer Go $ 0:01 Pa. While the magnitudes and fre-
quency dependence of 2P moduli are robust, crossover
frequencies cannot be precisely determined as they are
very sensitive to variations in the smoothing of the
2P MSD required to determine the viscoelastic moduli
[22]. Thus, examining the pairwise correlated motion of
micron-sized particles separated between 10 and 100 "m
successfully probes the properties observed at macro-
scopic length scales with traditional rheology.
To elucidate the microscopic origins of this viscoelas-

ticity, we use the 1P MSD, interpreted with the general-
ized Stokes-Einstein relation, to examine length scale
dependence of the viscoelastic response. For 1 mg=ml
F-actin, the 1P microrheology using 0:42-"m particles
(a=# $ 1:5) exhibits a well-defined plateau over the ex-
tended frequency range of 0.03 to 30 rad= sec, as shown
in Fig. 3(a) by the solid and open squares. By contrast, the
dynamics of 0:5-"m particles in 0:3 mg=ml F-actin yield
1P microrheology results that significantly underestimate
the bulk viscoelasticity, by nearly an order of magnitude
over the entire frequency range, as shown in Fig. 3(b). In
this case, a=# $ 0:6, and particle motion is again domi-
nated by permeation through the network; any similarity
in the frequency dependence between the microrheology
and the bulk measurements is a pure coincidence [19].We
find that when a=# % 1, 1P microrheology measures a
frequency-independent elastic modulus between 0.01 and
30 rad= sec consistent with the plateau modulus observed
in a 2P or bulk measurement of entangled actin at fre-
quencies below 0:1 rad= sec.
The observed independence of the 1P viscoelasticity in

both frequency and particle size, and its convergence with
the two-particle results at the lowest frequency strongly
suggest that the discrepancies between 1P and 2P micro-
rheology for particle sizes a % # arise from the nature of
the coupling between the particles and the excitations
responsible for the elasticity of the network [23]. At
intermediate frequencies, between 0.1 and 30 rad= sec,
longitudinal density fluctuations of the filaments signifi-
cantly contribute to the bulk rheological response; these
relax by diffusing along the filament [5,6]. Thus, the
lowest frequency of these excitations that affects both
2P microrheology and bulk rheology is determined by the
time taken for the density fluctuation to diffuse a persis-
tence length, !l & !e"lp=le# & 10 sec, where !e &
$l4e=lpkBT & 0:1 sec and where $ is the effective friction
coefficient of the filament in solution, kB is Boltzmann’s
constant, and T is the temperature. However, 1P motion
will sense only fluctuations on length scales of a, and
these relax much more quickly, on time scales of !0l &
!e"a=

!!!!!!!!

lelp
p #2 & 0:1 sec; thus 1P microrheology will not

probe elasticity due to the longitudinal fluctuations for
!<!l & "!0l#'1 [23]. By contrast, because of its larger
effective length scale, 2P microrheology samples these
excitations in the same fashion as bulk measurements,
and thus yields the bulk response in the frequency regime

FIG. 3 (color online). Comparison between the elastic modu-
lus, G0"!# (closed symbols), and loss modulus, G00"!# (open
symbols) obtained from 1P (squares) and 2P (circles) micro-
rheology and from a conventional rheometer (triangles) for (a)
1:0 mg=ml F-actin probed with 0:42-"m beads and (b)
0:3 mg=ml F-actin with 0:5-"m beads. The solid line in both
(a) and (b) shows !0:5.
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Liu et al.[156] observed a similar pattern as Garden et al.[143] for different filament lenghts 

as depicted in Fig. 5-18. They noticed that for larger filament sizes (but the same 
concentration), the differences between 1P data and 2P data are higher. Surprisingly, incease in 
moduli due to ignoring HIs, and its decrease by considering only local particles (contained in 
the microscopic simulation box) can cancel each other. This cancellation means that Brownian 
dyanmics (BD) simulations can ignore HIs, and yet achieve a reasonable macroscopic data. 
Nontheless, this approach cannot be considered as a safe and rigorous techniques and might fail 
as cocentration varies. 
 

 
Figure 5-18:  Viscoelastic moduli of F-actin at 1.0 mg/ml concentrations compared between 1P, 2P and bulk 
rheology for varying filament (contour) lengths: (a):!!.!!!", (b):!!!!", (c):!!!!", (d):!!"!!". Bead radius: 

!.!"!!". Picture is taken from Liu et al.[156]. Solid blue line represents !!/! scaling. 

Actin crosslinked networks can present the same pattern as entangled actin in elasticity 
modulus versus size, but for the loss modulus the value for 1P (micro scale) can be higher! This 

(20 mM Tris HCl, 20 mM MgCl2, 1 M KCl, 2 mM DTT,
2 mM CaCl2, 5 mM ATP, pH 7.5) and mixing gently for
10 seconds. The sample is loaded into a glass chamber and
sealed with high-vacuum grease. After equilibrating for 1 h
at room temperature, the sample is imaged with an inverted
microscope in bright field (objective: 63x; N:A: ! 0:70,
air). A scrambled-laser source is used to increase intensity
at high frequencies. We record the motions of particles at
30 and 3700 frames= sec using a fast digital camera
(Phantom v5) with an exposure time of 260 !s, yielding
a frequency range of nearly 5 decades from 0.05 to
2000 rad= sec . To reduce the noise of two-particle dis-
placement correlation, we image about 100 particles in
the field of view, capture several thousand frames, and
average over eight sets of data. Particle centers are identi-
fied in each frame to an accuracy of 20 nm and particle
trajectories are determined [17] to calculate the ensemble
averaged mean-squared displacement h!x2""#i (1P MSD).

For a solution of 1:0 mg=mL F-actin with # ! 0:3 !m,
the filament length qualitatively alters the time evolution of
the 1P MSD. For L ! 0:5 !m, the 1P MSD evolves as
$"0:85 over the entire frequency range probed, as shown by
the open symbols in Fig. 1(a), indicating that the sample is
close to a Newtonian fluid. By contrast, for longer fila-
ments, the particle motion shows a transition between two
regimes of temporal evolution. When L ! 2 !m, the 1P
MSD evolves as $"0:75 below 0.01 sec and crosses over to
show little time evolution after 0.1 sec, as shown by the

open symbols in Fig. 1(b). Similar behavior is observed
when L is increased to 5 !m and to 17 !m, as shown by
the open symbols in Figs. 1(c) and 1(d) respectively. At
long times (>0:1 sec ), the 1P MSD depends on L for L %
2 !m and becomes more constrained as L is increased.
Moreover, for different L, there is remarkable similarity in
the short-time (<0:01 sec ) behavior of the 1P MSD and in
the crossover time "c between the two regimes.

To probe dynamics at lengths much larger than a, we use
2P microrheology. We calculate the 2P displacement cor-
relation tensor, and scale this to a (2P MSD) [14,15].
Physically, the 2P MSD reflects extrapolation of long-
wavelength thermal fluctuations of the medium to the
particle size [14]. Because it measures the correlation of
pairs of particles, 2P MSD is inherently noisier than 1P
MSD. However, the qualitative features of 2P MSD are
robust. When L & a, 2P MSD matches 1P MSD reason-
ably well over the entire frequency range, as shown by the
closed symbols for L ! 0:5 !m in Fig. 1(a). However, a
discrepancy in both magnitude and time dependence is
observed for L> a. For instance, for L ! 2 !m, the 2P
MSD is an order of magnitude smaller than the 1P MSD at
" ! 0:1 sec , as shown by the closed symbols in Fig. 1(b);
moreover, it scales as "0:7 whereas the 1P MSD shows little
time evolution after 0.1 sec. Similar discrepancy is ob-
served as L is increased to 5 !m and 17 !m, as shown
by the closed symbols in Figs. 1(c) and 1(d) respectively.
For all the samples with L % 2 !m, the 2P MSD is about
an order of magnitude smaller than the 1P MSD at " !
0:1 sec , and exhibits a scaling "$ with exponent $ varying

FIG. 1 (color online). Comparison of one-particle (open sym-
bols) and two-particle (closed symbols) MSDs in 1:0 mg=mL F-
actin with particle radius a ! 0:42 !m for average filament
length (a) 0:5 !m, (b) 2 !m, (c) 5 !m, and (d) 17 !m. The
arrows in (b), (c), and (d) indicate the time when 1P and 2P
MSDs converge. The solid lines through the data show the best
fit to the 1P MSD using the model described in the text; the slight
discrepancy at long times reflects effects of filament reptation,
which are not included in the theory.

FIG. 2 (color online). Comparison between the elastic modu-
lus, G0"!# (closed symbols), and loss modulus, G00"!# (open
symbols) obtained from one-particle (triangles) and two-particle
(squares) microrheology for average filament length (a) 0:5 !m,
(b) 2 !m, (c) 5 !m, and (d) 17 !m. G0"!# (half filled circles)
and G00"!# (circles) obtained from bulk rheology are shown in
(d). The solid lines in (b), (c), and (d) show a scaling of !3=4.
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is not yet noted or explained. As depicted in Fig 5-19, Lieleg et al. collected microscopic and 
macroscopic viscoelastic moduli of rigor HMM crosslinked actin networks in the 0.002 to 50 
Hz range[142]. The macroscopic elastic modulus, G!, is consistently higher across all ranges. 
On the other hand, the macroscopic viscous modulus, G", is lower approximately by a factor of 
2 for frequencies higher than 0.03 Hz. Lower frequencies have a complicated behavior due to 
crosslinker dissociation.  

 

 
Figure 5-19: Viscoelastic moduli of F-actin transiently crosslinked with Rigor HMM compared between micro 

and macro rheology. Bead radius: !.!"!!". Picture is taken from Lieleg et al. supplemental material[142]. 

 
Viscoelastic moduli of Bacteriophage fd, as a model semiflexible filament, was measured by 

rotating disk and magnetic beads rheometry at different concentrations. In all cases, 
macroscopic measures reported higher values[168]. Another study recently reported that for 
gel-forming aqueous dispersion of Laponite® clay[169], macroscopic viscoelastic moduli can 
be up to two orders of the magnitude higher than microscopic ones[170]. 

In summary, HIs are required to arrive at a reasonable loss moduli. Otherwise, the loss 
moduli will be surprisingly high and strongly dependent on the system size. On the other hand, 
with inclusion of HIs, loss moduli seem to reach to an asymptotic behavior or follow a subtle 
increase. This increase can potentially describe why typically macro viscoelasticity measurements 
report higher values than micro measurements. Nonetheless, while there are some explanations 

Local viscoelastic spectrum

To further characterize the impact of unbinding events at low frequencies we compare

the macroscopic network response to the microscopic viscoelastic spectrum as obtained by

magnetic tweezer microrheology (see supplemental Fig. S4). In the local viscoelastic spec-

trum a crossing of both moduli at f ≈ 0.02 Hz is observed resulting in a regime which

is dominated by viscous effects. Additionally, a significant decrease in both moduli occurs

resembling a Maxwell material – which is in marked contrast to the macroscopic viscoelastic

spectrum.
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FIG. S4: Direct comparison of a macroscopic (circles) and microscopic (squares) frequency spec-

trum for a transiently cross-linked actin network (rigor HMM, R = 0.015). Full symbols denote

G′, open symbols denote G′′.

With increasing probability of unbinding events a considerable amount of filaments are

”set free” allowing for local filament reorientation or even reptation. However, this local

relaxation mechanism is partially masked on the macroscopic scale. As a consequence, the

viscous dissipation reaches a maximum at f ≈ koff
2π but is still dominated by the elastic

properties of the remaining cross-links. For flexible polymer networks the local mechanism

of ”sticky reptation” has been described accounting for slow relaxations in physically cross-

linked networks [5, 6]. Therefore, for frequencies f < koff
2π local filament reorientation or

even diffusion/reptation might also occur in transiently cross-linked semi-flexible polymer

networks. This mechanism could account for the observed deviation of the experimental

5
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about this difference in the elastic moduli, the loss moduli difference is more complex and not 
yet understood. We hope to resolve this mystery by improving our understanding about the 
frictional forces transmitted between the solvent and the network. This study can be a 
stepping-stone toward that goal. 
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Chapter 6:    Summary and Conclusions 

6.1 Registration and Inverse Elasticity for Cardiovascular Diagnosis 

Compared to the breast or prostate cancer elastography, cardiovascular elastography is more 
challenging mainly due to the complexity of typical lesions. A typical atherosclerotic plaque can 
contain multiple inclusions with varying sizes, geometries, and compositions spanning four 
orders of magnitude in elastic moduli.  

The conventional IVUS (IntraVascular UltraSound) elastography deals only with radial 
strain measurements and registers only the radial or in-depth motion[171,172]. The 
conventional elastography techniques are developed for ultrasound and unfortunately while 
OCT (Optical Coherence Tomography) is the optical analog to the B-mode ultrasound, they 
cannot be successfully applied to the OCT elastography[97,98]. Consequently, we tried to 
develop new elastography techniques applicable to OCT. Compared to IVUS, catheter-based 
OCT generates high-resolution images at the cost of lower imaging depth and is capable of 
identifying arterial tissue types directly[173]. Furthermore, inter-frame registration is more 
challenging for OCT due to far lower speckle decorrelation time, as well as higher 
strain-induced decorrelation. We worked on low strain regime (i.e., close consecutive frames) 
for which strain-induced decorrelation is small. Furthermore, for small deformations, a linear 
isotropic relationship is a well-accepted approximation. Most tissues are not indeed isotropic, 
but equivalent parameters can be defined for in-plane deformation. 

Ideally to compute the image similarity, we need to know the displacement field of the 
entire sample frame. Then, we can interpolate back a corresponding image at the reference 
position to compare it with the reference frame. However, a typical image has about 105 pixels, 
and interpolating for those data points is expensive. Instead, we noted that sub-blocks locally 
move in a rigid manner, and consequently, we can easily match points between reference and 
sample image just by knowing the motion of the sub-block center. Note that this approximation 
is violated, if we have considerable amount of rotation/distortion, high levels of strain 
(compared to the ratio of the pixel to the block size) and strain induced speckle decorrelation. 

We developed effective initialization and regularization techniques for motion estimation, 
elastography, and modulus imaging. We showed that while these techniques can suppress the 
noise, they also recover a considerable portion of the original strain signal (having high SNR: 
signal to noise ratio).  
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Our approach seeks to optimize the quality of image registration within a single IREP 
(Inverse and Registration Elasticity Problem) step. It is vitally important to initialize these 
high-dimensional optimization problems properly, and hence, we utilized several simpler 
techniques such as REP (Registration Elasticity Problem) for robust initialization of IREP.  
While our techniques have been developed to generate robust solutions to the IEP (Inverse 
Elasticity Problem) in elastography of human tissues, they have broader applications in solving 
of general registration problems commonly encountered in many fields. 

Our initial in vitro results seem promising. However, future studies are required for further 
quantification of accuracy and determination of measurement limits. Those studies can also 
correlate elastograms and modulus data with histologically-derived measures of plaque 
vulnerability. We have verified our methods with ultrasound images, and we recently used 
carotid images taken by CARS (Coherent AntiStokes Raman Spectroscopy) modality[103]. 
Based on C-H bounds, CARS can distinguish between different lipid structures, and we used 
this extra information to examine elasticity of different lipid forms in arteries, namely lipid 
pools and needle/plate-shaped lipid crystals. Tested by ultrasound, OCT, and CARS, we expect 
our methods to be applicable to other generic imaging modalities as well. 

Nonetheless, there are several challenges in deployment of this system for in vivo 
catheter-based imaging. Of major concern is the additional decorrelation noise from catheter 
motion.  However, this extra decorrelation might be resolved by application of frequency 
domain OCT[174-176], which has higher temporal frame rates. We have to be also careful to 
avoid optical aberrations affecting image magnification. Varying magnification at different 
location can introduce artificial strains and interfere with the registration and the inverse 
elasticity solutions.  
 
Future Directions 

Methodology) The image similarity measure can be made more accurate by altering block 
matching to overall image matching (performed by interpolating the second frame to the 
reference position). Additionally, overall image matching will make the model more 
compatible with large deformations/rotations. Furthermore, we can image a 3D grid to 
compensate for aberrations in the image. Similarly, with the advance of PSF-based (PSF: 
point spread function) image correction techniques, we can achieve sharper images to 
improve the segmentation and registration. Moreover, here we compared only two frames, 
but if we compare several consecutive frames (similar to our nonlinear elasticity study[72]), 
we can better suppress the imaging errors and noises. 
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Application) This method can be applied to other modalities, such as frequency domain 
OCT, CARS, ultrasound, MRI, or even fluorescence microscopy. Addition of a growth 
term will make this method as an ideal candidate for the developmental biology, where we 
look at the collective migration of cells and their growth. This study focused on developing 
the method and examining its in vitro feasibility. Future studies are required to further 
quantify the accuracy, especially for in vivo application with catheters.  

6.2 Hydrodynamic Interactions in Cytoskeletal Mechanics and a New Rod 

Method 

We showed that hydrodynamic interactions (HIs) significantly alter the viscous forces required 
to deform and ultimately remodel actin networks. Our observation is consistent with recent 
suggestions that crowding and hydrodynamic interactions likely dominate in vivo 
macromolecular motion[162]. We showed that HIs among elements of the actin network can 
alter their dynamics by at least 2-20 fold at different levels of network structure.  

Future studies are required to understand HI effects at larger length scales. However, our 
proposed rod method opens the door for simulation of systems with larger size. We have shown 
that with a negligible 5% error, this rod method can reduce the computational cost and memory 
requirement by 5 orders of the magnitude. Currently, the limiting factor in modeling larger 
systems is the prohibitive memory and computing resource requirement of the bead methods. 
On the other hand, conventional rod methods are complicated and cannot be adopted by most 
biologists. However, in our rod HI method, the HI formulation is exactly similar to the HI 
formulation for the beads, and the only differences are in the input Stokes radius and the drag 
coefficients used for beads. Consequently, codes developed for bead HI calculation can easily 
adopt our rod HI formulation and use it to extend the limit on the system size they investigate.  

In a more detailed summary, in Chapter 4, we began by introducing the concept of the 
hydrodynamic interactions. We presented the standard bead method, based on discretizing 
filaments into side-by-side stacked spherical beads. We used Rotne-Prager tensor for 
hydrodynamic interactions and briefly reviewed other tensor forms. We found that Oseen 
tensor and Rotne-Prager tensor performed better than the spherical bead tensor, but overall, 
only Rotne-Prager performed satisfactory at all cases.  

We covered various methods to compensate for the discretization errors due to geometrical 
difference between stacked spheres and a cylinder. Each method is typically adjusted toward 
either long aspect ratio or high aspect ratio filaments. Furthermore, each method is usually good 
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only for axial motion or lateral motion. However, we introduced an optimal bead method, 
where instead of spherical beads, we use disk-shaped beads to build an exact cylindrical 
filament. Our optimal bead method performs well in low/high aspect ratio as well as 
axial/lateral motion. 

Subsequently, we introduced the Swanson-Batchelor formulation to calculate the drag 
coefficients of filament at both large and small aspect ratios. Based on Swanson-Batchelor 
formulation, we can rely on accurate rod data and avoid the rod to bead discretization error, if 
the filament length is not an integer multiple of the filament radius. We examined almost all 
experimental/theoretical data in the drag coefficient of straight filaments and hand picked the 
Swanson formulation for low aspect ratio and the Batchelor formulation for the high aspect 
ratio. This combination provides us with a sweet spot for accuracy, simplicity, and consistency 
(between high and low aspect ratio or lateral and axial). Based on comparing different 
experimental/theoretical data for drag coefficients, we also found that those data have up to 5% 
uncertainly. Hence, any effort to calculate HIs and match drag data with less than %5 error is 
over fitting. Accordingly, when we discretize a filament into rod segments, the number of 
segments can be based such that the error in the drag coefficients is less than 5%. 

Next, we developed a new simplified rod method to account for HIs. The method uses 
Swanson-Batchelor formulation, together with Rotne-Prager tensor to calculate HIs between 
rod segments. We further quantified accuracy of this method and examined different candidates 
for its Stokes radius. It turns out that effective volumetric radius, 2D/3D hydrodynamic radius, 
or filament radius all perform well as candidates of the Stokes radius in our rod method. Further 
studies are required to distinguish between these candidates. 

The standard bead method and our new rod method are used in Chapter 5 for analysis of 
HI effects in the mechanics of the cytoskeleton. The method has two main advantages. Firstly, 
it can be used for systems with larger size, due to superbly lower required computational 
resource. Secondly, it is simple and similar to the bead method. Hence, our rod method can be 
adopted by groups already using bead methods, or biologists despising the messy mathematics 
of the conventional rod HI methods. 

In Chapter 5, we began by introducing the F-actin structure and its prominent role in cell 
mechanics. Next, we focused on the role of HIs on altering actin mechanics and dynamics at 
different length scales and structural levels. We began by looking at the role of HIs at a single 
filament level in rigid body motion and diffusion, as well as filament lateral fluctuations. We 
found that ignoring the HIs between mesh-sized rod segments (300 nm for 1 mg/ml F-actin) 
can result in up to 7-fold error in the drag coefficients of the filament. Consequently, we can 
have up to 7-fold error in the diffusion rates of the filament or its overall rigid body movements 
if we ignore HIs. 
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We specifically investigated how HIs can alter mode shapes or relaxation times. Relaxation 
times of filaments are directly related to the viscoelastic properties of the macroscopic network. 
Typically, in filament bending equation a uniform drag coefficient is presumed based on rigid 
body lateral translation. The bending equation assumes that local filament velocity and force are 
proportional, and therefore, ignores HIs between different locations of the filament. 

We calculated force distribution across filament for each mode. Based on a normalized 
cross correlation of force and mode shape, we found that for each mode typically at least 95% of 
the hydrodynamic force power lies in the same mode, meaning that mode shapes are not 
affected by HIs. This also means that local force and local velocity are approximately 
proportional with a root mean squared error of 30%.  

However, effective drag coefficients of modes are higher than the presumed value. For 
example, for a 300 nm filament, the relaxation time of the first mode is approximately two times 
the value predicted in the absence of HIs. Relaxation times of other modes are even more 
underestimated if we ignore HIs. Consequently, our data reflects that higher modes have higher 
effective drag coefficients, consistent with experimental observation in actin and microtubules. 
Those observations were speculated to be due to an unknown internal viscosity, and instead, we 
suggest a simpler rigorous explanation. Similarly, Sedeh et al. [116] have calculated the 
Langevin normal modes and diffusion coefficients of (actin) proteins using the finite element 
method. They observed that HIs have a prominent role in those values. In fact, they reported 
that proteins have to be embedded in a chamber at least 400 times larger than protein size to 
overcome the HIs between walls and the protein (see their Fig. 2-4 for details). 

At the next structural level, we examined the effects of His in the alignment process of two 
actin filaments during bundle formation. We studied acto-myosin alignment for antiparallel 
filaments and crossed parallel filaments. We also studied zipper action for aligning crossed 
filaments by invoking passive crosslinkers like ! -actinin. In this part, HI effects were 
quantified based on how forces to move the filament change, if we ignore HIs. We found that 
for acto-myosin or !-actinin the forces can be altered by 35% or 120% respectively. Smaller 
crosslinkers are present for filaments closer to each other, and hence, enhance the role of HIs. 
We also confirmed our rod method, against bead method in this study. Using the rod method, 
the computational cost can be decreased by up to 5 orders of the magnitude for only 5% error. 

In alignment studies, we also found that HIs for distant parts of the filament are negligible. 
In other words, each filament only interacts approximately with the parts of the other filament 
that are within the same distance as the distance between filaments6. Alternatively, we can state 

                                                        
6 Note that distance between two filaments is different than distance between a point on 
filament one, to a point on filament two. 
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that screening length for HIs scales with the filament distance. This study also compared and 
supported our rod method, which is based on modeling HIs similarly between rods and 
isotropic beads.  

Finally, we focused on the role of HIs in the network level. We began by examining a 
regular 1D network. We showed that given a constant strain rate, the viscous force alters in the 
section depth. Consequently, a poroelastic model is more compatible with HI effects. We also 
realized that in a network, the HIs between nearby segments are greater than HIs between 
different locations of the same filament. In fact, this means that even if we break our filaments 
into rod segments (as opposed to bead discretization), we cannot yet ignore HIs. 

Next, we modeled a random 3D actin network with the relevant physiological 
concentration of 1 mg/ml (≅ 24!!M converted to molar based on Mason et al.[157], consistent 
with 43kDa mass of actin). In this part, we measured the viscoelastic loss modulus as a function 
of system size and matched it against experimental data. We observed that a loss modulus for 
viscoelastic behavior could be defined in the shear mode, but not in the axial mode. We showed 
that HIs result in a system-size dependent loss modulus, and hence, we require further studies 
at larger length scales (where we might apply our rod method). Nonetheless, ignoring HIs 
between network beads can result in a substantial, about 20 fold, error in loss modulus. Indeed, 
in contrary to the reasoning that HIs are small because F-actin only occupies 0.1% of the 
volume, HIs are superbly large. 

Finally, we introduced a 3D cross as the basic unit to build regular 3D networks. The drag 
coefficients of the mesh-sized segments in the 3D cross can be used to calculate simple 
estimates on how loss modulus might be affected by HIs in a random 3D network. 

In conclusion, we have developed a simple rod method that mimics the ingenuous 
formulation of the bead method, but yet accurately accounts for HIs between rod segments. 
This method can have applications far beyond just cellular mechanics, can substantially decrease 
the computational cost of HIs, and can enable us to include HIs for more complex and larger 
systems. We have also established that HIs significantly affect actin dynamics, and hence, they 
cannot be neglected in the cytoskeleton modeling or interpreting experimental data about actin 
dynamics. HI effects start in the single filament level, but are magnified further in the network 
level, altering actin dynamics by more than an order of the magnitude. 
 
Future Directions 

General Applications. With further analysis, we might find a better candidate for the 
Stokes radius of our rod method. This method is a simple model that can be integrated 
in other Brownian dynamic packages for different problems, especially those with 
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larger sizes. More specifically, we intend to use it for the analysis of the transport and 
diffusion inside the nuclear pore complex. There is not a clear understanding of how 
transport in nanopores might be affected by the enormous number of peptide polymer 
filaments that coat the walls and occlude the passage[177-179]. The hydrodynamic 
interactions among those protein filaments cannot be modeled by bead method (due to 
problem-size limit). However, the rod method can include HIs to calculate the 
diffusion inside the pore, especially for the filamentous geometry of DNAs used in 
gene delivery. 
 
Actin Mechanics. Relaxation times of higher mode are different from those suggested 
by the tube model. Experimental data on fluctuations of isolated F-actins can 
determine whether they are due to HIs or due the internal viscosity. In addition, we 
can use the rod method to extend the loss modulus analysis to the larger system sizes. 
Our studies were based solely on viscous forces at a single time snapshot. The HIs 
model can be joined with a model taking into account elasticity and thermal forces, to 
examine the behavior of actin networks at longer time scale. Moreover, recently a 
collective steady state motion was observed for actin filaments in myosin motility 
assays[106,180-182]. It is speculated that this pattern formation is due to HIs. 
However, we can use our rod method to examine this claim and investigate the role of 
HIs in another level of active actin structures. 
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Appendix 

 

Attached CD contains all related codes for: 
 

1. Inverse and Registration Elasticity Problem, including the custom-built FEM core 
and related scripts in both Matlab and C++. I have also included FFT library and 
related Matlab libraries for completeness. Every time Matlab is updated, the 
libraries should also be checked for compatibility and correct dynamic links (dl). 

 
2. Matlab code for Hydrodynamic Interaction of bead/rod models and specific scripts 

for analyzing the role of Hydrodynamic Interactions in Actin’s Dynamic.
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