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Abstract I Cells are constantly faced with the challenge of functioning reliably while
being subject to unpredictable changes from within and outside. Here, I present two
studies in which I analyze how biochemical circuits that regulate signaling and gene
expression can generate robustness or phenotypic variability between otherwise identical
yeast cells.

Using the osmosensing signaling pathway which consists of a phosphorelay
connected to a MAPK cascade, we predict signaling robustness to changes in kinetic rate
constants by employing a computational sensitivity analysis. Consistent with the model
predictions, we find that the input-output relation of signaling activation is severely
impacted by protein coding sequence changes in the MAPK cascade genes, but not the
phosphorelay genes. By decoupling the network into two separate modules, we show that
an input-output analysis of each of the modules can generate the observed disparity in
their tolerance to kinetic parameter variations. Our analysis suggests that the input-output
relation of catalytic signaling pathways i.e. MAPK cascade are intrinsically sensitive to
kinetic rate perturbations. By contrast, signaling governed by stoichiometric biochemical
reactions i.e. phosphorelay exhibit robust input-output functions. We further find that
cells challenged to alter their input-output function mostly recovered by gaining
mutations in the MAPK cascade genes, which further supports our model.

We next explore how HAC1 RNA splicing contributes to heterogeneity in the
unfolded protein response (UPR). We adapt the single molecule FISH (sm-FISH) method
to count endogenous spliced and unspliced HAC1 transcripts in single cells. We use a
stochastic bursting-transcription-and-splicing model to determine the kinetic rates from
the single cell measurements. We find that the cell-to-cell variability in the degree of
splicing is tightly regulated in the presence of a UPR-inducing chemical agent, but is
compromised under heat stress. By considering models including extrinsic noise at the
splicing or transcriptional level, we show that the increased variability in the degree of
splicing under heat stress can be generated by increased fluctuations in the splicing rate.

Lastly, we present an approach using sm-FISH and protein synthesis inhibitors to
measure translation and we show preliminary results suggesting its feasibility.

Thesis Supervisor: Alexander van Oudenaarden, Ph.D.
Title: Professor of Physics and Biology, M.I.T.
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Chapter 1: Introduction

Chapter 1

INTRODUCTION

Unifying principles in biological and engineered systems

Cellular biochemical networks are tasked with the complex challenge to

function reliably in noisy external and internal environments given imperfect

components. Errors in fundamental processes such as signal transduction or gene

expression can lead to serious outcomes, affecting growth and development, and

consequently causing diseases. While robustness is a long recognized concept in

biology, it is also infamous for being difficult to evaluate (its causes, extent and

functional impact). The fact that biological networks need to be robust to such

perturbations imposes constraints on their design. Exactly how the cell achieves this

feat has been elusive until recently.

One of the first insights came from a theoretical study of the well

characterized bacterial chemotaxis signaling network (Barkai and Leibler, 1997),

which suggested that adaptation is robust to changes in biochemical parameters of the

system. Adaptation is a well-established feature of chemotaxis i.e. the signal output

returns to the prestimulus level and accordingly, the steady-state tumbling frequency

is insensitive to ligand concentration (Berg, 1975). Experimental analyses later

confirmed this result (Alon et al., 1999). Using techniques from control theory, Yi et

al. further showed that an integral feedback control generates the robustness of

perfect adaptation to changes in intracellular parameters or enzyme concentrations.

These studies provide an example of an elegant design of bacterial signaling circuits

that allows cells to consistently achieve their precise functions despite uncertainties in
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Chapter 1: Introduction

the environment (varying stimulus levels) and system components (varying protein

concentrations).

Subsequently, design principles including feedback control, redundancy and

modularity, were found to give rise to robustness of biological networks in diverse

organisms from bacteria to humans (Stelling et al., 2004; Kitano, 2004 and 2007),

suggesting that they form the basic building blocks of complex networks. Recently,

Shinar and Feinberg formulated a theorem for the structural requirements of a class of

biochemical networks which exhibit "absolute concentration robustness" (ACR)

(concentration of a species remains exactly the same in any positive steady states of

the system). The theorem connects the structure of networks with their capacities for

ACR and holds for all reaction networks in the cell, which provides a general

physical framework in which one can study biological robustness.

In Chapter 2, I explore the robustness of the osmosensing signaling pathway

in S. cerevisiae to kinetic rate constant changes of its pathway proteins. I will show

that signaling sensitivity is highly varied, with signaling being most impacted by

MAPK cascade variations and is robust to changes in the phosphorelay genes,

consistent with a computational sensitivity analysis of the pathway. By decoupling

the network into two separate modules, I will show using theoretical analysis that the

input-output relation of the catalytic MAPK cascade is intrinsically sensitive to

kinetic rate perturbations. By contrast, signaling governed by the stoichiometric

mechanism of the phosphorelay exhibits robust input-output functions.
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Chapter 1: Introduction

The stochastic nature of gene expression

The inherent stochasticity of all biochemical events in the cell involving small

numbers of molecules necessarily results in fluctuations in their levels. These random

fluctuations can be detrimental to the precision of cellular functions. Due to limited

experimental capabilities to formally characterize these fluctuations, biological noise

has been largely ignored previously. The first experiments to investigate the sources

of gene expression noise came from the ground-breaking studies by Elowitz et al. and

Ozbudak et al. Elowitz et al. provided a conceptual framework for analyzing gene

expression variability in terms of extrinsic and intrinsic components (derived

mathematically by Swain et al., 2002). In their experiments in E. coli, they introduced

a dual reporter assay (having two copies of the same promoter each driving the

expression of either a yellow fluorescent protein or cyan fluorescent protein in the

same cell) capable of quantifying and distinguishing between the different sources of

expression variability. Under this scheme, intrinsic fluctuations arise from the

stochastic events during gene expression, and cause uncorrelated variations in the

levels of YFP and CFP. Extrinsic fluctuations result from fluctuations in the levels of

upstream regulatory molecules, and cause correlated fluctuations.

Ozbudak et al. showed in B. subtilis that gene expression variability depended

on the underlying transcriptional and translational rates, and the experiments

confirmed an earlier theoretical analysis (Thattai and van Oudenaarden, 2001) that

predicted that noise as expressed by the coefficient of variation (standard deviation

divided by mean) scales inversely with transcription rate, but is independent of

translation (due to translational bursts, since multiple proteins are produced from a

- 13 -
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single transcript), thus introducing the concept of bursts in gene expression.

Subsequent studies using single-molecule techniques demonstrated the bursty

dynamics of protein (Cai et al., 2006) and mRNA production (Golding et al., 2005).

These studies dismiss the assumption that the expected size of fluctuations of a

species (standard deviation) is equal to the square root of its copy number

(Schroedinger, 1944), and show that the fluctuations can be significantly larger.

Subsequently, bursting has been observed in a variety of systems including bacteria,

yeast, mammalian cells and Drosophila.

Global studies of protein expression noise in S. cerevisiae showed that the

degree of noise correlated with protein function i.e. proteasomal genes showed low

variation while stress-response genes were highly variable (Bar-Even et al., 2006;

Newman et al., 2006). One of the first pieces of evidence for the functional

consequences of noise came from a study which demonstrated that the expression

noise of essential genes is minimized (due to their deleterious effects on cellular

functions), suggesting that variation is subject to selection (Fraser et al., 2004). While

it is generally expected that noise is a barrier that cells have to overcome to achieve

robust functions, there are contrasting examples where noise is advantageous. In

unicellular organisms, noise can create a diversity of phenotypes in genetically

identical populations. Noise in a stochastic state-switching system can be used to

implement a bet-hedging strategy under fluctuating environments (Nachman et al.,

2007; Acar et al., 2008), or be used to trigger stochastic cell-fate specification

decisions (Eldar and Elowitz, 2010). Even without any feedback, the generation of
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increased phenotypic heterogeneity among otherwise genetically identical cells can

be a survival strategy under stress.

In Chapter 3, I explore how HAC1 RNA splicing contributes to heterogeneity

in the unfolded protein response (UPR) in S. cerevisiae. I will show that the cell-to-

cell variability in the degree of splicing is tightly regulated in the presence of a UPR-

inducing chemical agent, but is compromised under heat stress. By considering

models including extrinsic noise at the splicing or transcriptional level, I will show

that the increased variability in the degree of splicing under heat stress can be

generated by increased fluctuations in the splicing rate. And I will argue that splicing

mis-regulation in trans can generate substantial variability in splicing outcomes. In

Chapter 4, I will present an approach using single-molecule fluorescence in situ

hybridization and protein synthesis inhibitors to profile translation in single cells. I

will describe preliminary results where we applied our method to monitor translation

in exponentially growing yeast, and to explore the changes in translational regulation

upon switching the cells from nutrient rich to starvation conditions.
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Chapter 2

CONTROL OF ROBUSTNESS AND TUNABILITY IN THE YEAST

OSMOSENSING SIGNALING PATHWAY

ABSTRACT I Robustness is a widely observed property of biological systems. While the

robustness of cellular processes to variations in gene expression has been extensively

explored, robustness to perturbations in biochemical activities of proteins is poorly

understood. Using the osmosensing signaling pathway in the budding yeast

Saccharomyces cerevisiae, we measured the distribution of signaling sensitivity to

genetic perturbations through systematic orthologous pathway gene substitutions and

experimental evolution. We find that signaling sensitivity is highly varied across the

network component genes, with signaling being most impacted by MAPK cascade

variations and more robust to changes in the phosphorelay genes, consistent with a

computational robustness analysis of the pathway. Results from our theoretical analysis

show that the differential robustness pattern emerges from the distinct signaling

mechanisms of the two-part pathway architecture, and identifies the stoichiometric

phosphoryl-transfer mechanism as a means for buffering genetic variation.
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INTRODUCTION

Robustness, the invariance of phenotypes to perturbations, has been observed

across diverse levels of biological organizations including gene expression at the

molecular level, physiological homeostasis at the cellular and organismal level, and

development (Kitano, 2004; Stelling et al., 2004; Wagner, 2005; Barkai and Shilo, 2007).

Investigations on the robustness of cellular functions have mainly focused on

perturbations at the transcriptional level to understand how cellular functions remain

remarkably robust despite the intrinsic stochastic fluctuations in gene expression (Barkai

and Leibler, 1997; Alon et al., 1999; Little et al., 1999; Batchelor and Goulian, 2003;

Kollmann et al., 2005; Moriya et al., 2006; Shinar et al., 2007; Krantz et al., 2009; Shinar

and Feinberg, 2010; Lestas et al., 2010). Robustness to perturbations in biochemical

activities of proteins, however, is poorly understood. Genetic perturbations can result in

changes in protein-coding sequences that can affect the biochemical activities of proteins.

These changes can be positive, for example by enhancing the systems-level fidelity or

efficiency of processes mediated by protein-protein interactions in the cell, but typically,

these will be deleterious to biochemical function. This thus raises the question of whether

cells could have evolved the means for buffering genetic variation at the systems level.

To explore this, we used the high osmolarity glycerol (HOG) pathway in the

budding yeast Saccharomyces cerevisiae, which forms the signaling module of the

hyperosmotic shock response (Hohmann, 2009). The HOG pathway is especially well

suited for robustness analysis because its molecular components and interactions have

been well characterized (Brewster et al., 1993; Maeda et al., 1994; Posas et al., 1996;

- 19 -
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Krantz et al., 2009). Moreover, its network input (extracellular osmolyte concentration)

and output (Hog1 activity) can be quantitatively measured and manipulated. We focused

on the Sln 1 branch of the HOG pathway by deleting the other primary osmosensor Sho 1,

leaving Sln1 as the main activator of Hogl. Importantly, inactivating the Shol branch

obviates crosstalk with other MAPK cascades (McClean et al., 2007; Schwartz and

Madhani, 2004). The Sln1 branch of the HOG pathway consists of a phosphorelay chain

of proteins (Sln1, Ypdl and Sskl) that acts on a downstream MAP kinase cascade

(Ssk2/Ssk22, Pbs2 and Hogl) to ultimately modulate Hog1 activity (Figure la). To

further insulate the pathway, we deleted the functionally redundant MAPKKK Ssk22.

Upon salt stress, Hogl translocates into the nucleus (Ferrigno et al., 1998) to initiate

transcriptional changes in response to the osmotic shock (O'Rourke and Herskowitz,

2004).

Here, we combine experimental and computational approaches to investigate the

robustness of the osmosensing signaling pathway in the budding yeast Saccharomyces

cerevisiae to perturbations in the biochemical activities of its pathway proteins. By

performing systematic orthologous pathway gene substitutions, we found that signaling

was significantly altered by sequence variations in the downstream MAPK cascade

genes, but remained relatively robust to changes in the upstream phosphorelay

components. This agrees well with a computational robustness analysis which predicts

that signaling is most sensitive to kinetic parameter changes involving the MAPK

cascade proteins. We then showed that yeast cells challenged with hyperactive HOG

signaling restored wild-type fitness and signaling mainly via point mutations in the

MAPK cascade genes. Furthermore, we found that the growth defect of cells with
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compromised HOG signaling under salt stress was rescued by sequence changes in the

MAPK genes, but not the phosphorelay component genes. From a theoretical analysis,

we showed that the skewed distribution of osmosensing signaling sensitivity can be

achieved through the cascading of two biochemically different signaling mechanisms in

the pathway. Our findings suggest that stoichiometric biochemical cascades, such as

those found in metabolic pathways and in phosphorelay signaling, are fundamentally

more robust to genetic changes than processive cascades.

RESULTS

Computational robustness analysis predicts that HOG signaling is most sensitive to

MAPK cascade component parameter variations, and is least affected by changes in

the phosphorelay genes

To computationally investigate the effects of kinetic rate constant changes in the

HOG pathway genes on signaling dynamics, we performed sensitivity analyses on key

dynamical properties of the signaling module, i.e. the peak Hogi phosphorylation level

MHogJ and the initial Hogl phosphorylation rate rHOg1, using a simplified biochemical

network model (Supplementary Data, Table S1). We observed a strikingly flat surface for

Ypdl-associated parameter changes, indicating that rHog1 remains almost unchanged over

a wide range of parameter space (Fig. 1 c). In contrast, Pbs2-associated parameter changes

significantly altered the rHog1 landscape (Fig. lb). To systematically compare the effects

of parameter variations across individual pathway proteins on signaling, we computed the

local logarithmic gradient of the landscape evaluated at wild-type levels and we defined
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this metric as our sensitivity measure (Supplemental Data). Figs. Id and le summarize

the sensitivities of rHog1 and MHog1 respectively for all pathway genes upstream of HOG].

Additionally, we formulated an alternative sensitivity metric that utilizes the full

distribution of the model output, instead of only the region around the wild-type level,

and measures the relative spread of this distribution for each parameter (Supplementary

Data). Both sensitivity analyses predicted that rHog1 and MHog1 are most sensitive to

kinetic rate constant changes involving the MAPK cascade genes, and are least affected

by variations in the phosphorelay components (Fig. Sl).

HOG signaling displays varied sensitivity to ortholog and allele substitutions

To measure the effects of sequence variation in the genes of the HOG pathway on

signaling, we utilized the natural variation in the HOG pathway genes across different

yeast species and systematically generated mutant strains in which each pathway gene

except HOG1 was replaced one at a time with its ortholog from two evolutionarily

diverged yeast species i.e. Candida glabrata and Candida albicans. Then, we quantified

their abilities to recapitulate wild-type signal propagation under a hyperosmotic shock.

By using presumably functional orthologs rather than randomly mutated sequences, we

more efficiently searched the space of sequences that had a reasonable chance of

complementing wild-type behavior. Compared with S. cerevisiae, all C. glabrata

pathway proteins had ClustalW (Thompson et al., 1994) sequence similarity scores

between 50 and 60, except Sskl which scored 37. C. albicans, being evolutionarily more

distant from S. cerevisiae than C. glabrata, displayed lower sequence conservation for all

the pathway proteins, ranging from 22 to 46. To estimate the degree of protein functional
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changes manifested by the sequence divergence of the orthologs, we computed a

potential functional score for each ortholog. The functional score is defined as the

percentage of amino acids changes at highly conserved residues identified from

comparative genomic analyses of the HOG pathway proteins across various fungi species

(Supplemental Data) (Krantz et al., 2006).

We measured the signaling activity by simultaneously monitoring the sub-cellular

localization of the nucleus marked by the nuclear factor Nrdl fused to a red fluorescent

protein (Nrdl-RFP) and of Hogl fused to a yellow fluorescent protein (Hogl-YFP).

Upon a hyperosmotic shock, the Hog1 nuclear enrichment dynamics of the Slnl- and

Ypd1-ortholog hybrid pathways from both yeast species were indistinguishable from that

of the wild-type response despite their low functional scores (Fig. 2a). By contrast, the

majority of Ssk2- and Pbs2-ortholog hybrid pathways displayed grossly defective

signaling (Fig. 2a, bottom). Importantly, the ability of the hybrid pathways to approach

wild-type signaling did not correlate in any simple way to sequence conservation. For

example, C. albicans Ssk2 and Slnl have similar functional scores indicating that each

protein has a similar fraction of highly conserved amino acid residues changed, but

clearly C. albicans Slnl can complement its S. cerevisiae counterpart, while Ssk2 cannot.

To further substantiate this finding, we focused on the two architecturally distinct

proteins Ypdl and Pbs2, which belong to the phosphorelay and MAPK modules

respectively. We generated strains with PBS2 and YPD1 orthologous substitutions from

yeast species with increasing evolutionary distance from S. cerevisiae, including Ashbya

gossypii, Kluyveromyces lactis, Neurospora crassa and Debaryomyces hansenii. Despite

higher sequence divergence and lower functional scores of these Ypdl proteins, all of
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them still fully mimicked wild-type Hogi signaling (Fig. 2b). In contrast, signaling

performance decreased with increasing sequence divergence and decreasing functional

scores of the Pbs2 protein. We also used well characterized YPD1 alleles (i.e. K67A,

R90A and Q86A) with varying degrees of changes in either the phosphotransfer rate

kSln1P-Ypd1 or binding constant KdSlnIP-YpdI between phosphorylated Slnl and Ypdl (Janiak-

Spens et al., 2005) (Table S2), and we measured the signaling abilities of these YPD1

alleles under the same hyperosmotic shock. None of the mutants displayed significant

changes in Hogl signaling dynamics compared to wild-type, even in the case where

kS1~P-Ypd1 was reduced by 17-fold (Figs. 2c and S2). Together, these experimental results

support the computational predictions that HOG signaling is likely to be more effectively

tuned by variations in parameters affecting the MAPK cascade than the phosphotransfer

relay.

Rapid adaptive evolution of yeast cells underexpressing YPD1

We harnessed naturally occurring genetic variation by evolving yeast cells with

hyperactive HOG signaling. We expect that only mutations that can significantly

downregulate signaling would be able to rescue the growth defect of these cells. Thus,

identifying the pathway genes in which the adaptive mutations lie would allow us to

reconstruct the distribution of signaling sensitivity to parameter variations in the network

component genes. Since deletion of the YPD1 gene in the HOG pathway leads to

hyperactive signaling and subsequent cell lethality (Posas et al., 1996), we underexpress

Ypdl using a TetO7-Ypdl strain (Supplementary Data, Figs. S3-S5). From growth rate

measurements at different doxycycline concentrations, we confirmed that the cells
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suffered a severe growth defect at low doxcycline concentrations, where YPD1

expression was repressed (Fig. S3). We observed that Hog1 was predominantly localized

in the nucleus, therefore confirming that the pathway was indeed hyperactivated under

YPD1 underexpression (Fig. S5). In contrast, Hogl was uniformly distributed throughout

the cytoplasm in cells with high YPD1 expression and in wild-type cells. Because Hogl

activation induces the expression of GPD1 and GPP2, which encode proteins responsible

for glycerol synthesis (Albertyn et al., 1994), we assessed the transcriptional readout of

the signaling activity by measuring intracellular glycerol. We found that cells

underexpressing YPDJ had at least two-fold higher intracellular glycerol concentration

than cells with high YPD1 expression (Fig. S4), which was consistent with our

observation that the pathway was hyperactivated under YPD1 underexpression. Finally,

by measuring Hog1 nuclear enrichment at different doxycycline levels, we established

that growth rate was inversely correlated with Hogl nuclear accumulation.

We then evolved nine independent lines of the yeast strain with reduced Ypdl

expression each with a population size on the order of 107 cells, and monitored their

mean population growth rates using turbidostats (Acar et al., 2008). A turbidostat is a

continuous culture device which maintains the culture at a constant optical density

achieved via a feedback system between the turbidity of the culture and dilution rate.

Rapid adaptation occurred shortly after five days, and qualitatively similar adaptation

dynamics were observed in the nine experiments (Fig. 3a). At the end of the evolution

experiments, five randomly selected single colonies were isolated from each of the nine

adapted populations for further analyses. To determine if the hyperactivation of the HOG

pathway had been resolved, we measured the evolved strains' basal Hogl nuclear
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enrichment and intracellular glycerol in two randomly selected colonies out of five from

each of the nine adapted populations. In 17 out of 18 evolved strains, both basal Hog1

nuclear enrichment and intracellular glycerol content had restored to levels comparable

with the ancestor in the unstressed condition (Figs. 3b and 3c), and most of the evolved

strains were still capable of partially inducing HOG signaling upon a hyperosmotic shock

(Fig. 3c). Thus, we established that the hyperactivation of the HOG pathway had been

alleviated in almost all evolved strains.

PBS2 and SSK2 are preferentially mutated in independent evolution experiments

and their changes are mainly responsible for the improved fitness

To identify the candidate molecular changes that led to the adaptation, we

sequenced all six genes in the pathway including their promoter regions for the 45

isolated evolved strains. 40 out of a total of 45 evolved strains contained a single point

mutation in one of the genes in the pathway (Figs. 4a and 4b). Strikingly, all 40 evolved

strains, except 3 with mutations in only one of the phosphorelay module genes SSK1, had

mutations in the MAPK cascade genes. We identified a total of 25 unique mutations and

all except one were non-synonymous mutations, and more than half of them were in the

protein kinase domains, which are highly conserved (Table S3). Almost all the mutations

were predicted by the SIFT software (Ng and Henikoff, 2001) to affect protein function

(Table S5).

After normalizing the number of unique mutations observed by gene length and

the functional impact of each residue for individual genes, we consistently found that,

among all the pathway genes, mutations were overrepresented in the MAPK cascade
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genes PBS2 and SSK2 (Figs. 4c and S6). To test whether PBS2 and SSK2 mutations

account for the adaptive phenotype, we replaced the endogenous PBS2 or SSK2 gene in

the ancestral strain with 13 of the unique mutant alleles ("transformed strains"), and

compared their growth dynamics to those of the ancestor. These 13 mutant alleles were

selected to broadly represent mutations across various protein domains. Unlike the

ancestral allele, almost all the mutations conferred a significant growth advantage when

the cells were subjected to the original imposed selection (Fig. 4d). The growth increase

conferred by the single mutations matched the fitness advantage of most of the evolved

strains, confirming that PBS2 and SSK2 mutations were primarily responsible for the

improved fitness.

For a majority of the transformed strains, the growth rates were similar to that of

their respective gene deletion strain i.e. pbs2A or ssk2A under no doxycycline conditions

i.e. (0.38 ± 0.07) hr-' and (0.42 ± 0.05) hr-1. Since HOG signaling was not completely

abolished in the evolved strains, these data further supported that the mutations cause a

partial loss-of-function of PBS2 and SSK2, thereby mitigating signaling hyperactivation.

MAPK cascade alleles rescued the growth defect of PBS2 underexpressing cells

under salt stress, but not the phosphorelay YDP1 alleles

One hypothesis as to why PBS2 and SSK2 mutations dominated the space of

observed mutations is that in order to alleviate pathway hyperactivity in low salt

conditions, selection needs to pick out either loss-of-function mutations in the MAPK

cascade genes or gain-of-function mutations in the upstream phosphorelay genes, and that

presumably these loss-of-function mutations are far more prevalent. To eliminate the
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possibility that PBS2 and SSK2 mutations dominated the spectrum of mutations because

of this gain- versus loss-of-function disparity, we performed experiments with a strain

exhibiting pathway hypoactivity in high salt conditions, thus reversing the previously

imposed selection pressure. We imposed pathway hypoactivity by placing the PBS2 gene

under the TetO7 promoter and growing the cells in the absence of doxycycline. In order

to directly test whether loss-of-function alleles in the upstream phosphorelay genes could

rescue the cells from pathway hypoactivity in high salt conditions, we utilized the YPD1

alleles with defined reductions in phosphotransfer rate constants used in Fig. 2c. To test

the ability of gain-of-function alleles in the downstream MAPK genes, we used

constitutively active PBS2 and SSK2 alleles known to cause pathway hyperactivity in

unstressed conditions (Maeda et al., 1995; Wurgler-Murphy et al., 1997). As shown in

Fig. 4e, while the loss-of-function phosphorelay alleles are unable to rescue the growth

defect seen in cells containing the hypoactive pathway, the gain-of-function alleles are

readily able to repair the growth rate defect. Taken together, the experimental evolution

outcomes and the results from the forward genetics and complementation experiments

showed that the phosphotransfer relay module confers genetic robustness to osmosensing

signaling activity.

Theoretical analysis identifies stoichiometric phosphoryl-transfer mechanism as a

means for buffering genetic variation

To investigate the mechanism responsible for buffering genetic perturbations, we

used our model and solved analytically the dependence of Hogl signaling on the

biochemical parameters associated with individual network component proteins. To this
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end, we made two simplifications to the model underlying the simulations. First, we

assumed that signal propagation is fast compared to changes in the osmotic pressure

variable that drives pathway activity. Second, because in vitro studies have shown that

the phosphotransfer reactions favor rapid product formation and thus limit the pool of

phosphorylated Sln1 (Janiak-Spens et al., 2005), we assumed that the concentration of

unphosphorylated Slnl can be approximated by the total Slnl concentration.

Surprisingly, we found that the level of phosphorylated Hogi depends only on the rate in

which phosphoryl groups enter and exit the phosphorelay chain, which is governed by

stoichiometric signaling, and is thus determined only by Sln1 and Sskl parameters. The

rate constants and concentration of Ypd1, as long as they are in the parameter regime

consistent with the assumption of rapid phosphoryl flow from Slnl to Sskl, do not play a

role in establishing the quasi-steady state level of phosphorylated Ssk1 and consequently

the level of phosphorylated Hogl (Supplementary Data). A similar mechanism has been

used to describe the robustness of the two-component osmosensing signaling system in

Escherichia coli to variations in the concentrations of its components (Shinar et al., 2007;

Shinar and Feinberg, 2010). By contrast, the MAPK cascade uses a catalytic signaling

mechanism where each MAPKKK phosphorylates multiple MAPKKs, and as a result, the

level of phosphorylated Hog1 is highly dependent on Pbs2-associated parameters.

Furthermore, the quantitative dependence of the level of phosphorylated Hogl is

significantly lower for Slnl- and Sskl-parameters compared to the MAPK cascade

associated parameters. Our model thus suggests that the observed robustness pattern is

achieved through the cascading of two biochemically distinct signaling mechanisms.
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DISCUSSION

Since protein-protein interactions are crucial for many biological processes, could

cells have evolved mechanisms to be robust against changes in protein-coding sequences

in addition to gene expression? Our work provides a first foray into this question, and we

expect that our work relating the biochemistry of signaling to genetic robustness can

generalize to signaling pathways more broadly. For example, the pathway architecture we

studied involving a stoichiometric phosphotransfer relay connected to a catalytic cascade

is seen in systems as wide-ranging as the Dictyostelium sporulation pathway to ethylene

signaling in Arabidopsis thaliana (Brown and Firtel, 1998; Thomason and Kay, 2000).

More generally, we expect that our analytical result predicting robustness to changes in

rate constants will apply to any stoichiometric system satisfying our assumptions.

Metabolic pathways, many of which feature stoichiometric flows of material, in the form

of metabolites rather than phosphoryl groups as was the case in our study, in principle

can also display the patterns of robustness to genetic variation we uncovered in our study.

Furthermore, our results can be of practical importance in the design of anti-

fungal agents. The osmoresponse pathway plays a critical role in regulating the virulence

of fungal pathogens such as Cryptococcus neoformans (Bahn et al., 2007), but the yeast

MAPK protein itself is not an optimal drug target due to its strong homology to the

human p38 MAPK. As humans have no histidine phosphorelay, it is thought that the

phosphotransfer proteins could potentially be valuable drug targets (Stephenson and

Hoch, 2002; Stephenson and Hoch, 2004). Our findings that osmosensing signaling is

robust to changes in the phosphorelay proteins suggest, however, that agents such as
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competitive inhibitors of the phosphorelay components would have to entirely abolish

interactions between the phosphorelay proteins to have any significant effect on

downstream signaling and accordingly pathogenicity. Given these, our work underscores

the importance of studying the organizational principles of biochemical circuits of protein

networks in understanding cellular behaviors and their emergent properties.

MATERIALS AND METHODS

Strain background and construction

Our haploid ancestor strain used in the laboratory evolution experiment (DMY028) was

derived from the DMY017 strain (Muzzey et al., 2009), the only difference being that it

contained a plasmid bearing two TetO7 promoters, one of which drives the expression of

CFP, while the other controls YPD1 expression. In this strain, the SHO1 ORF was

excised via standard PCR-based methods. The mutant strains referred to in this study

were similarly derived from the DMY017 strain, except that the endogenous genes in the

Sln1 branch of the HOG pathway were singly knocked out and replaced with its

corresponding orthologs from various yeast species. Firstly, the endogenous genes were

singly knocked out and replaced with the Candida albicans URA3 gene using the pAG60

plasmid (Euroscarf). SLN1 and YPD1 gene deletions are lethal due to the hyperactivation

of the pathway. To circumvent this, we knocked out these genes using a cassette

containing both the C. albicans URA3 gene and the Hogl phosphatase PTP2 placed

under the control of the ADHi promoter. The orthologous genes from various yeast

species were stitched to the 500-bp S. cerevisiae upstream and downstream gene flanking
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sequences using overlap extension PCR. These final constructs were then transformed

into the endogenous gene knockout strains described earlier, and single colonies were

selected for the absence of URA3 expression on 5-FOA plates. All integrations were

subsequently confirmed by sequencing. The PBS2 underexpressing strain was created by

integrating the TetO7 promoter upstream of the endogenous PBS2 gene. The two

plasmids containing PGAL1-PBS2DD and PGAL1-SSK2AN were transformed separately into

the PTeto7-PBS2 strain. The YPD1 alleles were transformed into the PTet7-PBS2 strain

with the endogenous YPD1 gene knocked out. A list of our yeast strains is provided in

Table S4.

Growth and media conditions

Unless otherwise stated, all experiments were performed on exponentially growing cell

cultures in synthetic dropout media with the appropriate amino acid supplements at 30

'C. The ancestral and evolved strains were grown consistently in 0.4 M NaCl for all

experiments, except when their signaling abilities were analyzed upon a hyperosmotic

shock of 1 M NaCl. In addition, all experiments involving the evolved strains were

performed in the absence of doxycycline. Prior to the evolution experiment, the ancestral

strain was grown overnight with doxycycline and the culture media was replaced with

media without doxycycline before propagating them in the turbidostat (Acar et al., 2008).

In experiments where cells were treated with doxycycline, a 5 [g/ml concentration was

used.
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Glycerol assays

Intracellular glycerol levels were measured using the Free Glycerol Reagent Kit (Sigma)

as described (Muzzey et al., 2009). For details regarding the method and cell

preparations, see the Supplemental Data.

Fluorescence microscopy and image analysis

Cell preparation and immobilization, and image acquisition and segmentation were

performed as described (Mettetal et al., 2008). For our signaling experiments involving

mutant strains with the orthologous pathway proteins, we corrected for any possible

effects from outside the HOG pathway by measuring signaling in the respective pathway

gene knockout strains in response to the same hyperosmotic shock ("basal signal"), and

we subtracted this basal signal from that of the mutant strain's mean Hog1 trace. In

addition, the reported Hog1 nuclear enrichment here represents the measured signal

subtracted by the nuclear enrichment level prior to hyperosmotic shock.

SUPPLEMENTARY INFORMATION

Glycerol Assays

DMYO28 and DMY028-derived evolved strains were grown overnight in 10 ml selective

minimal media. Log-phase cells were spun at 2000 rpm for 2 minutes, and washed with 1

ml fresh media at the same [NaCl] as the original media in order to prevent internal

glycerol leakage during washing. After another flash spin, cells were resuspended in 1 ml

fresh media, and a 200 pl sample was incubated at 95 'C for 10 minutes and then spun at
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13,000 rpm for three minutes to pellet cell debris. A sample of the supernatant was mixed

with the Free Glycerol Reagent Kit (Sigma) as directed and then the OD5 40 was

measured. The reported per optical density intracellular glycerol measurements are in

units of OD540/OD 00.

Sanger sequencing of genomic DNA sequences

50 tl PCR reactions targeting 1 kb upstream of the coding sequence of each of the HOG

pathway genes and the synthetic constructs i.e. PMYo2-rtTA and PTeto7-YPD1 were

performed using Platinum TAQ DNA Polymerase High Fidelity (Invitrogen). A standard

PCR protocol was used for all regions as recommended (Invitrogen). 1 g1 of the eluted

PCR product was added to 1 [1 of a 5 pM forward sequencing primer and diluted with 10

[1 of pure ddH20. The forward primers were designed to tile the entire sample DNA

sequence. Sequencing was performed using the Big Dye Terminator Cycle Sequencing

kit (Applied Biosystems). Subsequently, DNA Baser (HeracleSoftware) was used to

assemble and view the data, and to detect SNPs.

Mutation reconstruction in the ancestral strain

To reconstruct the confirmed mutations in the ancestral strain, the mutant alleles and

flanking sequences were amplified by PCR and transformed into the ancestral strain with

the endogenous gene replaced with URA3. The transformants were then selected on 5-

FOA plates. Sequencing was performed to check that the mutant alleles were properly

integrated, and were of the correct sequence.
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Functional score metric calculations

We calculated functional score as the percentage of amino acid changes in the

orthologous sequence at conserved residues identified through multiple sequence

alignment of orthologous genes from twenty fungal species (Krantz et al., 2006). Here,

we consider a residue as being conserved if either all the residues at that position are

identical across all sequences in the alignment, or if conserved or semi-conserved

substitutions are observed. To analyze the number of mutations found in our laboratory

evolution experiment, we accounted for both gene length and the functional impact of

each residue by computing the effective number of functionally important residues for

each gene using a weighted method. We assume a 0.9 probability that changes in a

conserved residue would impact function, and a 0.1 probability that a less conserved

residue would change function. We then normalized the number of unique mutations

found in the evolution experiment against this effective number of functionally important

residues for all the HOG pathway genes (Fig. S6).

Relating mutational robustness to local biochemistry via throughput analysis

One possible mechanism that could explain the pattern of mutational robustness we

observe experimentally is that the biochemical circuitry of the phosphorelay network

renders the terminal phosphorelay protein insensitive to changes in kinetic parameters of

its upstream pathway components. To mathematically determine the contribution of this

effect, consider a chain of signaling proteins where the steady state phosphorylation level

of any cascade protein consists of a basal phosphorylation level independent of pathway
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activity, and an additional component that is inducible by the steady state

phosphorylation level of its immediate upstream activator:

x2 =x 2 + &2 _ 1 )

Here, xi and x 2 are the basal phosphorylation levels of the 1 st and 2"d proteins in the

cascade, and primed symbols represent the total protein phosphorylation levels, while the

partial derivative denotes the amount of phosphorylated 2nd proteins derived from every

phosphorylated 1st protein. Extending these equations for the 3rd protein in the cascade

yields:

x3 = x3 + 3 (X 2 -x 2 )
a2

Substituting [3] into [4] we obtain:

x3 = x3+ &2 _xi ) [5]
2 1'

Extending the analysis for the jth protein in the cascade, we obtain:

x';=X1+1~1 (xI-xi) [6]
i=2&,

From [6], it is clear that the biochemical details of signal transmission are buried

mathematically in the chain of derivatives i.e. they represent how the activity of the

cascade protein furthest upstream is transduced into changing the activity of the jth

cascade protein. For example, the contribution of the kth protein to the chain of

derivatives arises from two factors i.e. the effect of the (k- 1 )th protein on the activation of

the k protein and the effect of the kth protein on the activation of the (k+1)th protein:
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&k+1 k - k+1 [7]
&k ack-1 &klI

where we term 4 k the steady state throughput of the k' protein.

The central claim of the throughput analysis is that the sensitivity of k to changes in

parameters describing the kh protein can predict to what extent sequence changes in the

k* protein will be tolerated by the system. An important corollary to this claim is that if

4 is invariant under parameter variations, then sequence changes in the kt protein will

not affect signaling unless the sequence changes completely inactivate the protein

altogether. To put this analysis into effect, we used a simplified model of the HOG

pathway (Klipp et al., 2005):

d[SIn1P] =k ( H(t )2 [Slnl] + k-2[YpdlP][Slnl] - k2 [Ypdl][SIn1P]
dt HO(t)

d[YpdlP] = k 2[Ypdl][SlnlP] - k 2 [Ypd1P][Sln1] - k[YpdP][Ssk1]
dt

d [ Ssk1P] = k3[ Ypd1P ][ Ssk1 ] - k_3 [SsklP]
dt [8]

d[Ssk2P] = k4 [ Ssk2 ][ Ssk1] -k_ 4 [Ssk2P]
dt

d[Pbs2P] k [ Pbs2][ Ssk2P] -k_ 5 [ Pbs2P]
dt

d[ Hog1P] k6 [Hog1][Pbs2P]-k-
6[Hog1P]

dt

Since the signaling dynamics are fast relative to the osmotic pressure variable, separation

of timescales allows one to treat the signaling system as if it were in steady state at every

moment in time (the signaling pathway adiabatically follows the osmotic pressure

dynamics, readjusting itself to the osmotic pressure variable at every point in time). To
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determine the effect of local biochemistry on 4 k, we examined the two most

architecturally distinct proteins i.e. Pbs2 and Ypdl whereby Pbs2 is a kinase sandwiched

between similar kinase proteins, while Ypdl is a phosphotransfer protein sandwiched

between similar phosphotransfer proteins.

4THog1P] k5k-5k6k- 6 Pbs2T Hog1(
bs2 5 6 [Ssk2P]Pbs2T 6( k5[ Ssk2P]+k-5

From this expression, we observe that 4 bs2 depends on Pbs2 interaction parameters i.e.

phosphorylation rate of Pbs2 and Hogi etc. Changes in Pbs2 sequence can alter these

rates and affect the steady state throughput, and can impact Hogi phosphorylation levels.

On the other hand, the throughput of Ypdl is:

k(H(t )2
T oSsk1] 10(t) [10]

oSln1] k_3

Remarkably, 4 rpd is independent of Ypdl parameters. This implies that, as a direct

consequence of the local architecture of the network of biochemical reactions, Hogi

phosphorylation is shielded from potential changes in Ypdl rate constants.

Sensitivity analysis of a model of the HOG pathway

We implemented the following steps: i) model changes in sequence as changes in kinetic

rate constants, ii) define a sensitivity metric that captures how HOG signaling changes as

kinetic rate constants are varied using the model presented in [8]. We examined several

methods to execute step (ii). The first analysis involved computing the magnitude of the

local logarithmic gradient about the wild-type parameter set from the model outputs

namely initial Hogl phosphorylation rate and the steady state Hog1 phosphorylation
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level. To directly compare the different model outputs, we utilized logarithmic gradient

calculations to render our analysis dimensionless:

[P11 3 din qip )2 [11]
i aln kI wt

where p is the model output whose sensitivity we are computing, and the k's represent

the rate constants that are being varied. The wild-type parameters are obtained from

Klipp et al. although similar results are obtained in a model with wild-type rate constants

set equal to one another. The results of this analysis for p are summarized in Figs. id and

le.

To overcome the uncertainty in the wild-type parameters used in [11], we formulated a

2 "d metric that is less dependent on the choice of the particular wild-type parameters. This

method utilizes the full distribution of , instead of the only region around the wild-type

level, and measures the relative spread of this distribution to determine the effects of

variations in rate constants on p. Using the same model outputs, we computed the

following modified deviation metric:

I (k)Vwildtype )2[2

where V is the phase space volume over which the parameters are swept. Similar to the

local logarithmic gradient, large values of the modified standard deviation indicate

greater sensitivity to parameter variations, while smaller values indicate greater

robustness to parameter variations. The results of this analysis are shown in Fig. S1. In

summary, both analyses highlighted above yielded the same qualitative answer i.e. HOG
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signaling is most affected by changes in the rate constants of the downstream MAPK

proteins and least by the upstream phosphorelay proteins.

All the rate equations and parameters used are provided in Table Si.
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FIGURES AND TABLES
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Sensitivity of initial Hog1 phosphorylation rate
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Figure 1| Computational analysis of sensitivity of HOG pathway signaling to kinetic

parameter changes. A, Schematic representation of the SLN1 branch of the HOG

signaling pathway. SIn is the main osmosensor in our strain since SHO1 is deleted. B,

Changes in initial Hogi phosphorylation rate upon varying two of the kinetic rate

constants associated with Ypdl (i.e. Slnl-to-Ypdl and Ypdl-to-Slnl phosphotransfer

rates) over two orders of magnitude about wild-type levels. C, Changes in initial Hogi

phosphorylation rate upon varying two of the kinetic rate constants associated with Pbs2

-42 -



Chapter 2: Control of robustness and tunability in the yeast osmosensing signaling pathway

(i.e. Pbs2 phosphorylation and dephosphorylation rate constants) over two orders of

magnitude about wild-type levels. D, Distribution of sensitivity (i.e. magnitude of local

logarithm gradient of the surface shown in A-B evaluated at wild-type levels; see

supplemental data) of initial Hogi phosphorylation rate across the HOG pathway genes

upstream of HOG]. E, Distribution of sensitivity of peak Hogi phosphorylation level

across the HOG pathway genes upstream of HOG].
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Fig 2
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Figure 2 | Effects of ortholog substitutions of HOG pathway component genes on

signal propagation. A, HogI nuclear enrichment dynamics in response to a 0.4 M NaCl

hyperosmotic shock measured in the wild-type strain (in black) and mutant strains with

the indicated pathway proteins (in cyan)replaced with its orthologs from C. glabrata and

C. albicans. Shown in the upper right corner of each plot is the ClustalW score of the

ortholog when aligned to the S. cerevisiae sequence. Right below the ClustalW score is

the functional score for each ortholog, which represents the percentage of amino acid
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changes at highly conserved residues identified via comparative genomics. The traces

show the average response, obtained by taking the average of population averages from

independent experiments (n = 3) ± SEM. B, Maximum Hog1 nuclear enrichment of

mutant strains with orthologous YPD1 and PBS2 genes of varying degrees of functional

scores under a 0.4 M NaCl hyperosmotic shock normalized against the wild-type

response. Data point at 0 percentage change represents the wild-type response. Data

depicts mean (n = 3) ± SEM. C, Maximum Hogl nuclear enrichment of mutant strains

with characterized YPD1 alleles under a 0.4 M NaCl hyperosmotic shock normalized

against the wild-type response. Two of the alleles exhibit a three- and seventeen-fold

reduction in the Slnl-to-Ypdl phosphotransfer rate ksn1P-Ypd1, while another has a three-

fold increase in the binding constant KdlnJp-ypd1 compared to wild-type Ypdl (Janiak-

Spens et al., 2004) (Table S2). Data point at 1 fold change represents the wild-type

response. Data depicts mean (n = 3) + SEM.
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Figure 3 | Ypdl underexpressing yeast cells with pathologically hyperactive HOG

signaling rapidly evolve to restore wild-type growth and signaling. A, Adaptation

dynamics across nine independent evolution experiments. The horizontal dotted line

represents the growth rate of the ancestor cells induced with doxycycline. B, Intracellular

glycerol concentrations (OD540 measurement; see Experimental Procedures) normalized
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against cell growth (OD600 measurement) were measured in the ancestor cells in the

presence and absence of doxycycline, and in the evolved strains. Data represents the

mean of three independent experiments ± standard error of the mean (SEM). C, Hog1

nuclear enrichment dynamics in response to a 0.6 M NaCl hyperosmotic shock. The

traces show the average response, obtained by taking the average of population averages

from independent experiments (n = 3).
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Figure 4 | Characterization of the molecular changes across independently evolved

populations. A, Distribution of evolved strains with mutations in HOG pathway genes (n

= 45). Data depicts five randomly selected evolved strains across nine independent

experiments. B, Distribution of genetic changes in evolved strains corresponding to (a)

across the nine experiments (n = 5). Indicated inside bars are the fractions of unique gene

mutations observed in individual experiments. Notations * and ** represent two

particular mutations which were found in independent experiments. C, Distribution of
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unique HOG pathway gene mutations in evolved strains corresponding to panel a

normalized against gene length. D, Growth rates y of the "transformed strains" (i.e. with

the endogenous ancestral gene replaced with fourteen of the randomly selected mutant

alleles) (column B), and the corresponding evolved strains under no doxycycline

conditions (column A). Data represents mean (n = 3) ± SEM. E, Comparison of growth

rates of hypoactive pathway strains in 1.2 M NaCl containing loss-of-function YPD1

alleles versus gain-of-function PBS2 and SSK2 alleles. Data represents mean (n = 3) +

SEM. Dotted line shows the growth rate of a wild-type strain in 1.2 M NaCl with PBS2

fully expressed.

SUPPLEMENTARY FIGURES AND TABLES

Fig S1

A 0.8 Sensitivity of initial Hog1 phoshorylation rate

0.6

0.4

0.2

0
Sin1 Ypdl Ssk1 Ssk2 Pbs2

-51-



Chapter 2: Control of robustness and tunability in the yeast osmosensing signaling pathway

2.0

1.6

1.2

0.8

0.4

0.0

Sensitivity of peak Hog1 phoshorylation level

SIn1 Ypd1 Ssk1 Ssk2 Pbs2

Figure S1 I Sensitivity analysis results obtained using modified standard deviation.

Unlike the local logarithmic gradient measure, the modified standard deviation makes use

of the full distribution of model outputs upon varying the rate constants. Sensitivity of the

initial Hog1 phosphorylation rate (A) and sensitivity of peak Hog1 phosphorylation level

(B) to rate constant changes in the HOG pathway proteins.
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Figure S2 I Hog1 phosphorylation rate of mutant strains with characterized YPD1

alleles under a 0.4 M NaCi hyperosmotic shock. Two of the alleles exhibit a three- and

seventeen-fold reduction in the Slnl-to-Ypdl phosphotransfer rate ksln1p-ypdJ, while

another has a three-fold increase in the binding constant Kdsljpypdj compared to wild-

type Ypdl (Janiak-Spens et al., 2005) (Table S2). Data point at 0 fold change represents

the wild-type response. Data depicts mean (n = 3) ± SEM.

Fig S3
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Figure S3 I Characterization of growth rates of

doxycycline concentrations. Cell densities at OD 6oo

(n =3) + SEM.
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were measured. Data depicts mean
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Fig S4
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" Ancestor without doxycycline
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Figure S4 I Characterization of intracellular glycerol content of ancestor cells

treated with and without doxycycline. Intracellular glycerol concentrations (OD540

measurement; see Experimental Procedures) normalized against cell growth (OD600

measurement) were measured in the ancestor cells in the presence and absence of

doxycycline. Data depicts mean (n = 3) ± SEM.
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Figure S5 I Basal Hog1 nuclear enrichment at different doxycycline levels. Cells were

grown in media at the respective doxycycline concentrations for approximately sixteen

hours, after which they were imaged under the microscope. In cells treated with

doxycycline (5 pg/ml), Hogl-YFP is distributed throughout the cytoplasm. By contrast,

Hogl-YFP accumulates in the nuclei of cells grown in the absence of doxycycline. The

Nrdl-RFP signal tracks the position of the nucleus. Scale bar = 2[im.

Fig S6
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Figure S6 I Distribution of unique HOG pathway gene mutations in evolved strains

normalized against the effective number of functionally important residues for each

gene.
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Table S1 I Rate equations and parameters

%parameters

klTCS = 5 s';

k2TCS-plus = 50 ([tM s)-;

k2TCSminus = 50 (pM s)';

k3TCSplus = 50 (FtM s);

k4TCS-plus = 0.415 s;

klMAPplus = 1.538 (stM s)-1;

kIMAPminus = 0.011 s';
k2MAPplus = 1.538 (p.M s)-1;

k2MAP_minus = 0.011 s;

k3MAPplus = 1.538 ([tM s);

k3MAPminus = 0.011 s;

%total concentration

SIn1T = 0.016 sM;
Ypd1T = 0.156 pM;

SsklT = 0.029 sM;
Ssk2T = 0.0067 sM;
Pbs2T = 0.053 sM;

Hog1T = 0.167 pM;

%initial concentration

Sln1P = 2.25 x 10-3 sM;
YpdlP4= 36 x 10-3 sM;
Ssk1P0 = 1.88 x 10-3 JIM;

Ssk2P4 = 1.394 x 10-3 [M;

Pbs2P= 0.0101 M;

Hog1P0 = 0.088 RM;

%rate equations

SIn1P = y(1);

Ypd1P = y(2);

Ssk1P = y(3);

Ssk2P = y(4);

Pbs2P = y(5);

HogIP = y(6);

v1TCS = klTCS*(.5 2)*(Sln1T-Sln1P);

v2TCS = k2TCS-plus*Sln1P*(Ypd1T-Ypd1P) -

k2TCSminus*(Sln1T-Sln1P)*Ypd1P;

v3TCS = k3TCS-plus*(Ssk1T-Ssk1P)*Ypd1P;

v4TCS = k4TCS-plus*(Ssk1P);

vlMAP-plus = klMAP plus*(Ssk2T-Ssk2P)*(SsklT-SsklP);

vIMAPminus = kIMAPminus*Ssk2P;

v2MAP-plus = k2MAP.plus*(Pbs2T-Pbs2P)*Ssk2P;

v2MAPminus = k2MAPminus*Pbs2P;

v3MAP-plus = k3MAP-plus*(Hog1T-Hog1P)*Pbs2P;

v3MAPminus = k3MAPminus*Hog1P;

%equations

dy(1) = v1TCS-v2TCS;

dy(2) = v2TCS-v3TCS;

dy(3) = v3TCS-v4TCS;

dy(4) = v1MAPplus-v1MAP-minus;

dy(5) = v2MAPplus-v2MAPminus;

dy(6) = v3MAP-plus-v3MAP-minus;

dy = dy';

Parameter values are obtained from Klipp et al.
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Table S2 I YPD1 alleles and their measured
(Janiak-Spens et al., 2005)

YPD1 ksIniP->Ypdi (s-1) Kd ([M)

WT 29 ±3 1.4±0.3

K67A 33 ±4 4.2 ±1.5

R90A 11 ±1 1.4±0.6

Q86A 1.7 ±0.3 1.4 ±0.8

G68Q 0.003 -2

in-vitro biochemical kinetic constants
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Table S3 | All unique HOG pathway mutations found in 45 evolved strains across 9 evolution experiments

Evolution experiment (a) G 8
Gn Cho Genm 8Gene Codon Amino acidPrtireonIpc(b

Ge ro position position change change Protein region Impact (b)
1 2 3 4 5 6 7 8 9 < a

SSK) 12 162383 A T 1510 (504) ATT -> TT le->Phe Close to response regulator receiver DEL 1.52 86
domain

SSK) 12 161959 A G 1934 (645) GAG-> GGG Glu->Gly Response regulator receiver domain DEL 1.52 82
SSK2 14 681882 T C 1205 (402) GTG -> GCG Val->Ala Ssk1 binding domain, essential for DEL 1.93 73

Ssk2 activation

SSK2 14 684156 G C 1281 (427) TGQ -> TGC Trp->Cys Essential for Ssk2 activation DEL 1.93 73
SSK2 14 681922 G A 3515 (1172) TOC ->TAC Cys->Tyr Unknown DEL 1.99 70
SSK2 14 681923 C T 3516(1172) TGC ->TGT Cys->Cys
SSK2 14 681259 C T 4178 (1393) CCC -> CTC Pro->Leu Kinase domain DEL 1.92 92
SSK2 14 680766 G C 4671(1557) TGG -> TGC Trp->Cys Kinase domain DEL 1.94 89
SSK2 14 681025 G T 4412 (1471) GGA -> GTA Gly->Val Kinase domain DEL 1.94 89
SSK2 14 681040 C T 4397 (1466) CCA -> CTA Pro->Leu Kinase domain DEL 1.92 91
SSK2 14 684238 A T 1199(400) GAT -> GTT Asp->Val Ssk1 binding domain, essential for DEL 1.91 78

Ssk2 activation
SSK2 14 682852 G A 2585 (862) TGT -> TAT Cys->Tyr Unknown TOL 2.22 24
SSK2 14 681620 G C 3817 (1273) QGT -> CGT Gly->Arg Kinase domain DEL 1.90 92
SSK2 14 681049 A G 4388 (1463) TAC -> TQC Tyr->Cys Kinase domain DEL 1.91 90
SSK2 14 680990 G T 4447 (1483) gTT -> TIT Val->Phe Kinase domain DEL 1.91 90

HOG1 12 372203 G T 583 (195) GAC -> TAC Asp->Tyr Kinase domain DEL 3.43 98
HOG1 12 372103 C G 483 (161) TGC -> TGG Cys->Trp Kinase domain DEL 3.34 98
PBS2 10 179030 T C 1070(357) TTG -> TCG Leu->Ser Close to kinase domain DEL 1.97 95
PBS2 10 179942 G A 158 (53) COT -> CAT Arg->His Docking site for Ssk2 DEL 2.45 18
PBS2 10 179973 T G 127 (43) IAC -> gAC Tyr->Asp Docking site for Ssk2 TOL 2.33 17
PBS2 10 179918 G T 182(61) CQT -> CTT Arg->Leu Docking site for Ssk2 DEL 2.38 16
PBS2 10 178832 G A 1268 (423) GOT -> GAT Gly->Asp Kinase domain DEL 1.94 97

PBS2 10 178575 G A 1525 (509) GGT -> AGT Gly->Ser Kinase domain DEL 1.9497
PBS2 10 178523 T G 1577 (526) ATG -> AGG Met->Arg Kinase domain DEL 1.94 97
PBS2 10 178182 C T 1918(640) CGA -> IGA Arg->Stop NLS?
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(a) Number of occurrences in which the mutation was observed in the five randomly

selected evolved colonies from each of the nine experiments.

(b) The impact of the mutation on protein function was predicted using the SIFT software

(Ng and Henikoff, 2001). The numbers represent the median sequence conservation

and the number of sequences sampled at the amino acid position respectively.
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Table S4 I List of yeast strains and plasmids used

DMY017 BY4741; MATa YER118c::kanMX4 HOGJ::HOGJ-YFP-HIS3 Muzzey et al.
NRDJ::NRDJ-mRFPJ-natR

DMY027 DMY017; MYO2::PYo 2 -rtTA-LEU2 SSK22::URA3
PpBs2::PTETO7- CFP-kanMX-PTET07

DMY028 DMY017; MYO2::PMYo 2 -rtTA-LEU2 SSK22::URA3
PYPD :.PTETO7-CFP-kanMX-PTET07

DMY028-ev1 DMYO28; SSKI::SSKPl-"

DMY028-ev2 DMYO28; SSKI::SSKEl 5 G

DMY028-ev3 DMYO28; SSK2::SSK2v40 2A

DMY028-ev4 DMY028; SSK2::SSK2*4

DMY028-ev5 DMY028; SSK2::SSK2c"Imw

DMY028-ev6 DMY028; SSK2::SSK2P 393L

DMY028-ev7 DMY028; SSK2::SSK2wIs5c

DMY028-ev8 DMY028; SSK2::SSK2G1 4 7]V

DMY028-ev9 DMY028; SSK2::SSK2pl 46L

DMY028-ev10 DMY028; SSK2::SSK2D4V

DMY028-ev 11 DMY028; SSK2::SSK2 86 2Y

DMY028-ev 12 DMY028; SSK2::SSK26 2
73R

DMY028-ev13 DMY028; SSK2::SSK2ymoxc

DMY028-ev14 DMYO28; SSK2::SSK2 4 83F

DMY028-ev15 DMYO28; HOG::HOGD9 5Y

DMY028-ev16 DMYO28; HOGJ::HOGcasw

DMY028-ev17 DMYO28; PBS2::PBS2 3575

DMY028-ev18 DMYO28; PBS2::PBS2R3H

DMY028-evl9 DMYO28; PBS2::PBS2Y43D

DMY028-ev2O DMYO28; PBS2::PBS2R6IL

DMY028-ev21 DMY028; PBS2::PBS2 423D

DMY028-ev22 DMYO28; PBS2::PBS2G5"

DMY028-ev23 DMY028; PBS2::PBS2If 2 6R

DMY028-ev24 DMYO28; PBS2::PBS26OsTOP

DMY017-sml DMY017; S.cer-SLNJ::Cgla-SLNJ

DMY017-sm2 DMY017; S.cer-SLNI::C.alb-SLNJ

DMY017-sm3 DMY017; S.cer-YPDJ::C.gla-YPDJ

DMY017-sm4 DMY017; S.cer-YPDJ::C.alb-YPDJ

DMY017-sm5 DMY017; S.cer-SSKl::Cgla-SSKJ

DMY017-sm6 DMY017; S.cer-SSKl::C.alb-SSKJ

DMY017-sm7 DMYOJ7; S.cer-SSK2::C.gla-SSK2

Strain or plasmid

Strain

Genotype Reference or source
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DMY017-sm8 DMYO17; S.cer-SSK2::C.alb-SSK2

DMY017-sm9 DMYO17; S.cer-PBS2::C.gla-PBS2

DMY017-sm1O DMYO17; S.cer-PBS2::C.alb-PBS2

DMY017-sml 1 DMYO17; S.cer-YPD1::A.gos-YPDJ

DMY017-sml2 DMY017; S.cer-YPDJ::K.lac-YPD1

DMY017-sm13 DMY017; S.cer-YPDJ::D.han-YPDJ

DMY017-sml4 DMY017; S.cer-PBS2::A.gos-PBS2

DMY017-sm15 DMY017; S.cer-PBS2::K.lac-PBS2

DMY017-sm16 DMY017; S.cer-PBS2::N.cra-PBS2

BG2 (C. glabrata) Clinical isolate Wurgler-Murphy et al.

Plasmid

pYPD 1 K67A YPD1K6
7A Janiak-Spens et al.

pYPDR90A YPDjR90A Janiak-Spens et al.

pYPD 1 Q86A YPD1Q6A Janiak-Spens et al.

pYPD1 6 1Q YPD1G 8
Q Janiak-Spens et al.

pGPBD21 URA3 2mm PGAL1-PBS2DD (PBS2 with Ser514-Asp and Wurgler-Murphy et al.
Thr518-Asp mutations)

pGSS21 URA3 2mm PGAL1-SSK2DN (contains SSK2 from Met 1173
to Asp 1579)

Maeda et al.
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Chapter 3

SINGLE CELL ANALYSIS OF SPLICING DYNAMICS AT SINGLE

MOLECULE RESOLUTION

ABSTRACT I Splicing serves a unique regulatory role in the gene expression pathway

where it can not only control the diversity of gene products, but it can also shape their

mean expression and noise properties. Despite this, a single cell analysis of splicing is

lacking. Here, we explore how HAC1 RNA splicing contributes to heterogeneity in the

unfolded protein response (UPR) in yeast by using single molecule imaging to count

endogenous spliced and unspliced HAC1 RNA in single cells. We find that different

UPR-inducing stresses can alter the mean splicing kinetics from highly efficient to

limiting. Furthermore, we observed that the cell-to-cell variability in the degree of

splicing is differentially regulated under these conditions. By combining these

measurements with stochastic gene expression models, we find that the increased

variability can be explained by increased fluctuations in the splicing efficiency. Together,

these results suggest that splicing (mis)regulation in trans can generate substantial

variability in splicing outcomes, which might be advantageous for the cell population

under stress.
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INTRODUCTION

Single-cell measurements of mRNAs have revealed that the expression of genes

can vary, sometimes dramatically, from cell to cell, and the biological role of these

differences can be greatly amplified when the transcripts are regulatory molecules such as

transcription factors (McAdams and Arkins, 1997; Suel et al., 2007; Maamar et al., 2007;

Raj et al., 2010; Chubb et al., 2006; Pard et al., 2009). These measurements have also

paved the way for a quantitative assessment of the different stochastic mechanisms of

transcription, which led to the finding that many genes in eukaryotes exhibit

transcriptional bursting (Zenklusen et al., 2008; Raj et al., 2008; Suteret et al., 2011;

Chubb et al., 2006; Pard et al., 2009). While most previous studies have centered on

transcription, a similar stochastic view of splicing is lacking. Splicing acts at the post-

transcriptional level of gene regulation where, akin to transcription, expression can be

controlled quantitatively. In a few exceptional cases, splicing overtakes the role of

transcriptional regulation to become the dominant gene expression control for

constitutively transcribed genes (Bingham et al., 1988). Given these, the abilities to

quantitatively scrutinize splicing in single cells, and to analyze the transcription-coupled-

to-splicing system's gene expression noise properties are desirable in furthering our

understanding of gene expression regulation.

Current techniques for measuring splicing include real-time RT-PCR, northern

blotting, and on a genome-wide scale, microarrays, which provide an ensemble average

of the levels of spliced and unspliced RNA species in a cell population (Clark et al.,

2002). Single-cell imaging methods based on fluorescence in situ hybridization and
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RNA-binding proteins tagged with fluorescent proteins i.e. MS2-labeled or UlA-labeled

RNAs have also been used to track the localization of RNAs during splicing (Zhang et

al., 1994; Aragon et al., 2009; Brodsky and Silver, 2000). These visualization techniques,

however, are limited in their abilities to monitor and quantify splicing directly, and often

require genetic modifications and over-expression of the gene, thus making a quantitative

analysis of splicing in single cells not possible. To circumvent these limitations, we

devise a colocalization strategy using single molecule RNA fluorescence in situ

hybridization (Raj et al., 2008) for tracking individual endogenous spliced and unspliced

RNA transcripts. We present a framework for understanding how the relative balance

between the kinetic steps (i.e. transcription, RNA turnover, splicing) involved in the

synthesis of spliced transcripts contributes to the regulation of the mean gene expression

levels and to cell-to-cell variations (Fig. la). Here, variability is quantified by the

coefficient of variation, CV, which is defined as the standard deviation 8r divided by the

mean (r) of the RNA copy number. CV represents how "noisy" the spliced RNA

production is relative to a Poisson process where CV 2 = 1/(r).

RESULTS

Single-cell visualization and quantification of spliced and unspliced transcripts

We devised an approach to adapt the single-molecule FISH technique to visualize

and count endogenous spliced and unspliced RNAs in single cells with single transcript

resolution. Our strategy involved targeting the exon sequences with probes labeled with a

single Cy 5 fluorophore each and the intron sequences with Alexa 594 (Fig. lb). Briefly,
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we hybridized the fixed cells with the probes labeled with the two colors and imaged

them using epifluorescence microscopy. Under this scheme, we identified the unspliced

transcripts as spots that colocalize in both channels, while the individual singletons spots

represented either the spliced species or the intron.

We applied this method to measure the HAC1 RNA in yeast cells, which is found

to be present in the unspliced form in the cytoplasm, and is thus untranslated under

normal growth conditions (Bernales et al., 2006). But, once endoplasmic reticulum (ER)

stress is triggered by protein misfolding, the unspliced HAC1 RNA undergoes splicing,

and the spliced RNA is then translated into proteins, which is essential for activating the

unfolded protein response (Bernales et al., 2006). ER-stress-activated splicing of HAC1

RNA does not require the canonical eukaryotic spliceosomal machinery. Instead, it

requires only two components i.e. the ER-localized Rnase Irel protein and the tRNA

ligase Rlgl protein (Bemales et al., 2006). This system is well suited for our purpose

because splicing can be easily controlled by stimuli that induce protein-misfolding, and

both the unspliced and spliced products are spaced out in the cytoplasm where splicing

occurs, which facilitates quantification of the two RNA species at the single-molecule

level.

We detected that most pre-stressed cells had spots that were mostly colocalized in

the two channels, which represented unspliced HAC1 RNA, and these were localized in

the cytoplasm (Fig. 1c), consistent with measurements using in situ hybridization. In

single cells, the number of Cy 5 exon spots and Alexa 594 intron spots were highly

correlated (r = 0.87, p = 1.2 x 10-93) (Fig. ld). To quantify spatial correlation between

signals in the two channels, we used an analysis method based on particle image cross
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correlation spectroscopy (Semrau et al., 2011). Of the total spots from 300 cells, 80% of

the intron spots colocalized with the exon spots, while 78% of the exon spots colocalized

with the intron spots (Supplementary Fig. S 1). This degree of colocalization was in good

agreement with the percentage reported by Raj et al. when using coding-sequence-

specific probes and 3' UTR-sequence-specific probes for the GFP sequence. In each cell,

we detected on average a total of 22 HAC1 RNA molecules, with -80% being the

unspliced transcripts (Fig. ld).

Measuring splicing under different UPR-inducing stresses

We measured splicing of HAC1 RNAs in cells under different conditions that

trigger ER stress i.e. using dithiothreitol (DTT), a drug that reduces disulfide bonds and

causes protein misfolding, and heat stress. Upon adding DTT, we detected on average a

significant increase in the number of spliced HAC1 RNA and a concomitant decrease in

unspliced RNA in cells within five minutes (Figs. 2a-b). At steady-state and at the cell

population level, the total HAC1 RNA remained largely similar to the pre-stress level.

Furthermore, the dynamics and degree of splicing were in good agreement with literature

and the measurements obtained using q-PCR (Bernales et al., 2006; Pincus et al., 2010)

(Figs. 2a-b). We also simultaneously detected the formation of Irelp foci upon activation

of the ER-stress, which is responsible for the splicing of HAC1 RNAs (Aragon et al.,

2009) (Supplementary Fig. S2). In single cells, the ratio of spliced products to total RNA

is not correlated with the total HAC1 RNA (Supplementary Fig. S3), indicating that

transcription and splicing play independent roles in the generation of spliced HAC1

molecules.
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HACi exhibits bursting transcription

We next considered a general stochastic model for spliced RNA production by

expanding the two-state-promoter model for RNA production (Raj et al., 2008; Peccoud

and Ycart, 1995) to incorporate a first-order splicing reaction. Here, the promoter

stochastically fluctuates between "off' and "on" states, likely due to chromatin

modifications (Becskei et al., 2005), and RNA is produced only in the "on" state, which

is then processed by the splicing apparatus to generate the spliced RNA (Fig. 3a).

Accordingly, the production of spliced RNA is characterized by 4 kinetic parameters i.e.

A, the rate of promoter switching to the "on" state; y, the rate of promoter switching to the

"off' state; I, the rate of transcription while in the "on" state; and ps, the rate of RNA

splicing.

If RNA were synthesized at a fixed rate, one would expect the statistics of the

number of RNA per cell to fit a Poisson distribution, where the mean and variance are

equal. But, we observed that the mean total HAC1 RNA molecules per cell was

approximately 22, while the variance was roughly 62, consistent with a bursting

transcription model. Using a maximum likelihood method, we were able to fit the total

HAC1 RNA distribution to the analytical solution for the two-state transcription module

to find expressions for the gene activation rate, A, and the average number of RNA

produced during each burst, p/y (average burst size) (Fig. 3b and Supplementary

information). The spliced and unspliced HAC1 RNA half-lives are similar and are

approximately 20 min (Pincus et al., 2010) and we assume that they are decreased under

heat stress (Grigull et al., 2004; Lindquist, 1981). As a measure of transcriptional

initiation, we scored for the presence or absence of active transcription site in the nucleus
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in cells, which represents nascent transcripts that had not yet diffused away (Zenklusen et

al., 2008). Approximately 25% of the cells had transcription sites consisting of up to 7

nascent transcripts (Fig. 3c, Supplementary Fig. S4 and Supplementary information). We

found that the average RNA burst statistics i.e. burst size and burst frequency (number of

transcriptional events per RNA lifetime) of (3.8 ± 0.5 and 7.1 ± 0.9) (Fig. 3d) sufficiently

describes both the cytoplasmic RNA abundance data and the nascent transcript count.

Mean splicing efficiency is altered under distinct stresses

At steady-state, the dependence of the mean levels of unspliced and spliced RNA

on splicing rate falls into two distinct regimes (Fig. 4a and Supplementary information).

If the rate of splicing us is greater than the turnover rate of the unspliced RNA 6, most

unspliced RNA ends up being spliced and thus the spliced RNA abundance is at its

maximum and is independent of ps, while unspliced RNA abundance will scale inversely

with ps. Conversely, if ps 6, most unspliced molecules are degraded and the unspliced

RNA abundance is essentially independent of ps. The level of spliced RNA, however,

will scale with ps. We find that cells exposed to the two conditions exhibit behaviors that

fall into different regimes of spliced RNA production efficiency i.e. in DTT-treated cells,

the kinetics of splicing is much faster than the turnover rate of unspliced HAC1, which

resulted in the efficient near-maximal production of spliced HAC1 ((s)/(s)max = 0.82).

In contrast, the less efficient spliced transcript production observed under heat stress

((s)/(s)max = 0.48) can be explained by comparable splicing and turnover rates, where

splicing becomes almost limiting.
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Variability in the degree of splicing is tightly regulated under DTT, but is

compromised under heat stress

We obtained the analytical intrinsic noise expressions for the spliced and

unspliced species based on the set of reactions in Fig. 3a (Supplementary information),

and determined the dependence of the cell-to-cell variability in RNA expression on

splicing kinetics. We find that similar to the mean behavior of the RNA expression; its

variability displays two distinct characteristics (Fig. 4b). Where splicing is limiting in the

synthesis of spliced transcripts, increases in splicing rate reduces the variability of the

spliced transcript levels, but not that of the unspliced transcript abundance. But where

splicing is not limiting, the unspliced transcript noise increases with splicing rate while

the variability of the spliced transcript level is insensitive to even large variations in

splicing rate.

While we find that environmental stresses elicit distinct effects on the mean

behavior of the transcript abundance, we next asked if cell-to-cell variability in the

transcript abundance is differentially regulated under these conditions. We find that for

both of the populations exposed to either DTT or heat shock, most of the cell-to-cell

variations in transcript abundance can be accounted for by intrinsic noise (CVdtt,

measured/CVdtt, predict = 1.13 and CVheat, measured/CVheat, predict = 1.24). Stochastic simulations of

the model fit adequately well to the RNA distributions for spliced and unspliced HAC1 in

both cases (Fig. 4c-d and Supplementary information), supporting that most of the

variation originates from random gene activation events.

Since every cell possesses different numbers of spliced and unspliced RNAs, their

degrees of splicing can vary widely among one another. To analyze the variability in the
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degree of splicing, we examined the spliced and total transcript levels in individual cells.

We determined the best fit line to the data, and hence, deviation from this line represents

variability. On average, the majority of the HAC1 transcripts in cells exposed to DTT

were present in the spliced from (best-fit slope = 0.82 ± 0.011), while only approximately

half of the total transcripts in cells under heat stress consisted of spliced RNAs (best-fit

slope = 0.47 ± 0.023). By computing the coefficient of variation of the root-mean-square

deviation in expression across all cells, we found significantly increased variability in the

degree of splicing (DOS) in cells subjected to heat stress as compared to cells exposed to

DTTr (CVRMSE, heat = 0.50, C Vo seEdC Rreict =1.44 and CVDT[, RMSE = 0.14,

CV observed|CVpredict _ 1.13).
vRMSE,dtt RMSE,dtt

To quantitatively understand the greater DOS variability, we considered models

including extrinsic noise at the levels of transcription and splicing, and determined

analytically as well as via simulations their effects on the normalized covariance of

spliced and unspliced transcripts in single cells (Paulsson, 2004). We find that any

extrinsic noise at the transcriptional level, i.e. u and 6, would only increase the spliced-

unspliced-transcript covariance -su, whereas heterogeneity in the splicing rate p would

reduce the covariance (Supplementary information). For the DTT-treated population, the

observed normalized covariance can be attributed mostly to the two-state promoter

fluctuations (dsu,predict/dsu,measured = 1.3) (Fig. 4e). But, the covariance expected

purely from these fluctuations is significantly higher than the measured covariance in the

heat stress case, which turned out to be negative (dsu,predict/isu,measured = -4.8) (Fig.

4e). Based on these models, the poor covariance in the heat stress condition can be

generated by increased fluctuations in splicing rate (Fig. 4f), which can arise from, for
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example, increased variations in the expression levels of splicing factors. But, these

fluctuations are minimal under DTT stress. Together, these results suggest that the

variability in the efficiency of the splicing machinery might be differentially regulated

under different stress conditions.

DISCUSSION

By counting single HAC1 molecules and monitoring its transcriptional activity in

single cells, we found that the gene exhibits a wide expression and the statistics of

variation indicate that the gene is transcribed in bursts, rather than constitutively. Most of

the recent noise studies have also found evidences of transcriptional bursting in genes

across different eukaryotes (Zenklusen et al., 2008; Raj et al., 2008; Suteret et al., 2011;

Chubb et al., 2006; Pare et al., 2009), suggesting the prevalence of this kinetic mode of

transcription in eukaryotic gene expression in general. We investigated the kinetics of

spliced HAC1 expression in different environmental stresses using two-color

colocalization to distinguish and to count individual spliced and unspliced RNAs in each

cell. From these measurements, we were able to derive the splicing efficiencies using a

stochastic splicing-coupled-to-transcription gene expression model, which sufficiently

captures the variation in transcript expression. We found that the splicing rate is

significantly increased in DTT than in heat stress, such that in the former case, splicing is

not limiting in the production of spliced transcripts, and while in the latter case, splicing

becomes limiting.
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Furthermore, by simultaneously monitoring unspliced and spliced transcripts in

single cells, we found that the variability in the degree of splicing differed greatly

between these two UPR-induced stresses, and increased splicing rate fluctuations are

necessary to explain the higher variability. Thus, it appears that not only can the mean

splicing efficiency be altered in response to different environmental conditions, but the

variability in the splicing kinetics can even be changed. The expression of the splicing

factor Irel protein has been observed to be tightly regulated via negative autoregulation

under normal conditions (Tirasophon et al., 1998). In support of this, overexpression of

Irelp results in constitutive activation of the URP and slow growth in yeast cells

(Bernales et al., 2006). Thus, it seems likely that the splicing mis-regulation i.e. increased

splicing rate fluctuations under heat shock is mostly, if not partly, a result of the

compromised autoregulation of Irelp expression. Almost 400 genes (5% of the yeast

genome) have been identified to be transcriptionally controlled by the Irelp-HAC1-

mediated UPR in yeast (Travers et al., 2000). This greater variability would likely

translate to greater population heterogeneity in HAC1 protein expression, which can

result in a highly variegated unfolded protein response.

We further determined the analytical solution of the general splicing-coupled-to-

transcription model for the dependence of RNA expression and expression variability on

splicing rate. The results from the model propose two classes of genes with distinctive

spliced RNA expression regulation encoded in cis. One class of genes are excellent

substrates of the splicing apparatus (very high splicing rates), where perturbations to the

splicing reaction i.e. fluctuations in splicing factor levels has a minimal impact on the

mean and cell-to-cell variability of their spliced transcript expression. These fluctuations,

-75 -



Chapter 3: Single cell analysis of splicing dynamics at single molecule resolution

however, can greatly affect the expression of their unspliced transcript counterparts. The

other class are genes which are relatively poorer substrates (very low splicing rates),

where their spliced transcript expression and expression noise are highly sensitive to

fluctuations in the splicing reaction, and yet, the expression of their unspliced species are

robust to these changes. These gene-specific differences in sensitivity of mean and

variance of gene expression to splicing fluctuations may be correlated with its gene

function.

These results demonstrate that HAC1 RNA splicing (mis)regulation in trans can

generate substantial gene expression variation, which can result in heterogeneous stress

responses among cells, and also highlight the need for quantitative single-cell analyses in

the understanding of cell-to-cell heterogeneity in probabilistic splicing outcomes.

MATERIALS AND METHODS

Irelp-GFP strain construction and cell growth

To visualize both the Irel protein and HAC1 RNA simultaneously, we transformed a

construct with GFP inserted into the cytosolic portion of Irel adjacent to its

transmembrane region (Aragon et al., 2009) (a gift from the Walter lab) into our yeast

strain. All experiments involved growing cells in synthetic media at 30 C to an optical

density (at 600 nm) of 0.4, after which they were either treated with 10mM DTT (Sigma)

or shifted to 37 *C for the ER stress induction experiments. DTT stocks were made fresh

from powder stored at 4 C for each experiment.
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Fluorescence in situ hybridization and image acquisition

We performed FISH as described by Raj et al., 2008. Cells were fixed by adding 32%

(v/v) formaldehyde to the yeast culture to a final concentration of 4% (v/v) for 45

minutes at room temperature. The cell wall was digested using lyticase (Sigma), and

stored in 70% (v/v) ethanol at 4 "C. Prior to hybridization, cells were rehydrated with

10% (v/v) formamide, 2 x SSC for 10 minutes. We used a hybridization buffer consisting

of 10% (v/v) formamide, 2 x SSC, 1 mg/ml BSA, 10 mM VRC, 0.5 mg/mI Escherichia

coli tRNA and 0.1 g/ml dextran sulfate. All hybridizations were carried out in solution

using HAC1 probes to Cy5 (GE Amersham) and Alexa 594 (Invitrogen) at optimal

concentrations determined empirically, and were carried out overnight at 37 *C. The cells

were attached to coverslips coated with concanavalin A (Sigma). Images were acquired

using a Nikon TE2000 microscope equipped with a Princeton Instruments camera, a 100

x oil immersion objective and custom filter sets capable of distinguishing between the

different fluorophores used. Data was taken as stacks of images with a z direction step

size of 0.2 gm using filters appropriate for DAPI, FITC, Alexa 594 and Cy5 (Chroma

Technology). To minimize photobleaching during imaging, we used antifade reagents

including Trolox and the oxygen-scavenging solution glucose oxidase (Raj et al., 2008).

The probes used are listed in Supplementary Table 1.

Spot counting analysis

Using custom-written MATLAB (Mathworks) software ImageM, we reduced the stacked

images to two-dimensional images by maximum projection, and counted the number of

fluorescent spots, each of which corresponds to a single RNA, using the semi-automated
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method outlined by Raj et al., 2008. We segmented the yeast cells manually and

manually counted the number of cells with active transcription sites with the aid of

custom-written scripts. Nuclear segmentation was done by thresholding using DAPI.

Single transcript intensity was defined as the integrated intensity of the spot identified

using the two-dimensional Gaussian mask algorithm. We determined the number of

nascent transcripts at the site of transcription by dividing the spot intensity of the

transcription site by the single transcript intensity, and rounding off to the nearest integer.

Colocalization analysis

We used custom-written MATLAB software to implement the particle image cross

correlation spectroscopy analysis method described by Semrau et al., 2011.

Numerical modeling

The theoretical model for RNA abundance is based on that described by Raj et al., 2006.

The analytical solution for the two-state model is:

r(m +1)r +G + p

where X, [t and y are defined as in the text, and 6 is obtained from literature (Pincus et al.,

2010). To simulate the nascent transcript distribution, we used another parameter t to

define the duration during which RNA II polymerase remains on the gene for the

synthesis of a complete transcript. If the polymerase elongates at 2 kb min-, the amount
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of time needed for the synthesis of HAC1, a 1 kb transcript, would require at least 30

seconds (Mason and Struhl, 2005). We fitted the total RNA abundance data to the

equation above using the maximum likelihood method, and obtained well defined

parameter values: rate of activation (V/S) = 7.1, inactivation (y/6) = 21.8 and transcription

([/8) = 82.2. Using these parameters and T, we determined the nascent transcript

distributions using Monte Carlo simulations (Zenklusen et al., 2008). Stochastic

simulations of the spliced and unspliced RNA numbers were performed by implementing

Gillespie's direct method (Gillespie, 1977) in Matlab. The parameters governing RNA

production dynamics obtained earlier were used in the simulations. We performed

simulated annealing to obtain the best-fit splicing rate [ that minimizes the difference

between the CDF of the simulated and experimental spliced and unspliced RNA

abundance data. To simulate the effects of splicing rate fluctuations, pts is assumed to be

normally-distributed with mean (ps) and a,s is allowed to vary.

SUPPLEMENTARY INFORMATION

Steady-state model: dependence of mean spliced and unspliced levels on ss

To model the spliced and unspliced RNA dynamics, we extend the stochastic 2-state

transcription model to include a splicing step which obeys 1st order kinetics. The set of

chemical reactions are:

N1-a)
a a+ 1

ya
a ->a -1

ya
u->u+1
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U - U -1

/sU
{u, S} -{u - 1,s + 1}

O6SS
S -+IS -1

where X and y represent rates of promoter activation and inactivation, [I and [ts are the

unspliced and spliced RNA synthesis rates, and 6 and 6s are their corresponding

degradation rates. We use A, U and S to represent the activated gene, the unspliced and

spliced species, and a, u and s to represent their numbers of molecules in the cell.

The dynamics for the averages of the molecular species can be described by:

d(a= -y(a) + ,(l - (a))
dt

d(u= - +(+ is)(u) + p(a)
dt

d(s) _

dt

At steady-state, the mean number of unspliced RNA for this system is given by:

T

(u) = +(5 + pts

where T = ttl/(A + y). And that of the spliced RNA is:

(s) = s T
ds

Expressing u and s as a function of Is/S gives:

(u) = T [1 + (t)
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(s) = T( s) 1+ (S
4S

In the case of efficient splicing i.e. ps >> 8:

1
(u) -T

Ps

1
(smax sT

The level of spliced RNA is maximal and is independent of the splicing rate, while the

unspliced RNA amount scales inversely with it.

While in the case of inefficient splicing i.e. ps < 6:

1
(U)max 

- T

(s) T( )

the converse is true. Thus, the levels of spliced and unspliced RNA produced are

determined by the relative values of s and 6, rather than the absolute value of [. And the

ratio of spliced RNA to total RNA, which we defined as the degree of splicing, is

dependent only on s and 6s.

Its ( + its)
(U) + (S) = 6 T(1 + 6s/ps)

(s) 1
(u) + (s) 1 +8s//Is
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Analytical linear gene expression noise approximations

Theoretical derivations of the gene expression noise for transcription and translation

models have been rigorously developed over the years (Paulsson, 2004; Ozbudak et al.,

2002; Raj et al., 2006; Zenklusen et al., 2008; Pedraza and Paulsson, 2008; Peccoud and

Ycart, 1995). We adapt Paulsson's FDT approach to the case of a transcription-coupled-

to-splicing system to determine the analytical expressions for the noise of the molecular

species involved.

The equation for the covariance matrix is:

-- a = Au + aAT + flB [2]
dt

where A represents the Jacobian matrix, defined by

8(ni)
atai; = -~ j(ny)

and B describes the randomness of biochemical events defined as,

bij = VikVikRk

with vjk representing the number of j molecules that will change in the k-th reaction at the

macroscopic rate Rk, and Q represents the average cell volume, and finally, U represents a

matrix of covariances between variables x, y and z. Here x, y and z represent the

molecular species A, U and S in model [1] respectively.

From the model in [1], we get

-y+A) 0 0 all 0 0
A= It -(6 +ps) 0 =a21 a22 0

0 Ps -6][ 0 a32  a 33

and
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By linearizing [2] and setting Q to unity such that:

A' + B' = 0
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we solve for Y'. From the solution, we obtain the square of the noise r7 of the unspliced

RNA as:

2 +.2 1 a

I (y)2~ (U) (a) (6 +us)-l + (A + y)-1

where (a) = A/(A + y) and aa2/(a)2 = 1/(a) - 1 since the number of active genes is

binomial rather than poisson-distributed. The 1st term describes the noise from random

births and deaths of unspliced RNA, and the 2nd term describes the noise obtained by

time-averaging the random changes in gene activity.

And for the spliced RNA, we obtain:

2 qz~z 1 1-(a) MYp+4)(y+ A+yS+8+6s)
7 z )2 (s) ' (a) (y + A+ 6s)(S+ ys+ Ss)(y + A+5 +us)

where the 1s term represents random births and deaths of spliced RNA and the 2 term

represents the noise from a two-step time-averaging of random changes in gene activity.

Note that the noise contribution from the unspliced RNA is negligible unlike that

expected from a transcription-translation system. This arises because one species is

converted into another in the splicing reaction.

And we obtain the covariance, Gyz, between spliced and unspliced RNA as:

u2 = (a) 2 + (1 - (a))
6z S(6 s + +it- (A + y + 6 + pts)( A + y + 6,))

The normalized covariance takes the form:

oyz _oz 1
(y)(z) (z)2 (s)
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Effects of promoter state and splicing fluctuations on the covariance of the 2 RNA

species

We assume that transcription and splicing fluctuations exhibit a characteristic period r,

and -,s respectively, and their autocorrelation function can be defined as:

F(T) = (I(t + r)j(t)) - (p(t))2 , e-/Z,

F,,(T) = (ps,(t + T)ps(t)) - (ps(t))=2 e-l/,

where (-) denotes averaging with respect to t. We include these factors to analyze their

effects on the noise of the 2 RNA species.

Using FDT as before, we obtain:

r (U)2 = u) + p/)~) and 
s =Ts

2 2 1. U21r
2 ass -+ + 'us Tg

77S =(S)2  (S) (/t)2 _rj + TrM (is) 2 rs + Tt

where Tru = (8 + Its) and -r=

The normalized covariance is given by:

y2S 
2 /i VT

us To Tu + Ty Ts

(U)(S) (p)2 kTu + T + Ts Ts + Ty Tu + Ts

and from the expressions for 77u and sj, we obtain:

aufs T (2 + s (2 2s #s Ts

(U)(S) TU + Ts u17U Tu + Ts s 5  Tu + Ts (ps)2 Ts Tys

From this expression, we observe that transcription rate fluctuations increase the spliced-

unspliced RNA covariance, whereas splicing rate fluctuations reduce the covariance.
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FIGURES AND TABLES

Fig 1
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Chapter 3: Single cell analysis of splicing dynamics at single molecule resolution

Figure 1| Single-cell visualization and quantification of spliced and unspliced RNA.

A, Schematic of design of probes targeted exclusively to the exon or intron sequences

and were labeled with two different colors i.e. Alexa 594 and Cy 5. The unspliced RNA

is detected as a colocalized spot in both channels. B, A single optical slice image of

HAC1 RNA in normal growing yeast cells hybridized to Cy 5-labeled exon probes and

Alexa 594-labeled intron probes, and costained with dapi (cyan). Unspliced HAC1 are

detected as colocalized spots in both channels (yellow). C, Scatterplot of the number of

Alexa 594 spots and Cy 5 spots in single cells grown under normal conditions. Dotted

line denotes y = x. Marginal histograms indicate the distribution of Alexa 594 and Cy 5

spots per cell. D, Scatterplot of the total number of colocalized and singleton spots and

the degree of colocalization in single cells. Marginal histogram indicates the distribution

of colocalization percentage.

Fig 2
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Figure 2 Measuring splicing under UPR-inducing stresses. A, A single optical slice

image of HAC1 RNA in DTT-treated yeast cells for 15 minutes, and hybridized to Cy 5-

labeled exon probes and Alexa 594-labeled intron probes, and costained with dapi (cyan).

B, (Top) Dynamics of mean levels of spliced, unspliced and total HAC1 in cell

populations treated with DTT. (Bottom) Dynamics of mean percentage of splicing.

- 89 -

30

25

20

15

10

5

0

100 -

80 -

60 -

40 -

20 -

.0

C-

U)

0 +-



Chapter 3: Single cell analysis of splicing dynamics at single molecule resolution

Fig 3
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1 r

0 2 4 6 8 10 1:
no. of nascent transcripts

transcriptional initiation

10 20 30 40 50 60 70 80 90
time (min)

Figure 3 | HAC1 exhibits transcriptional bursting. A, Schematic of a two-state

promoter-transcription-coupled-to-splicing model. X and y represent promoter activation,

inactivation rates, and pL and s represent transcriptional and splicing rates respectively. 6

and 8s represent turnover rates of the unspliced and spliced RNA respectively. B,

Distribution of total HAC1 RNA in cells under normal conditions, and fitted separately to

a gene-activation-inactivation model (Gamma distribution) and a Poisson distribution for

comparison. C, Distribution of number of nascent transcripts, and fitted to simulations

assuming either a gene-activation-inactivation model or a Poissonian transcription model.
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Chapter 3: Single cell analysis of splicing dynamics at single molecule resolution

D, Gene-activation-inactivation model used to simulate the HAC1 expression kinetics.

Cyan shadings indicate periods during which the promoter is active per cell generation

time. The promoter switches between on and off states depicted by 1 and 0 on the y-axis.

Initiation of a single transcript is denoted by a vertical line.
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F heat shock

25

20 20
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5. 5.
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synthesis rate fluctuations splicing rate fluctuations

Figure 4 | Considerably higher variability in the degree of splicing is observed under

heat stress, which can be explained by increased fluctuations in splicing efficiency.

A, Steady-state dependence of relative mean unspliced and spliced RNA abundance on

normalized splicing rate ps/8. () denotes averaged values. B, Dependence of 77 or CV

(standard deviation divided by the mean) on splicing rate. The solid lines represent

analytical results confirmed by predictions from simulations (denoted by markers). The

parameters fitted to the HAC1 RNA abundance data were used in the simulations. Details

of the analytical expressions are given in the Supplementary information. C,

Distributions of unspliced and spliced HAC1 RNA in cells treated with DTT for 30

minutes, and fitted to stochastic simulations of the model in Fig. 3a using the fit

parameters for the transcription module (dotted line). D, Distributions of unspliced and

spliced HAC1 RNA in cells subjected to heat shock for 30 minutes, and fitted to

simulations. The transcriptional dynamics used were the same, except that the unspliced

and spliced RNA degradation rates were increased. And fluctuations in the mean splicing
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Chapter 3: Single cell analysis of splicing dynamics at single molecule resolution

rate were simulated to obtain the fit in the plot. Details of the simulation procedures and

parameters used are given in the Materials and Methods section. E, Scatterplots of

spliced and unspliced HAC1 RNA counts. Experimental data is shown on the right, while

results from simulations are on the left. Simulations were performed as described in B

and C above assuming no extrinsic noise in transcript abundance for the DTT- and heat-

shock-treated population data. F, Fluctuations in the mean splicing rate were included to

the model to generate the plot for the heat shock data (right). The expression for

normalized covariance of the spliced and unspliced RNA is shown at the bottom.

SUPPLEMENTARY FIGURES AND TABLES

Table S1. List of probe sequences for HAC1

Exon probe
number Sequence

Intron probe
number Sequence

1 gttcaaaatcagtcatttcc 1 tcatcgtaatcacggctgga

2 gttcgattgcgaattactag 2 cttgttcactgtagtttcct

3 ttgaagttggtagggatagc 3 agcaaaagctggggctagtg

4 ttttccttggaggcagagtc 4 aaaaaaaagaaaaaaagcag

5 ttttcctcttttgtcttggc 5 catcagagaaccacgactaa

6 acgctcgatccttcgctgtt 6 gtactttaaccggctcctcc

7 cagctcttctgtttctcaaa 7 accctgcattctgcttttga

8 tttttctctctgctctggtg 8 gaaaaaaagaaagcttccaa

9 gagatactgcagatgtagtc 9 gttcaggaaaaactagcata

10 ccaaaagagaacattttctc 10 taagaaaagaatggctctat

11 ggttgacgctgttcagtaaa 11 caagccgtccatttcttagt

12 tcgtggtcagccagtttttc

13 gtggctgcaagtcaacgcgt

14- caagagaagcaacaaaagcg

15 ctctggaaatccctgtactc
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16 tgtccagtgaagcgcccctc

17 agacgacgagtgcgaactgg

18 gaggtgaaggtgtgaacgta

19 gcaggctccattgtacagtt

20 catactcttgggcgacaaag

21 tcttggtccgacgcggaatc

22 acatctgcagctcccatgaa

23 actctggtacattttccgtc

24 tctacggcaggtagcgtcgt

25 ccgcatcaaacaaattgttg

26 tgggtctgccaacggcgagg

27 ttcccgctatatcgtcgcag

28 gaattgtcaaagggtagact

29 acgccaattgtcaagatcaa

30 actgcgcttcggacagtaca

31 aattcaaatgaattcaaacc

32 tgaagtgatgaagaaatcat
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Figure S1 I Colocalization analysis using particle image cross correlation

spectroscopy method. The cumulative correlation function Ccum plotted as a function of

the radius I of a circle. The dotted line is fitted to the linear portion of the curve. The

offset of the dotted line is equal to the correlation factor (or percentage colocalization).

Fig S2
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HAC1 intron (Alexa 594) HAC1 exon (Cy 5) Ire1 (GFP)

Nucl (Dapi) Merge

Figure S2 | Detection of clustering of activated splicing factor Irelp responsible for

the splicing of HACi under UPR-induced stress. A, A single optical slice image of

HAC1 RNA and Irelp-fused-with-GFP in normal growing cells hybridized to Cy 5-

labeled exon probes and Alexa 594-labeled intron probes, and costained with dapi (cyan).

Unspliced HAC1 are detected as colocalized spots in both channels (yellow). Irelp is

diffusely localized before UPR stress. B, A single optical slice image of HAC] RNA and

Irelp-fused-with-GFP in DTT-treated cells for 15 minutes fixed and hybridized to Cy 5-

labeled exon probes and Alexa 594-labeled intron probes, and costained with dapi (cyan).

Irelp cluster detected colocalizing with an unspliced HAC] RNA, indicated by the white

arrow.
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Fig S3
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Figure S4 | Determination of nascent transcript counts. Histogram of nuclear

transcription site intensities (integrated). The cytoplasmic RNA intensities representing a

single RNA can be fit to a Gaussian distribution and the mean is depicted by the dotted

line. The nuclear signal intensities detected by Cy5 (top) and Alexa 594 (bottom) can be

fitted to integer multiples of the single-peak intensity. The inset shows the active

transcription sites (in yellow, and indicated by white arrow).
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Chapter 4

DEVELOPING A SINGLE CELL ASSAY FOR TRANSLATION

ABSTRACT I Translation is one of the key post-transcriptional mechanisms for

regulating gene expression in eukaryotes. Ribosomal profiling via RNA sequencing and

microarrays are powerful methods for monitoring translational activity on a genome-wide

level. However, these techniques do not allow translational profiling of single cells. Here,

we present an approach using single-molecule fluorescence in situ hybridization (sm-

FISH) and protein synthesis inhibitors to measure ribosome numbers of individual

transcripts in single cells. We describe preliminary results where we applied our method

to monitor translation in exponentially growing yeast, and to explore the changes in

translational regulation upon switching the cells from nutrient rich to starvation

conditions.

- 105 -



Chapter 4: Developing a single cell assay for translation

INTRODUCTION

Protein synthesis is one of the most important processes in the cell, given that

most cellular functions are mediated by proteins. The development of tools for

monitoring translation has led to the discovery of translational gene control that goes

beyond the traditional view that all cellular messages are readily translated into proteins.

Specifically, genome-wide studies of translation in yeast using ribosomal profiling

techniques have found genes that are subjected to extensive translational regulation under

normal growth conditions and in response to stress and environmental stimuli (Arava et

al., 2003; Kuhn et al., 2001; Preiss et al., 2003; Ingolia et al., 2009). In mammalian cells,

the fraction of genes with incongruent mRNA-protein expression is considerably higher,

suggesting that the protein abundance of most genes is strongly controlled at the

translational level (Schwanhausser et al., 2011).

Despite these advances in the study of translation, no current technique allows

translational analysis in single cells, although such information is important for

understanding fundamental questions on gene expression. It has long been appreciated

that cellular processes driven by small numbers of molecules are subjected to stochastic

variation, which contributes to variability within a cell population and can have

phenotypic consequences (Arkin et al., 1998; Chang et al., 2008; Spencer et al., 2009;

Weinberger et al., 2008). Such translational noise can generate phenotypic heterogeneity

that might be advantageous in fluctuating environments, or might hinder the cells' ability

to respond appropriately under conditions where a precise response is critical. Here, we

present an approach to use single-molecule RNA fluorescence in situ hybridization (sm-
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FISH) (Raj et al., 2008) to quantify translation in single cells. The aim is to use sm-FISH

and protein synthesis inhibitors which dissociate ribosomes from mRNAs i.e. puromycin,

for detecting ribosomal occupancies of each mRNA in a cell population with single-cell

resolution. We describe preliminary results where we applied the method to monitor

translation in exponentially growing budding yeast, and to study the translational control

of genes under different growth conditions.

RESULTS

Using sm-FISH and protein synthesis inhibitors to infer translational status

The degree of association of mRNAs with ribosomes is a direct measure of

translational activity. Hence, we designed our approach to determine this in single cells.

A typical sm-FISH experimental procedure involves designing oligonucleotide probes

tiling the entire coding sequence of the mRNA of interest, with the assumption that the

mRNA is fully naked and entirely accessible to probes (Fig. la). However, in reality, a

more accurate depiction of the mRNA would most likely include secondary structures

and its association with proteins such as ribosomes and RNA-binding proteins, thus

limiting the number of FISH probes that can bind to the transcript (Fig. la). Taking

advantage of protein synthesis inhibitors i.e. puromycin, which is a small molecule that

mimics acyl-transfer RNA and serves as a polypeptide chain terminator (Blobel and

Sabatini, 1971; Rodriguez et al., 2006), we surmise that live cells treated with puromycin

prior to fixation for FISH would have a greater number of probes that hybridize to the

transcript for actively translating genes, as compared to cells without the puromycin
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treatment (Fig. lb). Notably, puromycin affects only elongating ribosomes (Maroney et

al., 2006; Nottrott et al., 2006), and thus, this approach detects mRNAs undergoing active

translation.

Using this approach, the difference in the mean number of probes bound to the

mRNA in the two conditions will reflect its degree of association with ribosomes. To

achieve this, our strategy will involve (i) measuring the intensity of spots in cells

hybridized with a single fluorescent probe; (ii) measuring and gating the intensities of

mRNA spots in cells hybridized with a tiling array of fluorescent probes detected using

sm-FISH (Fig. 2); (iii) repeating procedure (i) and (ii) for cells with and without

puromycin treatment.

Mesauring translation in exponentially growing yeast

To test the validity of our approach, we applied it to assess translation in rapidly

growing diploid yeast cells. Four of the five genes in our preliminary study showed the

shift in the mRNA intensity distribution towards higher values in the puromycin

condition as expected (Fig. 3). No appreciable change in intensity was observed for

GCN4 transcripts consistent with ribosomal profiling measurements (Hinnebusch et al.,

2005; Arava et al., 2003; Ingolia et al., 2009). GCN4 is a well-studied example of a

translationally regulated gene (Hinnebusch et al., 2005). During log-phase growth, GCN4

mRNA is highly expressed but its protein counterparts are absent due to translational

repression by uORFs in its 5'UTR. This repression is relieved under amino-acid

starvation, where GCN4 proteins are critical for activating the amino-acid stress response.
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These results support that the shift in mRNA intensities with puromycin is specific to the

effects of ribosomal release from mRNAs.

Using the intensity of a single fluorescent probe, we can translate mRNA spot

intensity into the number of probes bound to an mRNA for the two distributions and

accordingly, derive the mean number of probes possibly occluded from binding to the

mRNA due to ribosomes (Fig. 4a-b). We confirmed experimentally that the fluorescence

intensity scales linearly with the number of probes (Fig. 5), indicating minimal

fluorophore quenching effects.

Each ribosome has a footprint of approximately 30 nucleotides (Wolin and

Walter, 1988), while we designed our probes to be 20 nucleotides each. We sought to

determine the effective average number of probes disrupted from binding to an mRNA

due to a single ribosome. To do this, we first determined the minimum probe length

necessary for the probe to bind to its target sequence. We hybridized cells to probe sets of

varying probe lengths i.e. 11, 14, 17 and 20 nucleotides, and measured their

corresponding spot signal intensities (Fig. 6). From fitting the data to a sigmoidal

function as expected from a thermodynamic probe affinity model (Yilmaz and Noguera,

2004), we find that the critical length required to achieve half-maximal intensity is

roughly 16.5 nucleotides. We then derived analytically as well as simulated kinetic

models of translation to determine the relationship between the minimum length Ls

required for probe binding and the corresponding number of probes occluded per

ribosome (Fig. 7) (Supplementary information). We estimate that at the minimum probe

length of 16.5 nucleotides, a single ribosome prevents on average 2.1 probes from
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binding. In our subsequent analyses, we used this scaling factor to derive the number of

bound ribosomes from the probe count measurements.

To assess the feasibility of our approach, we compared our results in Fig. 3 to data

from a genome-wide polysomal profiling study performed similarly in rapidly growing

yeast (Arava et al., 2004). For the 5 genes studied, we observed a good correlation

between the mean ribosome numbers determined using our method and the data reported

by Arava et al. (Fig. 8). We detected mRNAs that are minimally translating (0.2 ribosome

i.e. GCN4) and those that are highly actively translating (5 ribosomes i.e. CAR2).

However, we also observed that measurements from sm-FISH were systematically lower

than Arava's data for all 5 genes.

Measuring translation in amino acid starvation conditions

Next, we tested our approach by monitoring the translational status of the 5 genes

in yeast cells under starvation conditions. We applied the same procedure as described

earlier, and determined the change in the number of bound ribosomes per mRNA in

amino acid-starved cells as compared to cells in rich media. We compared the data

obtained using sm-FISH with the results from ribosomal profiling using RNA-sequencing

(Fig. 9). Similar to the findings reported by Ingolia et al., we detected that among the 5

genes studied, SRO9 and CAR2 were translationally repressed (fold change < 1) while

GCN4 and TRR2 were translationally upregulated (fold change > 1) under starvation.

MET22, on the other hand, remained as translationally active in both rich and starvation

conditions (fold change = 1).
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Distribution of ribosome numbers per mRNA

Other than the mean metric, we were interested in determining the full

distribution of ribosome numbers for the cell population. To this end, we deconvolved the

intensity distributions for MET22 measured with and without puromycin using the single

fluorescent probe intensity data and we obtained the distributions of occluded probe

numbers under the two conditions. Unexpectedly, we found very narrow distributions in

both cases (Fig. 10a). From these two distributions, we inferred the Fano factor (variance

divided by mean) of the ribosome distribution to be 0.8 t 0.2, which indicates Poissonian

statistics (Fano factor of a Poisson process is 1). We similarly computed the Fano factor

using Arava's data, and observed a 9-fold difference between our results (Fig. 10b).

DISCUSSION

Results so far suggest the feasibility of monitoring translation in budding yeast

using sm-FISH and protein synthesis inhibitors. We showed that the mean ribosome

numbers of 5 genes measured in yeast cells under rich and starvation conditions largely

agree with the results from ribosomal profiling using microarrays and RNA-sequencing.

The possible explanations for systematic deviations of our results from Arava's data

could be that puromycin does not completely remove ribosomes on the RNA, or that we

were over-estimating the single fluorescent probe intensity, or that these differences were

strain-specific, and or that our assay detects only actively translating mRNAs while

polysomal analysis captures both stalled and active ribosomes which are bound onto

mRNAs. These could be systematically addressed by 1. titrating the concentration of

- 111 -



Chapter 4: Developing a single cell assay for translation

puromycin and measuring the resultant ribosome count. 2. measuring the intensities of

single fluorescent probes attached onto glass slides and comparing them to measurements

of single fluorescent probes hybridized in cells. 3. performing sucrose gradient and

polysomal analysis in our strain and comparing the results to those obtained using sm-

FISH.

In addition to reporting the mean, we were interested in determining the full

ribosome distribution. We observed that the intensity distributions can be well described

by a log-normal distribution, suggesting that the measured intensity fit the model of the

product of an intrinsic intensity and extrinsic variable factors. The intensity distribution

measured with puromycin can be approximately converted into the intensity distribution

obtained without puromycin by the scaling factor I-/I and vice versa. However, when we

deconvolved the intensity distributions to derive the corresponding probe count

distributions, they turned out to be close to a Poisson distribution. We estimated the Fano

factor of the MET22 ribosome distribution derived using FISH to be roughly 0.8, which is

inconsistent with Arava's data where the Fano factor is significantly greater i.e. 7. The

greater inaccuracy intrinsic to single probe intensity measurements, which we used in the

deconvolution, might have contributed to the stark discrepancy. Furthermore, our

assumption of the underlying model for the measured intensities (whether measured

intensity is the sum of the intensities of single fluorophores or whether it is the product of

an intrinsic intensity and some variable factors) might have been incorrect.

Hence, while we showed proof of principle of our method, the appropriate

interpretation of the intensity distributions and the validity of extracting the full ribosome

distribution from these data remain to be worked out. Nonetheless, we have shown that
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the in situ method, which eliminates the need for cell lysis and RNA extraction, provides

an alternative assay for measuring the mean number of ribosomes per mRNA in yeast at

the single transcript level. Future experiments using higher resolution imaging systems

coupled with more advanced analysis methods would be expected to improve the

technique to achieve the end objective of profiling translation in single cells.

MATERIALS AND METHODS

Yeast strain and media

GCN4 is the classic translationally regulated gene, however, it is highly expressed and we

are unable to resolve individual transcripts using sm-FISH. To control its expression to

obtain spatially well-separated mRNAs in yeast cells ideal for imaging, we transformed a

plasmid with pTETO7 driving GCN4 and pMYO2 driving rtTA into a homozygous

GCN4 knockout diploid strain in the BY4743 background (Open Bioystems). Thus,

without doxycycline, GCN4 is only basally-transcribed. This strain was subsequently

used for all the experiments described in the text. All experiments involved growing cells

in 5 ml of synthetic -URA media at 30 C overnight (>16 hours), and diluting to an OD60 0

of 0.01 in 50 ml pre-warmed fresh media, and then allowed to grow to a final OD 60 0 of

0.4. For the amino acid starvation experiment, we pelleted the cells for 5 minutes at

5000xg at 30 0C, and removed all media, followed by resuspending the cells in an equal

volume of pre-warmed synthetic media without amino acids, and we repeated this 2x.

Cells were returned to 30 C with vigorous shaking for 20 minutes before fixing.
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Puromycin treatment

For the experiments with puromycin, cells grown to semi-log phase were placed in fresh

media containing a final concentration of 100 pg/ml puromycin (Sigma), and allowed to

grow for roughly 3-5 minutes at 30 *C with vigorous shaking. After which, the cells were

pelleted for 5 minutes at 5000xg at 30 C, media was removed, and the pelleted cells

were fixed.

Fluorescence in situ hybridization

We performed FISH as described by Raj et al., 2008. Pelleted cells were immediately

fixed by adding 4% (v/v) formaldehyde diluted in PBS directly to the culture for 45

minutes at room temperature. The cell wall was digested using lyticase (Sigma), and

stored in 70% (v/v) ethanol (for at least 3 hours) at 4 C. Prior to hybridization, cells were

rehydrated with 10% (v/v) formamide, 2 x SSC for 10 minutes. We used a hybridization

buffer consisting of 10% (v/v) formamide, 2 x SSC, 1 mg/ml BSA, 10 mM VRC, 0.5

mg/ml Escherichia coli tRNA and 0.1 g/ml dextran sulfate. All hybridizations were

carried out in solution using probes to Alexa 594 (Invitrogen) at optimal concentrations

determined empirically, and were carried out overnight at 37 *C. The cells were attached

to coverslips coated with concanavalin A (Sigma) prior to imaging. All probes used in

this study were coupled to Alexa 594 (Invitrogen).

Image acquisition and analysis

Images were acquired using a Nikon TE2000 epifluorescence microscope equipped with

a Princeton Instruments camera and a 100 x oil immersion objective. The microscope

- 114-



Chapter 4: Developing a single cell assay for translation

settings used were slow camera readout (10kHz), 2x2 pixel binning and 1.5x

magnification (1 pxl = 173 nm). Data was taken as stacks of images with a z direction

step size of 0.2 gm using filters appropriate for Alexa 594 (Chroma Technology). To

minimize photobleaching during imaging, we used antifade reagents including Trolox

and the oxygen-scavenging solution glucose oxidase (Raj et al., 2008). Using custom-

written MATLAB (Mathworks) software, we reduced the stacked images to two-

dimensional images by maximum projection, and fitted the fluorescent spots to a 2D

Gaussian as the model for the point spread function. Single transcript intensity was

defined as the integrated intensity of the spot identified using the two-dimensional

Gaussian mask algorithm.

SUPPLEMENTARY INFORMATION

Relationship between minimum length L, required for probe binding and number of

probes occluded per ribosome

-A S minimal length for stability L

30 nt
20 nt

L
number of probes N
length of transcript L=N*20

Probability p for a ribosome excluding a particular probe p = (10 + 2 Ls)/L

Average number of probes excluded per ribosome f = Np = (10 + 2L,)/ 2 0
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FIGURES AND TABLES

Fig 1

A
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S ribosome
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RNA binding
proteins
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* - --- - -

Figure 1 I Method for detecting ribosomes using sm-FISH and protein synthesis

inhibitors. A, A typical depiction of the trans (ribosomes and RNA binding proteins) and

cis (secondary structure) factors on a single mRNA transcript. B, Addition of the protein

synthesis inhibitor puromycin is predicted to increase accessibility of the RNA strand to

FISH probes.
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Figure 2 | Gating of spots based on spot intensity and width. Scatterplot of spot

intensity and width for all mRNA spots in the cell population. The white circle represents

the gated population with intensities greater than the minimum intensity (measured from

a single fluorophore), and which fall within the expected dot width (-2 pixels) (See

Materials and Methods).
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Fig 3
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Figure 3 | Distributions of RNA spot intensities with and without puromycin.

Histograms of intensities of FISH spots corresponding to the respective genes detected in

cell populations treated separately with and without puromycin.
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Fig 4
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Figure 4 | Determining the mean number of probes disrupted by ribosomes. A,

Representative histograms of intensities of spots detected in cells treated with or without

puromycin. Dotted lines represent mean intensities of each distribution denoted by I~ and

I'. B, Representative histogram of intensity of spots detected in cells hybridized with a

single fluorescently labeled probe. Dotted line represents the mean intensity denoted by

I1. N* and N~ represent the mean number of probes bound to each RNA transcript in each

condition, and AN represents the mean number of probes possibly excluded from binding

by ribosomes.
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Fig 5 ..
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Figure 5 Linear scaling of intensity with number of probes. Mean intensities of spots

detected in cells hybridized with varying number of probes (denoted by blue spots), and

are fitted to a linear line (n = 1 experiment).
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Figure 6 | Relative spot intensity as a function of probe length. Mean intensities of

spots detected in cells hybridized with probes of varying length (11, 14, 17 and 20

nucleotides) and normalized to the maximum mean intensity (denoted by blue spots) (n =
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1 experiment). The data is fitted to a sigmoidal curve. The minimum probe length Ls

required to achieve half-maximal signal intensity is estimated to be 16.5 nucleotides.

Fig 7
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Figure 7 | The average number of occluded probes per ribosomes as a function of L,.

The analytical result is represented by the solid black line, while simulation results

assuming different total number of ribosomes bound on a single transcript are indicated

by black and blue spots. The dotted line denotes the minimum probe length L, = 16.5 nt

determined in Fig. 6, and roughly 2.1 probes on average are prevented from binding.
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Fig 8
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Figure 8 | Comparison of our results (y-axis) with results from the polysomal

profiling method using microarrays reported by Arava et al. Performing the

procedure described in the text using the distributions in Fig. 3 and the estimated scaling

factor derived earlier, we computed the average number of bound ribosomes per

transcript for the 5 genes, and compared our results to Arava's et al. Data denotes mean

(n =3) ± SEM.
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Fig 9
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Figure 9 | Comparison of our results with results from the ribosomal profiling

method using RNA-sequencing reported by Ingolia et al. Fold change denotes the

mean number of bound ribosomes per mRNA in cells under amino acid starvation

conditions normalized by the value obtained from cells in rich media. Dotted line

represents a fold change of 1.
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Figure 10 | Comparison of the ribosome distributions inferred from FISH with

Arava's data. A, MET22 intensity distributions in Fig. 3 were deconvolved with the

single fluorescent probe data to obtain the probe count per transcript distributions with

and without puromycin. The Fano factor of the ribosome distribution was computed

using the expressions described in the box. B, MET22 ribosome distribution obtained

from the Arava et al. data.
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Chapter 5

DISCUSSION

SUMMARY OF FINDINGS

In this dissertation, I present the results from both systems- and single-cell level

analyses of signaling and gene expression pathway processes in Saccharomyces

cerevisiae. All three studies used analytical tools from physics and engineering to deduce

important properties of biological systems. In the first investigation, we employed

computational sensitivity analysis to predict the system behavior of the osmosensing

signaling pathway to changes in kinetic rate constants. We demonstrated that the

sensitivity of Hogl activation dynamics to genetic perturbations can be predicted by a

simple biochemical model. By decoupling the network into two separate modules, we

showed that an input-output analysis of each of the modules can generate the measured

disparity in their tolerance to kinetic parameter fluctuations. Our analysis suggests that

the input-output relation of catalytic signaling pathways i.e. MAPK cascade are

intrinsically sensitive to kinetic rate perturbations. By contrast, signaling governed by

stoichiometric biochemical reactions, i.e. phosphorelay, exhibit robust input-output

functions. Consistent with this model, we found that the input-output relation of Hogl

activation is severely impacted by protein coding sequence changes in the MAPK

cascade genes, but not the phosphorelay genes.

In the second project, we analyzed how HAC1 RNA splicing contributes to

variability in splicing outcomes and heterogeneity in the unfolded protein response in

Saccharomyces cerevisiae. We combined the single molecule FISH method with
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colocalization analysis to count endogenous spliced and unspliced HAC1 transcripts in

single cells. From a statistical analysis of the distributions of cytoplasmic and nuclear

HAC1 RNA per cell, we showed that the statistics of variation are consistent with a

transcriptional bursting model. We further used a stochastic gene-activation-inactivation

model to determine the kinetic rates governing the transcriptional dynamics of HACL.

Based on a two-state-transcription-splicing model, we derived the analytical noise

expressions for the spliced and unspliced RNA species. We showed that the cell-to-cell

variability in the degree of splicing is tightly regulated in the presence of a UPR-inducing

chemical agent, but it is compromised under heat stress. By considering models including

extrinsic noise at the splicing or transcriptional level, we showed that the decrease in the

covariance of the two RNA species (increased variability in the degree of splicing) under

heat stress can be generated by increased fluctuations in the splicing rate.

In the third project, we embarked on the development of a single-cell translation

assay. We combined the single molecule FISH technique with the use of protein synthesis

inhibitors to measure ribosome numbers of each transcript in single cells. We showed that

puromycin-treated cells exhibit higher mean mRNA spot intensities than untreated cells

when detected using sm-FISH. We estimated that the minimum probe length required for

hybridizing to its target sequence is roughly 16 nucleotides. From this minimum probe

length and our probe design of 20 nucleotides each, we determined that one ribosome

disrupts on average two probes from binding. We showed that our results of the mean

ribosome numbers per mRNA for the five genes measured in exponentially-growing

yeast correlate well with the results obtained using polysomal analysis via microarrays.

We further showed that our method detected the (mean) change in the translational
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regulation of these five genes upon switching the cells from rich to starvation conditions.

Further experiments and analyses would be required to determine the full distribution of

ribosome count per mRNA, and to ultimately extract single cell information from the

data.

Cells are constantly faced with the enormous challenge of maintaining reliable

execution of functions while being exposed to an onslaught of time-varying external

(genetic or non-genetic) perturbations from the environment, and intrinsic fluctuations

due to the stochasticity of discrete biochemical events happening within the cell. What

are the ways in which cells can tackle this problem? And, how do these perturbations

affect phenotypic heterogeneity? Our investigations in the first project identified the

stoichiometric phosphoryl-transfer mechanism as a means for buffering genetic variation.

Such stoichiometric systems are not only found in signaling pathways in bacteria and

yeast, but they are widely used in metabolic networks which involve transfer of

metabolites rather than phosphoryl groups. The basis of the robustness of stoichiometric

systems arises from the understanding that their steady-state outputs are only reliant on

the influx and efflux of phosphoryl through the system, and is independent of kinetic rate

changes in internal system components. A similar mechanism has been used to describe

the robustness of the two-component osmosensing signaling system in Escherichia coli to

component concentration variations (Shinar et al., 2007; Shinar and Feinberg, 2010).

While this example showcased a system that can generate minimal cell-to-cell

differences in output, we present in the second project a different system that has a less

precise input-output function, and is capable of generating considerable variability in its

output between individuals. Systems that make sharp decisions such as the switch-like
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UPR-induced splicing and the ultrasensitive response of the MAPK cascade in the HogI

(Huang and Ferrell, 1996) pathway tend to exhibit less robust input-output functions to

perturbations. Hence, fluctuations in internal systems components i.e. fluctuations in

splicing factor concentrations can compromise splicing regulation, and generate variable

splicing outcomes leading to heterogeneous UPRs among clonally identical cells. In a

similar fashion, we showed in the first project that, in contrast to the robustness of Hogl

activation to phosphorelay perturbations, changes made to the MAPK cascade often

imposed serious (and variable) consequences on signaling.

Systems built with feedback circuits can reduce the effects of these intrinsic

fluctuations; however, even with the most optimal feedback, there is a fundamental limit

to noise reduction on the order of a fourth root of the number of regulatory molecules

(Lestas et al., 2010). Building the circuit to perform time-averaging is another way to

buffer noise (Raj et al., 2006). For example, the lifetime of proteins is usually longer than

the average interval between protein production bursts. This results in protein

accumulation over time, which averages out the variability generated by bursty

expression. Another noise-reducing design is the implementation of successive rate

limiting reactions with similar reaction rates, since the noise of the system output scales

inversely with the square root of the number of intermediate steps (Pedraza and Paulsson,

2008). RNA maturation for example, requires precursor RNAs to go through a series of

conversions into intermediate RNA species before the final mRNA product is being

successfully synthesized.

The development of single cell experimental techniques has made it possible to

directly examine the probabilistic biochemical events that occur in the cell, and to
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compare the individuality of responses between cells (Raj and van Oudenaarden, 2008).

We present in the third project our efforts to develop a method to quantify translation in

single cells, with the objectives of deciphering the precision of its input-output function

and determining its consequences on gene expression heterogeneity. These studies

presented here provide examples that connect variations with the underlying biochemical

network, and the biological functions these encode, and suggest ways in which cells can

employ to suppress or utilize these unpredictable changes.
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